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Abstract: In the domain of supervised learning, interpolation and extrapolation serve as crucial
methodologies for predicting data points within and beyond the confines of a given dataset, respec-
tively. The efficacy of these methods is closely linked to the nature of the dataset, with increased
challenges when multivariate feature vectors are handled. This paper introduces a novel prediction
framework that integrates interpolation and extrapolation techniques. Central to this method are
two main innovations: an optimization model that effectively classifies new multivariate data points
as either interior or exterior to the known dataset, and a hybrid prediction system that combines
k-nearest neighbor (kNN) and linear regression. Tested on the port state control (PSC) inspection
dataset at the port of Hong Kong, our framework generally demonstrates superior precision in
predictive outcomes than traditional kNN and linear regression models. This research enriches
the literature by illustrating the enhanced capability of combining interpolation and extrapolation
techniques in supervised learning.

Keywords: interpolation; extrapolation; k-nearest neighbor (kNN); linear regression; ship deficiency
prediction

1. Introduction

Consider a dataset SN = {(xi, yi) : i = 1, . . . , N}, where xi ∈ X ⊆ Rp is an input
feature vector, p is the dimension of xi, and yi ∈ Y ⊆ R is a corresponding univariate
response variable. Assuming that the data points (xi, yi) are independently drawn and
identically distributed from a probability space X × Y, the goal of supervised learning is
to learn a function f that bridges this finite dataset SN to the encompassing space X × Y.
Once f is well estimated, it can be used to predict the conditional mean of the response
variable for a new feature vector x0 through f (x0).

1.1. Interpolation and Extrapolation

Interpolation and extrapolation serve as two primary frameworks in supervised learn-
ing algorithms ranging from function approximation to deep learning [1], with applications
spanning engineering [2], science [3], economics [4], and statistics [5]. Interpolation pre-
dicts a new sample’s target value based on known data points within a specified range [6].
Minda et al. [7] compared the most common interpolation methods. It is vital to note that
to make interpolation applicable, the new observation must lie within the known sample
space. For instance, k-nearest neighbor (kNN) is a good example method of interpolation.
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It finds a sample’s nearest neighbors in a local subspace that centers around the sample
under the defined distance metric (e.g., Euclidean distance). As shown in Figure 1, the
target value of a new observation x0, which falls within the known data range, can be
approximated as f in(x0) = [ f (x1) + f (x2) + f (x3)]/3, where x1, x2, and x3 are the three
nearest training points to x0. For interpolation, a critical consideration is selecting the
appropriate interpolation function. Over the years, various functions have emerged, in-
cluding linear interpolation, polynomial interpolation, and spline interpolation [8], which
have varying properties including accuracy, computational cost, data point requirements,
and functional smoothness. Linear interpolation, while simple and fast, may not capture
complex relationships between features and targets [9]. Polynomial interpolation, utilizing
the lowest-degree polynomial to fit all data points, includes methods like Newton and
Hermit interpolations [10]. Challu et al. [11] proposed neural hierarchical interpolation
for time series (NHITS), a model integrating hierarchical interpolation and multi-rate data
sampling methods. Sekulić et al. [12] investigated the significance of incorporating obser-
vations from the nearest locations along with their distances from the target prediction
site through the implementation of random forest spatial interpolation (RFSI). Although
polynomial interpolation can offer higher precision than linear interpolation, it is computa-
tionally intensive and may exhibit oscillations. Nearest-neighbor interpolation, a zero-order
polynomial interpolation, assigns the value of an interpolated point based on its nearest
existing data point(s).
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Figure 1. An illustrative example of interpolation.

Extrapolation is inherently more challenging than interpolation, as it predicts outside
the known data space. Linear extrapolation posits a linear relationship between features
and targets, offering simplicity but sometimes missing underlying distribution complexities.
As shown in Figure 2a, using a function f ex fitted for known points via linear extrapolation
techniques, the target value of the new observation x0, which falls outside the known
data space, can be approximated as f ex(x0). Polynomial extrapolation can fit non-linear
data effectively, as shown in Figure 2b. Selecting the appropriate extrapolation method
requires understanding the data’s inherent characteristics, e.g., whether they are contin-
uous, smooth, or periodic. Incorporating domain knowledge often proves valuable for
extrapolations [13]. Webb et al. [14] addressed the challenge of learning representations
that facilitate extrapolation and proposed a novel visual analogy benchmark that enables a
graded assessment of extrapolation based on the distance from the convex domain defined
by the training dataset. Zhu et al. [15] systematically explored the extrapolation behavior
of deep operator networks through rigorous quantification of extrapolation complexity and
proposed a novel strategy involving bias–variance trade-off for extrapolation.
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Figure 2. Illustrative examples of extrapolation: (a) linear extrapolation; (b) polynomial extrapolation.

The effectiveness of extrapolation relies on the assumption about the functional
form [16]. In Figure 3, which illustrates three known data points (from x1 to x3), the
true curve is a third-order polynomial (solid black line), but the polynomial extrapolation
wrongly assumes a quadratic polynomial curve (black dashed line). This underscores
that extrapolation is inherently uncertain, with a heightened risk of yielding misleading
results. Such issues are optimally mitigated when the functional forms assumed by the
extrapolation technique closely mirror the underlying nature of the data.
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Interpolation and extrapolation can be viewed as linear approximation methods
within the unit disk of the complex plane [17]. The most effective methods identified
for interpolation and extrapolation include widely adopted techniques such as cubic
spline interpolation and Gaussian processes regression [18]. Rosenfeld et al. [19] provided
a rigorous demonstration that extrapolation poses significantly greater computational
challenges than interpolation based on reweighting of sub-group likelihoods, while the
statistical complexity remains relatively unchanged.



Appl. Sci. 2024, 14, 6414 4 of 17

Interpolation and extrapolation, while serving distinct roles, are both crucial for
making predictions from data. Interpolation is primarily employed to fill gaps in existing
records, acting as a bridge to seamlessly integrate missing data within known boundaries,
and kNN serves as a predictive model with good interpolation abilities. On the other hand,
extrapolation goes beyond these bounds, making predictions for entirely new observations
based on the trends and patterns identified in the existing dataset, and linear regression
serves as a predictive model with good extrapolation abilities. The accuracy and efficacy of
these methods, however, are heavily influenced by the context in which they are used.

When working with a univariate feature variable, classifying a new data point as
either interior or exterior to the known dataset is relatively straightforward. If the point
falls within the dataset’s range, interpolation is the method of choice. Conversely, if it lies
outside this range, extrapolation should be employed. However, the task becomes more
difficult with a multivariate feature vector. In such cases, the task of determining whether
a new data point is interior or exterior to the existing feature space grows complex. The
presence of multiple dimensions can lead to scenarios where a point might be deemed
interior in one feature dimension but exterior in another. Consequently, this complexity
gives rise to a pressing research question: How can the intricacies of multivariate data be
effectively dealt with by leveraging the strengths of both interpolation and extrapolation while
mitigating their limitations?

1.2. Contributions and Organization

To address the above research question, we establish a mathematical programming
model to classify whether a new multivariate data point is interior or exterior to the
known dataset. By solving the established optimization model, we obtain the defined
centrality coefficient of the new data point. Accordingly, we propose a novel hybrid
prediction framework that integrates both interpolation and extrapolation methods by
taking advantage of the centrality coefficient. If the new observation is an interior point to
the known dataset, we can use prediction methods with good interpolation abilities, such
as kNN. Otherwise, we can use prediction methods with good extrapolation abilities, such
as linear regression. Consequently, our hybrid prediction framework takes advantage of
both interpolation and extrapolation abilities.

Our framework distinguishes itself from the existing interpolation and extrapolation
methods in several ways:

1. It can handle both interior and exterior data points without prior knowledge or
assumptions;

2. It flexibly selects the optimal prediction strategy by considering the centrality coeffi-
cient obtained from the optimization model;

3. It enhances the precision of predictions by harnessing the collective power of both
interpolation and extrapolation abilities.

As a practical application, we harness our framework to address the ship deficiency
prediction problem using the port state control (PSC) inspection dataset for the port of
Hong Kong. A comparative analysis against the simple uses of kNN and linear regression
reveals that our model excels in specific scenarios. This paper, therefore, stands as a
valuable addition to the literature, offering a refreshed and effective method that melds the
advantages of both interpolation and extrapolation.

The remainder of this paper is organized as follows. Section 2 presents our opti-
mization model for classifying exterior or interior data points and describes our hybrid
framework combining kNN and linear regression. Section 3 describes the numerical experi-
ments within the considered case study, focusing on ship deficiency prediction. Section 4
concludes our paper and suggests future research directions.

2. Problem Statement and Model Setup

In this section, we introduce a prediction framework that integrates interpolation and
extrapolation. In Section 2.1, we develop a mathematical optimization model to determine
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the centrality coefficient of new data points. Following that, Section 2.2 outlines our hybrid
approach, which merges kNN and linear regression.

2.1. Optimization Model M0

In our predictive framework, a pivotal decision revolves around classifying a new
observation as either an interior or an exterior point relative to the known dataset. This
distinction is important for choosing which method to use for prediction. In this paper, the
kNN model is used for predicting interior points by interpolation, and linear regression
is used for predicting exterior points by extrapolation. Consequently, pinpointing this
classification is of paramount importance.

To this end, we introduce the optimization model M0. Model M0 harnesses a linear
programming model to decisively categorize the new observation. Its core principle is
to compute the shortest distance between the new observation and the known dataset’s
convex hull, which represents the smallest convex set encompassing all dataset points.
A zero minimum distance suggests that the observation resides within the convex hull,
designating it as an interior point. Conversely, a positive minimum distance indicates the
observation’s position outside the convex hull, categorizing it as an exterior point. Table 1
shows all of the notations needed in the optimization model.

Table 1. Notations in the optimization model.

Parameters

SN = {(xi, yi) : i = 1, . . . , N}
A dataset with N known samples,
xi ∈ X ⊆ Rp, yi ∈ Y ⊆ R, where p is the
dimension of input feature vector xi.

x0 =
(

x1
0, . . . , xp

0

)
A new data point.

Decision variables

λ(x0) = [λ1(x0), . . . , λN(x0)]

The weighted vector for the new data point x0,
where λi(x0) represents the weight of data
point (xi, yi)(i ∈ {1, . . . , N}) in relation to the
new data point.

To ascertain the distance between a new observation x0 and the known dataset’s
convex hull, we formulate the optimization model, termed M0, as follows:

min
λ(x0)

∣∣∣∣∣ N

∑
i=1

λi(x0)xi − x0

∣∣∣∣∣ (1)

subject to
N

∑
i=1

λi(x0) = 1 (2)

λi(x0) ≥ 0, ∀i ∈ {1, . . . , N}. (3)

Objective Function (1) aims to minimize the Manhattan distance between x0 and the convex
hull defined by the known dataset. The optimal value of this objective function is termed
the centrality coefficient, gauging the proximity of the new data point relative to the dataset.
Constraint (2) ensures the sum of weights for all of the known data points equals one.
Constraints (3) define the domains of the decision variables.

Defining λ∗(x0) =
[
λ∗

1(x0), . . . , λ∗
N(x0)

]
as the optimal solution obtained by solving

the optimization model, we have

d∗(x0) =

∣∣∣∣∣ N

∑
i=1

λ∗i (x0)xi − x0

∣∣∣∣∣,
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which denotes the centrality coefficient of x0 and serves as the deciding factor for choosing
between interpolation and extrapolation methods for x0. If d∗(x0) = 0, this represents that
the new data point is an interior point with respect to the known dataset. If d∗(x0) > 0, this
represents that the new data point is not an interior point to the given dataset; that is, the
new data point has an exterior nature relative to the given dataset.

Before applying our optimization model to classify the new observation as exterior or
interior, we need to tackle two challenges. First, numerical features are naturally integrated
into our optimization model without the need for additional processing. However, cate-
gorical features pose a unique challenge. These categorical data points do not have a clear
numerical relationship, making it challenging to directly measure the categorical distance
in our model. Second, the current form of our objective function is non-linear due to the
absolute term, which can be challenging to handle for many commercial solvers. To resolve
this, we need to convert it into an equivalent linear form.

2.1.1. Pre-Processing Procedures for Categorical Features

Given the feature sets, we assume that the index set of categorical features is denoted
by C, and the index set of numerical features is denoted by U; thus, we have |C|+ |U| = p.
Our challenge revolves around appropriately integrating categorical features c (c ∈ C) into
the optimization model, while numerical features u (u ∈ U) do not pose such a concern.

To accommodate the categorical features, one-hot encoding is employed. Essentially,
this process takes a categorical feature and produces binary columns for each category of
the feature. Assume that feature c (c ∈ C) is a categorical feature with lc categories; for
xi (i ∈ {0, 1, . . . , N}) (note that we simultaneously consider known data samples and the
new observation), we can obtain an lc-dimensional column vector xc

i =
(

xc,1
i , . . . , xc,lc

i

)
with binary components xc,k

i , i ∈ {0, 1, . . . , N}, k ∈ {1, . . . , lc}. Specifically, we set the
values of the binary components xc,k

i , i ∈ {0, 1, . . . , N}, k ∈ {1, . . . , lc} to 0.5 or 0. This
indicates that if xi (i ∈ {1, . . . , N}) and x0 differ in the categorical feature c (c ∈ C), the
term ∑lc

k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣ equals one; otherwise, it equals 0. The reason for choosing 0.5 as the
binary value is further explained in Example 1. Therefore, for feature c (c ∈ C), we modify
the counterpart in the objective function as ∑N

i=1 λi(x0)∑
lc
k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣.
Example 1. Suppose that the data points only have one categorical feature and we have adopted
the binary processing procedure for all data points. There is a new data point x0 whose category
is different from the categories of all of the known data points. Therefore, we obtain d∗(x0) =

∑N
i=1 λi(x0)∑

lc
k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣ = ∑N
i=1 λi(x0) = 1 because ∑lc

k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣ = 1, ∀i ∈ {1, . . . , N},
which means that the new data point is an exterior point of the known data points. However, suppose
that the categories of all of the known data points are identical and the new data point has the same
category. Then, we obtain d∗(x0) = ∑N

i=1 λi(x0)∑
lc
k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣ = 0 because ∑lc
k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣ =
0,∀i ∈ {1, . . . , N}, which means that this new observation is a point interior to the original
dataset. From this example, it is clear that coding the categorical feature by 0.5 and 0 ensures that
the ∑lc

k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣ part is 1 or 0, effectively measuring the categorical differences.

Therefore, Objective Function (1) can be transformed into

min
λ(x0)

N

∑
i=1

λi(x0)∑
c∈C

lc

∑
k=1

∣∣∣xc,k
i − xc,k

0

∣∣∣+ ∑
u∈U

∣∣∣∣∣ N

∑
i=1

λi(x0)xu
i − xu

0

∣∣∣∣∣, (4)

where the features are divided into categorical features c (c ∈ C) and numerical features
u (u ∈ U).
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2.1.2. The Linearization of Absolute Terms

Objective Function (4) is non-linear due to the absolute terms. To linearize them, we
introduce auxiliary non-negative decision variables for categorical and numerical features,
respectively. For categorical features c (c ∈ C), we define

zc,k
i =

∣∣∣xc,k
i − xc,k

0

∣∣∣, c ∈ C, i ∈ {1, . . . , N}, k ∈ {1, . . . , lc},

and add the following constraints:

xc,k
i − xc,k

0 ≤ zc,k
i , c ∈ C, i ∈ {1, . . . , N}, k ∈ {1, . . . , lc}, (5)

−
(

xc,k
i − xc,k

0

)
≤ zc,k

i , c ∈ C, i ∈ {1, . . . , N}, k ∈ {1, . . . , lc}. (6)

For numerical features u (u ∈ U), we define

zu =

∣∣∣∣∣ N

∑
i=1

λi(x0)xu
i − xu

0

∣∣∣∣∣, u ∈ U,

and add the following constraints:

N

∑
i=1

λi(x0)xu
i − xu

0 ≤ zu, u ∈ U, (7)

−
(

N

∑
i=1

λi(x0)xu
i − xu

0

)
≤ zu, u ∈ U. (8)

After linearization, we obtain the following linear optimization model:

Model M0:

min
λ(x0)

N

∑
i=1

λi(x0)∑
c∈C

lc

∑
k=1

zc,k
i + ∑

u∈U
zu (9)

subject to Constraints (2)–(3) and (5)–(8).
This model can be directly solved by commercial solvers (e.g., Gurobi and Cplex) to

obtain d∗(x0) for each new data point. Next, we discuss how to choose the best prediction
method for new observations based on their centralities to the original dataset.

2.2. Predictive Frameworks

In this section, we first introduce two traditional prediction models, kNN and linear
regression, which are then integrated into our proposed hybrid prediction framework.

2.2.1. Model M1: kNN

Consider a training dataset SN and a new observation with feature vector x0. We
predict the output value of the new observation by calculating the average value of the
k-nearest training points to x0 under the defined distance metric (e.g., Euclidean distance).
Mathematically, the output value of the new observation using kNN could be defined as

Model M1:

f kNN(x0) =
1
k ∑

i∈Nk(x0)

yi, (10)

where Nk(x0) =
{

i = 1, . . . , N : ∑N
j=1 I

[
∥x0 − xi∥ ≥

∥∥x0 − xj
∥∥] ≤ k

}
is the neighborhood

set of the k-nearest data points to x0. Here, ∥·∥ denotes the Euclidean norm. k is a hyperpa-
rameter, and the optimal value k∗ can be determined by validation.
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2.2.2. Model M2: Linear Regression

We assume that the target value of xi (i ∈ {1, . . . , N}) can be predicted using a linear
regression model given by

ŷi = ωTxi + b,

where ω is the weighted vector and b is a bias. The parameters ω and b can be obtained by
minimizing the sum of squared errors between the predicted values and actual values of
known data points, shown as follows:

(ω∗, b∗) ∈ argmin
(ω,b)

N

∑
i=1

(ŷi − yi)
2.

Hence, for a new data point x0, the predicted value can be obtained by

Model M2:

f LR(x0) = ŷ0 = (ω∗)Tx0 + b∗. (11)

2.2.3. Model M3: The Hybrid Prediction Model

As mentioned above, kNN serves as a predictive model with good interpolation
abilities, while linear regression serves as a predictive model with good extrapolation
abilities. However, the accuracy and efficacy of these two methods are heavily influenced
by the underlying data structure. Therefore, we propose a hybrid prediction framework
leveraging the strengths of both interpolation and extrapolation while mitigating their
limitations.

The centrality of a new observation to the original dataset is paramount in selecting
the most appropriate predictive approach for it. This centrality, determined by our previous
optimization model M0, classifies observations as either interior or exterior to the known
dataset. If a new observation is a point interior to the known dataset, we can use prediction
methods with good interpolation abilities, such as kNN. If a new observation is an exterior
point but is not too far away from the known dataset, we may combine different prediction
methods by leveraging both interpolation and extrapolation abilities. If a new observation
is an exterior point and is significantly far away from the known dataset, we can use
prediction methods with good extrapolation abilities, such as linear regression.

By solving model M0, we know whether the new observation x0 is exterior or interior
to the given dataset. Taking the advantages of kNN and linear regression, we propose a
hybrid prediction framework to improve prediction quality. Let us consider the prediction
outcomes from the two predictive models as f kNN(x0) (from kNN) and f LR(x0) (from linear
regression). The hybrid framework computes a weighted average of these two outcomes as
follows:

Model M3:

f hybrid(x0) = (1 − θ[d∗(x0)]) f kNN(x0) + θ[d∗(x0)] f LR(x0), (12)

where θ[d∗(x0)] is a weighting parameter driven by the centrality coefficient d∗(x0) of x0.
The choice of θ[d∗(x0)] reflects our confidence in either of the predictive models:

θ[d∗(x0)] =


0, if d∗(x0) = 0

d∗(x0)
h , if d∗(x0) ∈ (0, h)

1, if d∗(x0) ≥ h.
(13)

Here, h is a hyperparameter determining the boundary across which we transition from
kNN to linear regression, and the optimal parameter h∗ can be determined by validation
(to be introduced in Section 3.3). Theoretically, a bigger h means that M1 (i.e., kNN) plays a
more important role in determining the final prediction outcome. Conversely, a smaller h
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means that M2 (i.e., linear regression) plays a greater role in determining the final prediction
outcome.

2.2.4. The Evaluation Metric

Suppose that the test dataset is defined as TM =
{(

xj, yj
)

: j = N + 1, . . . , N + M
}

,
where xj ∈ X ⊆ Rp, yj ∈ Y ⊂ R, and p is the dimension of input feature vector xj. In order
to evaluate the accuracy and efficacy of the different predictive models, we define the mean
squared error (MSE) between the predictive values and the actual values as follows:

MSE =
1
M

N+M

∑
j=N+1

[
f
(

xj
)
− yj

]2,

where f
(

xj
)

is the predictive value for a test data point xj (j ∈ {N + 1, . . . , N + M})
through a specific predictive method, and yj is the real target value for
xj (j ∈ {N + 1, . . . , N + M}). The smaller the MSE, the better the predictive performance
of the model.

3. Numerical Experiments

We apply our framework to the ship deficiency prediction problem, using the PSC
inspection dataset for the port of Hong Kong as a case study. We test the performance of
our framework by comparing the prediction results with the kNN model and the linear
regression model.

3.1. Dataset Description

To evaluate the effectiveness of the hybrid prediction framework, we use the ship
deficiency prediction problem and the PSC inspection dataset as a case study, representing
an essential issue for maritime transportation.

To identify ships that are potentially deficient or pose a higher detention risk for
port authorities, the Tokyo Memorandum of Understanding (MoU) introduced a ship
selection scheme in 2014, namely, the new inspection regime (NIR) [20], to evaluate the
risk level of ships in Asia–Pacific regions. The NIR considers seven features related to the
characteristics and historical inspection records of a ship, including ship type, ship age,
ship flag performance, ship recognized organization (RO) performance, ship company
performance, the number of deficiencies within the previous 36 months, and the number
of detentions within the previous 36 months. Each candidate value of a certain feature is
assigned a fixed weighting point, and a ship’s risk level is determined by the sum of the
seven features’ weighting points.

The weighted-sum method introduced by the NIR assumes a straightforward additive
relationship between the weighting points and ship deficiencies. However, as highlighted
by Tian and Zhu [21], the reality is not that simple. The inherent interdependence between
features, or the so-called coupling effect, makes a linear additive model like NIR potentially
ineffective. This is where nonlinear models, especially machine learning models, come to
the fore. As validated by Wang et al. [22], Bayesian network (BN) models have showcased
superior performance in predicting ship deficiencies compared with the NIR’s linear model.
This, coupled with other noteworthy contributions by Dinis et al. [23], Yan and Wang [24],
and Rao et al. [25], further solidifies the argument for a departure from simple linear models
to more intricate, nonlinear models.

For our study, the goal is to predict the number of deficiencies for a ship. We rely on
the seven features, as highlighted by the NIR, that are suspected to be in direct correlation
with a ship’s deficiency count. The dataset consists of PSC inspection records from January
2015 to December 2019, specifically from the port of Hong Kong. These records were
sourced from the Tokyo MoU database. For the sake of data quality, incomplete records
were excluded, resulting in a final dataset of 3026 inspection records.
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3.2. Data Pre-Processing

The dataset contains a mix of categorical and numerical features. In this section, we
encode the data of categorical features according to the method introduced in Section 2.1.1
and normalize the data of numerical features.

3.2.1. Encoding Method for Categorical Features

Categorical features in our dataset need special attention. For example, ship type
includes six distinct categories. To numerically represent these categories, we adopt a
one-hot encoding approach, encoding each category as a distinct binary vector. We encode
each value as a one-hot vector, such as (0.5,0,0,0,0,0) for the first type, (0,0.5,0,0,0,0) for
the second type, and so on. Table 2 provides a comprehensive overview of the encoding
methodology for each categorical feature.

Table 2. Encoding methodology for categorical features.

Num Categorical Features Distinct Categories Encoding Method

1 Ship type

Bulk carrier (0.5,0,0,0,0,0)
Container ship (0,0.5,0,0,0,0)
General cargo (0,0,0.5,0,0,0)
Passenger ship (0,0,0,0.5,0,0)

Chemical/oil tanker (0,0,0,0,0.5,0)
Other types (0,0,0,0,0,0.5)

2 Ship flag performance

White (0.5,0,0,0)
Grey (0,0.5,0,0)
Black (0,0,0.5,0)

Other types (0,0,0,0.5)

3 Ship RO performance
High (0.5,0,0)

Medium (0,0.5,0)
Low (0,0,0.5)

4
Ship company
performance

High (0.5,0,0,0)
Medium (0,0.5,0,0)

Low (0,0,0.5,0)
Other types (0,0,0,0.5)

3.2.2. Normalization for Numerical Features

The value ranges of three numerical features in our dataset are shown in Table 3. The
values of all numerical features are integers.

Table 3. The value ranges of numerical features.

Num Numerical Features Value Range

1 Ship age {0, 1, . . ., 48}

2 Deficiencies within the
previous 36 months {0, 1, . . ., 55}

3 Detentions within the
previous 36 months {0, 1, . . ., 18}

In our study, the min–max normalization method is employed to normalize the data of
numerical features in our dataset. In the experiments, the training dataset
SN = {(xi, yi) : i = 1, . . . , N} is first linearly mapped to the [0, 1] interval. Let xmax =

max
i∈{1,...,N}

xi and xmin = min
i∈{1,...,N}

xi; we obtain the normalized training data as follows:

x′i =
xi − xmin

xmax − xmin
, i ∈ {1, . . . , N}.
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Then, we normalize the test dataset TM =
{(

xj, yj
)

: j = N + 1, . . . , N + M
}

with xmax and
xmin; that is:

x′j =
xj − xmin

xmax − xmin
, j ∈ {N + 1, . . . , N + M}.

3.3. Computational Procedures

The performance of our hybrid framework is assessed using a dataset comprised of
3026 PSC inspection records. Rather than splitting the dataset into large and uneven subsets
where the representation of exterior data points might be skewed, we opt for smaller and
more manageable batches. This not only provides a more balanced proportion of interior
and exterior points but also facilitates multiple comparative validations to confirm the
effectiveness of our hybrid model M3.

To achieve this, the dataset is randomly divided into 30 batches, each containing
100 records. Each batch is then randomized and further divided into three subsets: a
training set Dtrain, a validation set Dvalid, and a test set Dtest, encompassing 60%, 20%, and
20% of the records, respectively. This translates to 60, 20, and 20 records per subset.

For each data batch, firstly, Dtrain is used to train two models: the kNN model f kNN
1

and the linear regression model f LR
1 . The optimal parameter k∗ for the kNN model is

determined with the corresponding minimum MSE on Dvalid from K = {1, 2, . . . , 10}.
Then, we use Dvalid to determine the optimal parameter h∗ for the hybrid prediction model
f hybrid
1 . Specifically, for each data point

(
xv

j , yv
j

)
(j ∈ {1, . . . , |Dvalid|}) in Dvalid, we obtain

f kNN
1

(
xv

j

)
and f LR

1

(
xv

j

)
by using kNN and linear regression models. Then, we solve the

Optimization Model M0 using Gurobi to obtain d∗
(

xv
j

)
and calculate

dmax = max
xv

j ∈Dvalid

{
d∗
(

xv
j

)}
.

We denote by H the result of retaining dmax to one decimal place, and H = {0.1, 0.2, . . . , H}
is the tuning range for the hyperparameter h. Then, we are able to calculate f hybrid

1

(
xv

j

)
by choosing a candidate h from H, and select h∗ that minimizes the MSE of f hybrid

1 on
Dvalid as the optimal hyperparameter of the hybrid framework. Finally, we concatenate
Dtrain and Dvalid to retrain the kNN model f kNN

2 , the linear regression model f LR
2 , and our

hybrid prediction model f hybrid
2 . For each data point in Dtest, we calculate the MSEs of

f kNN
2 , f LR

2 , and f hybrid
2 . Algorithm 1 describes the detailed computational procedures of the

experiment.

3.4. Results and Discussion

The experiments are conducted on a computer with an AMD Ryzen 5 4600U and
16 GB (3200 MHz) RAM under the Windows 10 operating system. The models are imple-
mented in Python programming language using Gurobi 9.5.2 as the solver. The optimal
hyperparameter k∗ for the kNN model and h∗ for our hybrid prediction framework are
determined for each data batch, according to the procedures described in Section 3.3. The
k∗ and h∗ for each batch are shown in Tables 4 and 5, respectively.
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Algorithm 1: Computational procedures of the experiment

Input: The whole dataset (3026 PSC inspection records).
Output: MSEs of three prediction models M1, M2, and M3.

Step 1: Divide the whole dataset into 30 batches, each containing 100 records. Randomly divide
each data batch into a training dataset Dtrain, a validation dataset Dvalid, and a test
dataset Dtest.

Step 2: For each data batch, use Dtrain to train the kNN model f kNN
1 and the linear regression

model f LR
1 . The optimal parameter k∗ is determined by Dvalid from K = {1, . . . , 10}.

Step 3: Use Dvalid to find the optimal h∗ for the hybrid prediction model f hybrid
1 .

For
(

xv
j , yv

j

)
∈ Dvalid:

Obtain f kNN
1

(
xv

j

)
and f LR

1

(
xv

j

)
;

Obtain d∗
(

xv
j

)
from Optimization Model M0;

Calculate dmax = max
xv

j ∈Dvalid

{
d∗
(

xv
j

)}
and obtain H = {0.1, 0.2, . . . , H}, where H

represents the result of retaining dmax to one decimal place.
For h ∈ H:

For
(

xv
j , yv

j

)
∈ Dvalid:

Calculate θ
[
d∗
(

xv
j

)]
by using piecewise function (13) and obtain

f hybrid
1

(
xv

j

)
=
(

1 − θ
[
d∗
(

xv
j

)])
f kNN
1

(
xv

j

)
+ θ
[
d∗
(

xv
j

)]
f LR
1

(
xv

j

)
.

Calculate the MSE of f hybrid
1 on Dvalid.

Set h∗ with the minimum MSE on Dvalid.
Step 4: Concatenate Dtrain and Dvalid to retrain the kNN model f kNN

2 , the linear regression model

f LR
2 , and our hybrid prediction model f hybrid

2 .

Step 5: Calculate the MSEs of f kNN
2 , f LR

2 , and f hybrid
2 on Dtest.

Table 4. Optimal hyperparameter k∗ for 30 data batches.

Batch 1 2 3 4 5 6 7 8 9 10

k∗ 2 1 6 1 2 5 6 8 10 5

Batch 11 12 13 14 15 16 17 18 19 20

k∗ 3 1 10 8 5 9 10 8 9 5

Batch 21 22 23 24 25 26 27 28 29 30

k∗ 5 5 6 7 7 7 7 3 4 5

Table 5. Optimal hyperparameter h∗ for 30 data batches.

Batch 1 2 3 4 5 6 7 8 9 10

h∗ 0.4 0.1 1 2.5 3.3 2 0.1 1.5 0.8 0.1

Batch 11 12 13 14 15 16 17 18 19 20

h∗ 4.7 5.7 2.7 2 3 1.2 3.3 0.5 1.3 1.7

Batch 21 22 23 24 25 26 27 28 29 30

h∗ 2.1 1.9 2.1 3.2 2.7 1 0.3 0.1 0.8 0.3

For an insightful comparative analysis, we examine the MSEs of three models M1
(kNN), M2 (linear regression), and M3 (hybrid prediction model) on the test dataset of
every data batch, focusing on the predicted ship deficiency numbers, and the results are
shown in Table 6 and Figure 4.
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Table 6. MSEs of three models M1, M2, and M3 for 30 data batches.

Batch 1 2 3 4 5 6 7 8 9 10

M1 (kNN) 4.75 3.60 2.13 19.10 18.71 15.08 3.12 42.87 20.31 8.16
M2 (LR) 4.69 12.00 30.97 16.91 19.49 9.29 3.62 38.89 34.20 50.52

M3 (hybrid) 4.42 11.89 29.77 19.92 18.50 10.44 3.82 40.88 22.52 49.73

Batch 11 12 13 14 15 16 17 18 19 20

M1 (kNN) 17.38 20.90 11.34 8.53 12.84 8.20 10.61 13.17 9.84 5.95
M2 (LR) 30.68 28.03 10.71 32.78 11.65 8.12 11.84 19.58 20.88 9.29

M3 (hybrid) 17.14 22.81 10.36 14.61 12.55 7.23 10.19 19.40 20.63 5.63

Batch 21 22 23 24 25 26 27 28 29 30

M1 (kNN) 10.37 31.92 7.83 5.23 19.05 13.40 6.47 14.82 14.73 21.60
M2 (LR) 22.30 27.94 5.98 89.45 21.63 15.81 25.48 10.55 74.54 20.06

M3 (hybrid) 19.65 28.94 7.71 60.83 18.64 18.98 24.89 11.66 74.59 20.36
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These results are then categorized into three distinct groups: data batches with the
minimum, intermediate, or maximum MSEs in model M3 (hybrid prediction model), which
are illustrated in Figures 5–7, respectively.

The results of computational experiments demonstrate that M3 (the hybrid prediction
model) consistently surpasses M1 (kNN) or M2 (linear regression) in a majority of the data
batches, yielding lower MSEs, which validates the effectiveness of our proposed hybrid
predictive framework. Specifically, M3 excels over M1 or M2 in 86.7% of the 30 data batches.
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As illustrated in Figure 5, M3 showcases superior accuracy in eight data batches, as
indicated by its lowest MSEs. Within these batches, M1 achieves the highest MSEs in three
batches (1, 13, 16), while M2 achieves the highest MSEs in the other five batches (5, 11,
17, 20, 25). However, a different scenario emerges in Figure 6, where M3 achieves the
intermediate MSEs among three methods in 18 batches. Here, M3 exceeds one of the other
two models but does not perform best in terms of predictive accuracy. In these 18 batches,
M1 achieves the lowest MSEs in 11 batches (2, 3, 9, 10, 12, 14, 18, 19, 21, 24, 27), while
M2 achieves the lowest MSEs in 7 batches (6, 8, 15, 22, 23, 28, 30). To add another layer
of complexity, Figure 7 shows scenarios where M3’s performance is the least impressive.
Specifically, in four batches, M3 records the highest MSEs, with M1 demonstrating the
lowest MSEs in three batches (7, 26, 29) and M2 realizing the lowest MSEs in data batch
4 only.

Diving deeper into these outcomes, the performance variability of M3 can be traced
back to the spatial distribution of data points within the feature space. M3 excels in
scenarios where data points are spread out, effectively harnessing the strengths of both
M1 and M2. Examples of this phenomenon are data batches 11, 17, 20, and 25, where M3
substantially outperforms its counterparts, as shown in Figure 5. In contrast, when data
points congregate or cluster closely in the feature space, M3 does not outperform kNN. Data
batch 26 serves as an example, where M3’s MSE is the highest among the three models.

4. Conclusions

Interpolation and extrapolation serve as pivotal techniques to predict the target values
of new feature observations based on a known dataset. The precision of these predictive
methods, however, is heavily influenced by the context in which they are used. Addressing
these issues, we introduce a hybrid prediction framework, combining the virtues of both
interpolation and extrapolation.

Central to our framework are two components: a sophisticated optimization model
and a novel hybrid prediction approach. The optimization model employs a convex hull
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to ascertain the spatial positioning (i.e., the centrality) of a new data point in relation to a
known dataset. Using the centrality coefficient, the hybrid prediction method merges kNN
and linear regression. This dual-action technique facilitates predictions grounded on a data
point’s centrality to a given dataset. In essence, our framework’s versatility lies in its ability
to adeptly handle both interior and exterior data points, ensuring the optimal prediction
methodology is utilized.

In our computational experiments, we use a PSC inspection dataset in the ship defi-
ciency prediction domain. Benchmarked against kNN and linear regression methods, our
framework showcases specific advantages using the metric of MSE. Significantly, it displays
superior accuracy in forecasting deficiencies across 86.7% of data batches, elevating the
prediction’s accuracy.

In future research, this framework can be applied in resolving other relevant problems.
Moreover, assimilating an array of interpolation and extrapolation techniques or more
sophisticated methods like random forest, XGBoost, neural network, and deep generative
models could further refine and enhance our framework’s capabilities.
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