
Research Article
When Transfer Learning Meets Dictionary Learning: A New
Hybrid Method for Fast and Automatic Detection of Cracks on
Concrete Surfaces

Si-Yi Chen ,1,2 You-Wu Wang ,1,2 Yi-Qing Ni ,1,2 and Yang Zhang 1,2

1Department of Civil and Environmental Engineering, Te Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong, China
2National Rail Transit Electrifcation and Automation Engineering Technology Research Center (Hong Kong Branch),
Te Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Correspondence should be addressed to You-Wu Wang; youwu.wang@polyu.edu.hk and Yi-Qing Ni; ceyqni@polyu.edu.hk

Received 11 March 2024; Revised 30 July 2024; Accepted 23 August 2024

Academic Editor: Wenai Shen

Copyright © 2024 Si-Yi Chen et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cracks in civil structures are important signs of structural degradation and may indicate the inception of catastrophic failure.
However, most of studies that have employed deep learning models for automatic crack detection are limited to high com-
putational demand and require a large amount of labeled data. Long training time is not friendly to model update, and large
amount of training data is usually unavailable in real applications. To bridge this gap, the innovation of this study lies in
developing a hybrid method that comprises transfer learning (TL) and low-rank dictionary learning (LRDL) for fast crack
detection on concrete surfaces. Benefting from the availability of preextracted features in TL and a limited number of parameters
in LRDL, the training time can be signifcantly minimized without GPU acceleration. Experimental results showed that the time
for training a dictionary only takes 25.33 s. Moreover, this new hybrid method reduces the demand for labeled data during
training. It achieved an accuracy of 99.68% with only 20% labeled data. Tree large-scale images captured under varying
conditions (e.g., uneven lighting conditions and very thin cracks) were further used to assess the crack detection performance.
Tese advantages help to implement the proposed TL-LRDL method on resource-limited computers, such as battery-powered
UAVs, UGVs, and scarce processing capability of AR headsets.

1. Introduction

During their long service lives, civil infrastructures expe-
rience various forms of degradation. Cracks often emerge as
early indicators of structural deterioration. Teir presence
afects the appearance of the structure, reduces local stif-
ness, and jeopardizes integrity [1]. Tis highlights the ne-
cessity for the timely and accurate monitoring of cracks to
ensure structural safety [2].

Traditionally, the manual inspection is widely applied for
inspection of cracks on infrastructure surfaces, which relies
on trained engineers with rich experience to record the
irregular conditions on structures at regular intervals or after
major disasters. However, owing to the size of the structure,
manual visual inspection is time-consuming, labor-

intensive, and vulnerable to human errors. Furthermore,
certain areas of the structure are inaccessible to inspection by
humans owing to the challenges and potential risks involved.
Terefore, to automate the inspection process and further
minimize human costs, automated robotic inspection sys-
tems utilizing camera-equipped unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs) have been
actively developed [3–5].

Robotic inspection systems are generally image-based.
Tis means that to comprehend information from images,
postprocessing combined with computer vision algorithms
is typically required [6]. To date, various vision-based
techniques have been proposed and developed for crack
detection. Several surveys have also been conducted to re-
view the existing image-based automatic crack detection
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approaches from various perspectives [7–9]. Early image-
based research for crack detection focused on image pro-
cessing techniques (IPTs), including edge detection methods
[10, 11], thresholding-based methods [12], percolation
models [13], and graph theory-based methods [14, 15].
However, IPTs are susceptible to illumination conditions,
distortion, and noise stemming from complex structural
surfaces [16]. Tese conditions still limit the reliable de-
tection of cracks using most of the existing IPTs.

Alternatively, other researchers have explored more
adaptable methods for crack detection by integrating image
feature extraction and machine learning (ML) techniques,
and these methods have demonstrated robust noise re-
sistance [17, 18]. In such studies, IPTs were utilized to extract
crack-liked features. Tese extracted features were sub-
sequently fed into ML classifer to distinguish between crack
and noncrack images. Jahanshahi et al. [19, 20] specifcally
trained three classifers using extracted morphological fea-
tures to identify cracks of varying thicknesses. Zalama et al.
[21] utilized visual features extracted from Gabor flters for
road crack detection. Tey addressed the challenge of pa-
rameter selection by employing AdaBoost to combine a set
of weak classifers for feature extraction, resulting in im-
proved performance. Chen et al. [22] adopted local binary
patterns as a crack descriptor, in conjunction with SVM and
Bayesian decision theory, to identify cracks on metallic
surfaces. However, a crucial aspect of this process involved
extracting robust hand-crafted features. Overextracted or
false-extracted features often lead to numerous false posi-
tives in crack detection [23].

Deep convolutional neural networks (DCNNs) may
overcome this problem, as their convolutional layers endow
them with enhanced feature extraction ability [24, 25].
Unlike traditional hand-crafted feature extractors, DCNN
convolutional kernels are learned automatically, granting
them high fexibility and the capacity to extract more per-
tinent information relevant to the task at hand. Also, owing
to their deep architectures, neural networks can efciently
capture global information by pooling knowledge from
diferent layers and scales; this is challenging to accomplish
using traditional hand-crafted feature extraction methods.
For these reasons, DCNNs are emerging as powerful tools
for detecting cracks in vision-based structural health
monitoring (SHM).

As listed in Table 1, the DCNN-based crack detection
methods can be divided into three categories: crack classi-
fcation, crack localization, and pixel-level crack segmen-
tation. For crack classifcation, captured images are divided
into image blocks with the same size. Tese image blocks are
then classifed to determine whether they contain cracks or
not. Terefore, it is indeed a binary classifcation task, where
DCNNs are used to assign a binary label to each image patch.
Cha et al. [26] developed a DCNN with four convolutional
layers specially designed for concrete crack detection, in-
corporating the sliding window technique to analyze full-
scale images. Tis approach achieved an accuracy of 97%,
with the authors recommending the use of over 10,000
images for network training. Chen and Jahanshahi [27]
proposed a DCNN with näıve Bayes data fusion scheme to

detect tiny cracks on metallic surfaces. Te model was
trained on a single GPU, and convergence was achieved after
70 epochs with 32, 535 s. To reduce the training time,
Gopalakrishnan et al. [28, 29] used a pretrained VGG 16
network with transfer learning (TL) technique to detect
cracks in pavement and UAV images. Among various ML
classifers (support vector machine, random forest, and
logistic regression), it is reported that a single-layer neural
network classifer with pretrained VGG 16 achieved the best
classifcation results. Recently, Zhang and Yuen [30] de-
veloped an efcient crack detection framework that in-
corporates a feature-based broad learning system. Trough
the incorporation of incremental learning, this approach
obviated the necessity for model retraining when updating
the dataset. For real-world images, Pal et al. [47] highlighted
the challenges associated with automatic crack detection in
the presence of shadow efects. To mitigate their efects,
a shadow augmentation technique is proposed to improve
the classifcation accuracy [31]. Other classifcation networks
for crack detection, including AlexNet, GoogleNet, ResNet,
and SqueezeNet, can be found in these papers [32–34] and
are summarized in Table 1.

Another type of crack detection method is based on
object localization techniques, where the DCNNs are used to
identify and locate cracks in images. Compared to the
classifcation tasks with the fxed window size, crack lo-
calization possessed both object classifcation and localiza-
tion capabilities, allowing for adaptive adjustment of the
detection window size based on the identifed object.Tus, it
usually consists of a classifcation task and a regression task.
Cha et al. [35] applied the faster region-based convolutional
neural networks (faster R-CNN) to identify fve types of
surface damage, including concrete cracks, moderate and
severe steel corrosion, bolt corrosion, and steel de-
lamination. In their study, the training process based on the
GPU device required was about 4 hours, whereas relying
solely on a CPU extended the training time to around
4.5 days. Deng et al. [36] similarly used the faster R-CNN
framework to identify cracks in real-world images featuring
complex backgrounds. Te results demonstrated that the
method successfully diferentiated cracks from handwriting
script interferences on bridge surfaces. Jiang and Zhang [37]
designed a wall-climbing UAV system used for crack in-
spection. For real-time crack detection, a tiny network in-
tegrated with Single Shot MultiBox Detector (SSD) and
MobileNetV2 was trained and transplanted into a smart-
phone application. Te proposed method facilitates crack
inspection on a building and achieves a crack detection
accuracy of 94.8%. You Only Look Once is a popular object
detection algorithm [48], which has been developed from
Version 1 (V1) to Version 10 (V10). Zou et al. [38] employed
YOLOv4 network for postearthquake damage detection and
safety evaluation. Tis approach successfully identifed fve
common types of damage (fne cracks, wide cracks, concrete
spalling, rebar exposure, and rebar bulking), showcasing
high detection accuracy and potential for earthquake
damage assessment. Qiu and Lau [39] utilized the YOLOv4-
tiny, a more compact version of the YOLOv4 algorithm, for
the detection of cracks in tiled sidewalks.

2 Structural Control and Health Monitoring

 schm
, 2024, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/2024/3185640 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [20/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Te above two types of crack detection methods (crack
classifcation and localization) used the bounding boxes to
locate and mark the detected cracks without further crack
extraction. To directly detect cracks at the pixel level, some
DCNN-based crack segmentation methods have been
proposed. In such an end-to-end framework, detailed seg-
mentation crack maps can be automated and generated from
input images. Zhang et al. [40] proposed a CrackNet to
detected cracks on asphalt pavement. Unlike conventional
CNNs, CrackNet does not include any pooling layers; thus,
all pixels in images can be predicted. Later, a modifed
version called CrackNet-R was proposed for fully automated
pixel-level crack detection [41]. Dung and Anh [42] de-
veloped a crack detection method based on a fully con-
volutional network (FCN) for semantic segmentation of
concrete crack images. Tey selected diferent DCNNs as
encoders to extract features and demonstrated that VGG16
performed better than InceptionV3 and ResNet for feature
extraction. Similarly, based on an encoder-decoder struc-
ture, a novel U-Net architecture was recently established to
improve the accuracy, efectiveness, and robustness in crack
segmentation [44–46, 49, 50]. Bhowmick et al. [44] used a U-
Net architecture for pixel-level crack segmentation and
validated their approach by processing video data captured
from a UAV-based camera. Zhang et al. [45] proposed an
improved U-Net-based model to identify crack, where a new
loss function was applied to solve the class imbalance
problem. Recently, with the transformer and self-attention
mechanism shown promising performance in computer
vision, Lu et al. [46] integrated the Swin Transformermodule
into U-Net for crack segmentation. In this method, the Swin
Transformer serves as the encoder segment to extract
features.

Although DCNNs have shown promising advancements
than traditional methods, there are several challenges as-
sociated with their use. First, it usually requires large
amounts of annotated data for classifcation, identifcation,
and segmentation tasks. Especially for the segmentation
task, which requires manual annotation of every pixel in the
image, the labeling process can be costly. Second, even when
a well-annotated dataset is available, training a network from
scratch can take hours or even days, with the use of high-
performance computing systems, as presented in Table 1.
Tird, as the monitoring data continue to grow, retraining
the DCNN model becomes necessary using the updated
dataset. Long training time is not friendly to model update
with the new updated dataset. Tese limitations afect the
practical applicability of the existing methods.

In this study, a hybrid method is developed for crack
detection on concrete surfaces, intended to overcome above
limitations. Te proposed method comprises transfer
learning (TL) and low-rank dictionary learning (LRDL),
which is hereinafter referred to as TL-LRDL. Te main
contributions of this study are summarized as follows: (1)
Te present study represents the frst attempt to combine TL
and LRDL in SHM for fast crack detection on concrete
surfaces. (2) Benefting from the availability of preextracted
features in TL and only a limited number of parameters in
LRDL, the training time can be signifcantly minimized
without requiring GPU acceleration. (3) TL-LRDL enables
the reuse of the established DCNN model without neces-
sitating additional network training, thereby reducing the
demand for labeled data during training. Consequently,
these advantages help to implement the proposed TL-LRDL
method on edge or resource-limited devices, such as battery-
powered UAVs, UGVs, and scarce processing capability of

Table 1: Some DCNN-based crack detection methods.

Reference Backbone network Training time (hours)

Crack classifcation

Cha et al. [26] Shallow CNN 48 or 1.5#

Chen and Jahanshahi [27] NB-CNN 9#

Gopalakrishnan et al. [28] VGG 16
Gopalakrishnan et al. [29] VGG 16
Zhang and Yuen [30] ResNet50 -BLS 1.8#

Palevičius et al. [31] AlexNet
Orinaitė [32] AlexNet/SqueezeNet 5.9
Ni et al. [33] GoogleNet/ResNet 20 3#

Dung et al. [34] VGG 16

Crack localization

Cha et al. [35] Faster R-CNN 108 or 4#

Deng et al. [36] Faster R-CNN 57#

Jiang et al. [37] SSDLite-MoblieNetV2
Zou et al. [38] YOLOv4-D
Qiu et al. [39] YOLOV4-tiny

Pixel-level crack segmentation

Zhang et al. [40] CrackNet 216#

Zhang et al. [41] CrackNet-R
Dung and Anh [42] FCN
Chen et al. [43] SegNet 3#

Bhowmick et al. [44] U-Net
Zhang et al. [45] U-Net 1.1#

Lu et al. [46] Swin transformer-U-Net
Note. #Using GPU acceleration.
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AR headsets. Furthermore, the fast-training process pro-
vides a potential solution to complete quick model updates
when the dataset is updated.

In the remainder of this article, Section 2 introduces the
proposed crack detection method combining TL and LRDL.
Section 3 presents the performance of the trained classif-
cation model and the implementation results on large-scale
images. Section 4 compares the detection performance of the
proposedmethod with those of existing DCNNmethods and
two commonly used edge detection methods, followed by
the conclusion in Section 5.

2. Proposed Methodology

By incorporating TL and LRDL, this research introduces
a novel method for detecting cracks, referred to TL-LRDL.
Te proposed TL-LRDL is fast, autonomous, and easy to
implement. It involves reusing a well-trained DCNN model
and “transferring” its learning ability to a crack detection
task. According to the transferred features, a new classifer
for crack detection via LRDL is generated. Te proposed
TL-LRDL method is described below in detail.

2.1. Pretrained ResNet18 Model. Over the past decade,
various DCNN architectures have emerged with increasing
depth and complexity. Given that crack detection constitutes
a relatively simpler binary classifcation task (crack or
noncrack), a simple yet efective architecture (ResNet18) is
chosen for this study. ResNet18 (i.e., residual network with
18 layers) was introduced in 2015; the model has secured the
top spot in image classifcation competitions (ILSVRC 2015
and ILSVRC and COCO 2015). Diferent from other
DCNNs equipped with stacked convolutional layers (such as
VGG or AlexNet), ResNet’s most notable feature is its in-
corporation of additional residual (or skip) connections.
Tese connections play a crucial role in addressing degra-
dation in deep networks [51].

Te ResNet18 model comprises two core components:
the model architecture and the trainable parameters
(weights) (Figure 1). Te model architecture includes 17
convolutional layers along with a fully connected (FC)
layer. Te former layers utilize convolution kernels of sizes
7× 7 or 3 × 3 to extract features from input images. By
expanding depth through the addition of more convolu-
tional layers, consistent with the concept of a “very deep
network” [25], ResNet18 can efectively extract features
from images. Te fnal FC layer establishes the relationship
between the extracted image features and outcomes of the
classifcation.

Te model includes 11.6 million trainable parameters.
Tese parameters were determined through the original
training of the ResNet18 architecture on the ImageNet
dataset, which comprises over 3.2 million natural images
distributed across 5,247 categories. Consequently, the pre-
trained ResNet18 model on ImageNet exhibits a recognition
capability encompassing 1,000 categories (source task).
Since the pretrained ResNet18 model has acquired the ca-
pability to extract distinguishing features that can

diferentiate one image class from another, they prove to
have very good generality on another dataset, which in turn
creates an environment conducive to TL.

2.2. Feature Transfer. In SHM applications, obtaining
a large-scale dataset such as ImageNet to train an entire
DCNN (ResNet18) from scratch is impractical, and the
complete training process is time-consuming. TL has been
proposed as a powerful tool to avoid this challenge. Its aim is
to leverage knowledge from the source domain to improve
the training efciency or minimize the number of labeled
data required in the target domain.

TL typically involves two common strategies: feature
extraction and fne-tuning [52]. In the feature extraction
approach, all parameters and weights preceding the FC
layers are fxed. Tese fxed and unchanged parameters are
represented as learned knowledge from the source task and
then transferred from the source domain to the target do-
main.Te features extracted by keeping these parameters are
used to train a classifer for predicting labels in the target
domain. In contrast, the fne-tuning strategy involves
retraining certain parts of the DCNN. In this strategy, only
some parameters from the initial layers are fxed, while
higher convolutional blocks, together with the FC layers, are
retrained through gradient descent and backpropagation.
Depending on factors such as data size and problem
complexity, either of these two strategies can be applied in
diferent scenarios.

In this study, the feature extraction strategy for TL is
adopted for two reasons: (1) Te original training dataset for
the pretrained ResNet18 model is ImageNet, encompassing
a multitude of images associated with the civil engineering
feld. For crack detection task (the target task) in structural
engineering domain, the source and target domains are
related. Tus, such a pretrained ResNet18 model on
ImageNet might have learned features that can distinguish
crack images from noncrack images. (2) Feature extraction is
faster than fne-tuning, as the former does not require ad-
ditional network training.

Specifcally, as depicted in Figure 2, by maintaining the
parameters prior to the FC layer as fxed, the pretrained
ResNet18 model serves as a feature extractor in this study.
Te outputs from the fnal layer preceding the FC layer are
extracted as semantic features, which is subsequently
transferred to the target domain. Each image yields semantic
features with a fnal dimension of 512. Tese semantic
features are then utilized to train a newly generated classifer
via LRDL. Te LRDL phase benefts from the availability of
preextracted features and a limited number of parameters,
which considerably reduces the training time and the re-
quired number of labeled images. Tus, the overall pro-
cedure becomes a lightweight framework designed for
execution on computationally limited platforms.

2.3. Low-Rank Dictionary Learning (LRDL) for Crack De-
tection and Classifcation. Using the transferred features, we
train a classifer to conduct the crack detection task (target
task) via LRDL.

4 Structural Control and Health Monitoring
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2.3.1. Low-Rank Representation (LRR). LRR, similar to
sparse representation classifcation (SRC) model, belongs to
representation-based classifcation methods. Due to the
promising classifcation performance, they have been widely
used for facial recognition and image classifcation. How-
ever, the application of LRR in SHM for the detection of
cracks remains relatively unexplored.

Diferent from SRC model with l1 norm, LRR with
nuclear norm is more robust to noise and outliers, as the
low-rank constraint is superior at capturing the global
structure of the data.Te basic idea of LRR is to represent the
query data as a linear combination of several atoms from an
overcomplete dictionary encompassing all available classes.
As the representation coefcients can well refect the sim-
ilarities among data, the resulting representation matrix
contains critical class information, making it useful for
classifcation purposes. A more comprehensive mathemat-
ical explanation is provided subsequently [53].

For a given testing set Y, Y � [y1, y2, · · · , yN] ∈ Rd×N is
defned as a set of N test images in a d-dimensional feature
space. Each column yi ∈ Rd denotes the transferred features
of image i, which is the outputs of the pretrained ResNet18
model before the FC layer. As mentioned earlier, the fnal
feature dimension of each image is 512 (i.e., d � 512). With

an overcomplete dictionary D, each test image in feature
space yi ∈ Rd can be expressed as a linear combination of the
atoms in the dictionary. As such, Y can be expressed as

Y � DZ + E, (1)

where D � [D1,D2, · · · ,DK] ∈ Rd×m denotes a dictionary
from all K classes, and Di is a subdictionary corresponding
to the class i. m denotes the total number of dictionary
atoms. Z � [z1, z2, · · · , zN] denotes the representation ma-
trix, where each column zi corresponds to the representation
coefcients of yi, and E stands for the sparse noise
component.

If a test image yi ∈ Rd belongs to the class k, then ideally,
it can be well represented by its own subdictionary Dk, and
the representation coefcients for Dj (j≠ k) are nearly all
zero. Tus, the positions of nonzero elements in zi reveal the
class information of yi, and the optimal representation
matrix Z for Y should be block-diagonal as follows [54]:

Z �
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0 Z2
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0 0
0 0

0 0
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Figure 1: Pretrained ResNet18 model.
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To achieve the above block-diagonal structure in Z, the
low-rank constraint is imposed on Z. Compared with the
sparse constraint, the low-rank constraint is superior at
capturing the global structure of the data because it exploits
correlations among its columns [55]. Ten, equation (1) can
be solved using the following LRR optimization problem:

min
Z,E

rank(Z) + λ E‖ ‖0

s.t.Y � DZ + E,
(3)

where λ> 0 is a trade-of parameter that balances the con-
tribution of the rank term and the noise component. Owing
to the discrete nature of the rank operation and the l0 norm,
equation (3) is a nonconvex problem that is difcult to solve.
Terefore, the convex relaxation of equation (3) is expressed
as follows:

min
Z,E

Z‖ ‖∗ + λ E‖ ‖1

s.t.Y � DZ + E,
(4)

where ∙‖ ‖∗ denotes the nuclear norm of a matrix, serving as
an efective surrogate for the rank minimization problem,
and ∙‖ ‖1 denotes the l1 norm as the convex relaxation of the
l0 norm.

2.3.2. Dictionary Learning (DL). Dictionary quality holds
signifcant importance for classifcation within the frame-
work of LRR, as it profoundly infuences the discriminative
nature of the resulting representation matrix Z. Generally,
most classifcation methods based on LRR utilize the entire
training set as the dictionary to learn the LRR. Nevertheless,
a dictionary composed of all training data features excessive
redundant atoms, which increases the computational cost
and reduces the discriminative capacity for classifcation.
Moreover, the dictionaryD is fxed in the solving process, as
shown in equation (4). If the dictionary contains noise or
outliers, the test images yi ∈ Rd cannot be represented well
by a polluted dictionary. Terefore, it is necessary to in-
tegrate a DL progress into equation (4), instead of fxing
dictionary atoms.

Typically, DL approaches can be divided into two main
categories [56, 57]: (1) the acquisition of a dictionary
founded on mathematical models, such as wavelet, con-
tourlet, bandelet, and wavelet packets, and (2) the con-
struction of a dictionary that behave well in the training
dataset. In this study, the latter way is selected owing to its
ability to yield excellent classifcation performance in most
practical scenarios. Te mathematical model for DL can be
described as follows:

min
Z,D,E

Z‖ ‖∗ + λ E‖ ‖1 +
c

2
D‖ ‖

2
F

s.t.X � DZ + E,

(5)

where X � [x1, x2, · · · , xn] ∈ Rd×n denotes the training set
consisting of n training images, and each column xi rep-
resents the features of a training image transferred from the

pretrained ResNet18 model; (c/2) D‖ ‖
2
F is included to pre-

vent scale change during the DL process. Te model for LRR
with DL (called LRDL) is shown in Figure 3.

2.3.3. Locality Constraint for LRDL. Despite LRR’s robust
capability to explore the global structure of a dataset, it
overlooks the local manifold structure existing between pairs
of images. Tis local structure is also valuable for classif-
cation purposes [58]. To preserve this local structure, we
employ the Euclidean distance to gauge local similarity:

Wi,j � xi − xj

�����

�����
2

2
, (6)

where Wi,j is the distance between xi and xj. It measures the
similarity between two images; that is, the smaller the Wi,j is,
the more similar the two images are, while the larger the Wi,j

is, the more diferent the two images are. Tus, considering
the locality relationship can result in better classifcation
performance. Te locality constraint, serving as a penalty
term for LRDL, is introduced as follows:

W ⊙ Z‖ ‖1, (7)

where ⊙ denotes the Hadamard product, which means
elementwise multiplication. If W is an all-one matrix,
W ⊙ Z‖ ‖1 reduces to Z‖ ‖1, which becomes traditional and
“unweighted” l1 norm on Z. Te l1 norm is a convex
surrogate for the l0 norm, commonly used to measure
sparsity in the solution. Te diference between W ⊙ Z‖ ‖1
and Z‖ ‖1 lies in an additional weight matrixW that is added.
As defned in equation (6), Wi,j is the Euclidean distance
between xi and xj, measuring the similarity between two
images. All Wi,j in W are positive values, and these weights
Wi,j are inversely proportional to the Zi,j. Tus, by Hada-
mard product betweenW and Z, this whole term W ⊙ Z‖ ‖1
can be implicitly considered as a weighted l1 norm. And the
large weights Wi,j could be used to discourage nonzero
entries in Z, while small weights could be used to encourage
nonzero entries. In this way, W ⊙ Z‖ ‖1 captures both the
sparsity of Z and the similarity between two images. Finally,
this locality constraint term W ⊙ Z‖ ‖1 is integrated into
equation (5) to enable the learning of a discriminative
dictionary and representation as follows:

min
Z,D,E

Z‖ ‖
∗

+ λ E‖ ‖1 + α W ⊙ Z‖ ‖1 +
c

2
D‖ ‖

2
F

s.t.X � DZ + E,

(8)

where α controls the contribution of the locality constraint
term. Te optimization algorithm to solve equation (8) is
described in Appendix A.

By integrating a locality constraint in the training
process, a compact and discriminative dictionary D can be
learned from all the training data using equation (8). Tis
learned dictionary promotes similar representations for
images within the same class and distinct representations for
those from diferent classes, thereby enhancing robustness of
the classifcation performance in detecting cracks.

6 Structural Control and Health Monitoring

 schm
, 2024, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/2024/3185640 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [20/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3.4. Classifcation Using Multivariate Ridge Regression
Model. After a discriminative dictionary D is learned from
equation (8), the low-rank representation matrix of test
images ZTest � [zTest1 , zTest2 , · · · , zTestN ]∈ Rm×N can be obtained
by solving equation (4). Each column zTesti in the matrix
denotes the representation coefcients of test image i, which
contains critical class information and could be used for
further classifcation.

Here, the multivariant ridge regression model [59] is
employed to derive a basic linear classifer. According to the
representation matrix ZTrain of training images X from
equation (8), the linear classifer L is obtained as follows:

L � argminL H − LZTrain
����

���� + η L‖ ‖
2
F, (9)

where H is a matrix representing the class labels of training
data X and η controls the weight of the regularization term.
Equation (9) is a convex problem, and its closed-form so-
lution is expressed as follows:

L � HZT
Train ZTrainZ

T
Train + ηI 

−1
. (10)

Ten, the class label for a test image i is determined by

k
∗

� argmaxLzTesti , (11)

where k∗ is the predicted label corresponding to the classifer
with the largest output.

In summary, the proposed TL-LRDL method can be
divided into four steps for crack detection and classifcation:

(1) Utilizing the pretrained ResNet18 model to extract
and transfer the “learned” features to the target
domain

(2) Using the transferred features to learn a compact and
discriminative dictionary D from training dataset X
by solving equation (8) (see Appendix A)

(3) Using the learned dictionary D to obtain the low-
rank representation matrix for test images ZTest
according to equation (4)

(4) Conducting crack detection and classifcation on
these discriminative representations ZTest, with class
labels determined by equations (10) and (11)

Te overall framework of the proposed crack detection
method is illustrated in Figure 4.

3. Results

3.1. Dataset. Images of concrete surfaces with cracks are
obtained from a publicly available and realistic crack dataset
[60]. Te dataset comprises 40,000 RGB image patches, each
with a resolution of 227× 227 pixels. Tese image patches
were originally extracted from 458 full-scale images
(4032× 3024 pixels) captured at the Middle East Technical
University Campus. Te 40,000 images are evenly distributed
across two distinct classes, “crack” and “noncrack,” for the
classifcation task. Both classes contain 20,000 images each.
Te full images have a high surface fnish and illumination
condition variance, and no data augmentation, including
image rotation or fipping, was applied to the dataset [42].
Figure 5 shows some typical data samples. To verify the ef-
fcacy of the proposed method under a few labeled data, we
adopt a training-to-testing set ratio of 20%:80% (8,000 images
for training and 32,000 for testing). Te training and testing
sets are class-balanced and contain an equal number of
cracked and noncracked images. For further details, Table 2
provides a summary of the dataset used.

ResNet18 has a fxed input image size of 224× 224 pixels,
which difers from the image size in the dataset (227× 227
pixels). Tus, before the images are fed into the above
network, they are frst rescaled to the corresponding size to
be compatible with the ResNet18 architecture.

ResNet18 requires an input image size of 224× 224 pixels,
which is not the same as the dataset’s image size of 227 by 227
pixels. Terefore, to ensure compatibility with the ResNet18
structure, the images from the dataset must be resized to the
appropriate dimensions prior to their utilization in the
network for feature extraction and transfer learning.

= × +

… …

… … … 

Class 1 Class 2 Class K

=

… … …

Class 1 Class 2 Class K 

×

… …
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rr
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+ …

Training data Dictionary Low-rank representation Noise

Ideal representation structure

X D Z E

x1 xi xn d1 dj dm

Figure 3: Illustration of the LRDL model. Te colored and white blocks indicate the nonzero and zero values, respectively, and the grey
blocks indicate the values close to zero.

Structural Control and Health Monitoring 7

 schm
, 2024, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/2024/3185640 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [20/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Te present study is conducted on MATLAB 2022b on
a computer equipped with an Intel® Core™ i7-8700
@3.2GHz CPU and 32GB DDR4 installed memory
(RAM), with no discrete graphic processing unit (GPU).Te
proposed crack detection method is implemented using the
“Deep Learning Toolbox™,” “Computer Vision Toolbox™,”
and “Image Processing Toolbox™” within MATLAB.

3.2. Performance Analysis of Trained Classifcation Model.
Following the application of the proposed TL-LRDL to the
training dataset, a classifcation model for crack detection
is generated. Diferent from most deep learning methods
that require hours or days for model training, the pro-
posed TL-LRDL has far shortened the training time. As

a main merit of the proposed method, TL-LRDL can
realize efcient training without GPU acceleration. In this
study, the entire training process only took about 163.33 s
(less than 3min), where the time for ResNet18 feature
extraction was about 137 s and the time for training
a dictionary only took about 25.33 s. Tis advantage
provides a potential solution to complete quick model
updates with the updated datasets.

Ten, the performance of the trained classifer is eval-
uated using the testing set. Trough comparison of the
predicted and ground-truth images, the correct and in-
correct classifcations are obtained to form the confusion
matrix (Figure 6). Te proposed TL-LRDL achieves almost
perfect classifcation results, with only 11 false positives

Source domain

ImageNet

Input

Early layers
Generic features

(edges, textures, colors)

Last layers
Task-specifc

Source task

Giant panda

Wall clock

Flower (Daisy)

1000 labels

Knowledge 
transfer

Train a new classifer 
(Dictionary learning)

Input

Target domain

Transferred features
Learned dictionary

Crack

Non-crack

2 labels

Target task

Pretrained network (ResNet18)
(Section 2.1) Classifcation

Crack detection and 
classifcation

Training data

Transferred
features

X 

Input Output Input

Output

Learned dictionary

Dictionary learning

LRDL
(Algorithm 1)

DTest image

224 × 224 × 3

Input Output Transferred
features Y

Input

Pretrained 
network

Low-rank 
representation 

matrix
Z

Output
Crack

Non-crack

2 labels

Crack classifcation

TL

Pretrained 
network

d1 dk dl

Figure 4: Overall framework of crack detection via TL-LRDL (the yellow lock indicates the transfer of generic features from the pretrained
network; the red cross indicates no knowledge transfer).
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(FPs) and 93 false negatives (FNs) detected among the total
of 32,000 test images in the testing set.

Te accuracy of the trained classifcation model can be
further quantifed using several evaluation metrics:

accuracy �
TP + TN

TP + TN + FP + FN
, (12)

precision �
TP

TP + FP
, (13)

recall �
TP

TP + FN
, (14)

F1 − score � 2 ×
precision × recall
precision + recall

, (15)

where TP, TN, FP, and FN represent the counts of test
images corresponding to true positives, true negatives, false
positives, and false negatives, respectively.

Referring to the confusion matrix in Figure 6, the ob-
tained metrics are listed in Table 3. Te classifcation ac-
curacies for both the training and testing sets are
exceptionally high, reaching 99.71% and 99.68%, re-
spectively. In addition, the precision, recall, and F1-score
values are 99.93%, 99.42%, and 99.67%, respectively. Tese

(a) (b)

Figure 5: Portion of image samples in the dataset: (a) with cracks; (b) without cracks (size: 227× 227 pixels).

Table 2: Summary of concrete crack image dataset.

Material Number of
images

Image size
(pixels) Crack Noncrack Training set Testing set

Concrete 40,000 227× 227 20,000 20,000 8,000 32,000

Cr
ac

k
N

on
-c

ra
ck

Crack Non-crack

TP
15907

(99.9%)

FN
93

(0.6%)

FP
11

(0.1%)

TN
15989

(99.4%)

Pr
ed

ic
te

d 
Cl

as
s

True Class

Figure 6: Confusion matrix.
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results demonstrated that (1) this new hybrid method re-
duces the demand for labeled data during training.
TL-LRDL trained on 20% labeled data could achieve a high
accuracy of 99.68%; (2) the time for training the crack
detection model is extremely short with high efciency. As
mentioned, it will beneft for model update.

3.3. Implementation on Large-Scale Images. Te generaliza-
tion ability of the trained classifcationmodel is demonstrated
using three newly collected large-scale images not used in the
training process. Tese images are taken under various
conditions by a hand-level device (IPad10) from the walls of
a concrete building at the Hong Kong Polytechnic University.
Each image has a resolution of 4032× 3024 pixels.

Figure 7 illustrates the framework of the proposed
method implemented on large-scale images. As shown in
this fgure, the developed classifcation model is frst applied
to process the test images by implementing a sliding window
across the entire image. Regions within these local windows
that the model identifes as containing cracks are then
highlighted in the output image using bounding boxes.
Ten, based on the identifed windows with cracks, a detailed
analysis is conducted to derive geometric measurements of
the cracks, such as length, width, and area. Te detailed
detection and measurement process are presented below.

3.3.1. Crack Detection and Localization. Given that most
images in practice have sizes larger than 224× 224 pixels, to
detect cracks on large-scale images with 4032× 3024 pixels,
sliding window technique is used here. Te window size is set
to 224× 216 pixels. Each large-scale image needs to be scanned
only once, with no overlapping areas. Te miniature image
confned within the sliding window is input into the classif-
cation model. When the model predicts that it is a “crack,” this
small image patch is marked with a bounding box. For each
large-scale image of size 4032× 3024, ResNet requires about 3 s
to extract features, and the time for output generation is only
approximately 0.88–0.92 s. Hence, the inference time for each
small image patch is about 0.015 s on average.

Figure 8 illustrates the crack detection outcomes for the
three tested large-scale images. Te proposed method ac-
curately identifes and locates the cracks within the images.
An image containing pronounced cracks with uneven
lighting conditions is tested (Figure 8(a)). Te successful
detection of cracks in Figure 8(a) demonstrates that the
proposed method is robust to lighting conditions. To study
the efects of crack widths, one image containing thin cracks
and another with hairline cracks are tested (Figures 8(b) and
8(c)). Te proposed method identifes and localizes the very
thin cracks, and even some hairline cracks are detected.
Moreover, some cracks on the edges of sliding windows are

successfully detected by the proposed method (Figures 8(a),
8(b), and 8(c)). Compared to the images with cracks in the
middle of sliding windows, cracks on the edges are more
difcult to be identifed.

Te detected crack image patches are subsequently
compared with the ground-truth labels, and their results are
color-coded (Figure 9). Red highlights denote incorrect
predictions, where a noncrack image is mistakenly classifed
as a crack (FP), while missed crack instances (FN) are in-
dicated in green. In Figure 9(a), four sliding windows are
classifed as FP and FN regions. In Figure 9(c), two FN
regions exist, and six sliding windows are classifed as FP
regions. Compared to Figures 9(a) and 9(c), the results in
Figure 9(b) are more accurate, with only one sliding window
being incorrectly identifed as crack. As shown in Table 4, the
detection accuracies achieved on the three large-scale images
are 96.83%, 99.60%, and 96.83%. Tese fndings showcase
the capability of the proposed method to accurately detect
cracks on structural surfaces, making the model a viable
alternative to manual inspection.

3.3.2. Crack Pixel-Level Segmentation and Geometric
Measurement. Te combination of the proposed classif-
cation model and the sliding window technique enables the
satisfactory detection of cracks within images. However, the
necessary details required for quantifying damage, such as
crack width and length, cannot be inferred from the ob-
tained bounding boxes. Tus, image segmentation is needed
for pixel-level crack segmentation.

In this paper, image processing techniques, such as
median fltering and Otsu’s threshold method [61], are used
to segment cracks at the pixel level within windows. Spe-
cifcally, the developed classifcation model initially iden-
tifes windows containing cracks (Figure 8). Subsequently,
by discarding the windows not containing cracks, the seg-
mentation results of selected window are displayed on
a white mask of the same size as the original image according
to their coordinate information, as shown in Figure 10 (left
column). Hence, the binary crack map is actually the in-
termediate results, generated after crack detection (Figure 8)
and further used for crack geometric measurements (Fig-
ure 10: right column).

Te segmented crack images are then undergo further
processing to obtain geometric measurements of cracks, such
as its width, length, and area (Table 5). Morphological oper-
ations from image processing are employed to assess the
geometric properties of the cracks [20, 44]. Te crack area is
calculated by tallying the number of pixels within the crack
map. Te crack length is derived through the skeletonization
process applied to the crack map, utilizing single-pixel crack
skeletons that delineate the centerline of cracks. Additionally,
the Euclidean distance transform of the crack map generates

Table 3: Classifcation performance of trained classifcation model.

Training accuracy
(%)

Testing accuracy
(%) Precision (%) Recall (%) F1-score (%) Training time

(LRDL) (s)
99.71 99.68 99.93 99.42 99.67 25.33
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Database
(227 × 227 pixels)

Testing 
dataset

Training 
dataset

Trained a classifcation model

Transfer learning
(ResNet18 + Dictionary 

learning)

Testing 
dataset

Test model

Apply model

Apply to new large-scale image
(4032 × 3024 pixels) 

Sliding window

Output image
(4032 × 3024 pixels) 

Crack geometry measurement
(4032 × 3024 pixels) 

Maximum Width = 28.6 pixels.
Average Width = 5.2 pixels.

Length = 25685.0 pixels.
Area = 135294.0 pixels2.

Figure 7: Framework of the proposed method implemented on large-scale images.

Input image Output image

Edges

(a)

Input image Output image

Hairline 
cracks

Hairline cracks

Edges

(b)
Figure 8: Continued.
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another image, wherein pixel values indicate the distance to the
nearest nonzero pixels. By aligning these values with the
centerline pixels, the crack half-width along the crack length is
determined. Consequently, the crack width is obtained by
extracting distances along the skeleton images and then
doubling the values. Tese geometric measurements of cracks

are expressed in terms of pixels. To establish physical units (e.g.,
mm), additional calibration objects or sensors are needed.

Overall, the framework for obtaining the fnal crack
results involves the following steps: (1)Te trained TL-LRDL
was used to select the window containing cracks as shown in
Figure 8. (2) Subsequently, the selected windows were

Input image Output image

Thin cracks
Thin cracks

Edges

(c)

Figure 8: Crack detection results for three large-scale images. (a) Uneven lighting. (b) Hairline thin cracks. (c) Tin cracks.

Table 4: Crack detection accuracy for large-scale images.

Testing large-scale images P N TP TN FP FN Accuracy (%) Detection time (s)
a 49 203 45 199 4 4 96.83 0.92
b 27 225 27 224 1 0 99.60 0.88
c 44 208 42 202 6 2 96.83 0.91

(a)

(c)

(b)

Figure 9: Crack detection accuracy for three large-scale images (green shadowed: false negative, red shadowed: false positive).
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processed by Otsu’s threshold and median fltering for pixel-
level crack segmentation, and the crack maps were conse-
quently obtained as shown in Figure 10 (left column). (3)
Based on the binary crack maps, the crack geometric
measurement was obtained using morphological operations,
with results displayed in Figure 10 (right column).

It is important to note that the focus of this study is to
develop a fast, easy implemented method for detecting
cracks with a combination of TL and LRDL. Te proposed
TL-LRDL is essentially a classifcation method for crack
detection. Terefore, the above steps 2 and 3 are only
a subsequent task after crack detection, demonstrating that

Crack map Geometric measurements

Maximum Width = 28.6 pixels.
Average Width = 5.2 pixels.
Length = 25685.0 pixels.
Area = 135294.0 pixels2.

(a)

Crack map Geometric measurements

Maximum Width = 30.0 pixels.
Average Width = 5.0 pixels.
Length = 22133.0 pixels.
Area = 100583.0 pixels2.

(b)

Crack map Geometric measurements

Maximum Width = 21.3 pixels.
Average Width = 5.3 pixels.
Length = 22006.0 pixels.
Area = 110252.0 pixels2.

(c)

Figure 10: Crack pixel-level segmentation and geometric measurements for three large-scale images. (a) Uneven lighting. (b) Hairline thin
cracks. (c) Tin cracks.

Table 5: Geometric measurements of cracks.

Testing large-scale image Area Length Maximum width Mean width
(Pixel2) (Pixel) (Pixel) (Pixel)

a 135294 25685 28.6 5.2
b 100583 22133 30 5
c 110252 22006 21.3 5.3

Structural Control and Health Monitoring 13
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the crack detection results of the proposed method can be
further used for crack segmentation and quantifcation.

4. Comparative Study and Discussions

4.1. Comparison with ResNet18 under Diferent Training
Modes. To provide insights into the efciency and accuracy
of the proposed TL-LRDL, it is compared with ResNet18
under two diferent training modes. In training mode 1,
ResNet18 is trained from scratch without freezing any layers.
In total, there are 11,182,338 trainable parameters. Te
hyperparameters are as follows: the initial learning rate of
0.1; weight decay and momentum values of 0.0001 and 0.9,
respectively; the learning rate drop factor of 0.1; and the
batch size of 100.Te number of epochs is 20, and if there are
two consecutive epochs without improvement, the learning
rate will be reduced.

In training mode 2, ResNet18 is trained only around the
fnal layer. All preceding layers remain fxed, with fne-
tuning taking place only around the fnal layer. Te initial
weights in convolution layers are from the ImageNet and are
not updated. Te total number of network parameters is
11,182,338, and the number of trainable parameters is 1,026.
For fair comparison, all tasks are performed on the same
computer using the same training and testing sets.

Table 6 summarizes the comparative study results.
Compared with ResNet18 under two trainingmodes 1 and 2,
the proposed method not only achieves better recognition
accuracy but also requires signifcantly fewer trainable pa-
rameters. Tere are fve main trainable parameters in
TL-LRDL (Z,Q,R, D,E as shown in equation (A.2)). During
the dictionary learning process, they are continuously
updated until convergence is achieved. Among them, the
dictionary D is the most important one.

Te reduction in trainable parameters and model
complexity leads to a faster training speed. Te training time
based on mode 1 and mode 2 is approximately 6 and 1 h,
respectively, while the proposed TL-LRDL method requires
only about 2min 43 s. Excluding the time for feature ex-
traction from ResNet18, the time for training a dictionary
(LRDL) only took about 25.33 s. Experimental results
demonstrate that the proposed TL-LRDL ofers superior
training efcient and recognition accuracy, and its training
requires no hardware acceleration, such as GPU. Tis is
particularly suitable for edge computing, which involves
processing data locally at the edge devices, rather than
training the model at a centralized data center. It allows the
proposed method to run efectively in an edge computing
environment, on low-power devices, or close to where data
are collected (e.g., low-powered UAVs, UGVs, and AR
headsets with limited processing capabilities).

4.2. Comparison of Diferent Final Classifers. In this section,
diferent fnal classifer layers were selected to perform
classifcation, while using the same pretrained network as
feature extractor. Te selected classifers include support
vector machine (SVM), K-nearest neighbor (KNN), single-
layer neural network (NN), and LRDL. Pretrained ResNet18

was transferred and employed as feature extractor. For fair
evaluation, each algorithm was trained and tested on
identical datasets, with SVM and KNN parameters set to
their default values. For the single-layer NN classifer, the
“ReLU” activation was used in the hidden layer and “soft-
max” activation in the output layer. Te specifc results are
presented in Table 7. Notably, the integration of ResNet18
and LRDL achieved better classifcation accuracy, followed
by single-layer NN classifer.

4.3. Comparison of Diferent Pretrained Networks for Feature
Extraction. In this section, diferent pretrained networks
were selected to perform feature extraction while using the
same LRDL classifcation model. Te selected pretrained
networks include VGG16, VGG19, GoogleNet, and
ResNet18. Based on the transferred features from the pre-
trained networks, LRDL was used as the fnal classifer. Te
comparison results are presented in Table 8. From the table,
it can be observed that ResNet18 and GoogleNet perform
relatively well compared to VGG16. Tis is possibly because
VGG16 has a simpler architecture, whereas ResNet has
better image feature representation capabilities to capture
the details and features in the images. Based on the ex-
perimental results in these two sections, it can be concluded
that the proposed TL-LRDL method, which integrates
ResNet18 and LRDL, is efective.Tis approach leverages the
powerful feature extraction capabilities of ResNet18, and the
efcient model training provided by LRDL.

4.4. Comparison with Traditional Edge Detection Methods.
Furthermore, the proposed method is compared with two
commonly used edge detectors: the Canny [62] and Sobel [63]
edge detectors.Tese detectors have been widely used to detect
the edges of cracks and serve as a standard baseline for
comparing the performance of new crack detection meth-
odologies in the literature [11, 26, 64–66]. Although some deep
learning-based semantic segmentation methods (e.g., U-Net
and FCN) could directly identify cracks at the pixel level across
entire image, they are inherently supervised learning methods.
Hence, pixel-wise labeling of samples is required, which is
time-consuming. Instead, this study belongs to two-stage
crack identifcation methods based on bounding box de-
tection and image processing for segmentation.

Figure 11 presents a simple comparison of the proposed
method, Canny and Sobel edge detectors on one of the large-
scale images. As seen in Figure 11(b), the proposed method
provides clear crack information. Compared to it, the Canny
and Sobel edge detectors provide nomeaningful information
regarding cracks with high levels of noise, as shown in
Figures 11(c) and 11(d). Te noise scattered throughout the
images could be attributed to the rough concrete surfaces
and background noise.Te comparison results show that the
proposed method considerably outperforms the traditional
Canny and Sobel methods.

4.5. Efects of the Number of Training Images. To
demonstrate the advantage of the proposed method, which
exhibits a reduced demand for training data, the efects of
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Table 7: Experimental comparison under diferent fnal classifers.

Feature extractor Final classifer Accuracy (%) Precision (%) Recall (%) F1-score (%)

ResNet18

SVM 97.19 98.88 95.66 97.24
KNN 98.78 97.68 99.88 98.77
NN 99.06 98.78 99.33 99.05
LRDL 99.69 99.55 99.84 99.69

Table 8: Experimental comparison under diferent pretrained networks.

Feature extractor Final classifer Accuracy (%) Precision (%) Recall (%) F1-score (%)
VGG16

LRDL

98.50 97.49 99.48 98.47
VGG19 99.38 99.07 99.69 99.38
GoogleNet 99.63 99.57 99.70 99.63
ResNet18 99.68 99.93 99.42 99.67

(a) (b)

(c) (d)

Figure 11: Comparisons with traditional edge detection methods: (a) original image; (b) output of the proposed method; (c) output of the
Canny edge detector; (d) output of the Sobel edge detector.

Table 6: Comparison with classic DCNN methods.

Method Trainable parameters Training accuracy (%) Testing accuracy (%) Training time (s)
ResNet (train from scratch) 11,182,338 99.37 99.30 6 h 43min 21
ResNet + FT 1,026 99.45 99.35 1 h 2min 37
TL-LRLD (proposed) 5 99.71 99.68 2min 43

Structural Control and Health Monitoring 15
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the number of training images on classifcation performance
are discussed. A consistent testing set, comprising 10,000
images, is used for the experiment. Te number of training
images is varied from 200 to 10,000 (Figure 12).

Te results reveal two key observations. First, there is
a positive correlation between the number of training images
and the testing accuracy. However, the increase in accuracy
is marginal as the training set size grows. Tis suggests that
while having more training data is benefcial, the im-
provement in accuracy plateaus beyond a certain point in
this study. Notably, when the training set is reduced to 1,000
images, we observe a marked decrease in performance. Tis
fnding underscores that a minimum of 1,000 training
images is essential to efectively train the TL-LRDL algo-
rithm and achieve a discriminative dictionary for accurate
crack classifcation. Second, with the increase in the number
of training images, the time for training a dictionary also
increases. However, the maximum time for training is less
than 1min. Tis observation is consistent with previous
fndings, highlighting the high efciency of the proposed
method.

5. Conclusions

A novel crack detection method that comprises TL and
LRDL, which enables the automated and fast crack de-
tection, is presented in this study. Diferent from most of
DCNN methods, the proposed method can greatly improve
the training efciency and reduce the demand for training
data. Images from a public dataset were used for training and
testing the proposed TL-LRDL model. Te generated crack
detection model was further implemented to detect the
cracks on concrete surfaces under diferent scenarios.
Trough the comparison with other methods, the efec-
tiveness and superiority of the proposed TL-LRDL method
were successfully verifed. Below are the major conclusions
of this study:

(1) Te present study represents the frst attempt to
combine TL and LRDL in SHM for fast crack de-
tection on concrete surfaces.

(2) Te proposed TL-LRDL method surmounts the
obstacle for requiring long training time and high
computational demand. In this study, the entire
training process only took about 163.33 s (less than

3min). Excluding the time taken for feature ex-
traction from ResNet18, the time for training a dic-
tionary (LRDL) was only about 25.33 s.

(3) Te proposed method reduces the demand for la-
beled data during training. Experimental results
showed that the TL-LRDL achieved an accuracy of
99.68% with only 20% labeled data.

(4) Te generated TL-LRDLmodel can detect and locate
cracks in large-scale images with high accuracy, even
under uneven lighting, and exhibits a strong ability
for detecting thin cracks, and even some hairline
cracks could be successfully detected.

Te above advantages facilitate the implementation of
the proposed TL-LRDL on computers with limited re-
sources, such as battery-powered UAVs, UGVs, and scarce
processing capability of AR headsets. Furthermore, its fast-
training process provides a potential solution to complete
quick model updates when the dataset is updated. However,
the current study only utilizes image data for crack de-
tection. Tere exist several attempts to improve the crack
detection performance by integrating other sensing data,
e.g., infrared thermal sensing, ground-penetrating radar,
and vibration data. Future studies will be carried out to
extend the proposed algorithm to a fusion of
multimodal data.

Appendix

A. Optimization Algorithm of equation (8)

Te detailed optimization algorithm to solve the following
optimization problem equation (A.1) is presented in this
section:

min
Z,D,E

Z‖ ‖∗ + λ E‖ ‖1 + α W ⊙ Z‖ ‖1 +
c

2
D‖ ‖

2
F

s.t.X � DZ + E.

(A.1)

Equation (A.1) can be solved based on the Augmented
Lagrange Multiplier (ALM) method [67], and the Inexact
Augmented Lagrange Multiplier (IALM) is adopted here for
high efciency. Tey ft for convex problem with separable
objective functions and linear constraints. However, it is
easily observed from equation (A.1) that the variable Z is
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Figure 12: Performance comparison under diferent number of images used for training.
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subjected to multiple constraints, such as Z‖ ‖∗ and
W ⊙ Z‖ ‖1. To make the problem easily solvable, it usually
needs two auxiliary variables Q and R to decouple the
objective function and constraints. Following Liu et al. [54],
Z � Q and Z � R are adopted in equation (A.2) to make the
objective function separable. Ten, equation (A.1) can be
converted to the following equivalent problem:

min
Z,Q,R,D,E

Q‖ ‖∗ + λ E‖ ‖1 + α W ⊙ R‖ ‖1 +
c

2
D‖ ‖

2
F

s.t.X � DZ + E, Z � Q, Z � R.

(A.2)

Correspondingly, the augmented Lagrangian function
for equation (A.2) is formulated as

L Z,Q,R,D,E,Y1,Y2,Y3, μ(  � min
Z,Q,R,D,E

Q‖ ‖∗ + λ E‖ ‖1 + α W ⊙ R‖ ‖1 +
c

2
D‖ ‖

2
F + Y1, X − DZ − E 

+ Y2, Z − Q  + Y3, Z − R  +
μ
2

X − DZ − E‖ ‖
2
F + Z − Q‖ ‖

2
F + Z − R‖ ‖

2
F ,

(A.3)

where <A,B>� trace (ATB), μ> 0 is a penalty parameter,
and Y1, Y2, and Y3 are Lagrange multipliers. Te optimi-
zation problem equation (A.3) can be solved iteratively by

separately updating the fve optimization variables
Q,Z,R,E,D. Te detailed updating scheme is as follows:

Updating Q:
While fxing Z,R,E,D, Q can be updated as follows:

Qk+1
� argminQ Q‖ ‖∗ + Yk

2, Zk
− Q  +

μk

2
Zk

− Q
�����

�����
2

F

� argminQ
1
μk

Q‖ ‖∗ +
1
2
Q − Zk

+
Yk
2

μk
 

��������

��������

2

F

� US 1/μk( )[]VT
,

(A.4)

where (U,Σ,VT) � SVD(Zk + (Yk
2/μ

k)) and Sε[∙] is the soft-
thresholding operator defned as follows [54]:

Sε[∙] �

x − ε, if x> ε,

x + ε, if x< − ε,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(A.5)

Updating Z:
While fxing Q,R,E,D, Z can be updated as follows:

Zk+1
� arg min

Z
Yk
1, X − DkZ − E  + Yk

2, Z − Qk+1
 

+ Yk
3, Z − Rk

  +
μk

2
X − DkZ − Ek

�����

�����
2

F
+ Z − Qk+1

�����

�����
2

F
+ Z − Rk

�����

�����
2

F
 .

(A.6)

Te closed-form solution of equation (A.6) is as follows:

Zk+1
� Dk

 
T
Dk

+ 2I 
−1

Dk
 

T
X − Ek

  + Qk+1
+ Rk

+
Dk

 
T
Yk
1 − Yk

2 − Yk
3

μk

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (A.7)
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Updating R: While fxing Q,Z,E,D, R can be updated as follows:

Rk+1
� argminR α W ⊙ R‖ ‖1 + Yk

3, Zk+1
− R  +

μk

2
Zk+1

− R
�����

�����
2

F
 

� argminR α W ⊙ R‖ ‖1 +
μk

2
R − Zk+1

+
Yk
3

μk
 

��������

��������

2

F

,

(A.8)

whereRk+1 can be updated through the elementwise strat-
egy. For each element Rij, the optimal solution of equation
(A.8) can be computed as follows:

Rk+1
ij � argminRij

αWij Rij



 +
μk

2
Rij − Zk+1

ij +
Yk
3 

ij

μk
⎛⎝ ⎞⎠

����������

����������

2

F

� S αRij/μk( 
Zk+1

ij +
Yk
3 

ij

μk
⎛⎝ ⎞⎠. (A.9)

Updating E: While fxing Q,Z,R,D, E can be updated as follows:

Ek+1
� argminE λ E‖ ‖1 + Yk

1, X − DkZk+1
− E  +

μk

2
X − DkZk+1

− E
�����

�����
2

F
 

� argminE
λ
μk

E‖ ‖1 +
1
2
E − X − DkZk+1

+
Yk
1

μk
 

��������

��������

2

F

.

(A.10)

Updating D: While fxing Q,Z,R,E, D can be updated as follows:

Dk+1
� argminD

c

2
D‖ ‖

2
F + Y1, X − DZk+1

− Ek+1
  +

μk

2
X − DZk+1

− Ek+1
�����

�����
2

F

�
Yk
1 Zk+1
 

T

μk
− Ek+1

− X  Zk+1
 

T⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
c

μk
I + Zk+1 Zk+1

 
T

 

−1

.

(A.11)

Te initial dictionary D0 is obtained by randomly
selecting from training data.

Te above alternative updating steps are repeated until
the convergence condition is satisfed. Te convergence
condition of IALM is as follows: Zk+1 − Qk+1

����
����∞ <Tol,

Zk+1 − Rk+1
����

����∞ <Tol, and X − Dk+1Zk+1 − Ek+1
����

����∞ <Tol are
simultaneously satisfed, where Tol> 0 is a small tolerance
value. Te overall optimization process of solving equation
(A.1) is summarized in Algorithm 1.
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Te major computational steps of Algorithm 1 are Steps
3 and 4, which require the singular value decomposition
(SVD) of matrices. To accelerate the DL process, the training
set is split into several batches, instead of simultaneously
using the whole training dataset for DL.Te batch size in this
study is set as 200. Te number of dictionary atoms is 100
(m �100).
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