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The COVID-19 pandemic, attributed to the highly infectious nature of the SARS-CoV-2 virus, has prompted the exigent need
for the development and evaluation of effective countermeasures. Previous studies have found that antimicrobial technology
and increased ventilation can dilute virus concentration in the air or destroy SARS-CoV-2 on indoor surfaces, reducing the
risk of spreading COVID-19. However, evidence showing the efficacy of air purifiers equipped with high-efficiency filters in
the direct removal of aerosolized SARS-CoV-2 is limited. To plug this research gap, a study was pursued in which
aerosolized virology testing was conducted to evaluate the efficacy of a flow-through air purification device in removing
aerosolized SARS-CoV-2 (Delta variant). The device was equipped with an internal fan, a high-efficiency particulate air
(HEPA) filter, UVC-LEDs, and an ionizer for multipass large-volume air recirculation. TCID50 assays were conducted to
quantify and compare the infectious SARS-CoV-2 with and without the operation of the device. It was found that the air
purifier was highly effective in removing aerosolized SARS-CoV-2 virus, achieving over four-log reduction within 36 s of
operation and under 10 equivalent air changes in the test chamber. These findings suggest that the tested air purifier is a
useful countermeasure against the spread of COVID-19 in enclosed spaces. Further research is warranted to evaluate the
efficacy of air purifiers in real-world indoor environments to ascertain the wider implications of using such purifiers in
safeguarding public health against COVID-19.
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1. Introduction

Since the first report of human-to-human SARS-CoV-2
transmission in December 2019, there have been over 664
million confirmed cases and 6.71 million deaths reported
to the World Health Organization (WHO) [1]. This repre-
sents more than one-eighth of the global population infected
with COVID-19, including over 36% of Europeans and 58%
of Americans. Evidence from positive PCR results for SARS-
CoV-2 in aerosol samples collected from quarantine and iso-
lation facilities, hospitals, and residential settings, where
infected individuals have stayed, suggests that SARS-CoV-2
has airborne transmission potential in addition to more

direct contact and droplet transmission [2–6]. The WHO
has also highlighted the existence of long-range aerosol
transmission in poorly ventilated and/or crowded indoor
settings [7].

SARS-CoV-2 genetic mutations play a significant role in
the propagation of the virus. Studies have found that
patients infected with SARS-CoV-2 variants such as Alpha,
Delta, and Omicron may exhale more virus-laden aerosol
than those infected with the wild type [8–10]. In addition
to social distancing, universal masking, and vaccination,
preemptive measures such as enhanced ventilation and air fil-
tration are extensively deployed to lower the risk of COVID-
19 exposure [11, 12]. Various researchers have identified that
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the application of enhanced ventilation and air cleaners can
reduce the age of air and the concentration of particulate mat-
ter (PM10), suggesting a reduction in virus-laden aerosol in the
air [13–15]. However, the removal of aerosol particles by
increasing the ventilation rate may be limited by the capacity
of pre-existing ventilation systems and may be insufficient to
stop the rise in aerosol concentration [14].

Flow reactors utilizing UVC radiation and integrated
systems designed for continuous air cleaning within heat-
ing, ventilation, and air conditioning (HVAC) systems, typ-
ically operating at a wavelength proximate to 254nm, have
demonstrated considerable efficacy in inactivating corona-
viruses. A single pass through these systems can achieve a
log10 reduction of active coronaviruses in excess of 2.2
when operating at a flow rate of 146m3/h and subject to
a UVC dose of 13.9mJ/cm2 [16]. This efficacy is further
amplified at decreased flow rates, with log10 reduction
exceeding 3.7 (corresponding to a removal efficiency of
99.98%) at a flow rate of 41m3/h, under an elevated UVC
dose of 49.6mJ/cm2 [16]. The effectiveness of UVC irradi-
ation is not restricted to the 254nm wavelength. Irradiation
peaking at 222nm, at doses of 23mJ/cm2, has been shown
to achieve reductions of viable SARS-CoV-2 by 92% [17].
The use of ultraviolet C light-emitting diodes (UVC-LEDs)
with simple electricity, fast stabilizing intensity, and insen-
sitivity to temperature widened the application in different
devices [18, 19]. These findings reinforce the potential of
UVC radiation as a tool for curtailing the spread of
SARS-CoV-2 and other coronaviruses. Compared to stan-
dalone air cleaners placed in specific indoor locations, flow
reactors with UVC radiation offer more controlled UVC
radiation exposure, potentially enhancing inactivation effi-
ciency but limited by the duration of air exposure to the
UVC source.

Researchers have used computational fluid dynamics
(CFDs) to simulate the filtration effectiveness of portable
air cleaners [20–24], and real measurements have been
carried out to identify that air cleaners can remove aerosol
particles from indoor settings [25, 26]. In addition to air fil-
tration, different physical mechanisms (e.g., heating, plasma,
and laser) have been identified as useful for inactivating aero-
solized SARS-CoV-2. For instance, exposure of aerosolized
SARS-CoV-2 to a temperature of 150°C or 220°C can result
in a 99.9% or 99.999% reduction in viability, respectively
[27]. Airflow containing SARS-CoV-2 passed through a
dielectric filter discharge has more than 99.84% inactivation
with degradation of SARS-CoV-2 genes [28]. Furthermore,
a device emitting 10,600 nm laser light can inactivate over
99% of SARS-CoV-2 in the air in less than 15ms [29]. How-
ever, the extant literature does not provide comprehensive
findings on the effectiveness of modern air purification
devices specifically against SARS-CoV-2 variants associated
with aerosols generated from critical settings. To bridge this
research gap, the present study was conducted to provide
empirical evidence of an air cleaner (equipped with a HEPA
filter, UVC-LEDs, and an ionizer for multipass large volume
air recirculation) in removing airborne viruses in localized
scenarios, particularly with the high viral load within the
small chamber.

2. Method

2.1. Flow-Through Air Purification Device. The air purifica-
tion device used in this study was Model NSP-W1 of Aura-
beat, which was equipped with a 40mm HEPA filter
(Manufacturer: Aurabeat, Grade: H13) that can remove over
99.97% of particles down to 0.3μm [30]. The device has
dimensions of 600 × 213 × 437mm and was delivered with
a 110V power supply. At its highest fan speed setting, the
device can provide a clean air delivery rate (particle-free)
of approximately 370m3/h, in accordance with the GB/T
18801-2015 test protocol for air cleaners, which utilizes a
“pull-down approach” by accumulating a high particle con-
centration (particle ≥ 0.3μm, 2 × 106–2 × 107 pcs/L) in a
30m3 test chamber before running the device at maximum
airflow for 1 h. Air is drawn in through the air intake located
at the perimeter of the front cover and is distributed from
the top outlet (see Figure 1). The device features an internal
fan that drives the air to pass through the HEPA filter before
outputting the filtered air through the top of the unit. Addi-
tional features, including UVC-LEDs and an ionizer, are
equipped in the device to aid its efficacy. Two UVC-LEDs
are independently positioned 130mm beneath the center of
the suction inlet, while the ionizer is situated 20mm below
the right air outlet. During the test, the device was placed
in the center of the test chamber. The device was operated
for 36 s during the test, which, given the chamber volume
of 0.37m3, is equivalent to approximately 10 air changes.

2.2. Test Design. To evaluate the efficacy of the flow-through
air purification device in removing aerosolized SARS-CoV-2
from the test environment, investigations were conducted in
three independent replicates for both the control and device
tests. The control test was conducted in triplicate to measure
the natural aerosol concentration characteristics in the
chamber without the operation of the device, which was
placed in the center of the test system. For the device test,
the device was operated at its highest fan speed setting using
the same viral stock suspension, aerosol generation, system
operation conditions, and sampling intervals as the control
test. The results obtained from the control test provided a
standard against which to compare the efficacy of the device
in removing airborne SARS-CoV-2 from the air.

2.3. Virus and Cell. The SARS-CoV-2 lineage B.1.617.2
(Delta variant) used in this study was obtained from BEI
Resources (NR-55611) and was isolated in Memphis, Ten-
nessee, United States. The virus strain was propagated in
TMPRSS-2 Vero E6 cells obtained from BPS Bioscience
Inc. (Genbank#: NM_005656.4, Passage No.:17) [31]. The
cells were cultured in growth media; this media consisted
of Dulbecco’s modified Eagle medium/F12, supplemented
with 5% fetal bovine serum (FBS) and G418 sulfate [32].
Cells were infected with the virus at approximately 80%
confluency, and the supernatant was harvested once approx-
imately 80% cell death due to cytopathic effects (CPEs) was
observed. This usually occurs 2–3 days after infection. The
supernatant was centrifuged to pellet cell debris, aliquoted,
and frozen at −80°C until use. Cells used for TCID50
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experiments were plated so as to be 80%–100% confluent on
the day of testing and inoculation [33].

2.4. Aerosol Generation System. To carry out the aerosolized
infectious viral test in a safe and controlled manner, a
Plexiglas-fabricated chamber was constructed inside a Class
III Biosafety Cabinet. The detailed specifications, dimen-
sions, and associated equipment are presented in Figure 2.
The test setup includes an aerosol containment chamber,
an aerosol generation system, a test device, a sampler, and
associated digital flow controllers and meters to ensure
accurate measurements and control of the experimental
conditions.

For the aerosolized infectious viral test, the SARS-CoV-2
virus with a titer of 1 47 × 107 TCID50/mL was aerosolized
using a Collison 6-jet nebulizer into the enclosed test cham-
ber for 15min. DMEM/F12 was also used in the SARS-CoV-
2 virus suspension that was added to the nebulizer for aero-
solization. The selection of DMEM/F12 as the suspension
medium is critical for maintaining the viability of the
SARS-CoV-2 virus [34]. DMEM/F12 provides a stable nutri-
ent environment that preserves viral viability throughout
various stages, including storage, preparation, testing, sam-
pling, and concentration analysis [35]. This stability is essen-
tial for the accurate assessment of the test device’s
performance, as it prevents the decay of viral stock and sam-
ple concentration due to environmental effects that would
typically occur with water or other non-nutrient media
[36]. The nebulizer received clean air supplied by an air tank
at a pressure of 26 psi (179 kPa) and a flow rate of 15 L/min
(0.9m3/h). To ensure the air supply was particle-free for
aerosol sampling, a dual HEPA capsule filter was installed
upstream of the nebulizer. The chamber fan was continu-
ously operated to achieve uniform mixing and a homoge-
neous concentration of aerosols within the test system
during aerosol generation and the sampling period.

2.5. Aerosol Collection and Sampling. To collect aerosol sam-
ples, an impinger sampler, specifically an AGI-30 impinger
model 7540 (Ace Glass Inc.) filled with 20mL of DMEM/
F12, was utilized. The impinger sampler was operated at a
flow rate of 0.75m3/h and collected aerosols from the test
chamber into sterile conical tubes. The collected samples

were then transferred to a secondary container and trans-
ported to another BSL-3 laboratory for inoculation and
recovery of the virus on the test sample.

Aerosol analysis was performed for each control and
device test using a TSI Aerodynamic Particle Sizer (APS)
3321 spectrometer, which can measure the dynamic particle
measurement range of 0.3–20μm. The APS provides real-
time measurements of mass median aerodynamic diameter
(MMAD), geometric standard deviation (GSD), total sample
aerosol mass (milligrams per cubic meter), and aerosol par-
ticle counts (#/m3). The APS was programmed to take
sequential 10-s aerosol scans over the course of the test, with
sampling conducted both prior to and after device operation
(see Figure 3). Before the device test, three sequential sam-
ples were taken to establish natural aerosol decay results
and ensure consistency and reproducibility of aerosol chal-
lenge concentrations and particle size characteristics for all
control and device tests. Starting from device operation,
APS particle counts were taken sequentially over the test
period of 20min.

2.6. Inoculation and Recovery of the Virus. Viral aerosol
samples were collected using a sterile AGI-30 impinger
model 7540 (Ace Glass Inc.) filled with 20mL of DMEM/
F12 for each test. Impinger samples were transferred to a
Class II Biological Safety Cabinet to perform the TCID50
assay. The impinger samples were serially diluted 1:10 down
a 24-well plate of cells in DMEM/F12 to assess the TCID50
of the samples. Following a 15-min incubation period to
allow the virus to adsorb to cells without interference from
FBS, DMEM/F12 supplemented with 5% FBS was added to
the cells to feed them for the next 5 days, allowing for viable
viral analysis.

2.7. Removing Efficacy of the Air Purification Device. After
the test, the 24-well plates were examined using a micro-
scope for the presence of CPE associated with viral presence
and replication 5 days after inoculation. Any well-displaying
CPE, which is often characterized by detachment from the
plate, round shape, less transparency, and smaller size than
living cells, was marked as either the whole well-being
affected or only a small patch, as both are indicative of the
presence of a viable virus.

The numbers of positive and negative wells were
recorded and entered into a modified spreadsheet published
by Lindenbach [37]. The TCID50/mL was calculated using
the following equations:

PD =
CPE n,>50% − CPE n,50%

CPE n+1,>50% − CPE n+1,<50%
1

where PD is the proportionate distance between the two
dilution levels, CPE n,>50% is the percent CPE at the dilution
level n just above the 50% threshold, CPE n,50% is the per-
cent CPE at the dilution level n just the 50% threshold, CP
E n+1,>50% is the percent CPE at the next dilution level n +
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Figure 1: Composition of the flow-through air purification device.
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1 above the 50% threshold, and CPE n+1,<50% is the percent
CPE at the next dilution level n + 1 below the 50% threshold.

TCID50 = 10log of dilution above 50%CPE – PD 2

where TCID50 is the dilution level at which 50% of the cell
cultures are infected, which is a common measure of viral
infectivity.

TCID50/mL =
1

Vwell × TCID50
3

where TCID50/mL is the concentration of the virus that
results in a 50% CPE per milliliter, which is a common mea-
sure of viral infectivity, and Vwell is the volume (in millili-
ters) used for each well in the cell culture plate.

The log10 of the three technical replicates was averaged
for control and treatment samples. This number for the
treatment is subtracted from the number for the control
and is reported as “log reduction.” This log reduction is con-
verted into a percent log reduction via the following equa-
tion.

%Log reduction = 1 – 10−log reduction × 100 4
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Figure 2: SARS-CoV-2 aerosol test system.
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Figure 3: Aerosol sampling timeline.

15.87

50

84.14

y = 12.623x + 1.7829
R2 = 0.9486

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8

Pe
rc

en
t m

as
s

Particle size (�m)

Figure 4: Aerosol particle size distribution.

4 Indoor Air

 ina, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/ina/6684377 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [27/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



where %Log reduction is the percentage reduction in the
concentration of the virus.

3. Results and Discussion

3.1. Aerosol Characteristics. The percent mass of the SARS-
CoV-2 aerosol particle size distribution from a representa-
tive APS sample is plotted in Figure 4. The graph shows
the particle size on the x-axis and the percent aerosol mass
on the y-axis. The MMAD reflects a median diameter of
approximately 3.13μm, with 50% of the aerosol particle
mass below and 50% above the median diameter. The
15.87% mass (1.60μm) and 84.14% (6.73μm) particle mass
points with associated particle size are also indicated.
The 15.87% and 84.14% mass size diameters are used in the

plot to define the linear regression fit of the data as shown
on the graph and the GSD of the size distribution. The
GSD is computed as the ratio d84 14/d50 = d50/d15 87 for
unimodal aerosol particle size distributions. The data shows
the span from d84 to d50 and from d50 to d84 percent mass
particle sizes of the distribution to be proportional and reflec-
tive of a unimodal aerosol size distribution. These results are
consistent with those reported for virus-laden aerosol parti-
cle sizes, with more than 90% of exhaled SARS-CoV-2
RNA found in aerosol particles < 4.5μm, and the highest
concentrations found in 0.94–2.8μm particles [38]. Other
studies have also found that both fine (≤ 2.5μm) particle-
associated SARS-CoV-2 and coarse (2.5–10μm) virus-laden
particles can be found in COVID-19 patient rooms [39].

The APS count, concentration, mass, and mass median
particle sizes obtained from the control and device tests were
analyzed. Data recorded from t = 0 to 10 s and from t = 180
to 190 s, representing the aerosol characteristics before and
after device operation, are compared in Figures 5, 6, and 7
and Table 1.

The particle count in each device test (T1–T3) demon-
strated an impressive reduction of over 99.9% (Figure 5),
while particle concentration from T2 to T3 exhibited reduc-
tions of up to 99.99% (Figure 6). Additionally, particle diam-
eter experienced a significant decrease ranging from 46% to
58% across the tests (Figure 7). In the control test, however,
notable dynamics were observed, with particle count and
particle concentration increasing by 4.04% and 1.26%,
respectively, alongside a slight rise in particle diameter from
1.48% to 3.68% (Figure 7). These changes suggest mecha-
nisms such as resuspension or aggregation, likely driven by
turbulence or imperfect mixing within the chamber, which
can inhibit settling and induce fluctuations in particle distri-
bution. While measurement variability is acknowledged, the
consistent trends across multiple parameters highlight the
necessity for further investigation to elucidate the complex
dynamics influencing particle behavior in closed systems.
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In the initial 10-s interval, both test scenarios (T1–T3
and Cl–C3) exhibit remarkably high average particle counts:
504,577 and 465,593, respectively, reflecting a difference of
less than 10% (Table 1). In contrast, the data recorded in
the interval of 180–190 s reveal a dramatic decrease in the
average particle count for T1–T3, plummeting to 145. This
substantial reduction, coupled with a corresponding
decrease in average concentration to 8 × 10–4mg/m3, shows
that effective removal mechanisms existed. Conversely, the
Cl–C3 test results demonstrate a more stable particle pres-
ence during the same period. The average diameter of parti-
cles in this interval for the Tl–T3 scenarios was recorded at
1.59μm, indicating that small particles with low concentra-
tions persisted opportunistically in the air.

The particle counts profile for both the control and
device tests is presented in Figure 8, with data averaged from
three independently replicated tests. The baseline reference
was obtained from the control test to measure the natural
aerosol decay. The particle counts recorded in the control
tests remained relatively constant with an insignificant
decline, while the particle counts recorded in device tests
showed a rapid decay. The particle counts were reduced to
less than 100 after the device had operated for 36 s. The
reading of particle counts fluctuated between 49 and 94 after
the device was turned off.

The particle counts recorded after the deactivation of the
device exhibited a downward trend (Figure 8). By the end of
the measurement period, the particle count did not reach
zero, a finding that aligns with previous studies [40, 41].
Examining in detail the pattern of significant drops in the
particle counts during the first 60 s postactivation period
(t = 30–90 s) found that (i) the decay curve exhibits an expo-
nential fit (Figure 9) and (ii) the downward trend of the par-
ticle counts (in natural log values) largely follows a linear
pattern (Figure 10). The coefficients of determination (R2)
of both of these fits exceed 0.9.

The viability of the virus in each sample is shown in
Figure 11, where the TCID50/mL of virus stock is 1 47 ×
107 and the Log10 TCID50/mL value is 7.17. The findings
show a significant viral removal across the various test sam-
ples when compared to the control. Specifically, the average
TCID50/mL for the test scenarios was recorded at 0.372, in
contrast to the control value of 4480. Furthermore,
Figure 12 illustrates a comparative analysis between the test
and the control for each sample: the logarithmic values of
TCID50/mL for both the test and control scenarios provide

a clear understanding of the percentage reduction in viral
concentration. Using Equation (4), the percentage reduc-
tions of the virus of the three tests range from 99.990% to
99.993%, with an average reduction of 99.992%.

3.2. Implication and Future Work. Air purification devices
may integrate various antiviral technologies and mechanisms,
such as UVC, ionization, plasma, and antimicrobial coating.
In this context, a multifunctional air purification device featur-
ing HEPA filter, two UVC-LEDs (each rated power: 0.4 watt-
age, intensity at 15 cm: 15.2μW/cm2), and a negative ionizer
(rated power: 0.85 wattage, ion concentration 200mm away
from the device: 5 × 106 pcs/cm3) was deployed in a chamber
measuring 0.37m3 to investigate the removal of airborne
SARS-CoV-2 variants. As shown above, the air purification
device, operating at its maximum speed of 370m3/h (equating
to 6166.67L/min), successfully eliminated over 99.992% of the
airborne SARS-CoV-2 variants within 36 s. By applying the
principle of conditional probability in analyzing the virus
reduction at each air change rate, the airborne reduction rate
was calculated as 61.07%, 84.84%, and 99.87% at 1, 2, and
7.1 air changes, respectively.

These findings can be compared with those from previ-
ous research [42], which assessed the efficacy of an air puri-
fication device that was equipped with a HEPA filter. That
device operated at a low-flow condition (48 L/min) for sev-
eral minutes (5, 10, and 35.5) in a smaller 0.24m3 chamber.
The test outcomes showed that the airborne virus was
reduced by 85.38%, 96.03%, and 99.97% at 1, 2, and 7.1 ven-
tilation volumes, respectively.

The difference in the relationship between the air change
rate and remaining virus in the chamber between our study
and the previous research may be due to differences in the
operational conditions, device characteristics, and chamber
geometry. Additionally, our device’s inclusion of UVC-LEDs
and ionizers, which were not equipped in the device used by
Lindenbach et al. [37], may also be a contributing factor.
Future studies are recommended to investigate the effects of
these factors in order to add knowledge to this field.

On-site empirical studies should also be conducted in
real-world indoor environments to prove the efficacy of air
purification devices. In particular, elevators and other con-
fined spaces with a high occupant density may pose a higher
risk of airborne particle exposure for the users, especially
when there are infected persons coughing or sneezing in
the space [43]. The flow dynamics of existing ventilation

Table 1: Aerosol characterization recorded in the control and device tests.

Test no.a Time (seconds)
Average particle

counts
Average concentration

(mg/m3)
Average diameter

(μm)

T1–T3 0–10 504,577 9.63 3.42

T1–T3 180–190 145 8 × 10–4 1.59

Cl–C3 0–10 465,593 8.63 3.33

Cl–C3 180–190 486,664 8.98 3.42
a“T” denotes device test; “C” denotes control (without any device operation).
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systems may also affect the actual performance of the air
purification device [44]. Using some harmless surrogate
virus on-site may be a more practical approach to testing,
considering the potential danger of using high-risk airborne
viruses. During device testing and operation, the relation-

ship between the mass loaded onto the air filter and its flow
rate should be investigated to avoid filter aging in the test
and performance drop in long-term operation.

Alternatively, an extensive survey can be conducted to
compare COVID-19 incidence indoors with and without
air purifiers. The Centers for Disease Control and Preven-
tion (CDC) has found that filtration methods are associated
with lower COVID-19 incidence in schools [45]. When
schools applied dilution methods alone, the COVID-19
incidence was 35% lower than the base with no ventilation
strategy implemented. Both dilution and filtration methods
applied simultaneously can bring a 48% lower incidence of
COVID-19. However, the study did not explore filtration
alone, air change provided by natural ventilation, and how
these two factors contribute to a lower incidence of COVID-
19. Of note, commercial buildings, residential buildings, and
even hospitals have different characteristics compared to
school environments, and the pressurization of different
zones, demand control logics, fresh air supply, and so on
may complicate the study and require future exploration in
relation to case incidence.
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4. Conclusions

Our study demonstrates the efficacy of a flow-through air
purification device that utilizes a HEPA filter, with ionizer
and UVC-LEDs, in removing aerosolized SARS-CoV-2 virus
(Delta variant) from a test chamber containing high concen-
trations of airborne viruses. Under the experimental condi-
tions, the device was able to remove more than 99.992% of
aerosolized SARS-CoV-2 within 36 s of operation, producing
approximately 10 air changes during the test, as compared to
the control test results with the device not in operation.

This research provides a foundation for further investi-
gation into the relationship between air change, test space,
and virus reductions. To our knowledge, it is the first study
that evaluates the efficacy of a flow-through device with a
HEPA filter, an ionizer, and UVC-LEDs in removing the
aerosolized SARS-CoV-2 Delta variant. The limited research
on air purifier performance against this specific variant
makes our findings particularly significant.

While the acute phase of the COVID-19 pandemic is
over, recently there are signs alerting the need to guard
against the virus and its variants; in July 2024, for instance,
a 39% week-on-week surge in infections occurred in Japan
[46]. Therefore, the preparedness for the next public health
emergency of this kind remains essential. Engineering
interventions, such as the strategic use of air purification
devices, emerge as a prudent and cost-effective mitigation
strategy when juxtaposed with alternatives like vaccine
development that demand prolonged validation and risk
mitigation processes. This study also exemplifies a rigorous
challenge testing methodology tailored to assess the efficacy
of air purification devices within environments teeming
with highly infectious viruses, thereby furnishing building
owners, operators, and occupants with invaluable insights
for fortifying indoor environments against a spectrum of
diseases. By showcasing the efficacy of a modern air purifi-
cation device in high-risk settings, this research underscores
the pivotal role of engineering solutions in bolstering
indoor air quality and fortifying defenses against patho-
genic intrusions, thereby setting a new standard for future
indoor environmental health considerations.

Admittedly, the study reported above is not free from
limitations. Considering the size of the test chamber, further
empirical studies are recommended to confirm the effective-
ness of the air purification device in larger, real-world indoor
environments, especially for confined spaces (e.g., elevators)

posing high airborne particle exposure to occupants. Factors
such as air movement induced by HVAC systems and the
presence of occupants also warrant due consideration. As
the focus of this study was not on the effectiveness of the
individual components (filters, ionizers, and UVC-LEDs)
in virus removal, future research should examine their effec-
tiveness in different combinations. Worth exploring, too, are
design improvements of the air purification device. They
include the deployment of high-efficiency brushless motors
to enhance airflow, modification of the mold design to
increase the air inlet area and prevent air short-circuiting,
and an increase in the number and power of UVC-LEDs
to augment supplementary virus reduction.
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