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Abstract
We discuss the identification of a time-dependent potential

in a time-fractional diffusion model from a boundary mea-

surement taken at a single point. Theoretically, we establish

a conditional Lipschitz stability for this inverse problem.

Numerically, we develop an easily implementable iterative

algorithm to recover the unknown coefficient, and also derive

rigorous error bounds for the discrete reconstruction. These

results are attained by leveraging the (discrete) solution the-

ory of direct problems, and applying error estimates that are

optimal with respect to problem data regularity. Numerical

simulations are provided to demonstrate the theoretical results.
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1 INTRODUCTION

In this paper, we aim to study the numerical treatment for an inverse potential problem for a

time-fractional diffusion model. Consider the convex polyhedral domain Ω ⊂ R𝑑
, with 1 ≤ 𝑑 ≤ 3,

and let 𝜕Ω denote the boundary of Ω. Consider the initial-boundary value problem:

⎧
⎪
⎨
⎪
⎩

𝜕
𝛼

t u − Δu + 𝜌(t)u = f , in Ω × (0,T],
𝜕𝜈u = 0, on 𝜕Ω × (0,T],

u(0) = u0, in Ω,
(1.1)
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where T > 0 denotes the prescribed final time, u0 is the given initial condition, f represents the source

term which depends on the spatial variable, and 𝜈 is the outward unit normal vector to the boundary

𝜕Ω. The notation 𝜕
𝛼

t u, with 𝛼 ∈ (0, 1), denotes the Djrbashian–Caputo fractional derivative of order

𝛼, defined by

𝜕
𝛼

t u(t) = 1

Γ(1 − 𝛼)∫

t

0

(t − s)−𝛼u′(s)ds, (1.2)

where Γ(z) = ∫ ∞
0

sz−1e−s
ds withℜ(z) > 0 denotes Gamma function.

In recent years, fractional evolution models have garnered considerable interest for their excep-

tional ability to characterize the anomalous diffusion phenomenon, which is prevalent across a wide

spectrum of engineering and physical contexts. The array of successful applications is extensive and

continuously expanding. Notable examples include the diffusion of proteins within cellular environ-

ments [12], the movement of contaminants through groundwater systems [23], and memory-dependent

heat conduction processes [35], among others. For an in-depth exploration of the derivation of per-

tinent mathematical models and their numerous applications in the realms of physics and biology,

readers are directed to thorough reviews [30, 31] and detailed monographs [8, 13].

In this paper, we address the inverse potential problem (IPP) described as follows: for a fixed point

x0 ∈ Ω, our objective is to reconstruct the potential function 𝜌
†(t) from the single point measurement

u†(x0, t) with t ∈ [0,T]. We let u† denote the exact solution with the exact potential 𝜌
†

that belongs to

admissible set

ℬ = {𝜌 ∈ C[0,T] ∶ 0 ≤ 𝜌 ≤ c𝜌}, (1.3)

where c𝜌 > 0 is a constant. In practical scenarios, the actual measurement, denoted by g𝛿(t), typically

contains noise. We assume that g𝛿(t) satisfies the following noise condition

||g𝛿 − u(x0, t; 𝜌†)||C[0,T] = 𝛿 (1.4)

where 𝛿 denotes the noise level.

This research provides the following contributions. First of all, we establish a conditional Lips-

chitz stability estimate under some mild assumptions on problem data, as given in Theorem 3.2. This

stability estimate leverages the smoothing properties of the direct problem and employs a carefully

selected weighted Lp
norm. Our second contribution, presented in Theorem 4.2, involves the develop-

ment of a practical, fully discrete fixed-point algorithm. Moreover, we analyze the error for the discrete

reconstruction (𝜌n
∗)Nn=1

in the 𝓁p
norm:

||[𝜌n
∗ − 𝜌†(tn)]Nn=1

||𝓁p ≤ c
(
𝜏

1∕p| log 𝜏| + h2| log h|3 + 𝜏−𝛼𝛿
)

(1.5)

for any p ∈ (1,∞). This estimate provides clear guidance for selecting algorithmic parameters, such as

spatial mesh size h and temporal step size 𝜏, in relation to the noise level 𝛿. The outcome is achieved

through the application of the weighted 𝓁p
norm, combined with error estimates that are optimally

aligned with the regularity of the problem data for the direct problem.

The research into inverse problems for time-fractional evolution models began more recently, with

significant contributions originating from [5] (see [26, 28] for some recent overviews) and numer-

ous studies have focused on the reconstruction of a space-dependent potential or conductivity from

lateral Cauchy data [4, 17, 19, 22, 32] or from the terminal data [14, 15, 20, 21, 38]. Although sig-

nificant research has been conducted on inverse problems associated with time-independent elliptic

operators employing Mittag–Leffler functions or Laplace transform, the study of analogous inverse

problems involving an elliptic operator that varies with time remains notably less developed due to

the inapplicability of these tools. The unique identification of a time-dependent diffusion coefficient
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in a one-dimensional model from lateral flux observations was discussed in [37]. In [39], the back-

ward problem with a time-dependent elliptic operator was examined in case of sufficiently small or

large terminal time. Fujishiro and Kian [10] examined the same inverse problem discussed in this

paper, establishing a similar stability estimate as shown in Theorem 3.2. However, no reconstruction

algorithm or numerical analysis exists. In the current work, we revisit the problem and demonstrate

stability through a different approach, utilizing the smoothing properties of the solution operator and

choosing an appropriate weighted Lp
norm. This stability analysis also inspires an iterative algorithm

as well as its convergence analysis. Moreover, an error estimate for the numerical discretization is pro-

vided. This is achieved by using the proposed stability analysis and appropriate error estimates that

are optimal with respect to the regularity of the problem data for the direct problem. In [16, 29], the

authors investigated the stable recovery of a time-dependent potential from the integral measurement

∫Ω u(x, t) dx for all t ∈ [0,T]. The problem addressed in the current paper poses greater challenges.

Here, the observation u(x0, t) demands higher regularity, and the term Δu(x0, t), which cannot be

computed directly, introduces additional difficulties in numerical analysis.

The remainder of the paper is structured as follows. Section 2 is dedicated to gathering foun-

dational results related to the forward problem, including well-posedness and regularity estimates.

A Lipschitz-type stability of the IPP is established in Section 3. In Section 4, we develop an itera-

tive algorithm, accompanied by an exhaustive error analysis for the numerical reconstruction. Finally,

Section 5 offers numerical experiments that demonstrate the efficacy of our numerical approach.

Throughout, we use c to represent a generic constant whose value may vary with each instance of use,

but remains independent of variables such as the noise level 𝛿, the spatial mesh size h, the temporal

step size 𝜏, the iteration number k, and so forth.

2 PRELIMINARIES

In this section, we will present foundational results concerning the solution operators, their smoothing

properties, and the well-posedness of the problem. These results will be extensively utilized in the

subsequent sections.

Let A = −Δ+c0I with homogeneous Neumann boundary condition, where the domain is defined by

D(A) ∶= {v ∈ L2(Ω) ∶ −Δv+ c0v ∈ L2(Ω), 𝜕𝜈v|𝜕Ω = 0} and a fixed constant c0 > 0. Let {𝜆𝓁}∞𝓁=1
and

{𝜑𝓁}∞𝓁=1
be eigenvalues and eigenfunctions of A, respectively. Here we denote the eigenvalues {𝜆𝓁}∞𝓁=1

ordered nondecreasingly with multiplicity counted and the corresponding orthonormal eigenfunctions

{𝜑𝓁}∞𝓁=1
in L2(Ω). Then we define

Asv =
∞∑

𝓁=1

𝜆
s
𝓁(v, 𝜑𝓁)𝜑𝓁 , s ≥ 0

with its domain D(As) = {v ∈ L2(Ω) ∶ Asv ∈ L2(Ω)}.
In complex plane C, we define the sector Σ𝜃 ∶= {0 ≠ z ∈ C ∶ arg(z) ≤ 𝜃} with some fixed

𝜃 ∈ (𝜋∕2, 𝜋). Then the elliptic operator A satisfies the resolvent estimate [1, theorem 3.7.11]: for any

z ∈ Σ𝜃
||(z + A)−1||L2(Ω)→L2(Ω) ≤ c𝜃|z|−1

. (2.1)

Now we introduce the solution operator

E(t) ∶= 1

2𝜋i ∫Γ
𝜃,𝜅

(z𝛼 + A)−1ezt
dz and F(t) ∶= 1

2𝜋i ∫Γ
𝜃,𝜅

z𝛼−1(z𝛼 + A)−1ezt
dz, (2.2)
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4 of 25 CEN ET AL.

with the integration over a contour Γ𝜃,𝜅 in Σ𝜃 , defined by

Γ𝜃,𝜅 = {z ∈ C ∶ |z| = 𝜅, | arg z| ≤ 𝜃} ∪ {z ∈ C ∶ z = re±i𝜃
, r ≥ 𝜅}.

Note that the time-fractional diffusion problem (1.1) could be written in the abstract form

𝜕
𝛼

t u(t) + Au(t) = (c0 − 𝜌(t))u(t) + f ∀ t ∈ (0,T], with u(0) = u0. (2.3)

Then the solution to the direct problem (1.1) could be represented as [13, sect. 6.2]

u(t) =F(t)u0 +
∫

t

0

E(t − s)(f − (𝜌(s) − c0)u(s))ds. (2.4)

In case that f is independent of time, then we apply the identity F′(t) = −AE(t) to derive

u(t) = F(t)
(
u0 − A−1f

)
+ A−1f −

∫

t

0

(𝜌(s) − c0)E(t − s)u(s)ds, (2.5)

Next, we present some smoothing properties of the solution operators, which will be used throughout

the paper.

Lemma 2.1. Let F(t) and E(t) be the operators defined in (2.2). Then, for any s ∈ [0, 1],
the following estimate holds

ts𝛼||AsF(t)v||L2(Ω) + t1−(1−s)𝛼||AsE(t)v||L2(Ω) ≤ c||v||L2(Ω), for all t > 0,

where the positive constant c is independent of t.

Proof. When s = 0, 1, the estimates can be found in [13, theorem 6.4] using the resolvent

estimate (2.1). When 0 < s < 1, the result follows from standard interpolation theory [27,

proposition 2.3]. ▪

The subsequent lemma details the well-posedness of the solution to problem (1.1). Comparable

results were previously established in [16, theorem 2.1] through a fixed-point argument based on the

smoothing properties delineated in Lemma 2.1. Due to the similarity of the arguments, we do not

repeat the proof here.

Lemma 2.2. Assume 𝜌 belongs to ℬ and is piecewise C1
, u0 ∈ D(A1+𝛾∕2), and f ∈

D(A𝛾∕2), for a certain 𝛾 where 𝑑

2
< 𝛾 < 2. Under these conditions, the problem

(1.1) uniquely determines a solution u ∈ C𝛼([0,T];D(A𝛾∕2)) ∩ C([0,T];D(A1+𝛾∕2)).
Furthermore, the fractional time derivative 𝜕𝛼t u ∈ C([0,T];D(A𝛾∕2)).

3 ANALYSIS OF IPP

Next, we prove a Lipshitz-type stability for the IPP under some mild condition. The stability result will

further motivate us to design an iterative algorithm for the numerical inversion. We begin by proposing

the following assumption.

Assumption 3.1. We suppose that the following conditions hold valid.

• 𝜌 ∈ℬ and is piecewise C1
, u0 ∈ D(A1+𝛾∕2), f ∈ D(A𝛾∕2), for some 𝑑

2
< 𝛾 < 2.

• For x0 ∈ Ω, there exist positive constants cu and cu such that cu ≤ u(x0, t) ≤ cu for all
t ∈ [0,T].

 10982426, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23136 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [24/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CEN ET AL. 5 of 25

Note Assumption 3.1 (i) ensures the regularity result in Lemma 2.2. Moreover, by maximum

principle [9, theorem 12, sect. 7.1] Assumption 3.1 (ii) holds true if u0, g, f are strictly positive and

bounded.

We now introduce some notation for norms of Lp
space. For 𝜔 ≥ 0, we define weighted Lp

norms

by

||u||Lp
𝜔
(0,T) =

⎧
⎪
⎨
⎪
⎩

(

∫

T

0

|e−𝜔tu(t)|p dt
) 1

p

, with p ∈ [0,∞),

esssupt∈(0,T)e−𝜔tu(t), with p = ∞.

(3.1)

Note that for any p ∈ [1,∞], the standard Lp(0,T) norm is equivalent to Lp
𝜔(0,T) norm. In the context

of a Banach space X, Lp(0,T;X) denotes the Bochner space, || ⋅ ||Lp(0,T;X) and || ⋅ ||Lp
𝜔
(0,T;X) denotes the

standard and weighted Lp
norm, respectively.

Theorem 3.2. Assuming 𝜌1, 𝜌2, u0 and f fulfill the conditions specified in Assumption
3.1, let u1 = u(𝜌1) and u2 = u(𝜌2) represent the solutions to (1.1) corresponding to the
potentials 𝜌1 and 𝜌2, respectively. Then, for a given point x0 ∈ Ω and p ∈ [1,∞], the
following stability estimate is valid:

||𝜌1 − 𝜌2||Lp(0,T) ≤ c||𝜕𝛼t (u1 − u2)(x0, ⋅)||Lp(0,T).

Here c depends on cu and cu in Assumption 3.1 (ii), 𝛼, c𝜌, ||f ||D(A𝛾∕2), ||Au1(x0, ⋅)||C([0,T])
and ||𝜕𝛼t u1(x0, ⋅)||C([0,T]).

Proof. By Assumption 3.1 (ii), ui(x0, t) ≥ cu > 0. According to the equation in (1.1), 𝜌i
can be written as

𝜌i(t) =
f (x0) + Δui(x0, t) − 𝜕𝛼t ui(x0, t)

ui(x0, t)

= f (x0) − Aui(x0, t) − 𝜕𝛼t ui(x0, t) + c0ui(x0, t)
ui(x0, t)

As a result, we observe

(𝜌1 − 𝜌2)(t) =
(

f (x0)
u1(x0, t)

− f (x0)
u2(x0, t)

)

+
(

Au2

u2

− Au1

u1

)

(x0, t) +
(
𝜕
𝛼

t u2

u2

− 𝜕
𝛼

t u1

u1

)

(x0, t)

=I1 + I2 + I3.

In the following, we establish bounds for I1, I2, I3 separately. By Assumption 3.1, ellip-

tic regularity estimate and Sobolev embedding theory [11, theorem 7.26], we have that

|f (x0)| ≤ ||A𝛾∕2f ||L2(Ω) ≤ c, for 𝛾 >
𝑑

2
. As a result, We arrive at

||I1||Lp
𝜔
(0,T) ≤ ||f ||D(A𝛾∕2)

‖
‖
‖
‖

u1 − u2

u1u2

(x0, ⋅)
‖
‖
‖
‖Lp

𝜔
(0,T)
≤ c||(u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T).

For I2, according to Assumption 3.1, Lemma 2.2, the elliptic regularity and Sobolev

embedding theorem, we have for 𝛾 >
𝑑

2

||Au1(x0, ⋅)||C([0,T]) ≤ ||A1+ 𝛾

2 u1||C([0,T];L2(Ω)) ≤ c.

Then we conclude

||I2||Lp
𝜔
(0,T) ≤ c||A(u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T).
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Now we establish an estimate for ||A(u1−u2)(x0, ⋅)||Lp
𝜔
(0,T). Denote w = u1−u2, w satisfies

𝜕
𝛼

t w(t) + Aw(t) = [(𝜌2 − 𝜌1)u1](t) + [(𝜌2 − c0)(u2 − u1)](t), ∀ t ∈ (0,T]. (3.2)

and w(0) = 0. According to (2.4), we derive that

||A1+ 𝛾

2 (u1 − u2)(t)||L2(Ω) ≤
∫

t

0

|(𝜌2 − 𝜌1)(s)| ||E(t − s)A1+ 𝛾

2 u1(s)||L2(Ω)ds

+
∫

t

0

|𝜌2(s) − c0| ||E(t − s)A1+ 𝛾

2 (u1 − u2)(s)||L2(Ω)ds

∶= I2,1(t) + I2,2(t).

Since ||A1+ 𝛾

2 u1||C([0,T];L2(Ω)) ≤ c, the Young’s inequality for convolution and Lemma 2.1

lead to

∫

T

0

(
e−𝜔t

I2,1(t)
)p

dt =
∫

T

0

(

∫

t

0

e−𝜔t|(𝜌2 − 𝜌1)(s)| ||E(t − s)A1+ 𝛾

2 u1(s)||L2(Ω)ds
)p

dt

≤ c
∫

T

0

(

∫

t

0

e−𝜔(t−s)(t − s)𝛼−1e−𝜔s|𝜌2(s) − 𝜌1(s)|ds
)p

dt

≤ c
(

∫

T

0

e−𝜔tt𝛼−1
dt
)p

∫

T

0

(
e−𝜔t|𝜌2(t) − 𝜌1(t)|

)p
dt

= c
(

∫

T

0

e−𝜔tt𝛼−1
dt
)p

||𝜌1 − 𝜌2||
p
Lp
𝜔
(0,T) ≤ c(Γ(𝛼)𝜔−𝛼)p||𝜌1 − 𝜌2||

p
Lp
𝜔
(0,T).

Thus we conclude that

||I2,1||Lp
𝜔
(0,T) ≤ c𝜔−𝛼||𝜌1 − 𝜌2||Lp

𝜔
(0,T).

Since ||𝜌2||C(0,T) ≤ c𝜌, the term I2,2 can be estimated via a similar argument. Accordingly,

we arrive at

||I2,2||Lp
𝜔
(0,T) ≤ c𝜔−𝛼||A1+ 𝛾

2 (u1 − u2)||Lp
𝜔
(0,T;L2(Ω)).

With the estimations for I2,1 and I2,2, taking 𝜔 sufficiently large, we obtain

||A1+ 𝛾

2 (u1 − u2)||Lp
𝜔
(0,T;L2(Ω)) ≤ c𝜔−𝛼||𝜌1 − 𝜌2||Lp

𝜔
(0,T),

and hence

||I2||Lp
𝜔
(0,T) ≤ c||A1+ 𝛾

2 (u1 − u2)||Lp
𝜔
(0,T;L2(Ω)) ≤ c𝜔−𝛼||𝜌1 − 𝜌2||Lp

𝜔
(0,T).

For I3, since Assumption 3.1 holds and ||𝜕𝛼t u1(x0, ⋅)||C[0,T] ≤ c, we obtain

||I3||Lp
𝜔
(0,T) ≤ c(||𝜕𝛼t (u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T) + ||(u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T)).

In conclusion, the estimations for I1, I2, I3 gives that

||𝜌1 − 𝜌2||Lp
𝜔
(0,T) ≤ c

(
||𝜕𝛼t (u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T) + ||(u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T)

)
+ c𝜔−𝛼||𝜌1 − 𝜌2||Lp

𝜔
(0,T).

Again, we take 𝜔 sufficiently large and get

||𝜌1 − 𝜌2||Lp
𝜔
(0,T) ≤ c

(
||𝜕𝛼t (u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T) + ||(u1 − u2)(x0, ⋅)||Lp

𝜔
(0,T)

)
.

By the norm equivalence, we obtain

||𝜌1 − 𝜌2||Lp(0,T) ≤ c
(
||𝜕𝛼t (u1 − u2)(x0, ⋅)||Lp(0,T) + ||(u1 − u2)(x0, ⋅)||Lp(0,T)

)
. (3.3)
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CEN ET AL. 7 of 25

Moreover, by [13, theorem 2.13 (ii), p. 45], we can write w(t) = w(0) +
Γ(𝛼)−1∫

t
0
(t − s)𝛼−1

𝜕
𝛼

s w(s) ds. We further apply Young’s inequality to obtain

||(u1 − u2)(x0, ⋅)||Lp(0,T) ≤ c ||𝜕𝛼t (u1 − u2)(x0, ⋅)||Lp(0,T).

Together with (3.3), we obtain the stability result presented in the theorem. ▪

Theorem 3.2 provides a Lipschitz-type stability. We observe that the IPP experiences an 𝛼th order

derivative loss, which directly implies that the ill-posedness of IPP intensifies with an increase in the

fractional order 𝛼. The findings herein align with those presented in [10, theorem 1.2]. This stability

estimate not only ensures the potential for stable numerical reconstruction but also plays a crucial role

in devising an iterative reconstruction algorithm.

The Lipschitz-type stability lays the foundation for the creation of a reconstruction algorithm that

can retrieve the potential 𝜌(t) from the observation u(x0, t), accompanied by error estimates. We will

now introduce a straightforward iterative algorithm and demonstrate its convergence within the Lp(0,T)
norm. Here we define the following cut-off function

Pℬ[a] = min(max(a, 0), c𝜌).

Then for 𝜌
† ∈ℬ and any 𝜌 ∈ C[0,T], we note

|Pℬ[𝜌(t)] − 𝜌†(t)| ≤ |𝜌(t) − 𝜌†(t)|, ∀ t ∈ [0,T].

Proposition 3.1. Let 𝜌† ∈ ℬ and that u0, g, and f adhere to Assumption 3.1. Let u† =
u(𝜌†) be the solution to (1.1) associated with the potential 𝜌†. Take x0 as any fixed point in
the domainΩ and define g(t) = u(x0, t; 𝜌†) as the measurement data at that point. Starting
with any initial guess 𝜌0 from the admissible set ℬ, we then proceed with the following
iterative scheme

𝜌k+1(t) = Pℬ
[

f (x0) + Δu(x0, t; 𝜌k) − 𝜕𝛼t g(t)
g(t)

]

, ∀ t ∈ [0,T]. (3.4)

Then for sufficiently large𝜔, the sequence of functions {𝜌k}∞k=0
converges to 𝜌† in Lp

𝜔(0,T)
and there holds

||𝜌† − 𝜌k||Lp
𝜔
(0,T) ≤ (c𝜔−𝛼)k||𝜌† − 𝜌0||Lp

𝜔
(0,T), k = 1, 2, … . (3.5)

Here c relies on 𝛼, c𝜌 and ||A1+ 𝛾

2 u†||C(0,T;L2(Ω)), and cu, cu given in Assumption 3.1 (ii).

Proof. First, we define M ∶ℬ →ℬ s.t. for any 𝜌 ∈ℬ,

M𝜌 = Pℬ
[

f (x0) + Δu(x0, t; 𝜌) − 𝜕𝛼t g(t)
g(t)

]

.

By Lemma 2.2, we conclude M𝜌 ∈ ℬ. Note that 𝜌
†

is a fixed point of the operator M.

Then we have

|𝜌k+1(t) − 𝜌†(t)| =
|
|
|
|
|
Pℬ

[
f (x0) + Δu(x0, t; 𝜌k) − 𝜕𝛼t g(t)

g(t)

]

− 𝜌†
|
|
|
|
|

≤
|
|
|
|

f (x0) + Δu(x0, t; 𝜌k) − 𝜕𝛼t g(t)
g(t)

− 𝜌†
|
|
|
|

=
|
|
|
|

Au(x0, t; 𝜌k) − Au(x0, t; 𝜌†)
g(t)

− c0

u(x0, t; 𝜌k) − u(x0, t; 𝜌†)
g(t)

|
|
|
|
,
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8 of 25 CEN ET AL.

where in the second line, we use the stability for any 𝜌 ∈ℬ and t ∈ [0,T]

|Pℬ[𝜌(t)] − 𝜌†(t)| ≤ |𝜌(t) − 𝜌†(t)|.

Recall that g(t) = u(x0, t; 𝜌†) satisfying Assumption 3.1 (ii). This together with the elliptic

regularity and Sobolev embedding implies that

|𝜌†(t) − 𝜌k+1(t)| ≤ c||A1+ 𝛾

2 (u(t; 𝜌†) − u(t; 𝜌k))||L2(Ω)

for 𝛾 >
𝑑

2
. The argument in Theorem 3.2 further leads to

||A1+ 𝛾

2 (u(t; 𝜌†) − u(t; 𝜌k))||Lp
𝜔
(0,T;L2(Ω)) ≤ c𝜔−𝛼||𝜌k − 𝜌†||Lp

𝜔
(0,T).

Then we conclude

||𝜌k+1 − 𝜌†||Lp
𝜔
(0,T) ≤ c𝜔−𝛼||𝜌k − 𝜌†||Lp

𝜔
(0,T),

Finally, choosing 𝜔 large enough, the sequence {𝜌k}∞k=0
will converge to 𝜌

†
as in (3.5). ▪

Remark 3.1. The above stability estimate Theorem 3.2 and the reconstruction scheme in
Proposition 3.1 can be directly extended to the problem with Dirichlet boundary condition.
Consider the initial-boundary value problem:

⎧
⎪
⎨
⎪
⎩

𝜕
𝛼

t u − Δu + 𝜌(t)u = f , in Ω × (0,T],
u = 0, on 𝜕Ω × (0,T],

u(0) = u0, in Ω.

The inverse problem aims to reconstruct the potential function 𝜌(t) from the single
point measurement u(x0, t) with t ∈ [0,T], where x0 is a point in the interior of Ω.

Under the Assumption 3.1, one can show that the inverse problem achieves the Lip-
schitz stability. The unknown potential 𝜌(t) could be reconstructed by the fixed point
iteration formula (3.4). We note that in the Dirichlet boundary condition case, the
point measurement should be taken for x0 in the interior of the domain, while for
the Neumann boundary condition case, the point measurement could be taken at x0

on 𝜕Ω.

4 RECONSTRUCTION ALGORITHM AND ERROR ANALYSIS

Recall the iteration (3.4) in Proposition 3.1 gives a approach to reconstruct the unknown potential. In

practice, one needs to discretize the forward problem (1.1) and the iteration scheme (3.4). To derive

the error estimate, throughout this section, we view the operator A = −Δ+c0 as an operator in L∞(Ω),
with domain

D∞(A) = {v ∈ C(Ω), 𝜕𝜈v = 0 on 𝜕Ω, and − Δu + c0u ∈ C(Ω)}.

Then there holds the maximum norm resolvent estimate ([33, theorem 1] and [24, app. A])

||(z + A)−1v||L∞(Ω) ≤ c||v||L∞(Ω). (4.1)

This yields the following smoothing property of the solution operators E(t) and F(t) in L∞(Ω)-norm.

The proof follows from the standard argument by Laplace transform and resolvent estimate (4.1). See

for example, [13, theorem 6.4].
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CEN ET AL. 9 of 25

Lemma 4.1. The following estimate holds for any s ∈ [0, 1],

ts𝛼||AsF(t)v||L∞(Ω) + t1−(1−s)𝛼||AsE(t)v||L∞(Ω) ≤ c||v||L∞(Ω), for all t > 0,

where the positive constant c is independent of t.

For the numerical estimate, we propose following higher regularity assumption.

Assumption 4.1. We assume following conditions hold

• 𝜌 ∈ℬ and is piecewise C1
, u0,Au0 ∈ D∞(A), f ∈ D∞(A).

• For any x0 ∈ Ω, there exist positive constant cu and cu such that cu ≤ u(x0, t) ≤ cu for
all t ∈ [0,T].

Under Assumption 4.1 (i), the same argument for Lemma 2.2 yield that problem (1.1) uniquely

determines a solution u ∈ C𝛼([0,T];D∞(A)) and Au ∈ C([0,T];D∞(A)). Moreover, for a point x0 ∈ Ω,

u(x0, t) ∈ C𝛼[0,T] ∩ C2(0,T], and there holds [36, theorem 2.1]

||𝜕𝓁t (𝜕𝛼t u(t))||L∞(Ω) + ||𝜕𝓁t (Au(t))||L∞(Ω) ≤ ct−𝓁 for 𝓁 = 0, 1, (4.2)

and

||𝜕𝓁t u(t)||L∞(Ω) ≤ ct𝛼−𝓁 for 𝓁 = 1, 2. (4.3)

4.1 Fully discrete scheme for the direct problem

Next we present fully discrete scheme for solving the forward problem. For time discretization, we

divide the interval [0,T] into N uniformly subintervals with step size 𝜏 = T∕N and set the time grids

{tn = n𝜏}N
n=0

. We employ convolution quadrature generated by backward Euler scheme (BECQ) [18,

chap. 3] to approximate the fractional derivative 𝜕
𝛼

t v(tn) (with vj = v(tj)):

𝜕
𝛼

𝜏 vn = 𝜏−𝛼
n∑

j=0

𝜔
(𝛼)
j (v

n−j − v0), with (1 − 𝜉)𝛼 =
n∑

j=0

𝜔
(𝛼)
j .

For spatial discretization, we apply the Galerkin finite element method, following [18, chap. 2]. Let h
be a quasi-uniform simplicial triangulation of domainΩwith mesh size h. Over h, we let Vh ⊂ H1(Ω)
be the conforming piecewise linear finite element space. On the FEM space Vh, define the orthogonal

projection on L2(Ω), Ph ∶ L2(Ω)→ Vh such that

(Phv, 𝜙h) = (v, 𝜙h), ∀ v ∈ L2(Ω), 𝜙h ∈ Vh,

and Ritz-projection Rh ∶ H1(Ω) → Vh by

(∇Rhv,∇𝜙h) = (∇v,∇𝜙h) and
∫Ω

Rhvdx =
∫Ω

vdx, ∀v ∈ H1(Ω), 𝜙h ∈ Vh.

Then for 1 ≤ p ≤ ∞, s = 0, 1, 2 and k = 0, 1 with k ≤ s, the following estimates holds for

L2(Ω)-projection [2, 7]

||v − Phv||Wk,p(Ω) ≤ chs−k||v||Ws,p(Ω) ∀ v ∈ Ws,p(Ω) (4.4)

and Ritz projection [34, eq. (1.45)]

||v − Rhv||L∞(Ω) ≤ chs| log h|||v||Ws,∞(Ω) ∀ v ∈ Ws,∞(Ω). (4.5)

We define the discrete Laplacian operator Δh ∶ Vh → Vh such that

(−Δhvh, 𝜙h) = (∇vh,∇𝜙h), ∀vh, 𝜙h ∈ Vh,
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10 of 25 CEN ET AL.

and define Ah = −Δh + c0. Then the following discrete L∞(Ω) resolvent estimate holds [6, theorem

1.1] and [25, theorem 1.1]

||(z + Ah)−1vh||L∞(Ω) ≤ c|z|−1||vh||L∞(Ω) ∀vh ∈ Vh, z ∈ Σ𝜃, 𝜃 ∈ (𝜋∕2, 𝜋). (4.6)

We write the numerical scheme for approximately solving (1.1): find un
h ∶= un

h(𝜌) ∈ Vh for n =
1, … ,N, such that

(𝜕𝛼𝜏un
h, 𝜙h) + (∇un

h,∇𝜙h) + 𝜌(tn)(un
h, 𝜙h) = (f , 𝜙h). (4.7)

with u0

h = Rhu0. Then the scheme (4.7) could be written as

𝜕
𝛼

𝜏un
h + Ahun

h = (c0 − 𝜌(tn))un
h + Phf . (4.8)

Use discrete Laplace transform, we obtain the following representation of un
h

un
h = Fn

h,𝜏Rhu0 + 𝜏
n∑

j=1

En−j
h,𝜏 (Phf − 𝜌(tj)uj

h(𝜌) + c0uj
h(𝜌)), (4.9)

where the discrete solution operator Fn
h,𝜏 and En

h,𝜏 are defined respectively by [18, sect. 3.2]

Fn
h,𝜏 =

1

2𝜋i ∫Γ𝜏
𝜃,𝜅

𝛿𝜏(e−z𝜏)𝛼−1e−z𝜏eztn(𝛿𝜏(e−z𝜏)𝛼 + Ah)−1
dz,

En
h,𝜏 =

1

2𝜋i ∫Γ𝜏
𝜃,𝜅

eztn(𝛿𝜏(e−z𝜏)𝛼 + Ah)−1
dz,

(4.10)

with the kernel function 𝛿𝜏(𝜉) = 1−𝜉
𝜏

and the contour Γ𝜏
𝜃,𝜅

∶= {z ∈ Γ𝜃,𝜅 ∶ |ℑ(z)| ≤ 𝜋∕𝜏} with

𝜃 ∈ ( 𝜋
2
, 𝜋) close to 𝜋∕2 (oriented counterclockwise). Similar as in continuous case, the following

smoothing property of the discrete solution operators Fn
h,𝜏 and En

h,𝜏 holds valid (cf. [18, lemma 3.1])

ts𝛼
n ||As

hFn
h,𝜏vh||L∞(Ω) + t1−(1−s)𝛼

n+1
||As

hEn
h,𝜏vh||L∞(Ω) ≤ c||vh||L∞(Ω) ∀vh ∈ Vh, s ∈ [0, 1]. (4.11)

In the following, we aim to analyze the scheme (4.7). First of all, we present a priori bounds for

the numerical solution un
h.

Lemma 4.2. Assume that 𝜌 ∈ ℬ, u0,Au0 ∈ D∞(A), and f ∈ D∞(A). Let un
h solves the

fully discrete problem (4.7). Then there holds for all s ∈ [0, 1]

max
1≤n≤N

||(Ah)sun
h||L∞(Ω) ≤ C.

Proof. Using the solution representation (4.9), we have

Ahun
h = AhFn

h,𝜏Rhu0 + 𝜏
n∑

j=1

En−j
h,𝜏 AhPhf + 𝜏

n∑

j=1

En−j
h,𝜏 (c0 − 𝜌(tj))Ahuj

h. (4.12)

Then we apply the identity AhRh = PhA + c0(Rh − Ph) and use the smoothing property

(4.11) together with the approximation properties (4.4) and (4.5) to obtain

||AhFn
h,𝜏Rhu0||L∞(Ω) ≤ c||Au0||L∞(Ω).

For the second term in (4.12), we apply the equality that I − Fn
h,𝜏 = 𝜏

∑n
j=1

En−j
h,𝜏 Ah and the

smoothing property (4.11) to obtain

‖
‖
‖
‖
‖
‖

𝜏

n∑

j=1

En−j
h,𝜏 AhPhf

‖
‖
‖
‖
‖
‖L∞(Ω)

≤ c||(I − Fn
h,𝜏)Phf ||L∞(Ω) ≤ c||Phf ||L∞(Ω) ≤ c||f ||L∞(Ω).
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CEN ET AL. 11 of 25

For the third term in (4.12), we apply the smoothing property (4.11) to derive

‖
‖
‖
‖
‖
‖

𝜏

n∑

j=1

En−j
h,𝜏 (c0 − 𝜌(tj))Ahuj

h(q)
‖
‖
‖
‖
‖
‖L∞(Ω)

≤ 𝜏

n∑

j=1

t𝛼−1

n−j+1
||Ahuj

h||L∞(Ω).

To sum up, we arrive at

||Ahun
h||L∞(Ω) ≤ c(||Au0||L∞(Ω) + ||f ||L∞(Ω)) + 𝜏

n∑

j=1

t𝛼−1

n−j+1
||Ahuj

h||L∞(Ω).

Then the desired result for s = 1 can be directly derived from Grönwall’s inequality [18,

theorem 10.2]. The estimate for s = 0 could be obtained analogously and the intermediate

cases can be proved by the interpolation technique. ▪

Now we introduce the problem with time-independent coefficient: given v(0) = v0, find v(t) ∈
D∞(A) such that

𝜕
𝛼

t v(t) + Av(t) = f (t), ∀ t ∈ (0,T]. (4.13)

The fully discrete scheme of (4.13) reads: for n = 1, 2, … ,N, we look for vn
h ∈ Vh satisfying

𝜕
𝛼

𝜏 vn
h + Ahvn

h = Phf n ∀t ∈ (0,T], with v0

h = Rhv0. (4.14)

The error analysis for the numerical scheme (4.14) has been provided in [36, theorem 4.5]. In the

next lemma, we establish an bound for ||Av(tn) − Ahvn
h||L∞(Ω).

Lemma 4.3. Suppose that v0,Av0 ∈ D∞(A), and f ∈ C(0,T;D∞(A))∩W1,1(0,T;D∞(A)).
Let v solve problems (4.13) while vn

h solves the numerical scheme (4.14). Then there holds

||Av(tn) − Ahvn
h||L∞(Ω) ≤ c(h2| log h|3 + 𝜏t−1

n ).

Proof. To derive the error estimate, we design an auxillary function vh solving the

semidiscrete problem: find vh(t) ∈ Vh such that

𝜕
𝛼

t vh(t) + Ahvh(t) = Phf (t) ∀ t ∈ (0,T], with vh(0) = Rhv0. (4.15)

Similar to (2.4), vh can be represented by [18, sect. 2.3]

vh(t) = Fh(t)Rhv0 +
∫

t

0

Eh(t − s)Phf (s)ds, (4.16)

where

Eh(t) ∶=
1

2𝜋i ∫Γ
𝜃,𝜅

(z𝛼 + Ah)−1ezt
dz and Fh(t) ∶=

1

2𝜋i ∫Γ
𝜃,𝜅

z𝛼−1(z𝛼 + Ah)−1ezt
dz

We first estimate ||Av(t) − Ahvh(t)||L∞(Ω). With the solution representation, we have

Av(t) − Ahvh(t) = (F(t)Av0 − Fh(t)AhRhv0) +
∫

t

0

Eh(t − s)Ah(Rh − Ph)f ds

+
∫

t

0

E(t − s)Af − Eh(t − s)AhRhf ds = I1(t) + I2(t) + I3(t).

To estimate I1, we note AhRh = PhA + c0(Rh − Ph) and obtain

I1(t) = (F(t) − Fh(t)Ph)Av0 + c0Fh(t)(Rh − Ph)v0.
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12 of 25 CEN ET AL.

The estimates (4.11), (4.4) and (4.5) lead to

||Fh(t)(Rh − Ph)v0||L∞(Ω) ≤ c||(Rh − Ph)v0||L∞(Ω) ≤ ch2| log h|||v0||W2,∞(Ω).

Meanwhile, according to [36, lemma 4.2], we derive that

||(Fh(t)Ph − F(t))Av0||L∞(Ω) ≤ ch2| log h|3||Av0||W2,∞(Ω).

Therefore, we obtain

||I1(t)||L∞(Ω) ≤ ch2| log h|3.

To estimate I2, since −AhEh(t) = 𝑑

𝑑t
Fh(t), we write

I2(t) =
∫

t

0

Eh(s)Ah(Rh − Ph)f (t − s)ds

= −
∫

t

0

Fh(s)(Rh − Ph)f ′(t − s)ds − Fh(t)(Rh − Ph)f (0) + (Rh − Ph)f (t).

The estimate (4.11), the projection error estimates (4.4) and (4.5) directly imply that

||I2(t)||L∞(Ω) ≤ ch2| log h|
(

∫

t

0

||f ′(s)||W2,∞(Ω)ds + ||f ||C([0,T];W2,∞(Ω))

)

.

To estimate I3, still we apply −AE(t) = 𝑑

𝑑t
F(t) and write

I3(t) =
∫

t

0

(Fh(s)Rh − F(s))f ′(t − s)ds + (Fh(t)Rh − F(t))f (0) + (I − Rh)f (t).

Using the estimate [36, lemma 4.2] and the approximation error of Ritz projection in (4.5)

lead to

||I3(t)||L∞(Ω) ≤ ch2| log h|3
(

∫

t

0

||f ′(s)||W2,∞(Ω)ds + ||f ||C([0,T];W2,∞(Ω))

)

.

Now we consider ||Ahvh(tn) − Ahvn
h||L∞(Ω). By the solution representation (4.16) and

(4.9), we have

Ahvh(tn) − Ahvn
h =

(
Fh(tn) − Fn

h,𝜏
)
AhRhv0 +

[

∫

t

0

Eh(t − s)AhPhf (s)ds − 𝜏
n∑

j=1

En−j
h,𝜏 AhPhf j

]

=∶ II
n
1
+ II

n
2
.

With the identity AhRh = PhA + c0(Rh − Ph), we can write

II
n
1
=
(
Fh(tn) − Fn

h,𝜏
)
PhAv0 + c0

(
Fh(tn) − Fn

h,𝜏
)
(Rh − Ph)v0.

Using the error estimate for Fh(tn) − Fn
h,𝜏 [39, lemma 4.9] we have

||IIn
1
||L∞(Ω) ≤ c𝜏t−1

n ||v0||W2,∞(Ω).

To estimate II
n
2
, we insert Rh and use AhRh = PhA + c0(Rh − Ph),

II
n
2
=

(

∫

t

0

Eh(t − s)Ah(Ph − Rh)f (s)ds − 𝜏
n∑

j=1

En−j
h,𝜏 Ah(Ph − Rh)f j

)

+

(

∫

t

0

Eh(t − s)PhAf (s)ds − 𝜏
n∑

j=1

En−j
h,𝜏 PhAf j

)
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+ c0

(

∫

t

0

Eh(t − s)(Rh − Ph)f (s)ds − 𝜏
n∑

j=1

En−j
h,𝜏 (Rh − Ph)f j

)

= II
n
2,1
+ II

n
2,2
+ II

n
2,3

The terms II2,1 and II2,3 can be estimated with the same argument for I2

||IIn
2,1
||L∞(Ω) + ||IIn

2,3
||L∞(Ω) ≤ ch2| log h|

(

||Af ||C([0,T];L∞(Ω)) +
∫

t

0

||Af ′(s)||L∞(Ω))ds
)

.

Using the similar argument in [18, theorem 3.4], we achieve

||IIn
2,2
||L∞(Ω) ≤ c𝜏t𝛼−1

n

(

||Af ||C([0,T];L∞(Ω)) +
∫

t

0

||Af ′(s)||L∞(Ω))ds
)

.

Combining the bounds of I1, I2, I3, II1 and II2, the proof is completed. ▪

The following lemma provides the error analysis for the numerical scheme (4.7).

Lemma 4.4. Suppose 𝜌† ∈ℬ∩C1[0,T], u0,Au0, f ∈ D∞(A). Let u = u(𝜌†) solve problem
(1.1) while un

h = un
h(𝜌†) solves the scheme (4.7). Then the following estimates hold:

||u(tn) − un
h||L∞(Ω) ≤ c(h2| log h|3 + 𝜏t𝛼−1

n ),
||Au(tn) − Ahun

h||L∞(Ω) ≤ c(h2| log h|3 + 𝜏| log 𝜏|t−1
n ).

Proof. The first estimate has been provided in [36, lemmas 3.2 and 4.2]. Then it suffices

to show the second assertion. To this end, we define un
h satisfying

𝜕
𝛼

𝜏un
h + Ahun

h = Phf + (c0 − 𝜌†(tn))Phu(tn; 𝜌†) for n = 1, … ,N, (4.17)

and u0

h = Rhu0. Then we can split the error as

en ∶= Au(tn) − Ahun
h = (Au(tn) − Ahun

h) + (Ahun
h − Ahun

h) =∶ 𝜗n + 𝜚n
.

Using the solution regularity (4.3) and Lemma 4.3, we derive

||𝜗n||L∞(Ω) ≤ c(h2| log h|3 + 𝜏t−1
n ).

To estimate 𝜚
n
, note u0

h − u0

h = 0 and

𝜕
𝛼

𝜏 (un
h − un

h) + Ah(un
h − un

h) = (c0 − 𝜌†(tn))(un
h − Phu(tn)).

Hence 𝜚
n

admits following representation

𝜚
n = 𝜏

n∑

j=1

En−j
h,𝜏

(
(c0 − 𝜌†(tj))Ah(uj

h − Phu(tj))
)

= 𝜏
n∑

j=1

En−j
h,𝜏

(
(c0 − 𝜌†(tj))(Ahuj

h − Au(tj))
)
+ 𝜏

n∑

j=1

En−j
h,𝜏

(
(c0 − 𝜌†(tj))(Au(tj) − AhRhu(tj))

)

+ 𝜏
n∑

j=1

En−j
h,𝜏

(
(c0 − 𝜌†(tj))(AhRhu(tj)) − AhPhu(tj))

)
= 𝜚n

1
+ 𝜚n

1
+ 𝜚n

3

By smoothing property of En−j
h,𝜏 in (4.11) and smoothness of 𝜌

†
, we immediately get

||𝜚n
1
||L∞(Ω) ≤ c𝜏

n∑

j=1

t𝛼−1

n−j+1
||Ahuj

h − Au(tj)||L∞(Ω) ≤ c𝜏
n∑

j=1

t𝛼−1

n−j+1
||ej||L∞(Ω).
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14 of 25 CEN ET AL.

Since AhRh = PhA + c0(Rh − Ph), with the projection error (4.4), we derive

||𝜚n
2
||L∞(Ω) ≤ c𝜏

n∑

j=1

t𝛼−1

n−j+1

(
||Au(tj) − PhAu(tj)||L∞(Ω) + c0||(Rh − Ph)u(tj)||L∞(Ω)

)

≤ c𝜏
n∑

j=1

t𝛼−1

n−j+1

(
h2||Au(tj)||W2,∞(Ω) + h2| log h|||u(tj)||W2,∞(Ω)

)

≤ ct𝛼j h2||Au(tj)||W2,∞(Ω) + ct𝛼j h2| log h|||u(tj)||W2,∞(Ω).

To estimate 𝜚
n
3
, with smoothing property of En−j

h,𝜏 in (4.11) and projection error (4.4) and

(4.5), we obtain

||𝜚n
3
||L∞(Ω) ≤ c𝜏

n∑

j=1

t𝜖𝛼−1

n−j+1
||A𝜖h(Rh − Ph)u(tj)||L∞(Ω).

Here we apply the inverse inequality for any 𝜙h ∈ Vh and p ∈ [1,∞] [3, theorem 4.5.11]

||Ah𝜙h||L∞(Ω) ≤ ch−𝑑∕p||Ah𝜙h||Lp(Ω) = ch−𝑑∕p
sup

𝜓h∈Vh

(∇𝜙h,∇𝜓h) + c0(𝜙h, 𝜓h)
||𝜓h||Lp∗ (Ω)

≤ ch−𝑑∕p−2||𝜙h||Lp(Ω) ≤ ch−𝑑∕p−2||𝜙h||L∞(Ω).

By interpolation inequality, we conclude that

||A𝜖h𝜙h||L∞(Ω) ≤ ch−𝑑∕p−2||𝜙h||Lp(Ω) ≤ ch−(𝑑∕p+2)𝜖||𝜙h||L∞(Ω).

Then we obtain the estimate for 𝜚
n
3

by taking 𝜖 = 1∕| log h| such that

||𝜚n
3
||L∞(Ω) ≤ c𝜖−1h2−(𝑑∕p+2)𝜖| log h| ≤ ch2| log h|2.

Combining above estimates, we derive

||en||L∞(Ω) ≤ c𝜏
n∑

j=1

t𝛼−1

n−j+1
||ej||L∞(Ω) + c(h2| log h|3 + 𝜏t−1

n ).

Then the desired estimate follows immediately by using discrete Grönwall’s inequality. ▪

4.2 Numerical reconstruction for IPP

In this part, we state the numerical reconstruction scheme for IPP. Recall that the measurement

is taken at a fixed point x0 ∈ Ω: g(t) = u†(x0, t), for t ∈ [0,T]. Throughout, we assume

that we have C([0,T]) noisy measurement data g𝛿 satisfying (1.4). Under Assumption 3.1 (ii),

g ≥ cu > 0 is strictly positive. Hence we may assume the noisy measurement g𝛿 is also strictly

positive:

0 <
cu
2
≤ g𝛿 ≤ cu +

cu
2
. (4.18)

We define the admissible set for discretized potential as

ℬN ∶= {𝜌 = (𝜌n)Nn=1
∶ 0 ≤ 𝜌

n
≤ c𝜌}.

Then the numerical reconstruction scheme for IPP is given as follows: let 𝜌0 = (𝜌n
0
)Nn=1

∈ ℬN be an

initial guess, we update 𝜌k+1 = (𝜌n
k+1
)Nn=1

from 𝜌k = (𝜌n
k)Nn=1

by

 10982426, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23136 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [24/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CEN ET AL. 15 of 25

𝜌
n
k+1

= Pℬ
[

f (x0) + Δhun
h(x0; 𝜌k) − 𝜕

𝛼

𝜏g𝛿(tn)
g𝛿(tn)

]

, n = 1, … ,N, (4.19)

where un
h(x0; 𝜌k) is the solution of (4.7) with potential 𝜌k.

In the following, we want to show the convergence of the iteration scheme (4.19) and analyze the

reconstruction error. We first introduce the 𝓁p
norm and weighted 𝓁p

norm. For a sequence vn ∈ X,

n = 1, … , we define 𝓁p(X) norm as follows

||(vn)∞n=1
||𝓁p(X) ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

( ∞∑

n=1

𝜏||vn||
p
X

) 1

p

, if 1 ≤ p < ∞,

sup

n≥1

||vn||X , if p = ∞.

For a sequence vn ∈ X, n = 1, … , we define the weighted 𝓁p
𝜔(X) norm with a fixed 𝜔 ≥ 0 as follows

||[vn]∞n=1
||𝓁p

𝜔
(X) ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(

𝜏

∞∑

n=1

(e−𝜔tn ||vn||X)p
) 1

p

, if 1 ≤ p < ∞,

sup

n≥1

e−𝜔tn ||vn||X , if p = ∞.

For any sequence (vn)∞n=1
and p ∈ [0,∞], it is straightforward to observe that || ⋅ ||𝓁p

𝜔
(X) and || ⋅ ||𝓁p(X)

are equivalent. Throughout, if X = R, we simplify the notation of 𝓁p(R) and 𝓁p
𝜔(R) to 𝓁p

and 𝓁p
𝜔,

respectively.

Theorem 4.2. Let Assumption 4.1 be valid and the observation g𝛿 satisfy (1.4). Then with
any 𝜌0 = (𝜌n

0
)Nn=1

∈ ℬN , the iteration (4.19) generates a sequence 𝜌k = (𝜌n
k)Nn=1

∈ ℬN ,

that converges to a limit 𝜌∗ = (𝜌n
∗)Nn=1

∈ℬN such that

||[𝜌n
k − 𝜌n

∗]Nn=1
||𝓁p

𝜔

≤ (c𝜔−𝛼)k||[𝜌n
0
− 𝜌n

∗]Nn=1
||𝓁p

𝜔

, for all p ∈ (1,∞), (4.20)

when the weight parameter 𝜔 is sufficiently large. In addition, there holds the error
estimate

||[𝜌†(tn) − 𝜌n
∗]Nn=1

||𝓁p ≤ c
(
𝜏

1∕p| log 𝜏| + h2| log h|3 + 𝜏−𝛼𝛿
)
. (4.21)

Proof. First, we show the convergence of the iteration scheme (4.19) by the contraction

mapping theorem. We define Mh,𝜏 ∶ℬ →ℬN s.t. for any 𝜌 ∈ℬN

(Mh,𝜏𝜌)n = Pℬ
[

f (x0) + Δhun
h(x0; 𝜌) − 𝜕

𝛼

𝜏g𝛿(tn)
g𝛿(tn)

]

, n = 1, … ,N.

In the following, we prove that Mh,𝜏 is a contraction mapping with 𝓁p
𝜔 topology for suffi-

ciently large 𝜔. For 𝜌1, 𝜌2 ∈ℬN , we use the stability of the cut-off operator, positivity of

measurement (4.18) and obtain that

|(Mh,𝜏𝜌1)n − (Mh,𝜏𝜌2)n| =
|
|
|
|

Ahun
h(x0; 𝜌1) − Ahun

h(x0; 𝜌2)
g𝛿(tn)

− c0

un
h(x0; 𝜌1) − un

h(x0; 𝜌2)
g𝛿(tn)

|
|
|
|

≤ c|Ahun
h(x0; 𝜌1) − Ahun

h(x0; 𝜌2)| + c|un
h(x0; 𝜌1) − un

h(x0; 𝜌2)|.

Denote wn
h = un

h(x0; 𝜌1) − un
h(x0; 𝜌2) which satisfying w0

h = 0 and

𝜕
𝛼

𝜏wn
h + Ahwn

h = (𝜌2(tn) − 𝜌1(tn))un
h(𝜌2) − (𝜌1(tn) − c0)wn

h.
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16 of 25 CEN ET AL.

We have following solution representation of wn
h:

wn
h = 𝜏

N∑

j=1

En−j
h,𝜏

(
(𝜌j

2
− 𝜌j

1
)uj

h(𝜌2) − (𝜌j
1
− c0)wj

h

)

and hence

Ahwn
h = 𝜏

N∑

j=1

En−j
h,𝜏

(
(𝜌j

2
− 𝜌j

1
)Ahuj

h(𝜌2) − (𝜌j
1
− c0)Ahwj

h

)
.

Since 0 ≤ 𝜌
j
1
, 𝜌

j
2
≤ c𝜌 and by Lemma 4.2 we have ||Ahuj

h(𝜌2)||L2(Ω) ≤ c for all j = 1, … ,N.

Then the smoothing property of Ej
h,𝜏 (4.11) implies that

||Ahwn
h||L∞(Ω) ≤ c𝜏

n∑

j=1

t𝛼−1

n−j+1

(
|𝜌

j
2
− 𝜌j

1
| + ||Ahwj

h||L2(Ω)

)

Taking 𝓁p
𝜔 norm on both sides, the Young’s inequality implies that

||(Ahwn
h)Nn=1

||𝓁p
𝜔
(L∞(Ω)) ≤ c

( N∑

n=1

𝜏
p+1

|
|
|
|
|
|

n∑

j=1

e−𝜔tn−j t𝛼−1

n−j+1
e−𝜔tj

(
|𝜌

j
2
− 𝜌j

1
| + ||Ahwj

h||L∞(Ω)

)||
|
|
|
|

p) 1

p

≤ c

(

𝜏

N∑

n=1

e−𝜔tn−1 t𝛼−1
n

)
(
||(𝜌n

2
− 𝜌n

1
)Nn=1

||𝓁p
𝜔

+ ||(Ahwn
h)Nn=1

||𝓁p
𝜔
(L∞(Ω))

)

≤ c𝜔−𝛼
(
||(𝜌n

2
− 𝜌n

1
)Nn=1

||𝓁p
𝜔

+ ||(Ahwn
h)Nn=1

||𝓁p
𝜔
(L∞(Ω))

)

As a consequence, by taking 𝜔 sufficiently large, we obtain

||(Ahwn
h)Nn=1

||𝓁p
𝜔
(L∞(Ω)) ≤ ||(𝜌n

2
− 𝜌n

1
)Nn=1

||𝓁p
𝜔

(c𝜔−𝛼). (4.22)

Similarly, we may derive

||(wn
h)Nn=1

||𝓁p
𝜔
(L∞(Ω)) ≤ ||(𝜌n

2
− 𝜌n

1
)Nn=1

||𝓁p
𝜔

(c𝜔−𝛼). (4.23)

Again, by taking 𝜔 sufficiently large, Mh,𝜏 is a contraction mapping on ℬN , that is,

||((Kh,𝜏𝜌1)n − (Kh,𝜏𝜌2)n)Nn=1
||𝓁p

𝜔

≤ ||(𝜌n
2
− 𝜌n

1
)Nn=1

||𝓁p
𝜔

(c𝜔−𝛼) ∀ 𝜌1, 𝜌2 ∈ℬN .

Then we conclude that the sequence {𝜌k} converges to a limit 𝜌∗ = (𝜌n
∗)Nn=1

∈ ℬN such

that

||(𝜌n
k − 𝜌n

∗)Nn=1
||𝓁p

𝜔

≤ ||(𝜌n
0
− 𝜌n

∗)Nn=1
||𝓁p

𝜔

(c𝜔−𝛼)k.

Next, we study the reconstruction error between the limit (𝜌n
∗)Nn=1

∈ ℬN and the exact

potential 𝜌
† ∈ℬ. Since (𝜌n

∗)Nn=1
is a fixed point of Mh,𝜏 , by the stability of cut-off operator

Pℬ , we have

|𝜌†(tn) − 𝜌n
∗| =

|
|
|
|
|
𝜌
†(tn) − Pℬ

[
f (x0) + Δhun

h(x0; 𝜌∗) − 𝜕
𝛼

𝜏g𝛿(tn)
g𝛿(tn)

]|
|
|
|
|

≤

|
|
|
|
|

f (x0) + Δu(x0, tn; 𝜌†) − 𝜕𝛼t g(tn)
g(tn)

−
f (x0) + Δhun

h(x0; 𝜌∗) − 𝜕
𝛼

𝜏g𝛿(tn)
g𝛿(tn)

|
|
|
|
|

≤
|
|
|
|

f (x0)
g(tn)

− f (x0)
g𝛿(tn)

|
|
|
|
+
|
|
|
|

Au(x0, tn; 𝜌†)
g(tn)

−
Ahun

h(x0; 𝜌∗)
g𝛿(tn)

|
|
|
|
+ c0

|
|
|
|

u(x0, tn; 𝜌†)
g(tn)

−
un

h(x0; 𝜌∗)
g𝛿(tn)

|
|
|
|

+
|
|
|
|
|

𝜕
𝛼

t g(tn)
g(tn)

− 𝜕
𝛼

𝜏g𝛿(tn)
g𝛿(tn)

|
|
|
|
|
= I

n
1
+ I

n
2
+ I

n
3
+ I

n
4
.
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Upon recalling Assumption 4.1, we have |f (x0)| ≤ ||f ||L∞(Ω) ≤ c. Then the strict positivity

of g(t), g𝛿(t) directly implies that

||(In
1
)Nn=1

||𝓁p ≤ c||f ||L∞(Ω)||(g𝛿(tn) − g(tn))Nn=1
||𝓁p ≤ c𝛿.

To estimate I2, Assumption 4.1 (ii) and condition (4.18) yield that

|In
2
| ≤

|
|
|
|
|

g𝛿(tn)Au(x0, tn; 𝜌†) − g(tn)Ahun
h(x0; 𝜌∗)

g𝛿(tn)g(tn)

|
|
|
|
|

≤ c
(
|(g𝛿(tn) − g(tn))Au(x0, tn; 𝜌†)| + |g(tn)(Au(x0, tn; 𝜌†) − Ahun

h(x0; 𝜌∗))|
)

≤ c𝛿||Au(x0, tn; 𝜌†)||C([0,T]) + c|Ahun
h(x0; 𝜌∗) − Au(x0, tn; 𝜌†)|

≤ c𝛿 + c||Au(tn; 𝜌†) − Ahun
h(𝜌†)||L∞(Ω) + c||Ahun

h(𝜌†) − Ahun
h(𝜌∗)||L∞(Ω).

Lemma 4.4 directly implies that

||Au(tn; 𝜌†) − Ahun
h(𝜌†)||L∞(Ω) ≤ c(h2| log h|3 + 𝜏| log 𝜏|t−1

n ).

For the other term ||Ahun
h(𝜌†) − Ahun

h(𝜌∗)||L∞(Ω), by (4.22), we obtain

||(Ahun
h(𝜌†) − Ahun

h(𝜌∗))Nn=1
||𝓁p

𝜔
(L∞(Ω)) ≤ c𝜔−𝛼||(𝜌†(tn) − 𝜌n

∗)Nn=1
||𝓁p

𝜔

,

for sufficiently large 𝜔. Take the 𝓁p
𝜔 norm of (In

2
)Nn=1

, we obtain

||(In
2
)Nn=1

||𝓁p
𝜔

≤ c
(
𝛿 + h2| log h|3 + 𝜏1∕p| log 𝜏|

)
+ c𝜔−𝛼||(𝜌†(tn) − 𝜌n

∗)Nn=1
||𝓁p

𝜔

For the term I3, Assumption 4.1 (ii) and condition (4.18) yield that

|In
3
| ≤ c|(g𝛿(tn) − g(tn))u(x0, tn; 𝜌†)| + c|g(tn)(un

h(x0; 𝜌∗) − u(x0, tn; 𝜌†))|
≤ c𝛿||u(tn; 𝜌†)||L∞(Ω) + c||u(tn; 𝜌†) − un

h(𝜌∗)||L∞(Ω)

Lemma 4.4 directly implies that

|u(x0, tn; 𝜌†) − un
h(x0; 𝜌†)| ≤ c(h2| log h|3 + 𝜏t𝛼−1

n )

Take the 𝓁p
𝜔 norm of (In

3
)Nn=1

, we obtain

||(In
3
)Nn=1

||𝓁p
𝜔
(R) ≤ c

(
𝛿 + h2| log h|3 + 𝜏𝛼+1∕p) + c𝜔−𝛼||(𝜌†(tn) − 𝜌n

∗)Nn=1
||𝓁p

𝜔

Now we consider I4. By Assumption 4.1 (ii) and condition (4.18), we derive

|In
4
| ≤

|
|
|
|
|

g𝛿(tn)𝜕𝛼t g(tn) − g(tn)𝜕
𝛼

𝜏g𝛿(tn)
g(tn)g𝛿(tn)

|
|
|
|
|

≤ c
(
|g(tn)(𝜕𝛼t g(tn) − 𝜕

𝛼

𝜏g𝛿(tn))| + |(g𝛿(tn) − g(tn))𝜕𝛼t g(tn)|
)

≤ c
(
|𝜕𝛼t g(tn) − 𝜕

𝛼

𝜏g𝛿(tn)| + 𝛿
)
.

This and [16, lemma 4.3] imply ||(In
4
)Nn=1

||𝓁p ≤ c(𝜏1∕p| log 𝜏| + 𝛿𝜏−𝛼). Combining above

estimates yields

||(𝜌†(tn) − 𝜌n
∗)Nn=1

||𝓁p
𝜔
(R) ≤ c

(
h2| log h|3 + 𝜏1∕p| log 𝜏| + 𝜏−𝛼𝛿

)
+ c𝜔−𝛼||(𝜌†(tn) − 𝜌n

∗)Nn=1
||𝓁p

𝜔

.

Letting 𝜔 be large enough and applying the equivalence of 𝓁p
and 𝓁p

𝜔 lead to the desired

estimate. ▪
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18 of 25 CEN ET AL.

The error analysis provided in Theorem 4.2 offers practical guidance for selecting the discretization

parameters h (the spatial mesh size) and 𝜏 (the temporal step size), by properly balancing the terms,

that is,

𝜏
1∕p| log 𝜏| ∼ h2| log h|3 ∼ 𝜏−𝛼𝛿.

With the choice of discretization parameters h ∼ 𝛿1∕(2p𝛼+2)
and 𝜏 ∼ 𝛿p∕(p𝛼+1)

, we have following almost

optimal error estimate

||(𝜌†(tn) − 𝜌n
∗)Nn=1

||𝓁p ≤ c𝛿1∕(p𝛼+1)| log 𝛿|3. (4.24)

It is important to note that the error estimate (4.21) involves terms 𝜏
1∕p| log 𝜏| and 𝛿𝜏

−𝛼
. Therefore, an

excessively large or small time step size can result in substantial errors in the numerical recovery. This

phenomenon is clearly demonstrated in the numerical experiments; see Figure 6 for illustration.

5 NUMERICAL EXPERIMENTS

We now present some experimental results to demonstrate the analysis results. To generate exact mea-

surement data g(t) = u(x0, t), we first solve the time-fractional partial differential equations (1.1) with

some specified data f and u0, by employing the Galerkin finite element method for spatial discretiza-

tion and convolution quadrature generated by backward Euler for time discretization, as elaborated in

Section 4.1, using a refined space-time grid for high precision. Then we add some noise to g to get

g𝛿(tn) = g(tn) + 𝜖𝜉(tn), n = 1, … ,N,

where {tn = nT∕N}N
n=0

are the equally partition points of [0,T], each 𝜉(tn) is uniformly distributed in

[−1, 1] and 𝜖 ≥ 0 indicates the relative noise level, that is, 𝜖 = max{g(tn), n = 0, 1, 2, … ,N}×𝛿∕100.

Then, in order to reconstruct 𝜌
†

from the noisy measurement data g𝛿 , we use the iterative algorithm

in (4.19). The iteration starts from the initial guess q0 ≡ 2. Even though our numerical scheme and its

analysis were done for the linear problem where the source term f is simply a function of x, we tested

our algorithm for both linear and nonlinear source term f . It is observed that the algorithm converges

within five iterations for the linear case and 60 iteration for the nonlinear case.

We focus on a one dimensional linear equation with the domain Ω = (0, 1) and the specified

source and initial-boundary conditions f (x) = 1 + 20x2(1 − x)2 and u0(x) = 2 + cos 2𝜋x. In order to

test the applicability of the proposed method to different conditions than the Assumption 3.1, we run

experiments on three different potential functions:

(i) Smooth potential: 𝜌
†
1
(t) = exp(cos(5t)).

(ii) Piecewise smooth and continuous potential

𝜌
†
2
(t) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

8

T
t + 0.7, 0 ≤ t ≤ T

4
,

− 8

T
t + 4.7,

T
4
≤ t ≤ T

2
,

8

T
t − 3.3,

T
2
≤ t ≤ 3

4
T ,

− 8

T
t + 8.7,

3

4
T ≤ t ≤ T .
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CEN ET AL. 19 of 25

(iii) Discontinuous potential:

𝜌
†
3
(t) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1, 0 ≤ t < T
4
,

2.5,
T
4
≤ t < T

2
,

1.5,
T
2
≤ t < 3

4
T ,

2,
3

4
T ≤ t ≤ T .

For the figure of merit, we use the 𝓁2
-error e(𝜌∗) = ||(𝜌†(tn) − 𝜌n

∗)Nn=1
||𝓁2 for the reconstruction 𝜌∗.

For noisy observational data satisfying (1.4), we take the temporal step size 𝜏 ∼ 𝛿
2∕(2𝛼+1)

and spatial

mesh size h ∼ 𝛿
1∕2(2𝛼+1)

according to the error estimate (4.21). Throughout, we choose p = 2 for all

experiments.

Firstly, we provide a numerical experiment to examine the sharpness of the error bound (4.21).

We fix 𝛿 = 0 and investigate the effect of the predicted discretization error, that is, O(h2| log h|3 +
𝜏

1∕p| log 𝜏|). The spatial convergence results are depicted in Figure 1 where we took T = 0.5 and

𝜏 = T∕800. It demonstrates that the convergence is about O(h2) for all potentials and we can remark

that convergence is irrelevant to the fractional order 𝛼 which can be expected from the terms in the error

analysis, h2| log h|3 + 𝜏1∕p| log 𝜏|. Next, the temporal convergence results are presented in Figure 2,

where we fix h = 1∕100 and T = 0.5. It exhibits that the convergence rate is comparable to O(𝜏0.5) for

all potentials. Figure 3 shows the convergence rate with respect to the noise level 𝛿. To this end, for a

FIGURE 1 The spatial convergence for 𝛼 = 0.25, 0.5, and 0.75, with exact observational data. The black dashed line is the

plot for O(h2) convergence rate. (a) 𝜌
†
1
. (b) 𝜌

†
2
. (c) 𝜌

†
3
.

FIGURE 2 The temporal convergence for 𝛼 = 0.25, 0.5, and 0.75, with exact observational data. The black dashed line is the

plot for O(𝜏0.5) convergence rate. (a) 𝜌
†
1
. (b) 𝜌

†
2
. (c) 𝜌

†
3
.
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20 of 25 CEN ET AL.

FIGURE 3 The convergence with respect to noise level 𝛿 for 𝛼 = 0.25, 0.5 and 0.75. The approximation is obtained by setting

the discretization parameters h and 𝜏 according to (4.24). The black dashed line is the plot for O(𝛿1∕2) convergence rate. (a) 𝜌
†
1
.

(b) 𝜌
†
2
. (c) 𝜌

†
3
.

FIGURE 4 The reconstruction results from the noisy and noisy-free data, with 𝛼 = 0.5. Taking optimal time step size

𝜏 = T∕2
8

when T = 0.5. The lines in red indicate the exact potentials, lines in blue are reconstructions from the noisy-free

data, and the green lines are reconstructions from the noisy data. (a) 𝜌
†
1
. (b) 𝜌

†
2
. (c) 𝜌

†
3
.

given 𝜏, we set h ∼ 𝜏0.25
and 𝛿 ∼ 𝜏𝛼+0.5

, and then we change 𝜏 to adjust the noise level 𝛿 accordingly.

In the figure, we can observe an O(𝛿0.5) empirical convergence rate.

The reconstructions from noisy and noisy-free data are shown in Figure 4 with 𝛼 = 0.5 and the

optimal time step size 𝜏 = T∕2
8

with T = 0.5. In the case of the exact data, the reconstructions follow

closely to the exact potentials 𝜌
†

except for those points where the potentials are not continuous or near

the initial time t = 0. For the case 𝜖 = 0.1%, the numerical reconstructions show minor oscillations. It

seems that the reconstruction method is rather unstable at those points of jump discontinuities including

the starting time t = 0 while it is quite stable on those points of continuous sharp corner. Also, Figure 4c

implies that the proposed reconstruction method could be applicable for discontinuous potentials for

which the Assumption 4.1 is violated.

The theoretical analysis in Theorem 4.2 indicates the fractional order 𝛼 has a significant impact on

the convergence of the proposed reconstruction scheme. Indeed, the factor𝜔
−𝛼

in (4.20) illustrates that

the iteration will converge much faster when we choose larger 𝛼 or 𝜔. Since the weighted 𝓁2
𝜔-norm is

utilized in the theoretical analysis, we study the convergence in 𝓁2
𝜔-norm and compare the results with

the ones in 𝓁2
-norm. For the linear problems, we observed that the convergence is so very fast (within

five iterations) that the comparison between 𝓁2
-norm and 𝓁2

𝜔-norm are not so noticeable. Instead, we

test the algorithm for a nonlinear problem
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CEN ET AL. 21 of 25

⎧
⎪
⎨
⎪
⎩

𝜕
𝛼

t u − Δu + 𝜌(t)u = f (u), in Ω × (0,T],
𝜕𝜈u = 0, on 𝜕Ω × (0,T],

u(0) = u0, in Ω,
(5.1)

where we set the source term by f (u) = (u − 1)(u − 3). Then the iterative reconstruction scheme for

the nonlinear problem is as follows: starting with any initial guess 𝜌0 = (𝜌n
0
)Nn=1

in the admissible set

ℬ, update 𝜌k+1 = (𝜌n
k+1
)Nn=1

by

𝜌
n
k+1

= Pℬ
[

f (un−1

h (x0; 𝜌k)) + Δhun
h(x0; 𝜌k) − 𝜕

𝛼

𝜏g𝛿(tn)
g𝛿(tn)

]

, n = 1, … ,N.

Figure 5 depicts the results with the nonlinear problem. In the figure, plots in the left column are for

the exact data and the ones in the right column are for the noisy measurement. The top row exhibits

the 𝓁2
error, and the bottom row presents the 𝓁2

𝜔 error, with 𝜔 = 10. In all cases, we set T = 5 and

𝜏 = T∕2
10

. It is observed that the convergence is much faster in 𝓁2
𝜔-norm for both exact data and noisy

data, and we can observe the linear convergence consistently for the weighted 𝓁2
𝜔-norm.

The error estimate delineated in (4.21) underscores that the regularizing effect for solving inverse

problems is largely attributed to the time discretization. Therefore, a judicious selection of the time

step size 𝜏 is paramount for the approximation 𝜌∗ to attain optimal accuracy. This regularizing effect is

FIGURE 5 The decay of error throughout the iterations. k denotes the number of iterations. The first row: errors in 𝓁p
. The

second row: errors in 𝓁p
𝜔 with 𝜔 = 10. The first column: errors from the exact data. The second column: errors from the noisy

data. (a) 𝜖 = 0%. (b) 𝜖 = 1%.
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22 of 25 CEN ET AL.

visually depicted in Figure 6, where the reconstruction error diminishes with a decrease in step size 𝜏

up to a point, beyond which it starts to rise again, underscoring the critical nature of optimizing 𝜏. An

optimally chosen step size yields reconstructions that are not only accurate but also exhibit minimal

oscillations, thereby validating the conditional stability of the inverse problem as stated in Theorem 3.2.

Conversely, too large or too small step size would lead to substantial errors in reconstructions—either

FIGURE 6 The approximation with various time step size, for noisy data with 𝜖 = 0.1%, at three fractional orders, 𝛼 = 0.25,

𝛼 = 0.5 and 𝛼 = 0.75. Top row: 𝓁2
error of the approximations versus the time step size 𝜏. The next three rows: the

reconstructions with different time discretization levels. From top to bottom, the total number N of time steps is 2
3
, 2

10
and 2

13

for 𝛼 = 0.25; 2
2
, 2

9
and 2

13
for 𝛼 = 0.5; and 2

5
, 2

8
and 2

10
for 𝛼 = 0.75, the regularization is excessive (too large 𝜏), optimal

(ideal 𝜏), and insufficient (too small 𝜏), in that order. The third row shows the reconstructions with the smallest error. (a)

𝛼 = 0.25. (b) 𝛼 = 0.5. (c) 𝛼 = 0.75.

 10982426, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23136 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [24/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CEN ET AL. 23 of 25

from the pronounced discretization error, as indicated by the term 𝜏
1∕p| log 𝜏|, or from the amplified

effect of noise, as represented by the term 𝜏
−𝛼
𝛿.

6 CONCLUDING REMARK

In the current work, we focused on the reconstruction of a time-varying potential function in the

time-fractional diffusion model from observations taken at a single point. By applying a set of reason-

able assumptions to the data, we derived a Lipschitz type conditional stability. Furthermore, drawing

inspiration from the stability analysis, we proposed a iterative algorithm to approximately recover the

potential and established a comprehensive error analysis of the discrete reconstruction, ensuring that

the approximation error is congruent with the stability estimate we have established. Numerical tests

were carried out to support and enhance the theoretical analysis.

Many interesting questions still remain open. For instance, recovering the spatially-dependent

potential from a single-point observation presents a significant interest. Such problems are anticipated

to exhibit stronger ill-posedness, and conducting their analysis would pose greater challenges, espe-

cially in terms of the numerical analysis of fully discrete schemes. Additionally, the identification of

multiple coefficients using single or multiple observations presents a compelling avenue of research,

each with its unique degree of ill-posedness. These interesting questions are left for future exploration.
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