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Abstract: Modular integrated construction (MiC) is now widely adopted by industry and govern-
ments. However, its fragile and delicate logistics are still a concern for impeding project performance.
MiC logistic operations involve rigorous multimode transportation, loading-unloading, and stacking
during storage. Such processes may induce latent and intrinsic damage to the module. This damage
causes safety hazards during assembly and deteriorates the module’s structural health during the
building use phase. Also, additional inspection and repairs before assembly cause uncertainties
and can delay the whole supply chain. Therefore, continuous monitoring of the module’s structural
response during MiC logistics and the building use phase is vital. An IoT-based multi-sensing
system is developed, integrating an accelerometer, gyroscope, and strain sensors to measure the
module’s structural response. The compact, portable, wireless sensing devices are designed to be
easily installed on modules during the logistics and building use phases. The system is tested and
calibrated to ensure its accuracy and efficiency. Then, a detailed field experiment is demonstrated to
assess the damage, safety, and structural health during MiC logistic operations. The demonstrated
damage assessment methods highlight the application for decision-makers to identify the module’s
structural condition before it arrives on site and proactively avoid any supply chain disruption.
The developed sensing system is directly helpful for the industry in monitoring MiC logistics and
module structural health during the use phase. The system enables the researchers to investigate and
improve logistic strategies and module design by accessing detailed insights into the dynamics of
MiC logistic operations.
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1. Introduction

Hong Kong is adopting the modular integrated construction (MiC) method to address
concerns about labor shortages and construction sustainability. The offsite manufacturing
of modules offers more control for better management of environmental emissions and has
proven to be more cost- and time-effective. Over 75 MiC projects have been initiated in
the last few years, some of which have been completed successfully [1]. Despite its largely
reported success, some critical challenges have been related to its supply chain and logistic
operations [2]. For Hong Kong, the primary motivation for MiC adoption is the just-in-
time (JIT) module arrival and immediate assembly to avoid storage of modules and other
construction-related congestion. However, several supply chain uncertainties hinder JIT
assembly, such as (a) the number of stakeholders having conflicting goals and interests [3],
(b) fragmented supply chain segments functioning independently [4], (c) multimode, cross-
border transit [5], (d) strict geometrical and dimensional constraints for transportation and
assembly, (e) uncertain storage requirements, and (f) uncertain site assembly [6].

Meanwhile, an ambidextrous MiC supply chain (SC) requires a push-flow of modules
to ensure seamless assembly, while a strict assembly sequence requires a demand-based
pull flow of the modules [7]. In such a scenario, any assembly delay would snowball
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the whole supply chain, causing unwanted on-site accumulation of modules, poor site
space management, extensive accumulated inventories, and excessive storage costs [3].
Such cost damages are also evident in some recent cases in Hong Kong [5,8]. The external
factors of assembly delays, like weather conditions or transportation regulations, can be
managed with better planning and scientific predictions. However, assembly delays due
to module safety and structural health are more uncertain and critical. The MiC assembly
process involves several supervision checks to ensure the module’s safety and check for
any damage. If damage is found, the module is repaired on-site or sent to the workshop for
major repair, causing additional assembly delays [9]. Also, on-site physical inspection can
only look into visible damage, and any latent cracks in the module could be overlooked,
causing serious safety issues during crane lifting. Moreover, the structural members prone
to damage are often hidden behind drywalls or fireproofing. Therefore, their physical
inspection is not possible.

In prefabricated modules, damage is initiated mainly during logistics operations,
that is, transportation and module handling [10]. Godbole et al. [11] studied the impact
of acceleration on a module during transportation and found that vertical acceleration
can reach up to 32 m/s2 (3.3 g). However, damage does not only occur due to vertical
acceleration; horizontal shocks due to instant braking and road roughness may also severely
impact the module. Similarly, the impact in the form of strain due to stacking of the module
during storage and loading-unloading operations can also cause damage to the module.
Such damage may also cause misalignment of modules for assembly, causing further delays
while repairing such issues. Thus, it is vital to continuously monitor the module structure
during the assembly process to ensure safety and avoid any hazards. Also, the continuous
cyclic impact of logistic operations may induce latent damage to the module, appearing
later during the building use phase in the form of cracks, leaks, etc. That may reduce the
overall service life of the module. Therefore, early damage detection is critical for the safety
and long-term performance of the structure.

To monitor the MiC module’s damage, safety, and structural health, it is essential
to measure its structural response continuously. However, the MiC module generates a
non-stationary structural response during highly dynamic logistic operations. Monitoring
such non-stationary structures is highly challenging, where both the structure and the
impacting loads are moving [12]. Most existing technologies and methods for damage and
structural health monitoring (SHM) are designed for traditional stationary structures [13].
The structure of a traditionally constructed building is mostly monolithic, where the
structural response at any location on the building can be sensed or estimated from any
other location. However, in the case of MiC, the building comprises separate building
blocks (modules), where damage in one module cannot be detected from any other module,
as they are not joined monolithically. Therefore, several sensors must be installed on each
module individually to monitor each module’s structural response and performance.

The most commonly used sensing technologies for SHM are (a) vibration-based,
(b) strain-based, (c) guided waves, and (d) acoustic emissions [14]. Table 1 summarizes
the sensors and features of each sensing technology. Acoustic emission and guided wave
technologies follow an active signal response estimation principle [15]. A short pulse/signal
is induced in the structure, and the sensors installed at different locations sense the response.
The variation in the sensor’s measured response leads to an estimate of the variation in the
structural condition. These techniques are considered suitable for mid-range assessment
and require sophisticated equipment and a static environment for signal induction. Thus,
using these technologies for MiC module structure monitoring during highly dynamic and
non-stationary logistic operations is unsuitable.
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Table 1. Commonly used sensing technologies for structural response monitoring.

Technology Sensors Features

Vibration-based Accelerometers Global range, limited resolution, sensitive to environmental
conditions and disturbances

Strain-based Foil Strain Gauge, Piezoelectric
Sensors, FBG Sensors

Local range, limited resolution, high sensitivity, sensitivity to
environmental conditions, accurate damage quantification,

Guided waves Piezoelectric Sensors Mid-range, high sensitivity, not suitable for thick composite
materials, sensitive to noise

Acoustic emission PZT acoustic wave sensors, AE
probes

Mid-range, not suitable for thick composite materials, sensitive
to noise

On the other hand, strain gauge and vibration sensors do not require any standard
signal induction, and they measure variation in the structural response under different envi-
ronmental and loading conditions. Strain gauge sensors can directly estimate the structural
deformation or displacement locally. Meanwhile, variations in the vibration response can
help assess global structural changes. Also, linear vibrations and rotational speed variations
effectively capture structural movement, which can help estimate the impact of loadings
induced by the motion. A multi-metric sensor containing an accelerometer and gyroscope
would be beneficial for monitoring such motion. Since module lifting, loading-unloading,
and assembly operations involve the tilt and rotation movement of the module, its impact
on the structure and corresponding response must be monitored [16].

Considering the sensors’ sensitivity, range, and portability, the accelerometer for
vibration, gyroscope for rotational speed measurement, and strain gauges are most suitable
for monitoring MiC modules during logistic operations. However, commercially available
accelerometer and strain sensors are not integrated and have separate control, support,
and communication systems, such as computers, wireless gateways, and battery or power
supply. Each MiC module requires a dense array of sensors to monitor logistic operations
effectively. Installing several large commercially available sensing systems on a single MiC
module is impractical.

Recent advancements in the Internet of Things (IoT), sensing technologies, and mi-
crocontrollers have enabled the development of integrated sensing systems. Following
this, Spencer et al. [17] developed modular-type sensor boards (nodes) for acceleration
and strain measurement. Each node has a different sensor or module connected to each
other to make a fully functional sensing system. Fu et al. [18], Won et al. [19], and Sar-
war et al. [20] expanded this system and demonstrated different application scenarios for
monitoring bridges and precast structures. These application scenarios highlighted that
the system has lesser portability, a larger size, and higher power consumption. It has no
sensors to measure rotational speed or tilt, which is essential for monitoring MiC logistic
operations [16]. Furthermore, it requires a PC-based base station closer to the monitoring
site for real-time data acquisition. More recently, Khayam et al. [21] developed a similar
sensing system for monitoring the lifting of prefabricated girders. This system adopts more
advanced MCUs and analog-to-digital converters (ADCs) to enhance strain measurement
efficiency. However, the installed accelerometer range (±2 g) is not enough to measure the
impact of transportation scenarios. Also, the system lacks real-time data transmission and
relies only on built-in SD card storage.

The MiC module requires the installation of several sensing units on each module
to monitor the module structure effectively. Thus, the form factor of the sensing units is
critical. Visibly large sensing units installed on the module may attract the attention of
building occupants and cause interruption. However, the size of previously developed
sensing systems was significantly higher and less desirable for MiC modules. Also, MiC
logistics monitoring requires long-range communication to ensure the real-time monitoring
of modules during transportation from remote areas. Previously developed systems lack
such long-range real-time data transmission capabilities.
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Considering the above-discussed criticality of MiC logistics and the limitations of
existing sensing systems, there is a dire need to develop an integrated, multi-sensing device
to continuously monitor the module’s structural response throughout its logistic operations
and the building use phase. Also, the sensing devices should be compact enough to install
on a module and have real-time wireless communication capabilities. Monitoring the
module’s structural response at each instance during its SC can help predict its structural
health and safety before each upcoming operation, thus allowing decision-makers to make
timely decisions and avoid assembly disruptions. Also, such comprehensive monitoring
will enable structural health to be tracked throughout its lifecycle and proactively plan
maintenance of the MiC building.

Therefore, in this study, (1) a smart wireless sensing system is developed that adopts
microsensing technologies, integrates them in a compact small device that can be easily
installed on a module, and enables IoT-based communication; (2) the developed system
is tested and calibrated to ensure high precision and accuracy; and (3) a field experiment
demonstrates its detailed application for real-time damage assessment and health monitor-
ing of the MiC module during logistics operations. The demonstrated damage assessment
and health monitoring methods help identify possible damage in real-time operations.

The paper is organized into a total of six sections. Following the introduction, Section 2
explains the development process and salient features of the IoT sensing system. Section 3
evaluates accuracy and performance of the IoT sensing system through different tests and
comparisons. Section 4 elaborates on the setup for applying the IoT sensing system to
monitor MiC logistic operations. The damage assessment strategies are also discussed
in this section. Section 5 presents the results of MiC logistic monitoring and discusses
several damage assessment analyses. Finally, Section 6 presents the conclusions and future
recommendations of the study.

2. Developing IoT Sensing System

The standard IoT system’s architecture consists of three essential layers, as shown
in Figure 1 [22]. The first perception layer is the IoT physical node, which consists of
intelligent sensors that gather the required information. The second network layer is
the active communication layer, which transforms the physically sensed information into
organized and logical information and transmits it. This layer stores and processes the
received data, presenting it in more a logical form for the application.
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Following this IoT architecture, the developed system comprises peripheral sensing
units (SUs) and a central communication unit (CU) representing the perception and network
layers of IoT, respectively. The peripheral sensing units are small integrated sensing devices
installed over the MiC module structure, as shown in Figure 2. These units monitor the
structural strains, acceleration, and tilt angle at several points on the structure. Each
peripheral unit is wirelessly synced with the CU and sends real-time data. The central
communication unit (CU) then processes all the received data from all the installed SUs,
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stores data backup, and transmits it to a web server. Further particulars of the developed
system are detailed in the following sections.
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2.1. Peripheral Sensing Unit

The design rationale for the peripheral sensing unit (SU) is based on practical con-
straints during MiC logistics and building use phases. Each MiC module needs several
SUs for effective monitoring of structural performance; hence, a large number of SUs
are required for the whole building. Thus, the development cost for SUs is primarily
focused, and cheaper available components are utilized. Further, the form factor of SU is
kept minimal, making it practically invisible when installed in a module, thus avoiding
any interference to or from the building occupants. First, a double-sided printed circuit
board (PCB) was designed to ensure a minimum form factor for SU development. The
components—microcontroller (MCU), accelerometer, gyroscope, strain gauge analog-to-
digital converter (ADC), Wheatstone bridge, a battery, and some connectors—are mounted
on the designed PCB for manufacturing the SU.

The Xiao ESP32S3 (Seeed Studio, Shenzhen, China) is used as an MCU to control IMU
and ADC functions and further process the data. The Xiao ESP32S3 is a tiny but robust
MCU offering a 240 MHz 32-bit LX7 dual-core processor, enabling enough computational
power to handle complex machine learning models as well. It supports integrated 8 MB
PSRAM and 8 MB Flash, WiFi 2.4, and Bluetooth 5.0 while consuming 108 mA power
at peak performance and 14 µA in sleep mode. The LSM6DS3 inertial measuring unit
(IMU), containing integrated 3-axis accelerometer and gyroscope sensors, is used. It’s a
high-performance, low-noise IMU that consumes 0.42–1.25 mA power while measuring up
to ±16 g acceleration and ±2000 dps angular/rotational speed [23].

An HX711 ADC (Avia Semicon, Xiamen, China) is utilized to read signals from two
strain gauges. HX711 is a two-channel ADC widely used as a load cell and is a cheaper
alternative. This 24-bit signal amplifier converts the strain signal from strain gauges to
digital values (0–1023) [24]. A four-wire Wheatstone bridge configuration is required to
connect a strain gauge to the ADC. Quarter Wheatstone bridges are configured for each
strain gauge, connecting a strain gauge and three 120 ohm resistors in series.

Moreover, to reduce the current noise and improve the sensor readings, three 100 nf
capacitors are connected to each component. JST Ph2.0 connectors are used to connect the
detachable strain gauges and battery. A 1200 mAh LiPo battery is attached to the circuit
and placed in a compact case. The battery capacity can be enhanced depending on the
requirements. The overall size of the sensing unit is around 35 × 35 × 15 mm, and it weighs
about 160 g.

The SU firmware is programmed using the Arduino IDE. The ESP-NOW wireless
communication protocol is employed in firmware for data transmission between SUs and
CU, enabling peer-to-peer communication. ESP-NOW is highly suitable for continuous
data transmission scenarios as it offers low latency and consumes significantly low power
for peer-to-peer communication [25].
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2.2. Central Communication Unit

The CU is the central unit that connects to all the peripheral units. It can monitor
and control the SU’s functioning, such as battery status, switching to low power mode,
activating/deactivating any sensor, and requesting data transmission. The primary function
of CU is to collect sensor data from all the SUs and transmit that to the server. A built-
in module was used to develop CU, which integrates ESP32 MCU (Espressif, Shanghai,
China), SIM7600 (SIMCom, Shanghai, China) cellular module, GPS, SD, and WiFi. The CU
is also equipped to support large-capacity LiPo batteries and solar charging to enhance its
portability. A mini OLED display is attached to the CU to monitor the status of connected
SUs and control other functions. ESP32 MCU processes the received data from all the
SUs, indexes the data streams, and stores it in the built-in SD card module as a backup.
Meanwhile, the SIM7600 module enables real-time data transmission using a 4G internet
network, ensuring seamless transmission from remote areas and sites where the availability
of WiFi could be an issue. The sensor data communication and storage framework is
elaborated in Figure 3.
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The CU firmware programming employs the MQTT (Message Queuing Telemetry
Transport) protocol for cellular network transmission. MQTT is highly suitable for IoT-
based and high-latency networks as it offers lightweight, asynchronous data transmission
and can retain the messages in the queue [26]. An MQTT-based server is established on
a local computer to receive and log the data. The logged data is conveniently accessible
through .txt, .csv, or Excel file formats for further processing and analysis. Additionally,
the web server publishes real-time plots of the incoming data to monitor the data visually.
Meanwhile, the damage analysis algorithms are programmed in Python, which accesses
the sensor data from the server and publishes the results on the web portal.

3. IoT Sensing System Performance Testing and Calibration

Different tests and calibrations are conducted to ensure the accuracy of the developed
sensing system. The following section explains the evaluation process and results.

3.1. Performance Testing

For performance testing, the SU was placed in a relatively static environment where
the 5 m surroundings were restricted to avoid external interference. The readings measured
in a static environment represent the noise in the accelerometer and gyroscope, as shown
in Figure 4a,b. The 100 min measurements show that acceleration noise in the ±2 g
sensing range has a root mean square error (RMSE) of 0.01, mostly between 0.02 to −0.02 g.
Similarly, the gyroscope has an RMSE of 0.0023, ranging between 0.003 to −0.003 rad/s.
Considering the non-ideal static environment conditions, these results are reasonably
comparable with the standard specifications of the LSM6DS3 IMU [23]. In addition to the
noise, there is another inherent limitation of any gyroscope, called Turn-On Bias [27]. When
a gyroscope is switched on, there will be unstable measurements initially, causing drift
and offset [28]. It can be seen in Figure 4b that the gyroscope measurements show some
drift in the beginning. To deal with this bias, the SU is programmed to record the unstable
measurements at startup and then reduce offset based on initial unstable readings. Thus,
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the remaining measurements become stable, and the offset is reduced to 0.001 rad/s. Such
a minor offset in angular velocity measurements does not affect the relatively calculated
rotations and angles.
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Figure 4. IoT sensing system performance tests under static conditions. (a) Acceleration noise,
(b) Angular Velocity/Gyroscope noise, (c) Strain drift under varying temperature.

Further, the strain gauge measurements were tested against temperature variation.
For this purpose, the SU was placed in a room where an ambient temperature of 24 ◦C was
maintained. When the SU starts, its components (mainly the MCU) generate heat due to
continuous operations. This heat causes the overall device temperature to rise above the
ambient temperature until a balance between the ambient temperature and heat dissipation
is reached. The time to achieve such a balance is critical for strain measurements, as strain
readings are highly sensitive to temperature variations, as shown in Figure 4c. The SU
temperature kept growing for the initial thirty minutes and caused the strain values to drift
despite no external load being applied. The drift in strain measurement stopped after the
balance between the ambient temperature and device heat dissipation was reached, and
the temperature was sustained at 36 ◦C. Similar to the SU’s internal heat dissipation, in
real-world scenarios, variations in the surrounding temperature can also cause disruptions
to the strain measurements.

3.2. Temperature Compensation

A model to compensate for the effect of temperature variation is developed to deal
with the strain drift issue. The drifted strain values were measured against the varying
temperature (24–36 ◦C) for 100 min. The setup was ensured to be static and vibration-free
so that the actual strain remained zero. Then, a second-degree polynomial regression model
of drifted strain against varying temperatures was developed, as shown in Figure 5a. The
coefficient of determination (R2) for the regression model is 0.9397. This regression model
gives the calibration factor to further calculate the actual strain values (Sa), as given in
Equation (1), where Sd is the drifted strain, and x is the temperature. The actual strain
values for this test were calculated using this calibration model and are shown in Figure 5b.
It can be seen that the resultant actual strain values have no drift and are now closer to
zero, with an RMSE of 0.000254 µε.

Sa = Sd + 0.000006x2 − 0.00008x − 0.0011 (1)
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3.3. Performance Comparison with UTM

Finally, the accuracy of the SU is tested by comparing its results with those of a
standard universal testing machine (UTM). For this purpose, a compression test under
cyclic loading on a concrete block is conducted (Figure 6b). The strain gauges connected to
the UTM and SU were installed on opposite sides of the concrete block (Figure 6c). The
test results in Figure 6d show that the SU and UTM strain gauges show minor differences
in strain values, with just a 0.005 µε RMSE. Then, the concrete block started developing
cracks on the SU strain gauge side after the 2nd cycle of loading (115 s). After five loading
cycles (300 s), major crack failure occurred, visible in both the SU and UTM strain values.
Overall, the test results showed promising performance of SU strain measuring, with a
0.011 µε RMSE, despite early cracks on the SU strain side.
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Figure 6. Strain test of the concrete block under cyclic load. (a) Concrete block 50 × 50 mm, (b) Testing
with UTM and SU, (c) Cracked block after test, (d) Comparision of Strain in Concrete block under
cyclic loading.
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4. Application of IoT Sensing System for MiC Logistics Operations

A field experiment was conducted to demonstrate and validate the effectiveness of
the developed IoT sensing system. During the field experiment, structure safety was
monitored in real time for any potential damage during MiC logistic operations. Besides
any critical damage, the overall impact of logistics operations on the module’s structure is
also determined, which is helpful for proactive maintenance during the building use phase.

4.1. Experimental Setup

The experimental setup was designed to emulate real-world MiC logistic operations.
The following sections explain the particulars of the subject module, the sensor installation
process, and the observed logistic scenarios.

4.1.1. MiC Module

Considering time and cost effectiveness, a small wooden frame-based structure was
built to be used as a module. The design of the wooden module was ensured to resemble
the actual MiC module structure. The structural frame of this module was built using
timber bars having a cross-section of 16 × 36 mm, ensuring reasonable structural strength
for the module. The overall dimensions of this module were around 1600 × 500 × 500 mm,
having a total weight of around 80 lbs., as shown in Figure 7a,b. The module walls were
built using thin balsa plywood with a thickness of 4 mm, whereas the bottom base floor
was 16 mm thick. Two timber base supports with a cross-section of 50 × 90 mm were also
affixed at the bottom. The properties of the materials used are given in Table 2.
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Table 2. Material properties of the built module.

Materials Elastic Modulus Density Poison’s Ratio

Timber Frame 14,000 MPa 750 kg/m3 0.18
Balsa Plywood Walls 4000 MPa 300 kg/m3 0.35

4.1.2. SU Installation

The eight SUs were installed on all corners of the module so that the SUs could sense
the whole structure. This arrangement is considered for demonstration and experimental
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purposes in this study. In other cases, fewer SUs may be installed in selected critical and
vulnerable positions on the module. Figure 7c,d highlights the installed SUs’ positions as
S1, S2, . . ., and S8. The SU’s accelerometer will measure the vibrations in three directions:
X, Y, and Z. Additionally, the SU’s gyroscope will measure the angular movements in three
directions: roll, pitch, and yaw, as shown in Figure 7e. For this study, the accelerometer and
gyroscope were set to record measurements at 100 Hz. However, the SU is programmed to
transform the data streams into 1 Hz by taking the mean of 100 Hz data. This approach
facilitates data syncing, real-time transmission, and managing the quantum of data while
ensuring measurement accuracy [29].

Further, each SU can handle two strain gauge sensors installed on adjacent walls at
each corner, as highlighted in Figure 7c,d. The 15 cm long foil strain gauge sensors, having
a gauge factor of 2, are installed at each wall corner. Such a long strain gauge sensor shall
cover a larger corner wall area and sense the maximum strains in the walls. Furthermore,
the strain gauge sensors are positioned at 45 degrees at each wall corner, as shown in
Figure 7c. The transportation and lifting operations of the module induce critical shear
forces in the corners, causing cracks in the walls [11]. Thus, installing strain sensors at
45 degrees will be capable of sensing the maximum possible strain. Hence, the installed
strain gauges can sense any deformation anywhere in the structural element. The value
of the measured strain will indicate the relative impact at the installed position of the
strain and may not directly indicate the damage, but rather the deformation. However, the
relative strain impact of all the installed strains can be used to measure and locate possible
damage in the structural element.

4.1.3. Logistic Operations

The transportation and crane lifting processes were carried out to demonstrate the
MiC logistic operations. For the first 600 s, a crane lifting operation was conducted. Hooks
were installed on the four top corners of the module to tie the crane ropes. The module was
lifted from the resting platform and hoisted around for a few minutes. During the hoisting
process, the module was moved rigorously in all directions to simulate the MiC assembly
process. Then, the crane placed the module on a 4-wheel transportation trolley to simulate
truck hauling. The module was transported around 200 m away to the final destination.
The transportation track involved a rough tile-based track and a relatively smooth asphalt
track. Also, it included several turns and inclined surfaces. The transportation speed varied
at different points corresponding to the conditions, taking a total transportation time of
around 800 s.

4.2. Damage Assessment Methodology

This study presents various analyses to demonstrate how the sensor-measured re-
sponse can be used to identify and estimate the damage in the module. These analyses
analyze the real-time response of different sensors and evaluate the variations to detect
any structural variation, deformation, or damage. The damage assessment strategy has
two phases, as shown in Figure 8. In Phase 1, the damage and safety assessment analyses
utilizing the real-time sensors’ responses are presented. Different individual analyses are
performed for each sensor type to identify the structural variations sensed by it. First,
moving average and expanding average windows analyses are performed for strain sensors
to determine the damage from the real-time sensors’ response. Then, the strain field his-
tograms and the Fast Fourier Transform (FFT) spectrum magnitudes for the accelerometer
and gyro are calculated. Finally, the results of all individual analyses will be compared and
fused to confirm and validate the identified damage and assess its location.



Sensors 2024, 24, 4900 11 of 22Sensors 2024, 24, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 8. Damage Assessment Methodology. 

Other than critical damage or cracks in the module, there could be undetectable de-
terioration in the overall module structure caused by the impacts of logistic operations. 
Such deterioration may reduce a module’s useful life and require early unanticipated 
maintenance. In the second phase, the sensor fusion approach is adopted to estimate the 
overall impact on the module’s health. Sensor fusion involves aggregating the relative im-
pact sensed by each installed sensor. The impact is calculated based on the anomalies in 
the sensor’s response. First, the anomaly detection approach identifies all the significant 
anomalies in the sensors’ measured response. Then, these anomalies are systematically 
aggregated for different sensors to calculate the overall impact on module walls. Further 
details of the damage assessment processes are discussed along with the results in the 
following section. 

5. Damage Assessment Results and Discussion 
During the field experiment, the IoT system provided a real-time response from all 

the sensors installed on the module. The real-time sensor response is plotted to analyze 
the events of logistic operations. The variations in the sensors’ response help estimate the 
nature of the operation and any significant anomaly in that operation. The acceleration 
and gyro time series plots, shown in Figure 9, indicate various module movements during 
crane lifting and transportation operations. The crane lifting operation (between 0–600 s) 
was slow and smooth; thus, low acceleration variations were observed compared to trans-
portation. 

  
Figure 9. Real-time data trend of (a) Acceleration, and (b) Gyro/Angular Velocity 

Similarly, the gyro response indicates restricted roll rotation as the module was tied 
at four corners during the lifting operation. On the other hand, the slight variations in yaw 
and pitch values during 150 to 300 s indicate the free movements of the hanging module. 
During transportation, the rough road section is highlighted by the high acceleration and 
gyro response in all directions from 770 to 1220 s. 

The strain sensors’ real-time response is shown in Figure 10. Despite the rigorous 
module movements in multiple directions, low strain variation is observed during crane 
lifting. This was due to the low hanging weight of the wooden module and the relatively 
smooth lifting operation. The sensors installed at the back and front module walls 

-20

-5

10

25

40

1 201 401 601 801 1001 1201 1401

Ac
ce

le
ra

tio
n 

(g
)

Time (Sec)

(a)

aX aY aZ

Crane Lifting Transportation

-1
-0.5

0
0.5

1
1.5

2

1 201 401 601 801 1001 1201 1401

An
gu

la
r v

el
oc

ity
(r

ad
/s

)

Time (Sec)

(b)

Roll Pitch Yaw

Crane Lifting Transportation

Figure 8. Damage Assessment Methodology.

Other than critical damage or cracks in the module, there could be undetectable
deterioration in the overall module structure caused by the impacts of logistic operations.
Such deterioration may reduce a module’s useful life and require early unanticipated
maintenance. In the second phase, the sensor fusion approach is adopted to estimate the
overall impact on the module’s health. Sensor fusion involves aggregating the relative
impact sensed by each installed sensor. The impact is calculated based on the anomalies in
the sensor’s response. First, the anomaly detection approach identifies all the significant
anomalies in the sensors’ measured response. Then, these anomalies are systematically
aggregated for different sensors to calculate the overall impact on module walls. Further
details of the damage assessment processes are discussed along with the results in the
following section.

5. Damage Assessment Results and Discussion

During the field experiment, the IoT system provided a real-time response from all
the sensors installed on the module. The real-time sensor response is plotted to analyze
the events of logistic operations. The variations in the sensors’ response help estimate
the nature of the operation and any significant anomaly in that operation. The accelera-
tion and gyro time series plots, shown in Figure 9, indicate various module movements
during crane lifting and transportation operations. The crane lifting operation (between
0–600 s) was slow and smooth; thus, low acceleration variations were observed compared
to transportation.
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Figure 9. Real-time data trend of (a) Acceleration, and (b) Gyro/Angular Velocity.

Similarly, the gyro response indicates restricted roll rotation as the module was tied at
four corners during the lifting operation. On the other hand, the slight variations in yaw
and pitch values during 150 to 300 s indicate the free movements of the hanging module.
During transportation, the rough road section is highlighted by the high acceleration and
gyro response in all directions from 770 to 1220 s.

The strain sensors’ real-time response is shown in Figure 10. Despite the rigorous
module movements in multiple directions, low strain variation is observed during crane
lifting. This was due to the low hanging weight of the wooden module and the relatively
smooth lifting operation. The sensors installed at the back and front module walls observed
comparatively slight variation. However, these variations reach a maximum of 0.0045 µε,
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which is insignificant for a wooden module considering its material flexibility and cannot
be confirmed as damage without detailed investigation.
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Figure 10. Real-time data trend of strain measurements.

Similarly, the strain values observed significant variation at the end of the crane
operation as the module was placed on the transportation trolley. Such variation could
be due to re-adjusting wooden parts according to the new support conditions, or it may
indicate some damage. However, distinguishing such variations as damage requires
additional analysis and investigation. Following that, during transportation, some of the
sensors observed a slight drift that could indicate damage propagation under the vibrations
induced by the rapid movement on the road.

5.1. Real-Time Damage and Safety Assessment

Several real-time exploratory analyses are performed to identify potential damage
and its location. These analyses can help decision-makers investigate the sensors’ response
in detail and assess possible damages while evaluating the relative response of sensors
installed at various locations on the module. Further evaluation and comparison of all
these analyses confirm the damage and its locations on the module.

5.1.1. Moving Average Window

The general sensors’ response trends visualizations may not be helpful enough to
predict damage in the module. Thus, the moving average window (MAW) is further
analyzed to investigate the real-time sensor’s response. This analysis represents the mean
sensor response of a short period, called a window. This approach reduces the noise in the
sensor response and represents actual changes that occurred in the structure [30,31]. A 30-s
window is selected so that any point in the plot represents a structural change during that
period. Such an approach is highly useful for real-time safety monitoring [32].

It can be seen in the moving average window plot, shown in Figure 11, that a significant
strain change starts during transportation operations. For the right and back walls, the
strain change remains less than −0.008 µε for all the sensors. On the other hand, the left
and front walls experienced significant strain changes for most of the sensors attached.
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The sensors S2B_t show high strain displacement at the beginning of the transportation
operation but later return to the average strain trend. The S7A_b sensor shows moderate
strain displacement reaching −0.01 µε. The sensors S7B_b, S4A_t, S3B_t, and S6B_b show
the most critical response, where strain displacement keeps propagating and reaches up to
0.014 µε.
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5.1.2. Expanding Average Window

Like the moving average window, the expanding average window (EAW) calculates
the mean strain values. However, instead of using a moving window, all the previous data
are considered to calculate the mean strain value for every new point. Such an increasing
window size optimally smoothens the window and helps estimate the accumulated varia-
tion in the sensor response [31]. Thus, the expanding average window analysis shows a net
structural deformation occurring at any plot point.

The expanding window plot in Figure 12 highlights critical sensors similar to the
moving average window. However, it shows more evident variations in the sensor response
and indicates mean net structural deformations. The lines remain horizontal and closer
to zero strain, indicating a net-zero deformation in the structure, and lines moving away
from zero signify structural deformations. The sensors installed on the right and back walls
mostly show nearly horizontal lines closer to zero, thus revealing insignificant deformation
in the adjacent walls. On the front wall, three sensors, S3B_t, S6B_b, and S7B_b, show a
sharply deviating structural response, indicating evident deformation. Similarly, sensors
S4A_t and S7A_b on the left wall show significant deformation.

5.1.3. Strain Field Histograms

The strain field histogram (SFH) helps to compare the frequencies of the discrete
strain response values measured over time. Peak strain frequency indicates the amplitudes
of various strain measurements, highlighting the variation in the measured response of
several installed sensors [33]. Such variations may indicate changes in structural conditions
near those sensors [30,34,35]. The SFH plots shown in Figure 13 suggest that the strains’
range or spread is higher in the sensors installed on the left and front walls, reaching up
to −0.0150 µε. The sensors installed on the right and back walls measured the maximum
strain displacement of around −0.0075 µε. The sensors S4A_t and S7A_b on the left wall
and S3B_t and S7b_t on the front wall notably measured an abnormal response compared
to other sensors. Also, unlike other sensors, the sensor S2B_t measured abnormal strain
values up to 0.0025 µε. The identified discrepancies in the sensor response led to estimating
and locating the damage on the module walls.
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5.1.4. Fast Fourier Transformation

A Fast Fourier Transformation (FFT) analysis is conducted to evaluate the acceleration
and gyro sensors’ response. The FFT magnitude provides the relative strength of various
frequency components measured by each sensor. In the FFT spectrum, a distinguished
higher magnitude frequency component called the dominant frequency represents the
essential characteristics of the logistic operations [36]. In other words, the dominant
frequencies indicate the primary structural response under the operations. Thus, if the
dominant frequencies of sensors installed at various locations show any variation, it would
suggest a change in the structural conditions at that point, i.e., structural damage [32,37].

Figure 14 shows the FFT spectra of acceleration and gyro responses observed for
SU-S8. The FFT of each sensor shows multiple dominant frequencies (peaks) representing
the non-stationary dynamic characteristics of MiC logistic operations. During all logistic
operations, most module movements were along the vertical direction and the shorter
side of the module, i.e., the x and z-axes, respectively. Thus, acceleration in the x and
z-directions has more dominating frequencies. Meanwhile, the y-acceleration has only
one distinguished high-magnitude frequency (nearly 0 Hz, called the DC component),
representing a dominant average structural response. The modules mostly remained tied
along the y-axis and did not experience any significant movements along this axis. For the
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same reasons, the roll rotation has fewer distinguished frequency components for the gyro
than the pitch and yaw rotations.
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The FFT plots provide complex information, so comparing visualizations may not eas-
ily highlight or distinguish any variation. Therefore, all the installed sensors’ interquartile
ranges (IQR) are calculated to compare and evaluate the dominant frequencies. The values
higher than the 3rd quartile can easily accommodate a signal’s significant dominant fre-
quencies. Similarly, the standard deviation (SD) of an FFT magnitude highlights the spread
of the FFT magnitudes across the signal; any considerable variation in SD would indicate a
change in structural response near that sensor. Thus, the SD and 3rd quartile can be critical
indicators of variation in the structural response [37,38]. Comparing these indicators of
sensors installed at different locations can highlight structural change. Table 3 presents
the 3rd quartiles and standard deviations (interquartile range) of all the acceleration and
gyro sensors.

Along the x-axis, the acceleration and yaw rotations do not differ much across different
sensors. Due to a complicated dynamic structural response in this direction, it has high
noise and several distinguishing FFT magnitude peaks, leading to high SD and 3rd quartile
values. Therefore, these sensors may not be suitable for detecting abnormalities. In contrast,
along the y and z-axes, the acceleration and rotations have comparatively less noise and



Sensors 2024, 24, 4900 16 of 22

clear FFT magnitude peaks, thus revealing apparent differences across the sensors. The
y-acceleration 3rd quartiles (61.47 a. units) and SD (27.80 a. units) of S1 are significantly
higher than those of the other sensors. Similarly, the roll and pitch rotations of S7 and S8
showed minor differences.

Table 3. FFT Spectrum Interquartile Range.

SU
X-Accel Y-Accel Z-Accel Yaw Roll Pitch Net

Z-Scoresstd 3rd Q std 3rd Q std 3rd Q std 3rd Q std 3rd Q std 3rd Q

S1 380.89 133.82 27.80 61.47 32.30 46.68 3.22 5.54 3.25 3.23 2.06 4.60 0.83
S2 408.98 147.20 20.57 37.61 35.54 51.35 3.10 5.38 2.98 3.98 1.85 4.14 0.80
S3 383.45 123.39 17.06 39.90 35.38 87.06 3.33 5.60 3.15 4.78 1.89 3.01 0.61
S4 383.45 123.35 17.06 39.85 35.38 86.91 3.33 5.60 3.15 4.77 1.89 3.01 0.61
S5 376.62 142.55 14.02 33.62 23.22 46.66 3.30 5.44 3.25 5.05 4.76 3.30 0.97
S6 374.30 121.07 13.20 29.72 42.03 52.94 3.55 5.76 2.92 3.05 2.34 4.68 1.03
S7 381.55 120.93 15.08 32.02 22.77 53.75 3.34 5.44 2.07 5.07 1.54 3.17 0.90
S8 385.82 125.09 26.06 28.75 29.65 75.08 3.10 5.34 2.73 3.34 3.07 4.99 0.87

To compare the discrepancies systematically and statistically at the locations of dif-
ferent sensors, the normalized impacts of all the 3rd quartiles and SDs are combined by
calculating net mean z-scores, as given in Table 3. The highest z-score of S6 (1.03) indicates
that the most variation has been sensed near this location, followed by S5 (0.97), S7 (0.90),
and S8 (0.87). The 3rd quartile and SD values of acceleration and rotations for these sensors
seem significantly abnormal compared to other sensors. Thus, damage is suspected to be
closer to the locations of these sensors.

5.1.5. Damage Localization—Analyses Fusion

The analyses above highlight the potential damage in the structure while highlighting
the critical sensors that sensed the most abnormal variations in the structural response. As
a result, each identified critical sensor could have sensed the same damage from a distant
location, or each analysis could have indicated different damage. Therefore, analyses fusion
was performed to combine and compare all analysis results to confirm the damage and their
respective locations. First, the critical sensors identified by each analysis are categorized
into high, moderate, and low categories based on their variation criticality. Sensors in each
category indicate that, for instance, the damage is either minor or away from the sensor
location. Then, the categorized sensors in each analysis are compared and combined as
analyses fusion in Table 4.

Table 4. Analyses Fusion for Locating Damages.

Category MAW EAW SFH FFT Analyses Fusion
Impact Location

Front Right Back Left

High
S4A_t,
S6B_b,
S3B_t

S4A_t,
S6B_b,
S3B_t

S4A_t,
S3B_t S6 S4A_t, S6B_b, S3B_t, S6 ✓✓✓ ✓ ✓

Moderate S7B_b,
S7A_b

S7A_b,
S7B_b

S6B_b,
S7A_b,
S7B_b

S5, S7 S7B_b, S7A_b, S5, S7 ✓✓ ✓ ✓ ✓✓

Low S2B_t - S2B_t S8 S2B_t, S8 ✓ ✓ ✓

The results highlight that the front and back walls experienced high and moderate
levels of damage, respectively. On the front wall, the sensors S6, S6B_b, and S3B_t indicate
high response variations, confirming critical damage on this wall closer to these sensors.
The sensors S7 and S7B_b sensed moderate variations on the front wall, thus indicating
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the damage location is away from them. Similarly, the S2B_t sensor also sensed a low
variation response on this wall, thus indicating the location of critical damage away from it.
Considering the locations and relative impact sensed by these sensors, the approximate
location of the damage can be estimated using a triangulation approach [39]. The high
variations sensed by S6B_b and S3B_t imply the damage location is in the middle of the
diagonal between these two sensors. The moderate and low variations sensed by S7B_b and
S2B_t suggest that the damage should be a little left and lower than the middle diagonal of
S6B_b and S3B_t, as highlighted in the illustration in Table 4.

On the left wall, the S4A_t sensor sensed a high response variation, indicating signifi-
cant damage on this wall. Similarly, the sensors S7 and S7A_b, installed on the bottom right
corner of this wall, also sensed moderate response variations. S8 sensed low variations
at the bottom left corner of this wall. Now, triangulating the relative impact sensed by
each of these sensors, the approximate location of the damage is predicted, as illustrated
in Table 4. The back and right walls did not experience any significant damage. Only
FFT analysis highlighted sensors S5 and S8 attached on the corners of the back and right
walls. However, variations in these sensors are confirmed to be related to the front and
left walls. The above-identified damage on the module walls can also be realized in the
actual module, as shown in Figure 15. Due to the wooden material of the module, they are
hard to see visually. The damage and location predicted on the left wall are similar to the
actual damage in the module. However, the predicted location of damage to the front wall
is lower than the actual location. This assessment variation is possibly due to the module’s
loosely fixed top roof plane during the experiment, which interrupted the response of the
sensors installed at the top corners.
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Figure 15. Predicted and actual damage locations. (a) predicted damage, (b) damage in left wall,
(c) damage in front wall.

5.2. Module’s Health Impact Assessment

Besides any critical cracks or damage in the module structure, some hidden, intrinsic
underlying minor latent damage could remain undetectable. Such minor damage is induced
in the structure due to rigorous MiC logistic operations and can further propagate into
critical damage during the building use phase. Therefore, it is essential to assess the overall
impact of logistic operations on the health of the module structure. Such an assessment can
help devise a proactive maintenance schedule for the module and improve the module’s
useful life. The adopted approach exploits the typical anomaly detection approach, as
all the abnormal logistic impacts are accumulated to calculate the relative impact over
different module parts. For anomaly detection, any sensor response in a moving window
exceeding the defined threshold is identified as an anomaly [32,40]. Considering a 30-s
moving window and one SD (standard deviation) as a threshold, all the anomalies sensed
by each sensor were detected. A programmed model detected all the anomalies in real time
during the logistic operations, as shown in Figure 16.
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The weight of each anomaly during logistic operation is assessed and categorized as
high, moderate, and low according to their relative weights. Anomalies are systematically
aggregated to calculate a total weighted sum of anomalies for each category at each module
wall. Different types of sensors may have varying accuracies when measuring the structural
response. Therefore, the impacts experienced by strain, accelerometer, and gyro are also
compared individually by comparing the average impacts for each wall and considering
equal weights for all types of sensors. The results assessed by the accelerometer suggest
different patterns of impacts on the module walls.

In contrast to the previous real-time safety assessment and strain-assessed impacts,
the accelerometer assessed the highest impact on the right wall (17.52%) and no impact
on the left wall. The impacts on the front and back walls also vary according to the strain
sensor assessment. Such variation could be due to the high precision of the strain sensor
for assessing closer impacts in contrast to the accelerometer, which can also assess the
response from farther locations. Thus, the strain gauge should be considered more relevant
for evaluating significant local damage, such as cracks or deformations. However, the
acceleration-based assessment could be more useful when assessing the overall structural
changes during the stationary building use phase.

The gyro-based impacts followed the strain-based impacts and real-time safety and
damage assessment results. However, the estimated values are much lower than the strain-
assessed impacts. This is because gyro assessment is based on rotational movements rather
than assessing direct local impacts. However, the pattern similarity of strain and gyro-
assessed impacts signifies that the rotational movements affected the module structure
more than the vibrational movements. Further, comparing the impacts experienced by
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different types of sensors can lead decision-makers to combine the impacts of different
sensors and evaluate the total average impacts on the module. The equally weighted
average of all the sensors’ impacts was aggregated. Overall, the front and right walls
experienced the most impact, 8.79% and 8.70%, respectively. Significantly, the right wall
did not experience any critical damage, as assessed in the previous section. However, the
anomalies assessed on this wall highlighted the possible effect on the overall health of this
wall compared to the left wall.

Table 5 compares the total, high, moderate, and low impacts experienced by different
module walls. The front and right walls are the most affected by the high-level anomalies,
which is also evident from the critical damage detected in the previous real-time assessment.
Furthermore, the back wall experienced a moderate impact (10.89%), as assessed by the
strain sensors. Notably, the right wall did not reveal any critical damage in the previous
assessment, but it experienced significantly high anomalies affecting its overall health
(9.35%).

Table 5. Overall Module’s Health Impact Based on Sensor Fusion Scenarios.

Location Right Wall Back Wall Left Wall Front Wall

Strain Only Impacts

High 9.35% 0.00% 13.55% 22.90%
Moderate 1.25% 10.89% 9.64% 0.00%

Low 1.56% 0.03% 0.00% 1.53%
Total Impact 12.15% 10.92% 23.19% 24.42%

Acceleration Only Impacts

High 17.52% 8.91% 0.00% 8.61%
Moderate 8.65% 5.08% 0.00% 3.57%

Low 0.00% 1.81% 2.31% 0.50%
Total Impact 26.17% 15.81% 2.31% 12.67%

Gyro Only Impacts

High 5.14% 1.81% 0.00% 3.33%
Moderate 0.00% 1.06% 2.95% 1.90%

Low 0.67% 0.00% 1.40% 2.07%
Total Impact 5.82% 2.87% 4.35% 7.30%

Equal Weighted Average Impacts

High 7.09% 0.00% 0.94% 8.04%
Moderate 1.48% 3.85% 2.38% 0.00%

Low 0.13% 0.00% 0.62% 0.75%
Total Impact 8.70% 3.85% 3.94% 8.79%

6. Conclusions

The study embraces the real-time monitoring of the module’s structure during MiC
logistic operations. A smart, integrated, portable, IoT-based sensing system is designed to
ensure its practicality for MiC logistics. A smaller form factor of sensing units is achieved to
keep it practically invisible while installed on a module. The developed sensing system was
calibrated by incorporating temperature compensation factors and turn-on bias elimination.
The sensing system’s performance is thoroughly tested under different conditions, and its
accuracy is found to be comparable to that of standard commercial equipment like UTM.

The module’s real-time structural condition monitoring enables early damage detec-
tion, allowing timely decisions to avoid supply chain disruptions. Also, it can improve the
on-site safety inspection process while providing more insights into the module’s structural
condition, increasing inspection speed, and highlighting the latent damages. Moreover, the
safety of the real-time assembly process can be monitored. The sensing system provides
detailed structural response data of logistic operations, which is useful for predicting the
module’s structural creep and forecasting maintenance during the building use phase.
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Thus, the system helps to ensure the JIT supply chain for MiC assembly, enhances assembly
process safety, and helps to improve the module’s service life.

The application of the developed sensing system is demonstrated with a field experi-
ment, and various analyses are presented to detect critical damage and assess the overall
impact on the module’s health. The demonstrated field experiment not only evaluated the
system’s effectiveness but also highlighted the effectiveness of different sensors in assessing
the structural condition. The strain sensors are found to be more sensitive toward structural
deformation and are directly helpful for determining critical damage and its location. On
the other hand, acceleration data are less sensitive but more helpful for assessing global
structural deformations and overall structural health assessment. The gyroscope sensor’s
accuracy in predicting damage advocates its relevance but shows a complex relationship
requiring deeper and more complicated analyses. Such insight can help understand the
optimum number of sensing units required during the logistics and building use phases
and the most suitable locations for installing sensors. However, further elaboration needs
future research with this perspective in particular. Such future elaboration can also help
improve the device and its performance. Moreover, the developed system is demonstrated
using a wooden module for cost-effectiveness. However, further validation is needed for
steel and concrete types of modules.

The developed sensing system employs state-of-the-art micro technologies, which
can embed Artificial intelligence (AI) algorithms on the device. This feature allows for
instantly sensing, assessing, and predicting the structural condition on the device, reducing
the raw sensor data transmission and processing requirement and, hence, improving
portability. The sensing system opens new research avenues for researchers by accessing
detailed information on structural responses during logistic operations. It will help to
understand the structural dynamics under various scenarios of module handling during
logistic operations. It will help improve the structural design and the module logistics
strategies to save costs and time. Also, in the future, the sensing device can be further
developed to facilitate the automation of the assembly process.
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