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Abstract: Ongoing global climate change, marked by sustained warming and extreme weather events,
poses a severe threat to both the Earth’s ecosystems and human communities. Traditional settlements
that underwent natural selection and evolution developed a unique set of features to adapt to and
regulate the local climate. A comprehensive exploration of the spatial patterns and mechanisms of the
adaptation of these traditional settlements is crucial for investigating low-energy climate adaptation
theories and methods as well as enhancing the comfort of future human habitats. This study used
numerical simulations and field measurements to investigate the air temperature, relative humidity,
wind speed, wind direction, and thermal comfort of traditional settlements in Western Sichuan Plain,
China, and uncovered their climate suitability characteristics to determine the impact mechanisms of
landscape element configurations (building height, building density, tree coverage, and tree position)
and spatial patterns on microclimates within these settlements. The results revealed the structural
and layout strategies adopted by traditional settlements to adapt to different climatic conditions,
providing valuable insights for future rural protection and planning and enhancing climate resilience
through natural means. These findings not only contribute to understanding the climate adaptability
of Earth’s ecosystems and traditional settlements but also offer new theories and methods to address
the challenges posed by climate change.

Keywords: nature-based solution; traditional settlement; Linpan in western Sichuan; microclimate;
ENVI-met

1. Introduction

In recent years, the urban heat island (UHI) effect, which is driven by global warming
and intensive urbanization, has significantly elevated regional summer temperatures, lead-
ing to an increase in the duration and frequency of extreme high-temperature events [1,2].
The impact of urban microclimates on outdoor human comfort, building energy consump-
tion, and heat wave dispersion has been demonstrated [3–5]. As the UHI effect extends
towards urban outskirts and rural areas, studies have revealed the substantial risks of
high temperatures to the health and safety of outdoor rural residents [6]. Its negative
consequences, including reduced thermal comfort [7], increased morbidity rates [8], deteri-
orating air quality [9], and additional cooling energy consumption [10,11], pose significant
challenges to rural residents and their living environments.

Current microclimate research is predominantly focused on urban areas spanning
various scales [12]. In contrast, research on the microclimates of rural settlements is
relatively limited. Compared with urban areas, rural infrastructure is often more vulnerable
and disadvantaged in addressing the impacts of climate change. Rural settlements rely
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heavily on their external environment and, without the use of mechanical equipment,
optimize their location, architectural design, and crop layout to adapt to local climates. Such
longstanding indigenous wisdom is a nature-based solution (NbS) that addresses challenges
such as UHIs and heat waves by providing cooling services [13,14]. Introduced by the
World Bank in 2008 and subsequently incorporated into the United Nations Framework
Convention on Climate Change by the World Wide Fund for Nature, NbSs rely on nature-
derived and nature-dependent approaches to efficiently solve diverse challenges and
simultaneously ensure economic, social, and environmental benefits. Currently, NbSs
primarily utilize ecosystems and their services to address social challenges such as climate
change, food security, and natural disasters [15]. China’s historical planning principles,
which emphasize alignment with nature, are a manifestation of NbSs that integrate local
traditional wisdom. Improving rural living environments and constructing ecologically
livable and beautiful villages are crucial tasks in implementing rural revitalization strategies.
Therefore, studying the climate adaptability of traditional rural settlements and exploring
NbSs is of paramount importance.

However, existing research on microclimates in rural settlements faces challenges in
terms of differences and comparability between Western and Chinese rural settlements. The
climate in China boasts a wide range of latitudinal and longitudinal spans, featuring diverse
climate types such as tropical, subtropical, and temperate monsoons, temperate continental,
and high-altitude cold climates. In contrast, European countries primarily experience
temperate maritime, temperate continental, and Mediterranean climates, whereas North
American countries are characterized by temperate continental and subarctic coniferous
forest climates. This diversity makes the direct application of results from studies on
Western rural areas to Chinese rural areas challenging. Owing to the larger residential land
area in Western countries and scattered distribution of rural residences, most studies have
concentrated on small towns. However, the significant differences in scale, layout, and
materials between Western and Chinese rural settlements have weakened the applicability
of these studies [16].

The Dujiangyan Water Conservancy Project in Western Sichuan, China, is a famous
World Heritage site owing to its irrigation engineering, which has been used for flood
control and irrigation since its construction 2200 years ago. Abundant water and flat land
helped develop the local agriculture and provide natural conditions for farming in the Land
of Abundance [17]. In the process of adapting to nature, the “Chuanxi Linpan” was formed,
a traditional settlement that facilitates life and production. This refers to a composite rural
residential environment that integrates farmsteads on the Chengdu Plain and hilly areas
with surrounding tall trees, bamboo groves, rivers, and peripheral farmland, forming a
complex living environment that combines production, daily life, and the landscape [18].
As shown in Figure 1, typically organized around clans, it has courtyard houses, tall arbors,
shrubs, and bamboos and externally connects to the fields with a river system, reflecting
the Taoist view of ecology [19].
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Owing to the absence of hills to block the wind in the Chengdu Plain, tall trees and
bamboo protect against the wind. Typically, rural homes often adopt a linear, L-shaped, or
concave-shaped layout, and each household has its own courtyard; three to ten households
form a small Linpan, ten to thirty households form a medium Linpan, and over thirty
households constitute a large Linpan [20]. In addition to the built structures, the open
space within a Linpan serves as a transitional semi-open area. This space encompasses
natural elements such as the sky, earth, and plants, and their interactions create a distinctive
ecological environment in the Chengdu Linpan. This, in turn, generates a mild and
comfortable microclimate for the residents [21].

Linpans are not only unique in their form but have also accumulated ecological
wisdom over their millennia of development. Their passive design and low-energy con-
sumption are considered NbSs. The arrangement of a long cornice forms a space under
the eaves that considers factors such as rain, shade, and ventilation. Deciduous trees
provide shade from direct summer sunlight and guarantee access to sunlight during winter.
Moreover, recent studies, such as the assessment of land ecological security in the Chengdu
Plain Region from 2000 to 2020 by Zhang et al. (2023), highlight the importance of inte-
grating NbSs into regional planning to enhance ecological resilience and sustainability.
The ecological strategies embedded in Linpans align with the findings of Zhang et al.,
emphasizing the critical role of NbSs in maintaining ecological security and promoting
sustainable development in traditional and modern settlements alike [22,23].

With the advancement of computer technology and computational fluid dynamics
(CFD) software, numerical analysis and computer simulations have become pivotal tools
for studying microclimates in human habitats [24]. Among these tools, ENVI-met stands
out as a three-dimensional small-scale CFD model that is widely used to simulate micro-
climatic phenomena within the urban canopy and boundary layers based on interactions
among surfaces, buildings, vegetation, and air. It has been extensively and successfully
applied to assess microclimates and the human biometeorological impacts of different
urban climate design strategies [25]. Microclimate analysis primarily focuses on climate
characteristics at the scale of urban blocks, with heights and widths within 0.1 km, and
includes meteorological elements such as atmospheric temperature, ground temperature,
humidity, wind speed, and thermal radiation near buildings [26]. Furthermore, existing
research indicates that variables such as street orientation, building density, floor area
ratio, green space density, impervious surface ratio, and sky view factor can considerably
influence the local climate [27–30].

Through their study of outdoor thermal comfort in Tunisia, Achour-Younsi and Khar-
rat [31] proposed that aspect ratio and street orientation are crucial factors influencing urban
street canyons. Giridharan et al. [32] analyzed daytime UHI effects in densely populated
areas of Hong Kong and found that increasing the surface albedo and floor area ratio and
decreasing the sky view factor reduced the UHI index. Furthermore, reducing the impact
of buildings is more significant in mitigating the UHI effect, decreasing its temperature
increase and duration by approximately 30% [33]. In contrast, artificial surfaces such as
walls and impermeable roads have been found to significantly enhance the UHI effect [34].
In terms of vegetation environment, Morakinyo et al. [35] found that leaf area index, tree
height, and trunk height most significantly improve outdoor thermal comfort, but the bene-
ficial daytime effects of trees diminish with increasing urban density. Amani-Beni et al. [36]
determined that increasing vegetation cover under trees and irrigating grass can effectively
reduce temperatures during summer. Yang [37] found that vegetation positively affects the
surrounding thermal environment through shading, reflecting shortwave radiation, and
transpiration. Increasing the tree coverage provides a more comfortable microclimate than
increasing shrubs, making trees a priority when selecting variables [38]. Furthermore, Abdi
et al. [39], Atwa et al. [40], and Sahar et al. [41] investigated the mechanisms influencing
outdoor microclimates through the types, density, arrangement, and windward direction
of different tree species. Wu et al. [42] evaluated four spatial tree layouts in the ENVI-met
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model of a high-rise residential area in Beijing and found that different spatial arrangements
produced different effects by influencing the location of building shadows.

In this study, the microclimate of a traditional settlement, Linpan, in the Chengdu Plain,
China, is simulated using hourly monitoring data from meteorological stations, and field
measurements were used to validate the model. This study aimed to assess the key factors
and indicators influencing the climatic suitability of Linpans by changing the spatial layouts
of buildings and trees within them. The main objectives of this research are as follows:
(i) elucidate the microclimate environment formed within a Linpan, explore its self-adaptive
ability in high-temperature weather, and assess its outdoor thermal comfort; (ii) simulate
multiple scenarios for the first time that change the building height, building density, tree
coverage, and tree position inside a Linpan using ENVI-met 5.5 software to investigate the
influence of a Linpan’s configuration on climatic elements such as air temperature, relative
humidity, wind speed, and wind direction; and (iii) design strategies for the effective
control of thermal comfort to provide a reference for traditional settlement planning.

2. Study Area

The research subject of this study was a traditional settlement in JuYuan Town, Du-
jiangyan City, QuanShui Village, Cluster 7 (30.971119◦ N, 103.695207◦ E) (Figure 2). This
settlement has 15 residences clustered together, surrounded by a green barrier made up of
tall trees and bamboo, and represents a typical Chengdu Linpan. The Linpan covers an
area of approximately 29,328 m2, making it medium-sized. The predominant tree species
are camphor trees, metasequoias, ginkgo trees, paulownias, and bamboo clusters. The
architectural forms within this Linpan include one-character, L-shaped, and three-sided
enclosed structures. Buildings on the north side face south, whereas those on the south
side, which are more compact, primarily face north. This layout reflects the adaptable
characteristics of the Linpan arrangement based on local conditions. Meteorological data
were measured at a point 1.5 m away from the forest plate from 16 July 2023, 00:00, to 17 July
2023, 00:00. These measurements were used to validate the simulation results (Figure 3E).

Land 2024, 13, x FOR PEER REVIEW 5 of 20 
 

 
Figure 2. Elevated view of the study area. Figure 2. Elevated view of the study area.



Land 2024, 13, 1382 5 of 18Land 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 
Figure 3. Location map and layout plan of the study area. (A) The location of Sichuan Province in 
China; (B) The location of the Linpan distribution area in Sichuan Province; (C) Aerial photo of the 
distribution of Linpan in the field; (D) Data model of the simulated Linpan; (E) Actual photo of the 
simulated Linpan (obtained by author used drone photography). 

3. Data and Methods 
3.1. Simulation Data 

For the microclimate simulation, ENVI-MET software was utilized due to its estab-
lished effectiveness in such analyses. ENVI-MET is a three-dimensional, non-hydrostatic 
model specifically designed for simulating surface-plant-air interactions in urban envi-
ronments. It is particularly adept at analyzing the impact of building structures and land-
scape elements on microclimates, including parameters such as air temperature, humid-
ity, and wind patterns. The extensive validation of ENVI-MET in similar studies under-
scores its reliability for assessing the microclimatic effects of traditional settlements and 

Figure 3. Location map and layout plan of the study area. (A) The location of Sichuan Province in
China; (B) The location of the Linpan distribution area in Sichuan Province; (C) Aerial photo of the
distribution of Linpan in the field; (D) Data model of the simulated Linpan; (E) Actual photo of the
simulated Linpan (obtained by author used drone photography).

3. Data and Methods
3.1. Simulation Data

For the microclimate simulation, ENVI-MET software was utilized due to its estab-
lished effectiveness in such analyses. ENVI-MET is a three-dimensional, non-hydrostatic
model specifically designed for simulating surface-plant-air interactions in urban environ-
ments. It is particularly adept at analyzing the impact of building structures and landscape
elements on microclimates, including parameters such as air temperature, humidity, and
wind patterns. The extensive validation of ENVI-MET in similar studies underscores its
reliability for assessing the microclimatic effects of traditional settlements and their land-
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scape configurations. The strong agreement between the simulated results and the on-site
measurements further supports the model’s accuracy and credibility in this study. Follow-
ing the temperature classification method [43], this study defines summer as the period
from June to August. The focal month chosen for the investigation was July, specifically
targeting days with high temperatures and minimal cloud cover. Consequently, 16 July
2023, a day with a peak temperature of 33.7 ◦C and 4% cloud cover, was selected as the
validation date. Meteorological data (air temperature, relative humidity, wind speed, wind
direction, wind angle, visibility, hourly precipitation, average total cloud cover, etc.) in
Dujiangyan City, encompassing a 24 h timeframe from 00:00 on 16 July 2023, to 00:00 on
17 July 2023, were sourced from Huiju Data (hz.hjhj-e.com).

3.2. Software Simulation

As shown in Table 1, two distinct input files were defined. First, the environmental
elements within the study area, including three-dimensional models of buildings, vegeta-
tion, artificial surfaces, water bodies, and soil. Ultimately, a three-dimensional unit model
measuring 246 × 236 × 25 m was established, with the dimensions of each unit set to
1 × 1 × 1 m. A 20 m grid extension was also applied externally to the simulation area
to mitigate the complex boundary layer effects and enhance stability in proximity to the
primary research elements. Second, the climate configuration parameters encompassing
the time and climatic environment for model simulation. Hourly air temperature, relative
humidity, wind speed, and wind direction data for 16 July 2023, from 00:00 to 24:00, were
input for the simulation, which began at 0:00 on the day and was analyzed at 14:00. This
time was selected to avoid errors associated with the numerical software and consider the
impact of surface radiation during the time of the daily peak air temperature [44]. The
measured and simulated values were linearly fitted, and the coefficient of determination
and root mean square error were calculated to jointly evaluate the accuracy of the model.

Table 1. Input model data.

Element Sub-Element Input Value

Environmental elements Location Dujiangyan
Coordinate Position 30.97◦ N, 103.69◦ E,
Model Dimensions 246 × 236 × 24

Grid Cell Size Dx = 1 m, Dy = 1 m, Dz = 1 m
Simulation Date and Time Start Date 16 July 2023

Start Time 0:00
Total Simulation 24 h

Meteorology Boundary Condition Simple Forcing
Air Temperature Hourly Data From Weather Station

Relative Humidity Hourly Data From Weather Station
Wind Speed 1.6 m/s

Wind Direction 135◦ (Southeast)

In the vegetation selection simulation, the Linpan was predominantly characterized
by bamboo clusters and tall deciduous trees. Because of the dense and relatively small
leaves of bamboo groves coupled with the curvature of the main trunk beyond a certain
height, precise morphological control was challenging in the modeling process. To simplify
the simulation and account for the substantial impact of individual parameters, deciduous
tall trees were selected as surrogates for bamboo. The height distribution of vegetation in
the study area primarily ranges from 9 to 15 m. As the cooling effect is more pronounced
with a continuous increase in tree height, especially within the range of 8–12 m [45,46], a
representative tree height of 12 m was selected for the simulation. This choice was made to
streamline the model while acknowledging the significant influence of a singular parameter
on the overall simulation. Local 12 m trees were selected for modeling, and LAD values of
different heights were assigned according to tree characteristics (Figure 4).
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Figure 4. Construction of the Arbor Model.

The physiologically equivalent temperature (PET) is a thermal comfort assessment
standard that integrates geographical information [47], climatic parameters, solar radiation,
and clothing impact. Thermal comfort levels, classified based on PET, are shown in Table 2.

Table 2. Physiologically equivalent temperature standards.

Physiological Equivalent
Temperature (◦C) Human Perception Physical Stress Levels

<4 Very Cold Extreme Cold Stress
4–8 Cold Strong Cold Stress
8–13 Cool Moderate Cold Stress

13–18 Slightly Cool Mild Cold Stress
18–23 Comfortable Non-Heat Stress
23–29 Slightly Warm Mild Heat Stress
29–35 Warm Moderate Heat Stress
35–41 Hot Intense Heat Stress
>41 Very Hot Extreme Heat Stress

3.3. ENVI-Met Modeling and Validation

This study used unmanned aerial vehicle imagery and on-site reconnaissance ob-
servations to analyze the components of the Linpan. Then, an ENVI-MET microclimatic
simulation model was developed. By manipulating the four key factors of building height,
building density, arbor coverage, and arbor distribution, nine distinct scenarios were de-
vised based on the characteristics of the Linpan. This approach was used to investigate the
impact of morphological variations on traditional settlements, as detailed in Table 3.

Table 3. Modeling scenario settings.

No. Factors Characteristics Model Diagram

1 Original Modeling of the site’s architecture, surface, vegetation, and water system elements
according to the results of the site survey

SC_origin
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Table 3. Cont.

No. Factors Characteristics Model Diagram

2

Building Height

Height increase of one floor on top of the original forest plate, i.e., one additional
single story building (3 m) per building on top of the original forest plate

SC_B_add1
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4. Results

A comparison of the simulation results with the measured data revealed a strong
hourly correlation between air temperature and relative humidity (Figure 5). At 16:00, a
brief spike in air temperature and a decrease in relative humidity occurred, which was
hypothesized to be related to the height of the sun descending into the gaps not covered
by trees and buildings. After 17:00, the air temperature and relative humidity returned to
normal, owing to the sun’s further descent, avoiding direct exposure due to obstruction by
buildings and vegetation.
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Figure 6 shows that the coefficient of determination for air temperature and relative
humidity are 0.89 and 0.97, respectively, and the root mean square error is 1.04 ◦C and
2.79%, respectively. According to Tsoka et al. [48], the root mean square error should
be <4.3 ◦C for air temperature and <10.2% for relative humidity. When the root mean
square error is smaller and the coefficient of determination is closer to 1, the correlation
between the two data groups is more credible; therefore, this ENVI-MET simulation result
is considered to be of analytical reference significance.

The simulation results indicate that building height, building density, tree coverage,
and tree arrangement all impact the microclimate of traditional settlements. In the visu-
alization of results, air temperature is controlled at a starting point of 29.5 ◦C, increasing
in 0.5 ◦C intervals; relative humidity is controlled at a starting point of 37.5%, increasing
in 1.5% intervals; wind speed is controlled at a starting point of 0.1 m/s, increasing in
0.1 m/s intervals; and wind direction is controlled at a starting point of 0◦, increasing in
45◦ intervals.
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4.1. Influence of Building Height on Microclimate

As the building height increased, the overall temperature variation in the settlement
remained insignificant, ranging from 0.05 ◦C–0.46 ◦C. In contrast, a more noticeable de-
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crease in temperature, approximately 0.6 ◦C–0.87 ◦C, was observed around the buildings
(Figure 7). An upward trend in relative humidity around the buildings was also evident,
increasing by >1.6%, whereas the overall relative humidity of the settlement increased
by approximately 0.32–1.6%. The wind speed significantly decreased, forming a large
stagnant zone (0–0.2 m/s) around the buildings. Simultaneously, the wind speed in narrow
gaps and passages between buildings exhibited a noticeable enhancement, increasing by
approximately 0.03–0.19 m/s. The wind direction showed an increased variation area, with
the degree of change decreasing with distance from the buildings.
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4.2. Influence of Building Density on Microclimate

By reducing building density, the temperature within the settlement slightly increased,
rising by approximately 0.24 ◦C–0.8 ◦C. The high temperatures extended inward along the
southeastern wind direction (Figure 8). Changes in humidity within the settlement were
insignificant; however, a slight decrease in humidity ranging from 0.15–0.85% was observed
at the location where buildings were removed. The wind speed did not significantly
change around the preserved buildings, but it increased when the buildings were removed,
indicating an influx of air. Although changes in wind direction were not pronounced, the
wind direction tended to become more consistent around the removed buildings, especially
in the courtyards.
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4.3. Influence of Arbor Coverage on Microclimate

The investigation of the impact of tree coverage on the microclimate involved incre-
mental increases (40%, 60%, and 80%). The results revealed a notable reduction in the
temperature within the settlement, exhibiting a general decrease of >0.66 ◦C, with the
maximum reduction reaching 2.27 ◦C (Figure 9). Concurrently, the relative humidity within
the settlement considerably increased, by >2.02%, with a maximum increase of 7.05%. The
wind speed was noticeably reduced, exhibiting an overall decrease of >0.03 m/s, and in
specific areas decreasing by 0.22 m/s. Alterations in wind direction were not pronounced,
with only slight variations within 15◦ observed in areas covered by trees.
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4.4. Influence of Arbor Position on Microclimate

The temperature distribution was varied by modifying the arrangement of the tree
enclosures. However, areas with reduced temperatures generally aligned with the position
of trees and their downwind directions. Under fully enclosed conditions, a significant
temperature reduction was observed around the enclosed trees, contributing to the cooling
effects in the upwind direction within the settlement. However, a slight temperature
rebound occurred downwind. Under semi-enclosed conditions, trees positioned upwind
had a limited range of blocking effects against heat waves, similar to that in the fully
enclosed state. Meanwhile, in the downwind direction, heat waves tended to accumulate
within the settlement (Figure 10). The distribution of relative humidity also varied, aligning
with the position of the trees. It significantly increased in the outer periphery of the
settlement under fully enclosed conditions. Meanwhile, wind speed accelerated around
areas with tree distribution, and the acceleration effect extended to a certain distance,
resulting in the formation of a wind zone around the tree arrangement. The wind direction
was minimally affected by the distribution of trees, having slight variations within 30◦,
which were likely associated with the height of the tree canopy.
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Figure 10. Impact of arbor positioning on the microclimate.

According to the calculated results, the PET value for each scenario reached its highest
at 14:00. The graph exhibits a bimodal shape because of the difference between the inside
and outside PET values. When the external environment is “very hot” (PET > 41 ◦C), most
of the internal area is also “warm” (29–35 ◦C). In the simulation, the Linpan can effectively
regulate extreme highs. Figure 11 illustrates the ten scenarios, with variations in the height
and distribution density of buildings and trees within the Linpan settlement, exhibiting its
enhanced adaptability to extreme heat. In scenarios 1–7, distinct temperature concentration
areas emerged within the simulation, emphasizing the noteworthy temperature distinction
between the Linpan settlement and its external surroundings. The spatial distribution map
revealed that the cooling impact within the Linpan settlement primarily resulted from the
shading effects produced by buildings and trees. As the building height increased, the
shaded area expanded; the shadow positioned northeast of the building led to a significant
temperature reduction. Simultaneously, an increase in tree coverage expanded the region
of optimal temperatures, although the overall positioning of trees appeared to exert a less
visible influence on climate adaptability compared with the initial seven scenarios.
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5. Discussion

The simulation results clearly indicate that Linpans have a cooling effect on the
summer environment, with varying degrees of internal influence. These results underscore
key factors affecting the Linpan microclimate, as simulated under different scenarios. The
outcomes, grounded in benchmark samples and theoretical insights, discuss strategies for
Linpan restoration and planning that align with natural processes.

Increasing building height has been shown to impede hot air, induce cooling, and
enhance humidity. However, the larger volume of structures can lead to stagnant air
around buildings, negatively impacting internal ventilation. Existing research highlights
that increased building density tends to correlate with decreased overall wind speed.
An optimal building height can create shaded areas, contributing to harmonious rural
esthetics; hence, the indiscriminate pursuit of excessively low or high building heights
may compromise quality of life and psychological well-being [49]. Furthermore, towering
structures may not align with the resident population, resulting in the wasteful utilization
of construction resources. Insights from traditional eave designs, which provide shade
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and manage rainwater, suggest that such features can mitigate temperature extremes and
enhance outdoor and indoor comfort.

Changes in building density and height similarly affect microclimates. Both
approaches—raising building height and increasing density—expand shaded areas, re-
ducing solar radiation and thus cooling and humidifying the environment. However, this
increased volume can also weaken wind speed. In narrow spaces between buildings, wind
flow is restricted, leading to higher wind pressure and speed [50]. Effective urban planning
in forested areas should incorporate ventilation corridors aligned with prevailing seasonal
wind directions to optimize natural light and airflow.

Tree coverage also plays a crucial role in cooling and humidity enhancement, similar
to the effects of increased building height. However, excessive tree coverage (over 60%)
can reduce wind speed and potentially worsen thermal comfort in still, warm areas [51,52].
In urban settings, higher structures are often promoted to increase shaded areas and
lower temperatures. Conversely, in rural areas, strategic tree planting can improve shade,
ventilation, and humidity regulation. Effective planning should involve placing trees
around buildings and along roadsides while selecting appropriate species to balance
summer shade and winter sunlight [53]. Deciduous broad-leaved trees, like ginkgo and
dove trees, offer shade in summer and allow sunlight in winter.

The arrangement of trees corresponded to zones affected by temperature reduction
and humidity increase. A continuous and dense planting pattern notably hindered external
heat waves. However, when this layout was applied to the downwind side of a forested set-
tlement, it impeded the outward flow of internal heat, leading to an increase in the internal
temperature [54]. Therefore, the primary roles of tree layout include resisting external heat
waves, dissipating internal heat, and introducing wind during calm weather conditions.
The arrangement of trees should therefore align with prevailing wind directions to ensure
effective heat management and airflow. This strategy also requires a specific analysis of the
prevailing wind directions within the settlement to determine the precise arrangement of
trees based on the dominant wind directions during summer and winter. For instance, in
Dujiangyan City, where northwesterly and southeasterly winds predominate, tree planting
should focus on these directions to avoid obstructing wind channels [55].

6. Conclusions

This study investigated the impact of increased building height and tree coverage on
the microclimate within traditional rural settlements, emphasizing the positive role of NbSs.
Based on ecological principles, these solutions aim to improve the quality of human living
environments, mitigate the impacts of extreme weather events on human life, enhance air
quality, and promote residential comfort. The findings underscore that while augmenting
building height and tree coverage exerts a discernible influence on the microclimate, certain
drawbacks also emerge. Elevated buildings can lower temperatures and increase relative
humidity but also create stagnant wind areas around the structures, reducing internal
ventilation. Increased tree coverage fosters cooling and enhances humidity but may impede
airflow, potentially diminishing wind speed. Both heightened buildings and increased tree
coverage contribute to the enlargement of shaded regions within settlements.

While various spatial arraignments were observed to influence microclimates, the
simulation groups revealed that the cooling effect generated by buildings is less significant
compared to that induced by trees. This discrepancy arises from the fact that buildings
reflect radiation, which influences shaded areas, whereas trees adeptly sidestep this phe-
nomenon. In summary, NbSs enhance the microclimate in traditional residential settings by
enlarging the shaded zones and mitigating direct solar radiation. However, these solutions
also hinder wind dynamics, resulting in diminished wind speed. Therefore, in future
planning and design endeavors for forested settlements, a judicious equilibrium of these
factors is imperative to achieve optimal microclimate effects.

It is imperative to note that the simulation did not account for detailed architectural
features, such as eaves, which are crucial for understanding the characteristics of under-
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eave spaces. Traditional spatial arrangements, which have largely fallen out of use, offered
significant environmental benefits compared to contemporary practices. Historical living
environment layouts, including tree-lined avenues and shaded public spaces, have been
shown to enhance environmental quality and comfort [56]. These factors merit thorough
exploration and analysis in future research. Furthermore, the technical methods used in
this study can be applied more broadly, and the basic strategies mentioned in our findings
can serve as a baseline for human habitat planning. However, specific localized strategies
may vary depending on different models, reflecting the unique characteristics of each area.
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