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Energy poverty (EP) has emerged as a major challenge to achieving sustainable development goals, and its significance in social
development has increased over time. This paper aims to analyze the spatial autocorrelation between EP and social factors on a
global scale. Utilizing the panel data of 116 countries from 2012 to 2019, the Bivariate local Moran index, a representative spatial
econometrics tool, has been employed to examine temporal changes and spatial differences of transboundary synergy and tradeoff
relations between EP and social factors. The results indicate that EP has synergy relationships with social factors, including life
expectancy at birth, access to immunization, CO2 emission, and forest area, and tradeoff relationship with social factors, such as
infant mortality rate, prevalence of undernourishment, forest rents, and gender inequality. Significant spatial differences have been
observed that clusters of high-income countries, particularly those in the Global North, tend to have better energy access and are
surrounded by areas with favorable social conditions, and clusters of lower-income countries, especially those in South Africa and
Southeast Asia, have lower energy access and are surrounded by areas with more severe social conditions. The robustness analysis
has been conducted to verify the reliability of the results. The spatial imbalance of findings offers robust evidence by emphasizing
the importance of key areas, such as Southeast Asia and South Africa, that should be prioritized to take essential policy measures to
address the EP and social issues.

1. Introduction

Energy poverty (EP) is defined as the inability of a household
to secure a socially and materially required level of energy
services in the home [1]. Individuals experiencing EP heavily
depend on traditional solid fuels for their primary energy
needs [2], and significant time is dedicated to gathering local
energy like wood and dung [3]. This situation has negative
socioeconomic impacts, particularly for women, who often
bear the responsibility of cooking and household tasks [4].
In this regard, the socioeconomic impacts of EP have gar-
nered considerable attention among scholars [5, 6, 7, 8].
Existing literature highlights that EP is related not only to
economic development [3] but also to various social issues
[9, 10], including public health [11], gender inequality [4],
and environmental concerns like deforestation [3, 12, 13]
and CO2 emissions [8].

Generally, the relationship between EP and social factors
may vary with time and space, and EP may become better or
worse accordingly. Thus, this paper aims at conducting com-
prehensive quantitative studies on transboundary tradeoff-
synergy relations of EP and social factors and analyzing their
spatial–temporal variations for better identifying the vulner-
able areas and formulating adaptive EP alleviation strategies.
However, former research investigating the relationship
between EP and social factors has predominantly utilized
regression models, such as two-stage least squares (2SLS)
[14] and panel fixed effect regression model [15]. Limited
studies involved spatial characteristics of the relationship
between EP and social factors, generating some limitations in
the effective spatial management of EP alleviation. Spatial auto-
correlation, a key aspect of spatial statistics, plays a crucial role
in exploring spatial distribution patterns. Among different types
of spatial statistics, Moran’s I statistic, initially proposed by
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Moran [16] and improved by Cliff and Ord [17], is frequently
used to measure spatial autocorrelation [18, 19, 20]. In this
study, we propose the utilization of bivariate local indicators
of spatial association (BI-LISA), which assesses the type and
intensity of interaction between a pair of factors at the local
scale [21]. This approach allows for the identification of spatial
clusters and the determination of spatial interaction areas
related to the two factors, whose findings could provide valuable
insights for proposing effective strategies to alleviate EP.

The paper aims to analyze the spatial autocorrelation
between EP and social factors on a global scale. Given the objec-
tive, it is essential to focus on the following crucial research
questions: How does EP correlate with social factors? What
are the temporal changes and spatial differences in the associa-
tion between EP and social factors? Addressing the abovemen-
tioned questions could not only contribute to the progress
towards achieving multiple SDGs simultaneously but also high-
light the regions that require urgent attention for realizing global
equity in both energy and social issues.

The corresponding contribution of this paper is as fol-
lows: First, it adopts a global perspective by empirically
examining the spatial difference in the relationship between
EP and social factors across countries, building upon the
qualitative analysis presented in the work of Chevalier and
Ouédraogo [3] and Sovacool [22]. Second, previous research
on the EP domain has primarily focused on household-scale
data [5, 7, 23, 24]. There is a lack of international evidence
utilizing panel data in investigating the spatial characteristics
of the relationship between EP and social. Considering the
significant variation of EP across geographical locations, this
paper utilized the panel data of 116 countries, whose country
list is presented in Table S1, between 2012 and 2019 to iden-
tify the spatial cluster areas that suffer from both EP and
social issues, to assist policymakers in alleviating disparities
and promoting equitable energy access and social justice.

The structure of this paper is as follows: Section 2 offers a
literature review on the relationship between EP and social
factors; Section 3 introduces the spatial analytical methods
employed in this paper; Section 4 presents the results of
BI-LISA along with the sensitivity analysis. In Section 5, we
have a further discussion of our findings. Finally, Section 6
concludes the paper by presenting our main findings, limita-
tions, and prospects.

2. Review on the Relationship between EP and
Social Factors

Previous studies have demonstrated that EP may vary among
times and spaces. For example, Wang et al. [25] used the
remote-sensing and socioeconomic survey data and machine
learning algorithm to predict the EP in India, whose findings
show EP is strongly correlated with the geographical features of
the areas. Spandagos et al. [26] proposed using the machine
learning tool, specifically a random forest classifier, to predict
and target energy-poor households more accurately, clarifying
the spatial difference in EP across the European Union and the
United Kingdom. Given the spatial imbalance of EP and
social issues, conducting comprehensive quantitative stud-
ies on transboundary synergy and tradeoff relations of EP
and social factors is a significant issue to be tackled for
better identifying the vulnerable areas and formulating
adaptive EP alleviation strategies. Previous research regard-
ing the relationship between EP and social factors [22],
especially its connection between public health, gender
empowerment, and degradation of the natural environ-
ment, has been elaborated in Table 1.

The existing literature empirically highlights that EP is
related to various social challenges, including public health
[11], gender inequality [4], and environmental concerns like
deforestation [3, 12, 13] and CO2 emissions [8]. For example,

TABLE 1: Literature review of the relationship between EP and social factors.

References Regions Period Methodology Result

Recent studies on the relationship between EP and public health
Nawaz [14] Pakistan 2018–2019 2SLS The significant impact of EP on health
Pan et al. [11] 175 countries 2000–2018 GMM estimation The causal effect of EP on public health

Banerjee et al. [15]
50 developing
countries

1999–2017
The panel fixed effect regression

model
The significant impact of the EP on
well-being

Recent studies on the relationship between EP and gender inequality

Nguyen and Su [4]
51 developing
countries

2002–2017 GMM estimation
The reduced EP is an influential factor
in gender equality

Recent studies on the relationship between EP and environmental degradation

Khan et al. [27] 48 BRI economies 2001–2020 SYS-GMM dynamics techniques
Technology-driven energy deficits
positively impact CO2 emissions

Zhao et al. [8] 30 Chinese provinces 2002–2017 SYS-GMM dynamics techniques EP could increase the CO2 emission

Nguyen and Su [13]
74 developing
countries

2002–2016 Regression model

Reducing EP initially leads to a
decrease in forest degradation and
forest rent up to a certain
predetermined point. Then, beyond
that point, the improvement in energy
access could contribute to increased
deforestation and forest rent
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for the relationship between EP and public health, Nawaz [14]
verified the significant impact of EP on health in Pakistan by
the 2SLS regression model. Using the panel data of 175 coun-
tries from 2000 to 2018, Pan et al. [11] identified the causal
effect of EP on public health through the system generalized
method of moments (SYS-GMM) estimation. Banerjee et al.
[15] also examined the impact of the EP on well-being and
educational outcomes for 50 developing countries from 1999
to 2017 by using the panel fixed effect regression model.
Regarding the association between EP and gender inequality,
Sovacool [22] observed possible linkages between access to
modern energy services and gender equity and highlighted
the potential influence of EP on gender roles and educational
attainment. Pachauri and Rao [28] proposed the need for fur-
ther research to develop a comprehensive understanding of
how EP impacts the well-being of females. Meanwhile, Listo
[29] argued that a collaborative endeavor involving researchers,
policymakers, and practitioners is crucial for conducting inter-
disciplinary research on tackling the gender inequality problem
caused by EP. Using a sample of 51 developing countries from
2002 to 2017, Nguyen and Su [4] investigated the influence of
EP on gender inequality based on a two-step SYS-GMM esti-
mator. In addition, as for the relationship between EP and
environmental issues, such as CO2 emission and forest degra-
dation. It has been empirically proved that the more nonre-
newable energy consumption the more CO2 emission and the
worse the environmental quality, in G7 economies [30, 31].
Meanwhile, households with lower income will have higher
CO2 emissions in the both short and long term based on the
data from Pakistan from 1971 to 2015 [32]. In this regard,
using the dataset from 30 Chinese provinces from 2002 to
2017 and the SYS-GMM method, Zhao et al. [8] concluded
that EP households accompanied by lower income and more
traditional fuel usage could have higher CO2 emissions. Based
on SYS-GMM dynamics techniques with balanced panel data
of 48 BRI economies from 2001 to 2020, Khan et al. [27]
revealed that technology-driven energy deficits positively
impact CO2 emissions. Nguyen and Su [13] also analyzed
the impact of the EP index on forest area and forest rent by
utilizing panel data of 74 developing economies from 2002 to
2016. The findings suggest that reducing EP initially leads to a
decrease in forest degradation and forest rent up to a certain
predetermined point. However, beyond that point, the
improvement in energy access could contribute to increased
deforestation and forest rent. That would also be similar to the
findings of Khan and Yahong [33], utilizing the data from 18
Asian developing economies from 2006 to 2017; they proved
that access to electricity may control income inequality but
negatively impact the environment.

However, former research focuses on investigating the
relationship between the EP and social factors by using a
regression model and has not been able to explain the signif-
icant variations of spatial features of the relationship between
EP and social factors across countries. Unearthing spatial
patterns of these associations within countries allows for
providing insights into how these factors influence each
other spatially and identifying areas with high concentra-
tions of EP and specific social issues to assist in developing

targeted interventions and allocating resources more effec-
tively to address EP and related social challenges.

3. Methods and Data

3.1. Methods for Measuring Synergies and Tradeoffs. Synergy
is observed when two variables change in a similar direction,
whereas a tradeoff occurs when two variables change in the
opposite direction [34, 35]. To examine synergy and tradeoff,
the conventional statistical analysis approach primarily con-
centrates on the associations between various variables mea-
sured in the same location. The tradeoff and synergy between
EP and social factors might vary across different spatial loca-
tions due to the influences of both social and environmental
factors. Spatial autocorrelation is defined as the statistical
relationship between spatially adjacent locations [36], which
measures the degree to which similar values of a variable are
clustered together in space. Moran’s I is a widely employed
mathematical indicator used to quantify spatial autocorrela-
tion [37]. However, it is limited to measuring spatial autocor-
relation for a single variable; clustering change within the
same unit is often influenced by other characteristics. In con-
trast, BI-LISA allows the simultaneous exploration of geospa-
tial characteristics for two variables [38]. Bivariate local
Moran’s I, a modified version of the traditional approach,
examines the relationship between variables in close proxim-
ity [39] and has been used to investigate spatial inequalities.

In this study, considering the spatial difference, the bivar-
iate spatial autocorrelation model was employed to explore
the spatial distributions of tradeoff and synergy between two
variables [35, 40, 41]. We utilized BI-LISA for exploratory
spatial analysis to examine the spatial coincidence between
two variables with lower levels of energy access and specific
social factors for identifying areas that could potentially
achieve both social and energy access objectives. All analyses
were performed through Python, whose code has been pro-
vided at the end of supplementary material, and the final
mapping was carried out using ArcGIS.

3.1.1. Setting of Spatial Weight Matrix. The selection of a
suitable weight matrix that accurately represents the strength
of observed geographic relationships is a critical aspect of
spatial analysis [42]. The spatial weight matrix serves as the
foundation for spatial autocorrelation analysis, allowing for
the evaluation of the level of relationship between two areas.
This paper established three different matrices: geographical
distance matrix, economic distance matrix, and gravity model
matrix, which have the following general form:

W¼ wij

Â Ã
N×N ¼

0 w12 ⋯ w1N

w21 0 ⋯ w2N

⋮ ⋮ 0 ⋮
wN1 wN2 ⋯ 0

2
66664

3
77775;

i and j¼ 1; 2; 3;…;N;

ð1Þ

where wij indicates the spatial weight between country i and
country j;N is the total number of countries.
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(1) Geographical distance matrix w1
i j

The geographical distance matrix quantifies the level of
relationship between spatial units by considering the dis-
tance. The geospatial distance is calculated using the latitude
and longitude of each country, whose general form is shown
in the following formula [43]:

w1
i j ¼

1
dij

; i ≠ jð Þ

0

8<
: ; ð2Þ

where dij is the distance between country i and country j by
using the latitude and longitude for calculation, whose data
used in this paper are collected from the GeoDist database,
which is shown in Table S2.

(2) Economic distance matrix w2
i j

The economic distance matrix is as follows [43]:

w2
i j ¼

1

ei − ej
�� �� ; i ≠ jð Þ

0

8<
: ; ð3Þ

where ei and ej are the average true GDP of country i and
country j, respectively. The data used in this paper are col-
lected from World Development Indicators (WDI), which is
shown in Table S3.

(3) Gravity model matrix w3
i j

The gravity model weight matrix employed in this paper
provides a more comprehensive reflection of the influence of
economic and geographic factors, whose general form is as
follows [42]:

w3
i j ¼

ei × ej
d2i j

: ð4Þ

The definitions of notations are the same as before. The
data used in this paper are collected from WDI and the
GeoDist database, which are shown in Tables S2 and S3.

Then, the row standardization suggests each value of
spatial weight in the matrix was divided by its row sum, as
follows:

wsk
i j ¼

wk
i j

∑
N

i¼1
wk

i j

; ð5Þ

where wk
i j and wsk

i j indicate the kth weight matrix between
country i and country j, and the kth weight matrix after row
standardized, respectively. k¼ 1; 2; 3 is the classification of
spatial weight matrix.

3.1.2. Bivariate Local Moran Index. We used BI-LISA to
investigate the transboundary interaction between EP and
social factors. Positive bivariate local Moran’s I indicates a
synergy relationship, while negative bivariate local Moran’s I
indicates a tradeoff relationship. If the p-value of bivariate
local Moran’s I of one country is smaller than 10%, there
were significant synergy/tradeoff effects. Bivariate local Mor-
an’s I of country i (Iðx; yÞi ) between EP indicator x and social
factor y can be obtained as follows [44]:

I x;yð Þ
i ¼

N ∑
N

j¼1
wsk

i j xi − xð Þ yj − y
À Á

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
xi − xð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
yi − yð Þ2

s ; ð6Þ

where Iðx; yÞi is the bivariate local spatial autocorrelation coef-
ficient, measuring local spatial correlation between EP indi-
cator and social factors in different countries. The notations
used here remain consistent with those previously mentioned.

Based on the agglomeration degree of EP level in country
i and the social factor performance in country j, four local
spatial clusters are identified, including high–high (H–H)
and low–low (L–L) clusters, which indicate positive spatial
autocorrelation and suggest a synergy relationship between
the specific social factor and EP level within a cluster of
locations [45]. Conversely, low–high (L–H) and high–low
(H–L) clusters indicate negative spatial autocorrelation, sug-
gesting a tradeoff relationship between the two variables
within a cluster of locations [45].

3.2. Data and Variables

3.2.1. Data. After excluding the countries with insufficient
data, this paper uses a dataset of 116 countries from 2012 to
2019, which is shown in Table S4. The data for this paper are
sourced from theWDI of theWorld Bank and Human Devel-
opment Reports (HDR) dataset of the United Nations. There
are several reasons why we selected these datasets. First, most
previous studies on EP have focused on household-scale data.
The utilization of panel data for global evidence is relatively
uncommon within the current research. Second, WDI and
HDR provide extensive and comprehensive data, ensuring
that all the necessary information required is available. Table 2
shows the definition of each variable, and Table 3 summarizes
the corresponding statistical description.

3.2.2. EP Indicator. Pachauri and Spreng [46] summarized
one approach widely used for EP measurement by consider-
ing the limited availability of modern energy services. Obeng
et al. [47] utilized electricity accessibility to measure the
energy shortage. Nguyen and Nasir [48], Churchill and
Smyth [49], and Churchill et al. [9] emphasize that access
to clean fuel, modern technology, and electricity could be
considered effective indicators for measuring EP. In this
regard, four indicators have been used in this study [4, 13]
as the proxy of EP, which are shown in Table 2. These indi-
cators serve as a reliable proxy of EP, as supported by the
evidence from existing research, and facilitate cross-country

4 International Journal of Energy Research
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comparisons. The lower values of four indicators show the
severity of EP condition, whose data are obtained from
the WDI.

3.2.3. Public Health Indicator. “Life expectancy at birth” and
“infant mortality rate” are widely recognized as the useful
proxy of health outcomes at a global scale [50]. Several stud-
ies have utilized these two indicators to assess the health
condition within the context of EP research. For example,
Wilkinson et al. [51] highlight that global energy service
provision could impact health conditions, which is reflected
in increased life expectancy and reduced child mortality rate.
Banerjee et al. [15] used the life expectancy at birth and
infant mortality rate to measure health outcomes for

examining the effect of EP on health conditions in 50 devel-
oping countries between 1990 and 2017. In addition, this
paper incorporates additional health indicators to capture
the nutritional condition and immunization status, including
the prevalence of undernourishment and access to immuni-
zation, providing further insights into the health conditions
of countries spanning from very poor to developed [15],
which has been used in the previous research such as Black
et al. [52] and WHO [53].

3.2.4. Environmental Degradation. In many developing
countries, traditional fossil fuel is commonly used for energy
generation, which would result in the EP and have the detri-
mental effect on the environment. Sovacool [22] highlighted

TABLE 2: The description of variables.

Variables Definitions Data source

EP1
Access to clean fuels and technologies for cooking
(% of population)

WDI

EP2 Access to electricity (% of population) WDI
EP3 Access to electricity, rural (% of rural population) WDI
EP4 Access to electricity, urban (% of urban population) WDI

Life expectancy at birth, total (years)
It reflects the expected lifespan of the newborn, assuming the
mortality rates prevailing at the time of birth remain constant
during its entire lifetime

WDI

Infant mortality rate (per 1,000 live
births)

It represents the ratio of infants who do not survive beyond their
first year based on per 1,000 newborns during the particular year

WDI

Prevalence of undernourishment (% of
population)

The ratio of population with insufficient food consumption for
maintaining a healthy and active life

WDI

Access to immunization (% of children
ages 12–23 months)

The percentage of children between the ages of 12 and 23 months
who have been immunized against measles

WDI

CO2 emission (metric tons per capita) It stems from burning fossil fuels and manufacturing cement WDI

Forest area (% of land area)
It denotes land covered by naturally or artificially grown stands of
trees, with a minimum height of 5m, regardless of their
productivity

WDI

Forest rents (% of GDP)
It is obtained by multiplying harvested roundwood volume by
regional price and regional rental rate

WDI

Gender inequality
It is a composite indicator of gender inequality that considers three
dimensions: reproductive health, empowerment, and labor market

HDR

TABLE 3: Statistical descriptions of variables.

Variables Obs. Mean Std. dev. Min Max

EP1 928 75.9268858 32.8035908 0.3 100
EP2 928 89.8129353 20.6001617 7.4000001 100
EP3 928 85.2412612 26.791939 0.92683059 100
EP4 928 95.6384581 11.4400055 14.8000002 100
Life expectancy at birth, total (years) 928 73.9567012 6.89991584 49.835 84.3563415
Infant mortality rate (per 1,000 live births) 928 16.7452586 16.2001224 1.8 71.1
Prevalence of undernourishment (% of population) 928 7.06810345 6.90845277 2.5 39.2
Access to immunization (% of children ages 12–23 months) 928 90.987069 9.31500023 40 99
CO2 emission (metric tons per capita) 928 4.7768416 4.60122109 0.05138984 25.1318614
Forest area (% of land area) 928 31.4792059 21.1216028 0.00807754 97.9524615
Forest rents (% of GDP) 928 1.05835808 2.40343519 0 20.0292149
Gender inequality 928 0.31662608 0.1810423 0.016 0.738

International Journal of Energy Research 5
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that EP could lead to negative environmental consequences,
such as deforestation and an increase in carbon emissions.
Chevalier and Ouédraogo [3] explained that individuals fac-
ing EP have to allocate additional time to gather traditional
energy resources such as wood to fulfill daily energy require-
ments. This, in turn, can accelerate deforestation. To assess
the impact of EP on deforestation, this study employs the
proportion of forest area and forest rent as the proxies of
deforestation [13]. The increase in the forest area implies the
decrease in deforestation, and the higher value of forest rent
indicates a greater reliance on forests for consumption, con-
sequently leading to higher deforestation. The data for forest
area and forest rent are obtained from WDI. Meanwhile,
Hanif et al. [54] identified the correlation between energy
usage and carbon emissions, specifically within developing
countries in Asia. They conducted a regression analysis to
separately examine the impact of renewable and nonrenew-
able energy on carbon emissions, whose findings emphasized
the crucial role of renewable energy in reducing carbon emis-
sions. Baiwei et al. [55] used the Per capita metric tons
(annual) CO2 emissions as a proxy of carbon emission to
investigate the relationship between EP and CO2 emission
based on data from 40 developing between 2000 and 2019.
Based on Baiwei et al. [55] and Hanif et al. [54], annual per
capita carbon dioxide emissions in metric tons, whose data
were collected from WDI, were used for measuring CO2

emissions, which encompasses CO2 generated from the com-
bustion of fossil fuels and cement production.

3.2.5. Gender Inequality. The EP impacts would vary between
genders [56], particularly in terms of employment, health,
and social status. This disparity could be attributed to the
gendered difference of role, women typically bear the respon-
sibility of cooking and other household chores. That is, the
management of traditional energy resources is commonly
perceived as the duty towards the female [57, 58], leading to
women having limited time and fewer opportunities to pursue
decent employment. Additionally, women from EP house-
holds face increased vulnerabilities, including exposure to
indoor air pollution and extreme temperature conditions.
As a result, EP reduces their access to essential life necessities,
including healthcare, education, and employment opportu-
nities [57]. Therefore, in this study, the gender inequality
index (GII), a multidimensional measure, will be used to
encompass three aspects of gender inequality, including labor
market, reproductive health, and empowerment. The lower
value of GII signifies a lower level of inequality between
females and males, while a high value indicates higher
inequality, whose data are collected from HDR.

4. Result

This study demonstrates the idea of Sovacool [22] to conduct
the spatial autocorrelation analysis between four EP indica-
tors and representative social factors based on the data of
116 countries from 2012 to 2019. The findings provide valu-
able insights into the connection between four EP indicators
and social factors and strengthen some conclusions on the
existing studies that were conducted qualitatively. Here, we

present the statistical relationship between four EP indicators
and social factors across different countries, from which we
will investigate temporal changes and spatial clustering pat-
terns of these relationships and do sensitivity analysis to
verify the robustness of our findings. More specifically, to
achieve a better understanding of spatial autocorrelation
between four EP indicators and social factors, we conducted
the synergy and tradeoff analysis referring to the result of
bivariate local Moran’s I.

4.1. Transboundary Interaction between Four EP Indicators
and Social Factors

4.1.1. Temporal Changes of Transboundary Interaction. The
EP condition and social factors are various in different geo-
graphical contexts. In this regard, we examine the potential
tradeoffs and synergies among each pair of relationships and
investigate their evolution over time (Figure 1). In this study,
we have not only observed the sole synergy or tradeoff rela-
tionship but also found the mixture of relationships between
various pairs of interactions.

Among the synergy relationships, the high values in four
EP indicators are spatially related to high values of the other
factors, such as life expectancy at birth, access to immuniza-
tion, and carbon emission. Without considering the spatial
autocorrelation among variables, previous research also indi-
cated a significant relationship between EP and overall health
condition [59], life expectancy at birth [11], and CO2 emis-
sion [60]. As for the relationship between four EP indicators
and forest area, a mixed share of synergies and tradeoffs
appear, and as time goes by the synergy dominates the inter-
actions. Indeed, better EP condition contributes to rising
forest areas by transforming the fundamental energy con-
sumption patterns of individuals facing EP from traditional
fuels, such as wood, to clean energy sources.

Compared with the synergy relationship, the tradeoff
relations are stable over time. The tradeoffs are prevalent
particularly for gender inequality, forest rents, and public
health factors, including infant mortality rate and under-
nourishment prevalence, illustrating that a cluster of coun-
tries where EP indicators have higher values and the other
variable has a lower value. Cold climates within households
could weaken the immune system of family members, raising
the risk of infection and illness. Furthermore, enhanced
accessibility of clean energy, particularly for women, posi-
tively impacts their well-being, creating opportunities for
education and income generation by freeing up their time
and resources [56]. Additionally, it has also verified the ben-
efit of reducing forest rents by improving EP [13].

4.1.2. Spatial Difference of Transboundary Interactions.
Exploration of spatial relationships between four EP indica-
tors and social factors could identify areas where EP and
specific social factors are spatially clustered. Based on the
temporal changes of their relationships, we can find the
four EP indicators almost share similar synergy and tradeoff
relationships with representative social factors. To visually
depict the local spatial autocorrelation among 116 countries,
we generate the LISA agglomeration maps of EP 1 and social
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factors, considering 10% significance level. The result has
been shown in Figures 2 and 3 in which the red, dark blue,
pink, and light blue areas indicate H–H, L–L, H–L, and L–H
clusters, respectively. Gray and white areas represent no

significant and no data, respectively. Additionally, we also
do a comparison analysis of LISA clustering maps between
2012 and 2019 to show the dynamic change of synergy and
tradeoffs among various relationship pairs.

Energy poverty 1—access to clean fuels and technologies for cooking (% of population) 

Life expectancy at birth
Infant mortality rate

Prevalence of undernourishment
Access to immunization

CO2 emission
Forest area

Forest rents
Gender inequality

2012 2013 2014 2015 2016 2017 2018 2019

ðaÞ

Energy poverty 2—access to electricity (% of population)

Life expectancy at birth
Infant mortality rate

Prevalence of undernourishment
Access to immunization

CO2 emission
Forest area

Forest rents
Gender inequality

2012 2013 2014 2015 2016 2017 2018 2019

ðbÞ

Energy poverty 3—access to electricity, rural (% of rural population) 

2013 2014 2015 2016 2017 2018 2019

Life expectancy at birth
Infant mortality rate

Prevalence of undernourishment
Access to immunization

CO2 emission
Forest area

Forest rents
Gender inequality

2012

ðcÞ

Energy poverty 4—access to electricity, urban (% of urban population) 

2012 2013 2014 2015 2016 2017 2018 2019

Life expectancy at birth
Infant mortality rate

Prevalence of undernourishment
Access to immunization

CO2 emission
Forest area

Forest rents
Gender inequality

ðdÞ
FIGURE 1: Temporal changes of transboundary interaction between four EP indicators (a–d) and social factors. The color bar represents the
synergies (orange), not-classified (yellow), and tradeoff (green).
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FIGURE 2: The spatial difference of synergy interaction of EP 1 and social factors.
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FIGURE 3: The spatial difference of tradeoff interaction of EP 1 and social factors.
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(1) Spatial difference in synergies between transbound-
ary interactions

The bivariate LISA analysis in this study explored two
types of synergies. The first type presents the agglomeration
of synergy (represented by the color red), whose positive and
significant value indicates a cluster of courtiers where both
variables have high values. In this study, we found that
areas with higher levels of energy access are surrounded
by higher life expectancy at birth and CO2 emissions in
European countries (Figure 2). It is worth noting that H–H
clusters are mostly around Europe, especially in North
Europe, and Arabia country in 2012. As the condition in
2019, H–H patterns appeared in the US and became
weaker in Europe.

Second, another type of synergy is L–L clusters (repre-
sented by the color dark blue), whose negative and significant
value indicates a cluster of countries where both variables
have low values. Our finding indicates that low level of EP
indicator and low level of life expectancy at birth, immuni-
zation, and CO2 emission in African countries or Southeast
Asia. The outcome indicates EP households are also socially
vulnerable along with African countries and Southeast Asia,
which is consistent with established research that household
in the abovementioned areas faces high levels of persistent
poverty, poor health conditions [61], and lower CO2 emis-
sion [62]. The distributions of synergies reveal that H–H
synergy areas predominantly appear in high-income coun-
tries, while L–L synergies are more prevalent in low-income
regions and exhibit comparatively scattered distributions
than H–H clusters. Prioritized EP alleviation efforts should
be allocated to the L–L cluster areas.

Additionally, we observed that both synergy (L–L clus-
ters) and tradeoff (H–L clusters) appear in the relationship
between EP and forest areas, but the synergy relations domi-
nated in 2019. The L–L clusters mainly appear in Africa and
Southeast Asia, which means that the lower energy access
countries are surrounded by countries with lower forest
areas. This corresponds to the result of Nguyen and Su
[13], showing that the severe EP condition would increase
deforestation by using traditional fuels for household usage.

(2) Spatial difference in tradeoffs between transbound-
ary interactions

The tradeoff relations of Deleted L–H clusters exist with
relatively lower EP indicators and high levels of social factors,
including infant mortality rate, undernourishment preva-
lence, forest rent, and gender inequality in African countries
or Southeast Asia, which belongs to low-income countries.
Even though we observed the little H–H cluster in the rela-
tionship of EP 1 and forest rents, L–H clustering patterns had
the largest number and there is little difference between 2012
and 2019. Additionally, the tradeoff relations of Deleted H–L
clusters between relatively higher EP indicators and lower
levels of social factors mainly appear in European countries.
H–L clusters of EP and social factors refer to high energy
access surrounded by low infant mortality rate, undernour-
ishment prevalence, and gender inequality, which are almost

located in European countries. The spatial distributions of
tradeoffs exhibit an imbalance, that the H–L tradeoff domain
is scattered across European countries and the L–H tradeoff
domain is observed in South African countries, which is
mostly consistent with economic development.

4.2. Sensitivity Analysis. First, we consider the sensitivity of
our results to various EP indicators. We assign equal weights
to interaction results obtained from four EP indicators to
obtain the overall evaluation of synergy and tradeoff. Figure 4
shows the synergy relations, and Figure 5 implies the tradeoff
interactions. In both Figures 4 and 5, the orange/green bar
represents synergy/tradeoff relations; the larger the orange/
green bar, the more share of synergy/tradeoff interactions. It
is clear from Figure 4 that there are stable synergy relation-
ships between EP and some social factors from 2012 to 2019,
including life expectancy at birth, access to immunization,
and CO2 emission. As for the relationship between EP and
forest area, the share of synergy and tradeoff is almost equal.
The result is similar to the general conclusion obtained from
Figures 1 and 2. As for tradeoff relations from the period of
2012–2019, there are stable tradeoff relations of EP and cer-
tain social factors, such as infant mortality rate, the prevalence
of undernourishment, forest rents, and gender inequality.
Among these tradeoff relations, the relationship between EP
and gender inequality shares the largest proportions, showing
the strongest tradeoff relationship. This result is generally
consistent with the findings in Figures 1 and 3, verifying the
robustness of the outcome.

Second, we verify the validity of our findings by testing
other spatial weight matrices, such as the economic distance
matrix and gravity model matrix. Three spatial weight matri-
ces consider different aspects of spatial weight, and thus, they
complement each other. Overall, we observe the similarities
and differences between synergy and tradeoff shares while
considering three spatial weight matrices (Figure 6). On
average, we have observed consistent synergy or tradeoff
relationships among the results from three spatial weight
matrices. However, it is important to note that the distribu-
tion of synergy and tradeoff varies among different periods,
four EP indicators, and three spatial weight matrices. More
specifically, it had a relatively larger share of synergy or
tradeoff relationships in 2012 compared with 2015 and
2019. EP 1 also has stronger relationships with social factors
compared with the other three EP indicators. Moreover, the
spatial weight matrix constructed by the geographical dis-
tance matrix has the largest share of synergy and tradeoff
relations compared with the economic distance matrix and
gravity model matrix.

5. Discussion

The bivariate local Moran’s I takes into account the spatial
intricacies of EP and social factors, whose effectiveness in
capturing the clustering characteristics of EP has been sup-
ported by previous studies. In this study, we concentrated on
four types of EP variables and social factors and utilized BI-
LISA to explore vulnerable hotspots of spatial autocorrelation.
Our GIS-based analyses, supported by BI-LISA, revealed
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significant spatial variations in the distribution of synergy
(H–H and L–L) and tradeoff (H–L and L–H) domains.
More specifically, we have witnessed that there is a synergy
relationship between four EP indicators with certain social
factors, including life expectancy at birth, access to immuni-
zation, CO2 emissions, and forest area. The tradeoff relation-
ship appears in four EP indicators and some social factors,
including infant mortality rate, prevalence of undernourish-
ment, forest rent, and gender inequality.

The life expectancy at birth, access to immunization,
infant mortality rate, and prevalence of undernourishment
are classified as public health. Even though they have differ-
ent synergy/tradeoff relationships with EP, it has been
noticed that the better EP condition of a country is sur-
rounded by the better public health of its neighborhood in
Europe, and the severe EP condition of a country is sur-
rounded by the severe health status of its neighborhood in
South Africa or Southeast Asia. It could be explained that
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FIGURE 4: The comprehensive evaluation of synergy interactions of four EP indicators and social factors. (a) Life expectancy at birth, (b) access
to immunization, (c) CO2 emission, and (d) forest area.
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countries in European countries tend to have better infra-
structure and healthcare systems; the cross-border collabo-
ration also enhances their energy security and health
outcomes. However, countries in South Africa or Southeast
Asia may face greater energy access and health challenges
due to rapid urbanization, population growth, and economic
disparities Banerjee et al. [15].

We also discovered the different synergy and tradeoff
relations of EP and factors related to environmental issues,

including CO2 emission, forest area, and forest rents. First, it
has a synergy relationship between EP and carbon emissions.
Even with progress in clean energy adoption in developed
countries, they tend to have a higher level of industrialization
and economic development, which often leads to higher CO2

emissions. At the same time, due to the lower industrializa-
tion and energy demand, developing countries may have
lower levels of overall energy consumption and emissions.
Second, our research discovered the significant tradeoff
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FIGURE 5: The comprehensive evaluation of tradeoff interactions of four EP indicators and social factors. (a) Infant mortality rate,
(b) prevalence of undernourishment, (c) forest rents, and (d) gender inequality.
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Energy poverty 1—access to clean fuels and technologies for cooking (% of population)
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Energy poverty 3—access to electricity, rural (% of rural population)
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FIGURE 6: Continued.
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relationships between EP and forest rents and not that obvi-
ous synergy relationship between EP and forest area. It could
be explained that EP reduction could assist in expanding
forest areas and lowering the forest rents by increasing clean
energy consumption and decreasing the usage of traditional
energy resources, such as wood. Meanwhile, with greater
numbers of households obtaining modern energy services,
there may be a tendency to engage in large-scale manufactur-
ing and consumption, having the potential to accelerate
deforestation [12].

Additionally, gender inequality showed the tradeoff rela-
tionship with EP, including the H–L clusters in European
countries and L–H clusters in South Africa. European coun-
tries with better EP conditions tend to have higher levels of
socioeconomic development and well-established legal fra-
meworks and policies promoting gender equality, which can
contribute to reduced gender inequality. In addition, South
African countries may face challenges, such as high levels of
poverty, income inequality, and gender-based violence. These
factors and the persistence of EP can further exacerbate the
existing gender inequality Nguyen and Su [4].

6. Conclusion

Accessing modern energy services is crucial for achieving a fun-
damental level of comfortable life. Currently, there exists a sig-
nificant disparity in accessing and utilizing these clean energy
services, with the poorest 3 billion individuals experiencing
severe EP, while the wealthiest 1 billion consume a dispropor-
tionately large portion. In this background, this study utilized
panel data covering 116 countries between 2012 and 2019 to
analyze spatial–temporal features of the spatial relationship
between EP and social factors. We conducted the spatial auto-
correlation analysis to assess the synergy and tradeoff relation-
ship between EP and social factors, thereby analyzing the
temporal changes and spatial differences of this spatial autocor-
relation. After that, we considered the four EP indicators for
comprehensive evaluation of synergy and tradeoff relationship
and adopted three different spatial weight matrices to ensure
result reliability. The primary findings are summarized below.

Some social factors, including life expectancy at birth,
access to immunization, CO2 emission, and forest area, share
spatial synergy relations with EP. These synergy relationships
are manifested in H–H and L–L clusters; that is, countries
with lower energy access and surrounded by lower values of
the abovementioned social factors were located in the low-
income countries, including South Africa and Southeast Asia,
while the regions with higher energy access are surrounded by
the higher values of abovementioned social factors were
located in the higher-income countries, such as European
countries. In tradeoff relations, EP and some social factors,
including infant mortality rate, prevalence of undernourish-
ment, forest rents, and gender inequality, are presented in
H–L and L–H clusters, having negative spatial autocorrelation
effect, that is to say, countries, particularly for European coun-
tries, with the higher energy access tend to be adjacent to the
countries with the better condition of social factors, while
countries, especially for South Africa and Southeast Asia,
having insufficient energy access are adjacent to countries
with worse condition of social factors. Among the tradeoff
and synergy relationships, synergy relationships, such as
H–H and L–L clusters, indicated the dynamic pattern of pro-
gressively declining, except for the CO2 emissions. Mean-
while, all of the tradeoff relationships, including L–H and
H–L clusters, witnessed a decreasing trend.

The findings suggest a gradual improvement in the
uneven distributions of spatial autocorrelation between EP
and social factors. These findings provide solid evidence on
which to explore the influence of EP on social factors consid-
ering spatial heterogeneity. Meanwhile, even though the
tradeoff/synergy relations between EP and social factors
were not fixed, there still exists a significant spatial imbalance
among different regions. More focus has better put on South
Africa and Southeast Asia for improving their energy access,
and further uplifting their social development indicators. This
could involve investments in infrastructure and renewable
energy sources to enhance energy access and promote sustain-
able development. In addition, higher-income countries tend
to have better social conditions and higher energy access and
lower-income countries experience the opposite trend. The
financial aid, technical assistance, and capacity-building

Energy poverty 4 —access to electricity, urban (% of urban population)
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FIGURE 6: (a–d) The robust test of results by considering three different spatial weight matrices.
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support could be proposed to bridge the gap between different
regions.

This study has some limitations that need to be improved
in future research. First, because of the data limitation, this
study utilized the panel data of 116 countries from 2012 to
2019. Future research could incorporate updated data to
capture the most recent spatial autocorrelation of EP and
social factors. Second, the Bivariate local Moran index uti-
lized in this paper has limitations in capturing the causal
relationship between the factors, which is crucial for policy-
makers to determine the critical factors to address the EP and
social issues effectively. Future research could construct spa-
tial econometric models to provide a more accurate estima-
tion of the causality direction between EP and social factors
by considering spatial dependence.
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