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Abstract: The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s
water holding capacity, a critical factor in various applications such as determining soil water
availability for plants, soil conservation and management, climate change adaptation, and mitigation
of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and
laborious process and requires numerous instruments and measurements at a specific location. In
this context, various estimation approaches have been developed, including pedotransfer functions
(PTFs), over the past three decades to estimate soil water retention and its associated properties.
Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations,
particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due
to readily available soil data and cost-effective methods for deriving essential soil parameters, which
enable more efficient decision-making in sustainable land-use management. Therefore, advancement
and adjustment are necessary for reliable estimations of the SWRC from readily available data. This
article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study
aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density,
porosity, and other related factors. Additionally, it also assesses the performance and limitations of
various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and
Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al.,
Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide
valuable insight into the importance of new PTFs for modeling SWRC.

Keywords: SWRC; soil hydraulic properties; pedotransfer functions; pore size distribution; particle
size distribution

1. Introduction

The hydraulic characterization of unsaturated soil is crucial for several reasons, as it
provides valuable insights into soil properties and the behavior of soil under unsaturated
or partially saturated conditions [1]. Since the last century, the scientific community
has made significant strides in understanding unsaturated soil behavior and developing
straightforward methods for prediction. Throughout this period, numerous models and
theories have been formulated to address various soil water flow-related issues, such as
fluxes, mass storage, and energy dynamics within the soil and plant-based ecosystems [2].

However, accurately characterizing unsaturated hydraulics remains a challenge, as it
involves measurement and quantification of parameters such as the soil-water retention
curve (SWRC), the hydraulic conductivity function, and soil-water diffusivity. These
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characterizations of soil and water are essential in various fields, including agriculture,
hydrology, environmental science, and geotechnical engineering [3,4]. The application of
these hydraulic properties encompasses the calculation of water movement, the estimation
of water availability for plants, the assessment of the potential for groundwater contaminant
transport, the design of irrigation systems, and the evaluation of slope and embankment
stability [5,6]. However, characterizing unsaturated soil properties poses challenges due
to the inherent complexity arising from incomplete soil saturation. This complexity is
influenced by many factors, including bulk density, organic matter content, soil texture,
structure, and temperature [7–9]. Therefore, a conceptual understanding of unsaturated
soil properties is essential for sustainable land use and management.

The occurrence and retention of moisture in the unsaturated media primarily result
from two principal forces, adhesion, and cohesion, along with meniscus phenomena, as
shown in Figure 1. Adhesive forces are hygroscopic interactions in which molecules attract
water and soil particles [10], while cohesive forces are attractive interactions between water
molecules that enable them to stick together, forming a continuous column of water within
the soil pores [11]. Menisci form between adjacent soil particles as water adheres to the
soil, creating a continuous water layer with a meniscus on both the upper and lower sides.
Typically, in wet soil, the meniscus is less curved; however, as the soil dries, the curvature
increases, strengthening the forces that make water less available to plants. This higher
energy level requires greater efforts from gravity or plant roots to overcome these forces
and extract water [12,13]. The soil water retention at a particular suction level is primarily
influenced by many factors, such as pore space shape and size distribution, soil particle
size, mineralogy, and surface activity [11,14]. Figure 1 illustrates how water is retained
within the soil matrix and how the processes of adsorption, absorption, and varying water
potential (both low and high) influence the release or retention of water in the soil.
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Figure 1. Mechanisms of water retention in unsaturated soil: The roles of adhesion, cohesion, and
meniscus formation.

Following previous research findings, the SWRC plays a crucial role in estimating
unsaturated soil’s hydraulic and mechanical properties [15]. It provides a comprehensive
understanding of how water interacts with the soil, offering insights into water-holding
capacity, drainage characteristics, and moisture retention under wetting and drying condi-
tions [16]. Moreover, the SWRC is instrumental in determining key parameters, including
characteristic length, saturated and unsaturated hydraulic conductivity, available water
content, capillary head at the wetting front, infiltration capacity, and time to ponding [17].
These parameters are essential for understanding soil water flow storage, and they are
typically derived from a combination of laboratory tests and field data [18,19]. Additionally,
estimating the SWRC is pivotal for understanding soil permeability, water storage, shear
strength, soil water contamination, and thermal properties [20–22].

The SWRC describes a fundamental relationship between soil suction and volumetric
water content or degree of saturation [23]. Soil suction is the sum of matric suction and
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osmotic suction. While the significance of matric suction in unsaturated soils has been
extensively studied, there has been relatively limited focus on comprehending the impact
of osmotic suction and its effects on the properties of unsaturated soil [23]. The sigmoidal
shape of SWRC is divided into three zones: the capillary or boundary effect zone, the
transitional or two-phase zone, and the residual or dry zone, as shown in Figure 2. It is
typically represented on a semi-logarithmic scale to show a family of curves for various soil
conditions [12]. The maximum amount of moisture held in the soil pores is represented by
the saturated water content (θs), and the moisture moves slowly toward the residual and
dry end of the soil suction. The soil’s moisture release or entry rate varies depending on
the range of pore sizes in the soil matrix. The moisture rate in soil with a narrow pore size
distribution, such as in sandy soils, is faster than in clay soils. The slope of the dry portion of
the curve is influenced by the air entry value (AEV), which represents the suction at which
higher saturation levels begin to decline [24,25]. Initially, as the soil dries, the moisture
retention curve remains relatively flat until it reaches the air-entry value. During this stage,
the pores remain saturated due to increased suction. Once the suction exceeds the AEV, air
enters the larger pores, forming a continuous network of air-filled and water-filled pores.
As water evaporates, saturation decreases, resulting in a partially saturated state [25,26].
The inflection points, AEV, and residual suction are crucial for determining the soil’s water
retention properties.
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saturated moisture content θr, residual moisture content, AEV, air entry value).

The SWRC can be determined in the laboratory and filed using various methods,
including a sandbox, pressure plates, hanging cups, gamma radiation, electromagnetic-
based sensors, tensiometers tension disc-infiltrometers, and the Beerkan Estimation of
Soil Transfer (BEST) method [19,27–29]. Both laboratory and field experiments have their
advantages and limitations. While these measurement methods assist in determining
the SWRC, they can be expensive, time-consuming, and often inadequate for studies
requiring temporal and spatial scale analysis [30]. The alternative to the experimental
measurement is the utilization of pedotransfer functions (PTFs), a technique adopted by
various soil scientists and researchers [30,31]. Estimating various hydraulic properties
using PTFs method has been a premier focus for soil scientists and researchers since the
last century [32]. When direct measurements are challenging or costly, PTFs estimate
soil hydraulic properties from basic soil texture and other physical attributes [33]. PTFs
typically predict the hydraulic properties of soil, including thermal, mechanical, and



Water 2024, 16, 2547 4 of 18

physical characteristics, which are essential in many fields of science and engineering [6,34].
However, PTFs face several challenges in soil science and engineering when evaluating the
SWRC of unsaturated soil [35]. It is essential to understand that the accuracy of PTFs is
contingent upon the specific input data soil properties and the range of soil conditions being
analyzed. The use of empirical parameters significantly influences the accuracy of PTFs in
predicting hydraulic functions [36,37]. As a result, continuous pursuit of improvement is
needed to validate these empirical parameters on a global scale to enhance the estimation
capabilities of PTFs [38].

Although all the developed PTFs are helpful for further improvement, their accuracy
and reliability are generally unsatisfactory, and they are still applied in the numerical
simulation of water and solute transport in the unsaturated zone [39,40]. Many researchers
and soil scientists prioritize the development and improvement of both new and existing
PTFs [37,38]. Therefore, it is crucial to emphasize that existing PTF models should be
used carefully, and their results should be validated against field measurements whenever
possible [41]. However, no recent review or software program can fully adjust PTFs based
on semi-physical methods to align them with experimental data. Consequently, this study
aims to review various common semi-physical and analytical-based models to evaluate
their performance and assess the challenges and limitations of the commonly used SWRC
models based on semi-physical methods.

This study considered the models proposed by Arya and Paris [42], Haverkamp and
Parlange [43], the Modified Kovács model by Aubertin et al.[11], Chang and Cheng [44],
Meskini-Vishkaee et al. [45], Vidler et al. [46] and Zhai et al. [47], as shown in Figure 3.
Furthermore, this study quantifies and assesses the main uncertainties in these models
to devise a direction for future research. This study highlights the need for more robust,
physically based models to address the shortcomings of existing approaches, considering
the complexities introduced by variations in soil composition, structure, and local envi-
ronmental conditions. The ultimate goal is to contribute to the development of accurate
and widely applicable PTFs for improved SWRC estimation in diverse soil types and
geographical regions.
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2. Materials and Methods
2.1. Evaluation of Pedotransfer Functions (PTFs)

Based on soil properties, PTFs can be categorized into two main approaches: mechanis-
tic and empirical. The mechanistic approach is based on the physical principles governing
soil water movement, derived from measurements of basic soil data. It involves trans-
lating readily measurable soil properties such as texture, particle size distribution (PSD),
bulk density (BD), and particle density into a pore-size distribution model (PoSD). This
model is then linked to water content at various soil water matric potential heads, and
the models can be applied either analytically or numerically. Many models are attributed
to this approach, including the primary and prominent physical empirical model that
was developed, which emphasizes the resemblance in shape between the water reten-
tion curve and cumulative particle size distribution [48]. For estimating the SWRC, the
PSD data are initially transformed into the PoSD model and then into other pore volume
parameters. This technique is helpful for homogeneous soils, while for heterogeneous
soils, it requires more detailed soil information and may be computationally intensive.
However, it is valuable for providing insights into the underlying systems and is more
transferrable across multiple scenarios and conditions. The empirical approach, often called
the data-driven approach, relies on statistical relationships derived from measured soil
data. It involves fitting correlation functions between predictor and response variables [9].
The two most commonly used empirical approaches are statistical regressions and data
mining techniques, such as regression trees, artificial neural networks, and group data
handling methods [49]. The outcomes of the empirical approach based on PTFs can be
numeric values or characteristic classes. However, it is important to note that most PTFs
are developed for specific local or regional climatic conditions and are not universally
transferable [9]. Empirical PTFs generally require large datasets containing measurements
of soil properties and relevant soil features or environmental factors. However, empirical
approaches are simpler and computationally less intensive than mechanistic models. Still,
they are limited to specific conditions, and data ranges do not capture the full range of soil
variability, which may be less accurate than mechanistic PTFs [50–52].

In addition, PTFs can be further categorized into two main types based on soil tex-
tures: class PTFs and continuous PTFs, which consider soil texture and properties in their
respective classifications [31,53]. A class of PTFs predicts the hydraulic properties of soil
that exist in similar groups of soil particles, such as sand and loam, as well as similar
intervals of organic matter content or bulk density. Based on the prediction class PTFs are
comparatively inexpensive and less time-consuming; however, the accuracy is relatively
low due to only one average value of hydraulic properties. Class PTFs are suitable for
calculating the parameters of the Van Genuchten and Brook and Corey models [42,54–56].
Continuous PTFs exist without similar grouping, constantly changing the soil hydraulic
properties such as silt and clay and organic matter content, and many PTFs are deployed in
this category [57,58].

Further classification of PTFs based on estimates is point-based, parameter-based,
and semi-physical-based [59]. Point-based PTFs estimate the SWRC properties at some
specific chosen matric potentials [8]. The model is calibrated to a specific soil, and the input
parameters are based on laboratory or field measurements of soil properties. Point-based
PTFs may be accurate for specific soil and properties but may not be transferable to other
soils or regions. An example of point estimation is estimated by statistical approach at
selected water potentials or specific points, i.e., −10, −33 is field capacity, and −1500 kpa
is permanent wilting point [3,48]. The parameter-based PTF approach involves fitting
analytical or empirical models and usually depends on the experimentally measured soil
properties. Water retention at any potential point can be measured using a parametric
technique in a continuous yield function in all these models, e.g., Brook and Corey (BC),
Campbell, and Van Genuchten models (VG) [55–58]. Parameter-based PTFs estimate a
desired soil attribute by using statistical models that incorporate different soil factors or
characteristics. Parameter-based PTFs are more versatile than point-based PTFs because
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they can be applied to a broader range of soils but still require much information and may
not be more accurate than point-based PTFs.

The semi-physical-based model integrates physical principles such as PSD, PoSD,
and capillary action, with theoretical insights of soil behavior derived from empirical
correlations. The study conducted by Arya and Haverkamp [42,43] contributed to the de-
velopment of the original method and subsequently adaptations, improving its application
in various mathematical models. The primary objective of this approach is to balance accu-
racy and simplicity when estimating the SWRC, particularly for soils that exhibit unique
characteristics or when limited data are available. The concept of similarity enables the
translation of PSD data into PoSD on a volume basis. The PSD and PoSD are fundamental
components of this semi-physical approach [44,46]. The PSD data provide information
about the mass percentage of particle fractions, which can be determined through labora-
tory tests or on-site measurements. Based on earlier studies, the semi-physical method for
estimating SWRC is particularly effective for sandy soils and can generate more reliable
results. However, its effectiveness and precision might be reduced in clay and loam soils
because these types of soils have a complex pore structure and intricate interactions be-
tween particles [41]. By applying the semi-physical approach, the method can be optimized
to more effectively evaluate SWRC on different soil types [51].

2.2. Analytical-Based Models

Analytical PTFs-based models derive soil-water retention equations from fundamental
physical concepts and theories. These equations often incorporate mathematical functions
that demonstrate the relationship between soil water content and soil water potential.
Analytical PTFs are commonly calculated by solving the governing equations of water flow
in unsaturated soils. In recent decades, numerous conventional models have been proposed
to predict the SWRC [60]. Many of these conventional models are modified from existing
approaches that use empirical or analytical curve fitting equations with at least two or more
fitting parameters [60]. These models contain shape curve parameters known as hydraulic
parameters, which are usually obtained from experimental data [61]. The most common and
well-known of these models are in (Table 1) are Van Genuchten [56], Brooks and Corey [55],
and Fredlund and Xing [62]. These models are helpful because they provide continuous
analytical functions for the SWRC, which can be integrated into various PTF-based models.
Notably, the Brooks Corey and Van Genuchten models are widely implemented in semi-
physical models [55,56,63]. Their parameters are obtained by optimizing the models to
fit the measured SWRCs [64,65]. However, specific parameters within these models are
difficult to estimate, time-consuming to obtain, confronting limitations, and confusing,
especially at the saturation and dryness points.

Table 1. Common analytical equations corresponding to fitting parameters, where θ is volumetric
water content (cm3/cm3); ψ is suction head or pressure head (cm or any pressure unit); θr is residual
water content (cm3/cm3); θs is saturated water content (cm3/cm3); and α, n, m are the empirical
shape parameters, where m is (dimensionless) parameter often set to = 1 − 1/n saturation. In Brooks
and Corey equation, hd represents the air entry suction (cm).

Model Function Parameters Source

Van Genuchten (1980) θ = θr +
(θs−θr)

[1+(αψ)n ]
m θs, θr, α, n [56,67]

Fredlund and Xing (1994) θ =

(
1 −

log(1+ ψ
ψr
)

log(1+ 106
ψr

)

)
θs

{log[e+(ψ/α)n ]}m θs, θr, α, n, e [62,68]

Brooks and Corey (1964) θ = θ−θr
θs−θr

= ( hd
ψ )

n
for ψ ≥ hd, ψ < hd θs, θr, n [55,69]

Additionally, these models are based on simple equations and have limited theoretical
background, which usually underestimates the water content. These equations consist
of scaling parameters (α, n, and m) and field survey data, both of which are usually
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complex and time-consuming to acquire. Moreover, the estimation of SWRC can vary
among different models for the same soil. Hence, many alternative approaches have been
proposed by researchers that can be easily incorporated into the SWRC modeling [62,66].

3. Results and Discussion
3.1. Semi-Physical-Based Models
3.1.1. Arya and Paris (AP) Model

The pioneer of the PSD models is the AP model, commonly used in various studies to
improve the SWRC estimation [42]. The theory of this model is based on fundamental soil
properties like bulk density, particle density, and texture, along with a linear relationship
between the mean pore radius, mean particle radius, and empirical scaling parameters. The
AP model first translates PSD data into pore sizes, considering the soil particles as a pack for
calculating the PoSD. It introduces a shape coefficient to represent complex pore structures
and address tortuous pore lengths. Initially, AP assumed that all soil particles are spherical
and that the scaling parameter α is an empirical constant, typically ranging from 1.35 to 1.40
for all soil types. Subsequently, this study evaluated and enhanced the scaling parameter of
the SWRC and explored three different approaches for determining the α scaling parameter.
The most effective method for fitting the measured and estimated SWRC was the non-linear
α approach, followed by the linear process, with the constant α approach performing the
least effectively [70]. Using the linear and constant methods often leads to underestimating
the water content in the dry range (high tension region) and overestimating it in the wet
range (low tension region) [71]. These discrepancies are particularly noticeable near points
where the SWRC curve experienced sharp changes. The changes in SWRC may be attributed
to the limitations of soil texture and the capillary theory [12,72]. The findings in [44]
revealed that the AP model was more effective and efficient when using the non-linear
and linear α methods for calculating the scale parameter α [73]. As a result, the volumetric
water content estimate is obtained from the pore volume, which is assumed to be filled with
water, while the suction head is calculated using the capillary equation [74]. Subsequently,
the models were applied to various materials, including glass beds, coal minerals, and
organic matter, to estimate SWRC. However, the model eliminates organic water content,
with hysteresis volume changing and contact angle influencing the SWRC. Despite these
limitations, many practitioners consider the AP model better suited for enhancement due
to its similarity in shape to the SWRC [75] The water content corresponding to each interval
ith can be calculated using Equation (1).

θi = (ϕsw)
i

∑
1

ωj; i = 1, 2, 3 . . . , n (1)

ψi =
2γcosΘ
ρwg ri

(2)

where θi volumetric water content (cm3 cm−3); ϕ is the total porosity of the sample Sw
is the ratio of measured saturated water content to theoretical porosity; ωj is the solid
mass friction of particles in the specific interval of diameter (g g−1); ρs is particle density
(g cm−3); ρb is bulk density (g cm−3); ri is the pore radius in the considered interval (cm); ψ
is the pressure head (cm); γ is the surface tension (g s−2); ρw is water density (g cm−3); g
is the acceleration due to gravity (m s−2); ri is the pore radius of ith friction, and Θ is the
contact angle which is typically considered zero in the AP model [42,54,71].

3.1.2. Haverkamp and Parlange (HP) Model

Like the AP model, Haverkamp and Parlange [43] developed a model to describe
the water retention properties of sandy soil. Their model is based on the assumption
of shape similarity where the volumetric water content (θ) is considered equal to the
cumulative particle size distribution function F(d) and the saturated water content (θs),
with ‘d’ representing the particle diameter. The analytical expression uses the Brooks and
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Corey model to account for the influence of air entrainment and hysteresis. The hysteresis
was introduced in this model and to develop a model that needs to parameterize natural
saturated water content and dry bulk density. The advantage of the HP model is its ability
to accurately predict water content at low pressures from saturated water content and
particle density (ρd) while capturing the effects of soil structure on water retention [43].
The HP model provides reliable estimates for sandy soils with complex pore structures
and aggregation, but its applicability is limited to specific fields and soils. Like the AP
models, the HP models exhibit some drawbacks, such as trapped air, linear relationship
between pore radius (R), particle diameter (D), and contact angle, which influence the
SWRC. Additionally, the concept of hysteresis is introduced; its application is complicated,
difficult to follow, and less user-friendly. In conclusion, the HP model helps understand
hysteresis and the complexity of pore structure, contributing to further prediction of the
SWRC model [76].

θ = θsF(d) (3)

ψi =
0.149(γ)

d
(4)

3.1.3. Modified Kovács (MK) Model

The Aubertin et al. [11] derived a comprehensive and well-established SWRC from
the Kovács model [77]. The modified Kovács (MK) model predicted the parameters from
the basic properties of soil, such as grain size distribution, porosity, and the use of specific
surface area. In this regard, a set of equations was developed to predict three parameters
(i.e., m, ac, and ψr) for full saturation to correlate with the SWRC. Important geotechnical
properties were identified with the help of statistical analysis. The two major components,
capillarity and adhesiveness, contributed to both low and high suctions. Granular (sand,
silt) and fine-grained materials were used for improved model efficiency. The parameter
estimation of fine-grained material was in a relatively low range of liquid limit and porosity
values [11]. Better results were observed in granular and fine-grained materials, while pure
clay and silt soil required further improvement. The MK model accurately predicted the
SWRC for various soil types, accounting for the basic soil properties [11]. The MK model
has limited applicability and is restricted to specific soil types and geotechnical properties.
Its accuracy and reliability may vary when applied to soils with specific characteristics or
heterogeneous soil conditions. Consequently, this model requires further validation and
refinement to ensure its effectiveness in diverse soil types and conditions. Compared to
other semi-physical-based models, the MK model’s parameters can be easily determined in
a laboratory for the entire project. Moreover, the MK model is considered user-friendly and
has great potential for further improvement due to its robust explanation of parameters
and simplicity.

Sr =
θ

n
= Sc + S∗

a (1 − Sc) (5)

The MK model incorporates several parameters for calculating the volumetric water
content in Equation (5), where Sr is the degree of saturation; θ is the volumetric wa-
ter content; n is the total porosity; Sc and Sa correspond to the capillary and adhesive
components [11].

3.1.4. Chang and Cheng (CC) Model

The Chang and Cheng model [44] introduced an improved model for a high suction
head based on the AP model by incorporating PSD data for normalized circles and silt-
shaped pore spaces. Earlier research studies have emphasized the significance of the
non-linear relationship between PSD and PoSD for accurately estimating SWRC [11,43].
However, utilizing the non-linear PoSD derived from PSD remains challenging and can
lead to errors in predicting the SWRC. The key enhancement lies in the CC model’s
conceptualization of pore space, featuring larger circle-shaped pores interconnected by
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narrower silt-shaped spaces. The smaller silt-shaped pore spaces are included as part of
the larger pores by employing geometric relationships.

Consequently, the CC model described the PSD and PoSD as lognormal distributions.
The model assumes the lognormal PoSD, characterized by two parameters: the mean pore
size and the standard deviation of pore size distribution. These parameters are associated
with the SWRC through equations that account for capillary forces and air-entry pressure.
One advantage of the CC model is that it requires only two fitting parameters, which can
be obtained from the basic soil data, enabling the estimation of soil-water content from
saturated to oven-dry conditions. In addition, the use of α and β values, which are essential
parameters for estimating the volume fractions of silt-shaped spaces, can significantly
influence the dry range of the SWRC [78]. The CC model recognizes that the volume
fraction of each unit cell, specifically the central pore that connects two silt-shaped spaces,
is equal to the corresponding particle mass fraction. Therefore, pore volume fractions of
different sizes can be readily obtained. This assumption implies that the ratio of the volume
occupied by the unit cell to the total volume is the same as the ratio of the mass of particles
within the unit cell to the total mass. By integrating pore structure into the CC model, water
content estimation in the dry range of suction is improved. When estimating the PoSD
with a pore model, the CC model considers silt-shaped pore spaces, which may increase
the pore volume fraction at the minimum pore diameter range.

A research study found that the non-linear relationship between the PSD and PoSD
in the CC model is more appropriate than the linear relationship used in the AP model.
However, the CC approach provides a relatively better estimation of the relationship
between soil water content and soil water potential for sandy soil [7,44]. According to the
CC results, the scaling approach and traditional method underestimated the SWRC, while
the improved method showed the best relationship with measured data. To obtain the α
and β values, an expression that relates both parameters to the specific surface area (SSA)
was applied in Equation (6). The water content associated with different pore-filling stages
can be estimated by Equation (7), and the pore size and the corresponding suction head
could be calculated using Equation (8). The SWRC can ultimately be obtained using the
calculated suction heads and water contents.

SSA =
ϕ

1000ρb

n

∑
i=1

ωi

 4βdi + πdi

2αβd2
i +

π

4
d2

i

 where i = 1, 2, 3 . . . n (6)

θ = θs

j=i

∑
j=1

ωj (7)

ψi =
3000

di
; di = 0.3Di (8)

where SSA is the specific surface area (m2 g−1), the α parameter is obtained from (Table 2),
and the β value from Equation (6). The fraction of the cumulative pore volume fraction
of the ith fraction is equal to the total porosity ϕ; in Equation (7) θs is the saturated water
content (cm3 cm−3); ωi is the cumulative pore volume corresponding to the solid friction
of the jth particle friction. In addition, di is equivalent to the pore diameter (µm), and Di is
the mean particle diameter of the ith fraction utilized in the PSD data to calculate the pore
diameters. These are sequentially balanced with corresponding pore volume fractions to
obtain the calculated PoSD.

3.1.5. Meskini Vishkaee (MV) Model

The Meskini Vishkaee (MV) model [79] presented a conceptual scaling factor approach,
following the continuous form of the PSD and bulk density data. This approach uses a
packing density-scaling factor approach to predict and improve the dry range of SWRC.
The MV model results were obtained from 82 soil samples from the UNSODA database.
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The model results showed that the proposed method effectively predicts the SWRC for
all soil types. The MV model study concluded with the findings that the scaled PSD
curve resulted in more precise SWRC estimation than obtained using unscaled PSD data.
However, the MV model relies on the assumption of soil particle’s packing behavior. This
model adjusts sand, silt, and clay to maintain the continuous form of the SWRC. In their
study, the efficiency of the MV model was assessed across various soil classes, and the
model outputs displayed a strong correlation with fine and medium-textured soils.

Table 2. The estimated values of α for various soil textures [44].

Sand Content Silt Content
(%)

α

Clay
D ≤ 2 µm

Silt
2 µm < D ≤ 50 µm

Fine Sand
50 µm < D ≤ 500 µm

Coarse Sand
500 µm < D ≤ 2000 µm

0–10 0.0005 0.0005 0.001 0.0004
10–40 0–50 0.001 0.001 0.001 0.0004

50–100 0.0005 0.0005 0.001 0.0004
40–90 0.005 0.0015 0.001 0.0004
90–95 0.005 0.0015 0.0005 0.0004

95–100 0.005 0.0015 0.0001 0.0004

Furthermore, the scaling approach utilized in the MV study was found to provide a
more accurate estimation compared to the MV-VG model and the ROSETTA program [80].
Overall, this approach provides a simple and practical SWRC prediction method. However,
it should be noted that this approach relies on the assumption of the soil particle packing
behavior and may not accurately reflect the complex interactions as those found in het-
erogeneous soil types. Therefore, to ensure accuracy and fitness for a particular soil, it is
essential to validate the predicted curves using experimental data [79]. The MV model
calculated volumetric water content using Equation (9) and Suction using Equation (10).

θi = θs

i=1

∑
j=1

ωj; i = 1, 2, 3 . . . , n (9)

ψi =
0.543 × 10−4

Ri
ζ (10)

ζ =
1.9099
1 + e

f or e =
ρs − ρb

ρs
(11)

In the above Equation (10), ζ is equal to Equation (11) and the suction head ψi is
associated with the radius of a particle Ri of the ith fraction and subsequently follows the
scaling approach.

3.1.6. Vidler et al. (VD) Model

Vidler et al. [46] presented a model to predict the drying path of SWRC for various ma-
terials, including soil, mine waste, and coal for Plant Available Water (PAW). Experiments
were conducted on the topsoil of Hunter Valley, New South Wales, Australia. This model’s
input parameters included PSD and saturated water content without requiring laboratory
calibration. This model highlighted the importance of mono-sized particles (i.e., 3 to 60 µm)
in calculating the adhesive forces. This study assumed that the pore diameter was linked
to 30% of particle size, considered spherical in shape and uniform in size. However, it was
acknowledged that this assumption might not be suitable for large or very small pores,
as it might neglect pore-filling spaces. The VD approach employed an apollonian gasket
procedure to assess the level of pore filling for each primary pore size. The filling degree
for each set of primary pores was determined. Following apollonian geometry, it was
redistributed into a greater number of smaller pores to create the final pore size distribution.
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This redistribution process involved converting each pore size into an equivalent circular
pore area with drainage suction, forming the ultimate PoSD.

This model was tested against sand and coal and compared with several existing
PSD-based models, such as MV, AP CC, and MK models. The MV model demonstrated
good agreement and consistent prediction for volumetric water content in mining materials.
It was found that the model was useful for topsoil and other tailing materials when the
calibration with existing data was not feasible. Compared to similar PSD models as shown
in (Table 3) about the MV, AP CC, and MK models, the main improvement in the VD
model was achieved by utilizing an apollonian gasket for each primary pore size to assess
the level of pore filling. However, this filling occurred only under certain criteria, which
considered the size ratio and fraction of smaller particles. This model is suitable for similar
particle sizes and has shown promising results for varying particle sizes. In addition, the
topsoil and tailings measured had little organic matter. However, if the materials have
higher organic matter contents, it is possible to improve the accuracy of the proposed model
by adding a regression parameter for organic matter content. However, the procedure is
complicated difficult to follow, and less user-friendly. The VD model estimates volumetric
water content using Equation (12) and suction using Equation (13).

θi = θi
Aik
Ai

(12)

ψi =
2γ cos(αi)

rik
(13)

where the volumetric water content θi is equals the soil’s porosity; Aik refers to the area of
the kth sub-pore within the ith particle size bin; Ai represents the total pore area in the pore
space of the ith size fraction, which is the sum of all Aik values in the ith particle size bin;
θi is the volumetric water content related to the ith particle size bin; ψi is the suction for
each sub-pore; γ represents the surface tension of water; rik is the circular radius of the kth
sub-pore within the pore space of the ith size fraction, and αi indicates the receding contact
angle of the water-solid interface for the particles linked to the ith size fraction.

Table 3. Comparison and evaluation of different semi-physical models concerning efficiency for
proposed soil models.

Model OC BD PD PSD PoSD CA HS VC Clay Loam Sand Source

AP x ✓ ✓ ✓ x x x x - + ++ [42]
HP x ✓ ✓ ✓ x x ✓ x - - ++ [43]
MK x x ✓ ✓ x x x x - + ++ [11]
CC x ✓ ✓ ✓ ✓ x x x + + ++ [44]
MV ✓ ✓ ✓ ✓ x x x x + + ++ [79]
VD ✓ x ✓ ✓ ✓ ✓ x x - + ++ [46]
ZH x x x ✓ ✓ ✓ x x - - ++ [47]

Note: ++ = Superior; + = Satisfactory; - = Moderate; model required input parameters x = not applied; ✓ = applied.
OC: partially use of organic content; BD: Bulk Density; PSD: Particle Size Distribution; NPoSD: Non-Linear Pore
Size Distribution; CA: Contact Angle consideration; HS: Hysteresis; VC: Volume Change.

3.1.7. Zhai et al. (ZH) Model

In their study, Zhai et al. [47] proposed a method to estimate the SWRC from coarse-
grained soils based on their grain size distribution. Their model is based on the mathemati-
cal relationship between the meniscus radii equations and the diameter of soil particles.
This model aimed to improve the capillary barrier system (CBS) for coarse-grained soil.
This approach uses soil void ratio and specific surface area derived from the grain size
distribution (GSD) data to fit these parameters into empirical equations. The value for
air entry was determined using the discrete theorem of circles. Subsequently, the mathe-
matical equations were correlated to the meniscus radii with the soil particles comprising
different diameters, assuming that soil particles are simplified as spheres in a 2D plane
and a rigid soil skeleton. The positive aspect of this model is the use of contact angle and



Water 2024, 16, 2547 12 of 18

the geometrical relationship of radii spherical particles, which improves the SWRC for
coarse-grained soil. It should be noted that the suggested approach is only appropriate for
soils where capillary water predominates, making it suitable for barrier layers in a CBS,
which are usually constructed from coarse-grain soil. This approach provides a practical
way to estimate the SWRC from coarse-grained soils, but its accuracy may depend on the
assumptions and empirical equations used in the ZH model. The ZH model estimates
volumetric water content using Equation (14).

S =
Am

Atotal (14)

Atotal
void =

N

∑
i=1

Ai
void (15)

where S is the degree of saturation; Am is the total water area in all the representative
elemental triangles; Atotal is the total water area in all the representative elemental triangles
at fully saturated conditions; Ai

void is the total void area in the ith element of the triangle;
Atotal

void is the total area of voids in the soil element and N is the total number of element of
triangles [47].

4. Discussion

The traditional approach to estimating the SWRC involves conducting various labora-
tory tests and field experiments. However, this process is time-consuming and expensive,
and inaccuracies can be introduced due to errors in tools or by humans, resulting in varia-
tions in the measurement of water potentials and their associated water content. Moreover,
the estimation of SWRC relies on small soil samples tested in the laboratory, which might
not fully encompass the complexities of real field conditions. Hence, researchers and
scientists prioritize a semi-physical approach that relies on PTF techniques due to their
simplicity and similarity. This study presents a contemporary survey of semi-physical and
analytical-based models commonly used in the last four decades. Several previous theories
and models have been published to estimate the SWRC based on semi-physical approaches.
This literature review was conducted primarily for two reasons. Firstly, we quantified
and assessed the performance and evaluation of various PSD-based models. Secondly, we
assessed and quantified the main uncertainties in the models. Several PTFs-based models,
such as CC, MK, and MV, demonstrate superior performance with specific soil types or un-
der particular environmental conditions. However, owing to the larger-scale soil variability,
uncertainties have arisen in many models, including HP, VD, and ZH models. Therefore, it
is necessary to understand and evaluate the performance of PTFs before applying them to
specific conditions.

Applying a PSD-based model on a larger scale presents several challenges and limi-
tations. Analyzing various articles, we have identified several common challenges, such
as temperature, hysteresis, adhesion, contact angle, and the linear relationship between
the mean pore and particle radius, which are frequently present but often overlooked in
these models. As a result, these common challenges lead to underestimating the dry range
of the SWRC. Additionally, using empirical scaling parameters can result in an imbalance
between the dry and wet ranges of the SWRC. The HP model only partially addresses
incorporating hysteresis over sandy soil [43]. Specific models require minor improvements,
while many others are deemed unrealistic due to omitting various factors, including contact
angle, hysteresis, organic content, soil adhesion, and cohesion properties. According to the
literature, none of the models has been validated comprehensively on a large scale.

Some PSD-based models have also been tested on various scales, regions, and soils.
For example, Arya and Paris [42] developed a PSD-based model for SWRC and tested
it on various soil types. Similarly, Haverkamp and Parlange [43] and Modified Kovács
developed PTFs for estimating SWRC, which are widely used in soil science research.
The MK model was tested in various soils, and comparatively good performance was
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observed in finer soils; however, the models’ effectiveness was limited to specific soil types.
The efficiency and performance of the seven PTFs-based models (Table 3) regarding their
capability and suitability to perform effectively with clay, loam, and sand are assessed. Their
results are presented for input and output parameters accordingly. The predicted results
of all seven models revealed a strong correlation in sandy soils, whereas they relatively
underperformed for clay and loam soils. Soil heterogeneity was one of the limiting factors
associated with underestimating clay and loam soils.

Furthermore, the predictability of PSD-based models for the employed PTFs tech-
niques can be vulnerable to soil variability and climate variations. These factors can
potentially affect the accuracy and predictions of SWRC. The main issue observed in the
PSD-based models is the characterization of soil particles with a non-linear distribution
of pore space. However, the CC model [44,46] assumes a non-linear relationship between
the PSD and PoSD particles to calculate silt pore distribution to enhance the dry range of
SWRC. Many studies have suggested that considering non-linear pore space is essential for
attaining higher accuracy and more reliable model predictions [46,78]. Therefore, recent
studies such as CC and VD incorporated a non-linear relationship between pore radius and
mean particle radius of pore space in the modeling frameworks. The pore filling needs to
consider several factors, such as the size ratio between particles, the relative composition
of coarse and fine particles, the overall particle size, and the geometry of particles. The
least common approach predicts particle packing for the spherically natural grains. None
of the SWRC models have been implemented sufficiently to account for the pore-filling
process. Vidler [46] introduced the pore-filling GSD SWRC technique in their model, which
is appropriate for mining data from spherical granular media with particle packing.

Studies show that the shape of SWRC in sandy soils is significantly affected by the
presence of fine particles (<0.125 mm) [28]. However, some researchers have modified
previous approaches and achieved satisfactory outcomes for clay, loam, and sandy soils.
However, a non-linear distribution of pore spaces partially improves the accuracy and
reliability of soil properties in both homogeneous and heterogeneous conditions. To fill
this gap and improve accuracy and reliability, it is necessary to effectively address soil
heterogeneity and comprehend its influence on water flow modeling. In addition, the
models’ equilibrium may be unbalanced by overlooking large-scale scenarios. Measuring
the contact angle between the water and the soil surfaces is an essential factor that governs
the drainage suction of a pore according to the capillarity law. Most soils are hydrophilic,
exhibiting relatively low contact angles. To overcome this, assuming the contact angle
of zero has shown promising results for various types of soils, as reported from several
studies, e.g., in [46,47,81]. Using the contact angle based on the sessile drop technique [82],
the prediction accuracy can be further enhanced for sand, coal, and other mineral particles.

The integration of temperature components in the modeling framework is crucial
when utilizing PTFs to estimate the SWRC under different temperature conditions. Various
studies have accounted for temperature, as in [7,72], it was found that temperature could
significantly affect the movement and availability of water in the soil. Temperature change
significantly affects soil properties such as hydraulic conductivity, water saturation, and
pore size distribution. Increasing temperatures influence the evaporation rates, the viscosity
of water, soil structure, and PoSD [72]. Decreased temperatures affect soil properties
through the freezing and thawing cycles, which can change pore structure and hydraulic
properties. Neglecting the temperature-dependent variations can lead to a prediction
deviation from actual behavior. Moreover, the SWRC models are limited in considering
the microscopic water that forms a thin film on soil particles. However, this study [82]
showed that considering microscopic water could improve the accuracy and depict a good
representation of the soil water content in fine soil.

Furthermore, soil–water interactions can exhibit complexity due to non-linear connec-
tions, such as the soil structure, mineralogy, and the amount of organic matter present [83].
The SWRC can be underestimated if the assumption of a linear relationship is not correctly
applied to a particular type of soil. Several studies argue that incorporating isotropic or
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anisotropic behavior into the SWRC modeling also significantly impacts outputs [84]. Due
to the complexity of soil structure and the required degree of accuracy, no single study has
fully utilized such conditions. Collectively addressing these challenges can lead to precise
and reliable predictions of soil water retention for all soil types.

5. Conclusions

The SWRC is a crucial hydraulic property of soil influenced by many environmental
factors such as soil behavior, infiltration, water movement, drainage mechanisms, and
inherent soil variability. Therefore, this study reviewed and examined current and past PTFs
techniques to assess their efficiency and reliability for estimating SWRC. This review focuses
mainly on the most common PSD-based models to identify proficiency and basic input
parameters, as well as their effect on SWRC. This study summarizes that PTFs relying on
empirical relationships may not fully capture the complexities of specific soil conditions or
contexts. Variations in the soil composition, structure, and local environmental conditions
can introduce uncertainties into the PTFs predictions. As a result, the accuracy of PTFs
varies across different soil types and geographical regions. Furthermore, the analysis
exhibits that each model has at least one limitation, and many of these models fail to
consider crucial soil behaviors, such as volume change and hysteresis. Furthermore, the
findings of this study indicate that none of the PTF models accurately represented SWRC
in the higher suction range. However, the Modified Kovács (MK) and Chang and Cheng
(CC) models performed relatively better in the high range, where the influence of adsorbed
water was pronounced. Although several PTFs-based models can be found in the existing
literature, it is important to note that no single function has been universally identified
as applicable to describe the water retention characteristics in all soil types. Therefore,
further research is needed to develop more advanced PTFs-based models that explicitly
differentiate between capillary and adsorption theory water across all soil types and
conditions. Future research should extend beyond specific materials and stress conditions
to include soil structures that more accurately reflect in situ states. The developed model
should be rigorously validated in arid and semi-arid climates to optimize its performance
and expand its applicability.
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Abbreviations/Nomenclature

Symbols and Notation

Symbols Description

θ Volumetric water content
ωi Soil mass friction
ρb Bulk density
e Void ratio
ψ Pressure head
ρw Water density
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ri Pore radius
θr Residual water
Ai Total pore area
ωi Cumulative pore volume
Di Mean diameter
Ri Particle radius
Aik Area kth sub-pore
γ Surface tension
rik Circular radius
αi Receding angle
θS Saturated water
S Degree of saturation
Vpi Pore volume
ρs particle density
li Length of the pore
γ Surface tension
g Gravity
ϕ Porosity
di Pore diameter

Abbreviations and their full name

Abbreviation Elaboration

SWRC Soil-Water Retention Curve
PTFs Pedotransfer Functions
BC Brooks and Corey
VG Van Genuchten
SSA Specific Surface Area
AEV Air-Entry Value
PoSD Pore Size Distribution
AP Arya and Paris
HP Haverkamp and Parlange
MK Modified Kovács
CC Chang and Cheng
MV Meskini-Vishkaee
VD Vidler
ZH Zhai
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