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Abstract: Manifold learning-based approaches have emerged as prominent techniques for dimension-
ality reduction. Among these methods, t-Distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) stand out as two of the most widely used
and effective approaches. While both methods share similar underlying procedures, empirical obser-
vations indicate two distinctive properties: global data structure preservation and computational
efficiency. However, the underlying mathematical principles behind these distinctions remain elusive.
To address this gap, this study presents a comparative analysis of the subprocesses involved in these
methods, aiming to elucidate the mathematical mechanisms underlying the observed distinctions.
By meticulously examining the equation formulations, the mathematical mechanisms contributing
to global data structure preservation and computational efficiency are elucidated. To validate the
theoretical analysis, data are collected through a laboratory experiment, and an open-source dataset
is utilized for validation across different datasets. The consistent alignment of results obtained from
both balanced and unbalanced datasets robustly confirms the study’s findings. The insights gained
from this study provide a deeper understanding of the mathematical underpinnings of t-SNE and
UMAP, enabling more informed and effective use of these dimensionality reduction techniques in
various applications, such as anomaly detection, natural language processing, and bioinformatics.

Keywords: manifold learning; dimension reduction; spectral embedding; fuzzy topology; stochastic
gradient descent

MSC: 68Q25; 68W40; 68T09; 68T20; 68T01

1. Introduction

Dimension reduction techniques aim to reduce the dimensionality of high-dimensional
data while preserving its essential structure [1–3]. These techniques are generally catego-
rized into linear and nonlinear methods. Linear techniques, like Principal Component Anal-
ysis (PCA), project data onto a lower-dimensional subspace by minimizing variance [4,5].
While PCA is computationally efficient, it assumes linearity in the data, limiting its ability
to capture complex nonlinear structures. To address this limitation, nonlinear manifold
learning techniques, such as t-Distributed Stochastic Neighbor Embedding (t-SNE) [6–8]
and Uniform Manifold Approximation and Projection (UMAP) [9–11], have gained promi-
nence. These methods uncover the underlying nonlinear structure of data by constructing
low-dimensional representations that preserve intrinsic relationships. Manifold learning
techniques are particularly useful in industrial applications like mechanical structure fault
detection and anomaly analysis, where high-dimensional data can be efficiently processed
and analyzed for improved decision-making [12,13].
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t-SNE is a widely used manifold learning technique for dimension reduction and
visualization [7,14]. It reveals the structure of the data by creating low-dimensional rep-
resentations that preserve similarity relationships between data points. This is achieved
by constructing probability distributions over pairs of high-dimensional data points and
their low-dimensional counterparts, then minimizing the divergence between these dis-
tributions. t-SNE excels in retaining local structures and extracting nonlinear patterns,
making it valuable in fields such as image analysis [15,16], predictive maintenance [17,18],
and bioinformatics [19–22]. However, t-SNE’s computational demands and sensitivity to
hyperparameters can limit its scalability and reliability for large datasets.

UMAP, another popular manifold learning technique, shares a common objective
with t-SNE. Both methods aim to uncover the underlying structure by creating a low-
dimensional representation that preserves data point relationships [9,23]. However, UMAP
distinguishes itself by constructing a fuzzy topological representation of the data, approxi-
mating the manifold structure. By utilizing a combination of local and global optimization
objectives, UMAP achieves an embedding that effectively balances the preservation of both
local and global structures. While t-SNE and UMAP share similar goals, UMAP presents
several distinct advantages [24,25]. Firstly, UMAP demonstrates faster computation and
superior scalability, making it highly efficient for handling larger datasets. Additionally,
UMAP provides greater flexibility for parameter tuning, granting increased control over
the resulting embedding [26,27]. Furthermore, UMAP outperforms in preserving the global
structure of the data, resulting in more accurate and meaningful visualizations. Despite its
advantages over t-SNE, the underlying principles of UMAP’s performance are not fully
understood, warranting further investigation.

Understanding the mechanisms of manifold learning methods is crucial for their
effective use. The main motivation behind choosing t-SNE and UMAP lies in their similar
algorithmic structures and objectives, yet distinct mathematical formulas and principles.
By comparing these two techniques, valuable insights into their strengths and limitations
can be obtained, aiding in method selection, parameter optimization, and results interpre-
tation. This comparative analysis is expected to identify potential enhancements for these
techniques and improve their application across various domains. Specifically, for UMAP,
which possesses a robust and intricate mathematical foundation, a comprehensive explo-
ration and comprehension of its mechanisms from a mathematical perspective is essential.
Despite ongoing efforts, a comprehensive interpretation of these methods remains elusive.

To address the aforementioned limitations, this paper presents a comprehensive com-
parative analysis of t-SNE and UMAP from a mathematical perspective. The contributions
of this paper are as follows:

• The algorithmic mechanisms of both t-SNE and UMAP are firstly systematically decon-
structed into five key subprocesses: the high-dimensional probability function [28,29],
the low-dimensional probability function [30], the spectral embedding [31], the loss
function [32], and the optimization process [33]. This deliberate deconstruction en-
ables a detailed and comprehensive comparison analysis, and serves as the foundation
for a thorough examination of the execution process and functional results.

• Through comprehensive analysis of the mathematical formulas and the distinctions
between the subprocesses of t-SNE and UMAP, the reasons behind UMAP’s ability
to preserve the global structure of the data and achieve computational efficiency are
clearly revealed and presented from a mathematical perspective.

• A lab experiment designed to mimic real-life situations is conducted, and the resulting
dataset is made available for further research to facilitate validation and verification.

• A comprehensive blade study is performed to assess the impact of different UMAP
subprocesses on computational time and accuracy. Statistical quantitative results are
obtained and presented to provide evidence-based validations.

• A detailed discussion on the application of t-SNE and UMAP across various scenarios
is provided. Based on the revealed mathematical principles, scenario-specific guidance
is presented to inform the optimal selection of these dimensionality reduction methods.
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2. Problem Statement

As indicated in the introduction, manifold learning techniques such as t-SNE and
UMAP offer significant advantages over traditional linear methods like PCA when dealing
with high-dimensional data that exhibit complex nonlinear structures. Linear methods
often fail to capture these intricate relationships, leading to the distortion of essential data
structures during dimensionality reduction. Consequently, manifold learning techniques
are crucial for preserving the integrity of data with nonlinear patterns, making them
indispensable for accurate analysis and subsequent applications. This concept is further
illustrated in Figure 1 for better understanding.
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Figure 1. Illustration of high-dimensional data and low-dimensional data with manifold learning
(ML) and non-manifold learning (non-ML) techniques. Four colors represent four different clusters.

Figure 1a illustrates a high-dimensional dataset (represented as 3D data) with non-
linear structures. When manifold learning techniques are applied, the low-dimensional
projection (2D in this case) effectively preserves the clusters present in the original high-
dimensional data, as shown in Figure 1b. In contrast, non-manifold learning techniques
can distort these clusters, as depicted in Figure 1c, leading to the loss of critical information
embedded in the data. This distortion can result in erroneous conclusions and ineffective
applications. Therefore, manifold learning techniques are essential for maintaining data
integrity during dimensionality reduction, particularly when dealing with datasets that
have inherent nonlinearities.

Given the importance of manifold learning techniques in preserving data structure,
it is essential to understand the specific capabilities and limitations of different methods
within this category. t-SNE and UMAP are two prominent manifold learning techniques
that, despite their similarities in adopting nonlinear transformations and preserving local
neighborhood relationships, exhibit differences in their performance and application.

• Firstly, t-SNE and UMAP differ in their ability to preserve global structures in the data.
While t-SNE is effective at preserving local relationships, it often fails to maintain
global distances, which can result in a misrepresentation of the overall data structure in
the low-dimensional space. In contrast, UMAP is designed to preserve both local and
global structures, making it more robust in capturing the true nature of the data. This
concept is further illustrated in Figure 2 for better understanding: Figure 2a shows the
global and local distances in high-dimensional space (3D data), with global distances
marked by dashed lines (DGi such as DG1, DG2, DG3) and local distances by dotted
lines (DLi such as DL1, DL2, DL3). Figure 2b demonstrates that t-SNE preserves local
distances in the low-dimensional space (2D), i.e., DLi in high dimension is equal to DLi
in low dimension, but fails to maintain global distances, i.e., DGi in high dimension
does not equal to DGi in low dimension (marked with a red dashed line). Conversely,
UMAP effectively preserves both local and global distances, i.e., all pairs of DGi and
DLi are equal in high and low dimensions.

• Secondly, computational efficiency is a crucial consideration, particularly when man-
aging large-scale datasets. t-SNE is recognized for its computational inefficiency,
which constrains its scalability and limits its applicability to large datasets. In contrast,
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UMAP demonstrates superior computational efficiency, rendering it more suitable for
processing and analyzing extensive datasets effectively.
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Figure 2. Illustration of global and local structures in high dimension and low dimension with t-SNE
and UMAP. Four colors represent four different clusters.

Despite recognizing the differences between t-SNE and UMAP, a comprehensive math-
ematical understanding of the underlying causes remains insufficiently explored. Existing
research has predominantly been based on empirical observations without a solid theoreti-
cal foundation. To address this gap, this study aims to provide an in-depth comparative
analysis and theoretical investigation of t-SNE and UMAP. By elucidating the fundamental
factors that contribute to their divergent behaviors, this research seeks to enhance the theo-
retical understanding of these techniques. Through a detailed examination grounded in
mathematical principles, this study provides deeper insights into their respective strengths
and limitations. This understanding will facilitate more informed decisions regarding
method selection, parameter optimization, and application across various domains.

3. Mathematical Comparison of Two Manifold Learning-Based Methods
3.1. Mathematical Notations and Symbols

To enhance the readability of mathematical derivation and illustration, the mathe-
matical notations and symbols used in the following sections are given in the following
Table 1.

The general algorithmic structure for both t-SNE and UMAP is illustrated on the left
side of Figure 3. The primary steps of both algorithms can be summarized as follows: (1)
calculate similarity scores in the high-dimensional space; (2) initialize the low-dimensional
embedding; (3) calculate similarity scores in the low-dimensional space; and (4) assess
whether the discrepancies between the high-dimensional and low-dimensional similarity
scores are below a specified threshold. If the errors are within the threshold, the process
ends; if not, adjust the positions of the low-dimensional points to minimize the error, and
repeat the iteration.

While these steps outline the algorithmic workflow, each step is underpinned by
specific mathematical formulas that are crucial to the algorithm’s performance and func-
tionality. To provide a thorough understanding of these techniques, this study decomposes
the algorithm into distinct subprocesses for detailed mathematical analysis:

• Subprocess 1 : design a probabilistic function to model the structural patterns between
pairs of high-dimensional data points.

• Subprocess 2: design an initialization function for assigning initial low-dimensional
coordinates.

• Subprocess 3: design a probabilistic function to model the structural patterns between
pairs of low-dimensional data points.

• Subprocess 4: design a loss function to minimize the discrepancy, guiding the model
towards better performance by adjusting its parameters during the training process.

• Subprocess 5: design an optimization algorithm for updating the parameters and
minimizing the dissimilarity between high-dimensional data points and their corre-
sponding low-dimensional representations.
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Table 1. Mathematical notations and symbols.

xi Data point i in high-dimension dataset
yi Data point i in low-dimension dataset
pi|j Similarity score of data point xi to data point xj
pj|i Similarity score of data point xj to data point xi
σi The variance of the Gaussian process for node i
d(xi, xj) Distance between data points xi and xj
ρi Distance from xi to its nearest neighbor
k Preassigned parameter k in UMAP algorithm
−∑j pj|i log2 pj|i Shannon entropy
q̂ij Low-dimensional probability for data point yi and yj when applying t-SNE∥∥∥yi − yj

∥∥∥2
Square of the distance between data point yi and yj in low dimensions.

q̃ij Low-dimensional probability for data point yi and yj when applying UMAP
α, β Controllable parameters in UMAP
min_dist Hyperparameter for determining α and β in UMAP
Ψqij Probability calculated from non-linear least-square fitting
A, D, L Graph matrix, Degree matrix, Laplacian matrix
CKL Kullback–Leibler loss function
CCE Cross entropy loss function
s 1-simplex
S Set of all possible 1-simplices
wh(s) Weight of the 1-simplex s from high-dimensional manifold approximation
wl(s) Weight of the 1-simplex s to be discovered for low-dimensional representation
wt Parameter value at time t in gradient descent
ηt Learning rate, the step size in each iteration
∇ Gradient vector of the function evaluated at the current parameter values
it ∈ N Random index selected from N with equal probability
zit Parameter for the stochastic mini-batch determined by it
ξ Non-negative hyperparameter that controls the regularization strength
dh,ij High-dimensional distance between data points i and j
dl,ij Low-dimensional distance between data points i and j
P(dh,ij) Joint probability for data points i and j in high dimension
Q(dl,ij) Joint probability for data points i and j in low dimension

Calculate the similarity 
scores in high dimension

Calculate the similarity 
scores in low dimension

Initialize Embedding

Optimization

Start

End

Errors of 
S_scores Threshold<

Yes

No

Subprocess 1

Subprocess 2

Subprocess 3

Subprocess 4 & 5

Figure 3. The general algorithm structure of manifold learning techniques.
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The relationships and dependencies between various subprocesses are presented on
the right side of Figure 3 and are summarized as follows:

• The probabilistic function determined in Subprocess 1 is used to calculate the similar-
ity scores between each pair of points in the high-dimensional dataset.

• The initialization function determined in Subprocess 2 is used for the embedding
initialization process in the algorithm.

• The probabilistic function determined in Subprocess 3 is used to calculate the similar-
ity scores between each pair of points in the low-dimensional dataset.

• The loss function determined in Subprocess 4, along with the optimization algorithm
in Subprocess 5, is used in the optimization process to minimize the errors in the
similarity scores between high and low dimensions.

Each subprocess will be examined in the subsequent sections to elucidate the underly-
ing principles and mechanisms.

3.2. Modeling the Fuzzy Topological Structure in High Dimension

Table 2 illustrates the modeling formulas for t-SNE (second column) and UMAP
(third column). Both methods comprise three closely linked components: calculation
of conditional probabilities, calculation of joint probabilities, and setting of controllable
parameters for constraints. However, they utilize different formulas within each component,
resulting in their distinct characteristics:

• Conditional probability calculation: For t-SNE (Equation (A.1)), pj|i represents the
similarity of data point xj to data point xi. It quantifies the conditional probability
that xi would select xj as its neighbor if neighbors were chosen proportionally to
their probability density under a Gaussian centered at xj. The variance of the Gaus-
sian process σi depends on the perplexity parameter (Equation (A.3)) [7]. In UMAP
(Equation (B.1)), d(xi, xj) represents the distance between data points xi and xj. The
parameter ρi denotes the distance from xi to its nearest neighbor and, like the per-
plexity parameter in t-SNE, σi for UMAP is determined by a preassigned parameter k
(Equation (B.3)). Notably, the parameter ρi determines the local connectivity of the
manifold, resulting in a locally adaptive exponential kernel for each data point.

• Joint probability calculation: For t-SNE, the joint probability is calculated using a
simple formula (Equation (A.2)) that satisfies the symmetry rule. In contrast, UMAP
adopts a fuzzy union operation (Equation (B.2)) due to its theoretical framework,
topology, and foundation in fuzzy sets. In other words, after the conditional probability
calculation, UMAP applies Equation (B.2) to all data pairs, ensuring symmetrical
representation through a fuzzy union approach rather than a simple average, as in
t-SNE.

• Controllable parameter calculation: For t-SNE, a binary search is performed to deter-
mine the value of σ that produces a probability distribution with a fixed perplexity,
specified by the user (Equation (A.3))), where the exponential part −∑j pj|i log2 pj|i
is the Shannon entropy. This perplexity parameter serves as a measure of the effec-
tive number of neighbors, providing a smooth measure of connectivity. In contrast,
UMAP uses the number of nearest neighbors (Equation (B.3)) instead of perplexity
(Equation (A.3)), which avoids utilizing the log2() function.

It is worth noting that the high-dimensional modeling formulas of t-SNE and UMAP
can also provide insights into graph connectivity. In t-SNE, if a data point i has a large dis-
tance from all other data points, all pi|j values approach zero, resulting in an unconnected
graph. On the other hand, in UMAP, the introduction of ρi ensures the presence of at least
one pi|j value equal to one, guaranteeing graph connectivity. In addition, formula Equa-
tion (B.1) indicates that the output pi|j in UMAP is primarily determined by d(xi, xj), and
the elimination of the regularization term (denoted by the denominator in Equation (A1))
can decrease the computational burden when utilizing formula Equation (B.1).
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Table 2. Comparison of t-SNE and UMAP in high-dimensional structural pattern modeling.

t-SNE UMAP

Conditional probability pj|i =
e−∥xi−xj∥2

/2σ2
i

∑k ̸=i e−∥xi−xj∥2
/2σ2

i

(A.1) pi|j = e−
d(xi ,xj)−ρi

σi (B.1)

Joint probability pij =
pi|j+pj|i

2N (A.2) pij = pi|j + pj|i − pi|j pj|i (B.2)

Controllable parameter Perplexity = 2−∑j pj|i log2 pj|i (A.3) k = 2∑i pij (B.3)

3.3. Modeling the Fuzzy Topological Structure in Low Dimension

After capturing the structural patterns between pairs of high-dimensional data points,
the subsequent task involves designing a low-dimensional probability function that effec-
tively preserves these structural patterns from the high-dimensional space. The probability
function utilized in t-SNE for low-dimensional representation is designed based on the
Student’s t-distribution, which can be expressed as

q̂ij =
(1 +

∥∥yi − yj
∥∥2
)−1

∑k ̸=l(1 + ∥yk − yl∥2)−1
(1)

where q̂ij represents the low-dimensional probability for data points yi and yj when apply-

ing t-SNE and
∥∥yi − yj

∥∥2 represents the square of the distance between data points yi and
yj in low dimensions.

The preference for the Student’s t-distribution over the Gaussian distribution in low-
dimensional embedding is motivated by addressing the Crowding Problem [34]. By utiliz-
ing the Student’s t-distribution, distances between points are amplified in low-dimensional
space, alleviating the issue of point “crowding” and preventing excessive convergence of
points in lower dimensions.

Unlike t-SNE, UMAP adopts the family of curves represented by 1
1+αy2β to model

distance probabilities in low dimensions, where the function is defined as follows:

q̃ij =
1

1 + α(yi − yj)2β
(2)

where q̃ij represents the low-dimensional probability for data points yi and yj when apply-
ing UMAP, and α and β are two controllable parameters. In practice, α and β are determined
from non-linear least-square fitting to the piecewise function with the hyperparameter
min_dist as

Ψqij ≈
{

1, if
∥∥yi − yj

∥∥
2 ≤ min_dist

e−(yi−yj)−min_dist, otherwise.
(3)

The impacts of parameters α and β on the function curve, which describe the relation-
ship between low-dimensional distance and similarity scores, are depicted in Figure 4a
and Figure 4b, respectively. The default values for α and β are 1.577 and 0.895 (blue
line). Notably, when α = 1 and β = 1 (black dash), Equation (1) corresponds to the t-SNE
low-dimensional probability function. In Figure 4a, varying α values result in sunken
curves (closer to the origin). Similarly, Figure 4b shows different β values, with larger β
values causing a plateau at small distances in low dimensions. This indicates tight con-
nections among data points below the UMAP hyperparameter min_dist. As the similarity
score function behaves like a Heaviside step function, UMAP assigns nearly identical low-
dimensional coordinates to closely related points. In addition, the min_dist parameter leads
to the formation of tightly packed clusters commonly observed in UMAP dimensionality
reduction plots.
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Figure 4. The impact of the parameters α and β on similarity scores in low dimension.

The parameters α and β are determined by solving the optimization problem with
the constraints defined in Equation (3). Figure 5 visually presents the original points (blue
dots) and the fitted curve (orange line) for different values of the hyperparameter min_dist:
0.5, 1, 1.5, and 2. The corresponding α and β values for these four scenarios are computed
and provided in Table 3. In Figure 5, it can be observed that as the min_dist value increases,
the plateau region of the curve becomes wider. A quantitative analysis from Table 3 reveals
that α exhibits a positive correlation with min_dist, indicating that larger values of min_dist
lead to larger β values. On the other hand, α demonstrates a negative correlation with
min_dist, suggesting that higher values of min_dist correspond to smaller α values.

Table 3. Results for optimal parameters α and β with different min_dist.

min_dist = 0.5 min_dist = 1 min_dist = 1.5 min_dist = 2

α 0.5743 0.1201 0.0193 0.0025
β 1.3714 1.8813 2.3993 2.9222
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Figure 5. The curve-fitting results with different values of min_dist.

3.4. Initialization in Low Dimension

UMAP utilizes spectral embedding as its initialization method for assigning initial
low-dimensional coordinates, replacing the randomized initialization used in t-SNE. This
initialization plays a critical role in data structure preservation [35]. The implementation
procedure can be summarized as follows: Firstly, the graph matrix A is determined, which
represents the weighted adjacency matrix of the 1-skeleton of the topological representation.
Then, the matrix D is calculated as the degree matrix for the graph A. Next, the Laplacian
matrix L is determined using the formula

L = D1/2(D− A)D1/2. (4)

With the Laplacian matrix L determined, the eigenvalues and eigenvectors are com-
puted, and the eigenvectors are sorted to serve as the output for the initialization.
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Compared to randomized initialization methods, the utilization of spectral embedding
in UMAP possesses two distinct advantages. Firstly, it reduces the variation of results across
different trials by eliminating the randomness associated with random initialization. This
increased consistency contributes to a more stable representation in the low-dimensional
space. Secondly, spectral embedding provides a structured and consistent starting point for
the dimension reduction process, potentially enhancing the stability and interpretability of
the final low-dimensional representation.

3.5. Loss Function

The t-SNE uses the Kullback–Leibler (KL) loss function to project the high-dimensional
probability onto the low-dimensional probability as [7]

CKL = ∑
i

∑
j

pj|ilog
pj|i
qj|i

(5)

where pj|i and qj|i denote the conditional probability defined in Equation (A.1).
In contrast, the construction of a cost function in UMAP aims to determine a suitable

fuzzy topological structure for a low-dimensional representation. Theoretically, the fuzzy
topological structure in low dimensions can be derived using a similar method as in high
dimensions. However, a key distinction arises: in low dimensions, the data do not lie
on a generic manifold but rather on a specific Euclidean manifold to which they need to
be embedded. Consequently, the previous efforts to introduce variation in the notion of
distance across the manifold become irrelevant. Instead, the distance on the manifold is
sought to be the standard Euclidean distance with respect to the global coordinate system,
which eliminates the need for a varying metric [36]. Furthermore, the performance of the
representation is mathematically quantified by how “close” a match is found in terms of
fuzzy topological structures, which can be turned into an optimization problem.

When merging the conflicting weights associated with simplices, it is convention-
ally interpreted as the weights representing the probability of the simplex being present.
Consequently, since both compared topological structures share the same 0-simplices, the
comparison can be viewed as a comparison between two vectors of probabilities indexed
by the 1-simplices. Based on this, as these probabilities correspond to Bernoulli variables
(where the simplex either exists or does not exist, and the probability serves as a parameter
of a Bernoulli distribution), cross entropy (CE) is a suitable choice.

Let S denote the set of all possible 1-simplices, and consider weight functions wh(s)
and wl(s) corresponding to the weights of the 1-simplices in the high-dimensional and
low-dimensional cases, respectively. Thus, the CE loss function CCE can be constructed as

CCE = ∑
s∈S

wh(s)log(
wh(s)
wl(s)

)︸ ︷︷ ︸
Attractive f orce

+ (1− wh(s))log(
1− wh(s)
1− wl(s)

)︸ ︷︷ ︸
Repulsive f orce

 (6)

where wh(s) represents the weight of the 1-simplex s from high-dimensional manifold
approximation and wl(s) represents the weight of the 1-simplex s to be discovered for
low-dimensional representation.

The minimization of the CCE can be interpreted as a force-directed graph layout algo-
rithm. The first term in the CCE equation exerts an attractive force between the points s that
the 1-simplex spans whenever there is a large weight associated with the high-dimensional
manifold approximation. This term is minimized when wh(s) is maximized, which occurs
when the distance between the points is minimized. Conversely, the second term in the
CCE equation generates a repulsive force between the endpoints of s when wh(s) is small.
Minimizing this term involves reducing wl(s) as much as possible. Through this interplay
of attraction and repulsion, mediated by the weights on the edges of the topological repre-
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sentation of the high-dimensional data, the low-dimensional representation settles into a
state that accurately reflects the overall topology of the source data.

A comparison of the KL loss function adopted in t-SNE and the CE loss function
adopted in UMAP is visualized in Figure 6.

C
(K
L)

(a) Loss function of t-SNE (KL)

C
(C
E)

(b) Loss function of UMAP (CE)

Figure 6. Comparison of the loss functions of t-SNE and UMAP.

3.6. Stochastic Gradient Descent (SGD)

Gradient descent (GD) is an optimization algorithm used to minimize a differen-
tiable function by iteratively adjusting the parameters in the direction of the negative
gradient [37].

Given a function f (w) that we seek to minimize, the GD algorithm (as shown in
Algorithm 1) updates the values of parameter w according to

wt+1 = wt − ηt∇Fs(wt) (7)

where wt represents the current parameter values, learning rate ηt is a hyperparameter
that determines the step size in each iteration, and ∇ denotes the gradient vector of the
function evaluated at the current parameter values. The gradient points in the direction of
the steepest ascent, so taking the negative of the gradient ensures that the move is in the
direction of the steepest descent. By iteratively updating the parameter values utilizing
Equation (7), the algorithm gradually converges towards the optimal solution, where the
gradient becomes close to zero, indicating a local minimum of the function.

Algorithm 1 Gradient Descent (GD)

1: for t = 1 to T do
2: wt+1 ← wt − ηt▽ Fs(wt)
3: ηt =

1
ξ(t0+t)

4: end for
5: return wT+1 or an average of w1,. . . ,wT+1

GD, while simple and widely used for optimization, has certain drawbacks. Firstly,
the time for computing ∇Fs(wt) is O(n), which is computationally expensive if n is large,
as it requires a full pass over the entire training set to calculate the gradient as

∇Fs(wt) =
1
n

n

∑
i=1
∇ f (wt). (8)

Secondly, it may converge slowly when the loss function is non-convex or has narrow,
elongated valleys. However, this is the case with the UMAP loss function. Additionally,
it can get stuck in local minima, failing to find the global minimum. To address these
drawbacks, stochastic gradient descent (SGD) is introduced [38]. SGD randomly selects a
subset of training samples, called a mini-batch, to estimate the gradient, resulting in faster
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computation. This introduces noise into the gradient estimation, but it also allows the
algorithm to escape shallow local minima and explore the parameter space more effectively.
By repeatedly sampling mini-batches and updating the parameters accordingly, SGD can
overcome the limitations of standard GD and converge to a satisfying solution.

The main difference between GD and SGD lies in Equation (8). As illustrated in
Algorithm 2, instead of going through examples for a gradient computation, SGD adopts
the form of

∇Fs(wt) = ∇ f (wt, zit) (9)

where it ∈ N = {1, 2, ..., n} represents a random index selected from N with equal
probability. The learning rate ηt in (7) can be either constant or gradually decaying. For
classification, the default learning rate schedule is given by

ηt =
1

ξ(t0 + t)
(10)

where t is the time step, t0 is determined based on a heuristic proposed by Léon Bottou
such that the expected initial updates are comparable with the expected size of the weights,
and ξ > 0 is a non-negative hyperparameter that controls the regularization strength.

Algorithm 2 Stochastic Gradient Descent (SGD)

1: for t = 1 to T do
2: it ← random index from N = {1, 2, . . . , n}
3: wt+1 ← wt − ηt▽ Fs(wt, zit)

4: ηt =
1

ξ(t0+t)
5: end for
6: return wT+1 or an average of w1,. . . ,wT+1

4. Mechanism Analysis of Global Data Structure Preservation and Computational
Efficiency
4.1. Mechanism of Global Data Structure Preservation

The reasons for only the local structure of the data being preserved by t-SNE are
discussed here from two perspectives: 1. the parameter σ in Equation (A.1); 2. the loss
function, as shown in Equation (5).

• Firstly, the parameter σ in Equation (A.1) determines the degree of local interaction
between data points. As shown in Figure 7, the pairwise Euclidean distances’ probabil-
ities decay at different speeds. Smaller values of σ such as the blue curve (σ = 0.1) and
orange curve (σ = 1) result in near-zero probabilities for distant points (large pairwise
Euclidean distances d), while rapidly increasing probabilities are observed only for the
nearest neighbors (small pairwise Euclidean distance d). Conversely, larger σ such as
the green curve (σ = 10) and red curve (σ = 20) values lead to comparable probabilities
for distant and close points, and as σ approaches infinity (relatively larger values such
as σ = 100 and σ = 200), the probabilities become equal to one for all distances between
any pair of points, resulting in equidistant data points.

• Secondly, the “locality” of t-SNE can also be interpreted through the examination of
its KL loss function (shown in Equation (5)). Assume that dh,ij is a high-dimensional
distance between data points i and j, and dl,ij is a low-dimensional distance between
data points i and j. Approximate P(dh,ij) and Q(dl,ij) as

P(dh,ij) ≈ e−d2
h,ij , Q(dl,ij) ≈

1
1 + d2

l,ij
(11)
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The KL loss function CKL(dh,ij, dl,ij) can be approximated as

CKL(dh,ij, dl,ij) =
n

∑
i

n

∑
j

P(dh,ij)× log(P(dh,ij))︸ ︷︷ ︸
≈0, ∀dh,ij

−P(dh,ij)× log(Q(dl,ij))

. (12)

The first term in Equation (12) approaches zero for all dh,ij. On the one hand, when
dh,ij is small, it approaches zero as the exponent becomes close to one and log(1) = 0.
On the other hand, when dh,ij is large, it also tends to zero as the exponential pre-factor
decreases faster than the logarithm approaches−∞. Thus, Equation (12) can be further
approximated as

CKL(dh,ij, dl,ij) ≈
n

∑
i

n

∑
j

[
−P(dh,ij)× log(Q(dl,ij))

]
. (13)

Substituting the approximation Equation (11) into Equation (13), we have

CKL(dh,ij, dl,ij) ≈
n

∑
i

n

∑
j

[
e−d2

h,ij ×
(

1 + d2
l,ij

)]
. (14)

A visualization of CKL(dh,ij, dl,ij) with different values of dh,ij and dl,ij is shown in
Figure 6a. The distribution of the loss function values (z-axis) in Figure 6a exhibits
an asymmetric shape. Small distances between points in high dimensions dh,ij lead
to an exponential pre-factor approaching one, while the logarithmic term behaves as
log(1 + d2

l,ij). This enforces a significant penalty for large distances in low dimensions
dl,ij, motivating t-SNE to minimize dl,ij when dh,ij is small. Conversely, for large
distances dh,ij in high dimensions, the exponential term dominates, allowing dl,ij to
span from zero to ∞. Consequently, points that are distant in high dimensions may be
projected closer in low dimensions. Hence, t-SNE solely guarantees the preservation
of close points in high dimensions to remain close in low dimensions.

0 5 10 15 20 25 30
Pairwise Euclidean Distance d

0.0

0.2

0.4

0.6

0.8

1.0

P(
d)

 = 0.1
 = 1
 = 10
 = 20
 = 100
 = 200

Figure 7. The impact of different σ on the high-dimensional probability.

Building upon the aforementioned explanations regarding the limited preservation
of global structure by t-SNE, we now delve into the mathematical principles underlying
UMAP to elucidate its ability to preserve global structure. Unlike t-SNE, UMAP employs
CE as its loss function, which is expressed as

CCE(dh,ij, dl,ij) = ∑
i

∑
j

[
P(dh,ij)× log

(
P(dh,ij)

Q(dl,ij)

)
+ (1− P(dh,ij))× log(

1− P(dh,ij)

1−Q(dl,ij)
)

]
(15)
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where P(dh,ij) and Q(dl,ij) denote the joint probability defined in Equation (B.2).
By comparing Equation (15) and Equation (12), it can be observed that the first term

in Equation (15) is equivalent to Equation (12). Therefore, UMAP intuitively preserves
global structure by introducing the second term. Additionally, referring to the physical
force interpretation in Equation (6), the second term corresponds to the repulsive force. In
essence, UMAP’s ability to preserve global structure is largely attributed to the inclusion of
the repulsive force term. The impacts of this introduction on the final classification results
are discussed and validated in a subsequent case study section. Furthermore, similar to
the analysis conducted for t-SNE, a boundary limitation analysis is conducted here for the
approximation interpretation.

Substituting the approximation of P(dh,ij) and Q(dl,ij), as shown in Equation (11), the
loss function of UMAP CCE(dh,ij, dl,ij) can be further approximated as

CCE(dh,ij, dl,ij) ≈∑
i

∑
j

[
e−d2

h,ij × log
(
(1 + d2

l,ij)
)
+ (1− e−d2

h,ij)× log

(
(1 + d2

l,ij)

d2
l,ij

)]
. (16)

This results in the balance between local and global structure preservation. When
dh,ij → 0, ∀i, j ∈ V , the limit converges to that of t-SNE, as the second term vanishes
due to the pre-factor and the slower growth of the logarithmic function compared to the
polynomial function, as shown in the first case in Equation (17):

CCE(dh,ij, dl,ij) ≈


∑n

i ∑n
j log(1 + d2

l,ij) if dh,ij → 0, ∀i, j ∈ V

∑n
i ∑n

j log
(

1+d2
l,ij

d2
l,ij

)
if dh,ij → ∞, ∀i, j ∈ V .

(17)

The behavior is analogous to that of t-SNE. However, in the limit of large dh,ij (i.e.,
dh,ij → ∞), the first term vanishes, the pre-factor of the second term becomes one, and the
expression of the second case in Equation (17) can be obtained. In this case, a high penalty
is incurred when dl,ij is small due to its presence in the denominator of the logarithm.
Consequently, dl,ij is encouraged to increase, causing the ratio under the logarithm to
approach one and resulting in zero penalty. As dh,ij approaches infinity, dl,ij also tends
towards infinity, ensuring the preservation of global distances during the transition from
high-dimensional to low-dimensional space, which aligns with the desired objective.

A visualization of the CE loss function CCE is presented in Figure 6b. Comparing
Figure 6a and Figure 6b , the right part of the CE loss function CCE (Figure 6b) demonstrates
a noticeable resemblance to the KL loss function CKL (Figure 6a). This resemblance indicates
a preference for low dl,ij values at low dh,ij to minimize penalties. Conversely, at large dh,ij,
it becomes crucial for the dl,ij distance to be large. When dl,ij is small, the penalty incurred
by the CCE (dh,ij, dl,ij) term becomes exceedingly large. Notably, unlike the CKL (dh,ij, dl,ij)
surface, the CCE(dh,ij, dl,ij) cost function introduces a distinction in penalties between low
and high dl,ij values at large dh,ij. This distinction enables the CCE (dh,ij, dl,ij) cost function
to effectively preserve both global and local distances.

4.2. Mechanism of Computational Efficiency

UMAP’s improved computational efficiency can be attributed to the following factors:

• Firstly, in the stages of probability modeling in high- and low-dimensional distance
representation, the computational efficiency is enhanced by eliminating the normal-
ization process in both high-dimensional and low-dimensional probability modeling,
as summation or integration is computationally expensive. Additionally, the use of
tree-based algorithms for nearest neighbor search in standard t-SNE results in slow
performance for more than two embedding dimensions, as these algorithms scale
exponentially with the number of dimensions.
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• Secondly, the initialization, as demonstrated in the forthcoming case study section,
has minimal impact on the final computational time and accuracy. While some effect
may be present, it is not of an order of magnitude significance.

• Thirdly, UMAP adopts SGD for the optimization process, in contrast to the regular GD
used in t-SNE. This choice enhances speed by calculating gradients from a random
subset of samples rather than utilizing all samples as in regular GD. Additionally, SGD
reduces memory consumption by storing gradients for only a subset of samples in
memory rather than all samples.

• Fourthly, increasing the number of dimensions in the original dataset introduces spar-
sity, resulting in a fragmented manifold with dense regions and isolated points. UMAP
resolves this issue by introducing the local connectivity parameter σ, which partially
connects sparse regions through an adaptive exponential kernel that incorporates local
data connectivity. This characteristic enables UMAP to theoretically operate with any
number of dimensions, eliminating the necessity for a pre-dimensionality reduction
step before integrating it into the primary dimensionality reduction procedure.

5. Case Study

In this section, a blade study is conducted to verify the theoretical analysis. A blade
study, also known as a sensitivity analysis or parameter study, is a commonly adopted
testing approach in the machine learning field. It is used to quantitatively examine how
variations in individual parameters affect the overall system or model outcomes. By
systematically varying one parameter at a time while keeping others constant, the resulting
changes and understanding of the system’s sensitivity, robustness, or vulnerability can
be observed. The objective of the blade study in this study is to investigate the impacts
of the previously mentioned factors on global and local structure preservation as well as
computational efficiency. Specifically, the standard control variate method is used, where
each scenario involves changing only one factor while keeping the other parameters at
baseline levels.

Two groups of datasets are utilized:

1. Vibration data collected in our lab tests for motors with varying vibration levels.
2. Vibration data obtained from an open-source dataset [38] for motors with different

bearing defect conditions.

For both datasets, six scenarios are defined based on factors related to modeling,
initialization, loss function, and optimization, as discussed in Sections 3 and 4. The t-SNE
modeling technique is used as the baseline for comparison. Computation time and bearing
fault classification accuracy are statistically compared for both datasets.

5.1. Lab Experiment for Data Collection

An offline test was conducted in our laboratory to collect data under different motor-
bearing lubrication conditions. The setup is shown in Figure 8. This experimental setup
was designed to replicate the on-site motor, with identical specifications. The motor load
was simulated using a tailor-made metal wheel, serving as a mechanical analogy for the
fan blade and airflow. Safety measures, including emergency stops, circuit breakers, and
protection shields, were implemented. The data collection schedule for each bearing
lubrication level scenario is presented in Table 4. Five motors (M1 to M5) were tested,
with “Original” indicating a new motor and “Reinstalled” denoting a motor that has been
reinstalled. Bearing lubrication percentages were calculated based on weight. Each sample
motor was scheduled to run for a minimum of three hours to obtain data. The classification
task involved six classes representing lubricant levels: 100%, 75%, 50%, 25%, 10%, and 5%.
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Figure 8. Laboratory experimental test for data collection.

Table 4. Lab test schedule of motor under different bearing lubrication conditions.

Test Class Motor Name Motor Condition Fan-End Bearing Lubrication Drive-End Bearing Lubrication Duration (h)

A

M1 Original 100% 100% 6
M2 Original 100% 100% 3
M3 Original 100% 100% 3
M4 Original 100% 100% 3
M5 Original 100% 100% 8

B M5 Reinstalled 75% 75% 8
C M5 Reinstalled 50% 50% 8
D M5 Reinstalled 25% 25% 8
E M2 Reinstalled 10% 10% 10
F M4 Reinstalled 5% 5% 141

5.2. Datasets

Samples were extracted for different lubricant levels at a rate of one second per sample.
The sample sizes utilized in this study for each lubricant level are presented in Table 5.

Table 5. Balanced and unbalanced sample sizes for different lubrication levels.

A B C D E F Total

Lubrication level 100% 75% 50% 25% 10% 5%
Sample size 1 (balanced) 1000 1000 1000 1000 1000 1000 6000
Sample size 2 (unbalanced) 800 1000 900 1200 1000 1100 6000

In addition to the data collected from our laboratory test, the open-source data for
different bearing faults are further tested for comparison and verification. The sample sizes
for these open-source data under the category of 12k Fan-End Bearing Fault Data used in
this study are presented in Table 6.

Table 6. Balanced and unbalanced sample sizes for different bearing faults.

A B C D E F Total

Fault diameter (cm) 0.018 0.018 0.036 0.036 0.053 0.053
Motor load (HP) 0 1 0 1 0 1
Sample size 3 (balanced) 2000 2000 2000 2000 2000 2000 12,000
Sample size 4 (unbalanced) 1800 2100 2000 1800 2100 2200 12,000

5.3. Results and Analysis

The results for computational time and fault detection accuracy, using the data ob-
tained from our laboratory test, are presented in Table 7. Dataset 1 corresponds to the
balanced data described in the second row of Table 4, while Dataset 2 represents the un-
balanced data from the third row of Table 5. Each dataset comprises six categories and a
total of 6000 samples. The train–test split is set at 0.8 to 0.2, and a tenfold cross-evaluation
is adopted. The mean value (mean) represents the statistical mean, while the standard
deviation (std) indicates the variability.
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For comparison, the model structure of t-SNE is treated as the baseline. Seven different
modeling structures are considered:

Scenario 1—Modeling (HD): refers to the scenario where UMAP high-dimensional
modeling (Equation (B.1–3)) replaces t-SNE high-dimensional modeling (Equation (A.1–3)).

Scenario 2—Modeling (LD): denotes the scenario where UMAP low-dimensional
modeling (Equation (2)) replaces t-SNE low-dimensional modeling (Equation (1)).

Scenario 3—Modeling (both HLD): represents the scenario where both UMAP
high- and low-dimensional modeling (Equation (B.1–3), (2)) replace t-SNE high- and
low-dimensional modeling (Equation (A.1–3), (1)).

Scenario 4—Spectral embedding: signifies the scenario where UMAP spectral em-
bedding initialization (Section 3.4) replaces t-SNE random initialization.

Scenario 5—Loss function: denotes the scenario where the CE loss function (Equation
(15)) replaces the KL loss function (Equation (12)).

Scenario 6—SGD: indicates the scenario where SGD is used instead of GD (Algorithms
1 and 2).

Scenario 7—UMAP: corresponds to the scenario where all t-SNE functions are re-
placed by UMAP functions.

Table 7. Results for the impact of UMAP components on time and accuracy using laboratory data.

Scenarios

Dataset 1 (Balanced) Dataset 2 (Unbalanced)

Time (s) Accuracy Time (s) Accuracy

Mean Std Mean Std Mean Std Mean Std

t-SNE (baseline ) 18.567 1.706 0.917 0.025 20.070 3.558 0.908 0.028
Modeling (HD) 13.972 ↓ 1.562 ↓ 0.937 ↑ 0.021 ↓ 13.985 ↓ 2.663 ↓ 0.932 ↑ 0.020 ↓
Modeling (LD) 15.425 ↓ 1.692 ≈ 0.930 ↑ 0.024 ≈ 17.866 ↓ 2.515 ↓ 0.913 ↑ 0.023 ≈
Modeling (both HLD) 10.730 ↓ 1.223 ↓ 0.975 ↑↑ 0.019 ↓ ↓ 10.592 ↓ 2.332 ↓ 0.970 ↑↑ 0.020 ↓
Spectral embedding 18.782 ≈ 1.509 ↓ 0.920 ≈ 0.024 ≈ 21.717 ≈ 3.320 ↓ 0.910 ≈ 0.028 ≈
Loss function 19.002 ≈ 1.511 ↓ 0.986 ↑↑ 0.021 ≈ 21.566 ≈ 3.478 ≈ 0.982 ↑↑ 0.026 ≈
SGD 6.728 ↓↓ 1.365 ↓ 0.919 ≈ 0.038 ↑ 7.055 ↓ 3.627 ↑ 0.909 ≈ 0.040 ↑
UMAP 1.766 ↓↓ 0.786 ↓↓ 0.993 ↑↑ 0.020 ↓ 1.994 ↓↓ 2.314 ↓ 0.990↑↑ 0.020 ↓

Note: ↓: decrease, ↓↓: large decrease, ≈: approximately equal, ↑: increase, ↑↑: large increase.

From the analysis of Table 7, the following conclusions can be drawn:

1. Both for balanced and unbalanced data, the enhanced fault detection accuracy, quan-

tified by the formula Accuracy = Correct predictions
All predictions , is primarily achieved through the

introduction of probability modeling formulas and the reformulation of the loss
function. These results validate the theoretical discussion presented in Section 4.1
regarding the data structure-preserving property.

2. Both for balanced and unbalanced data, the increased computational efficiency, as
measured by time, is primarily attributed to the exclusion of normalization in the high-
and low-dimensional probability modeling, as well as the utilization of SGD instead
of SG. This finding aligns with the theoretical discussion presented in Section 4.2.

3. The impact of low-dimensional initialization alone on computational efficiency and
accuracy is negligible. However, when combined with modeling, loss function,
and optimization, the overall performance can be significantly improved. This can
be attributed to the stable transition of the structure-preserving pattern from high
dimensions to the low dimension.

4. Both high- and low-dimensional modeling not only preserve the data structure but
also reduce the standard deviation, indicating more stable results.

In addition to the laboratory test data, a practical industrial bearing fault dataset
is utilized to further validate and compare the results. The complete dataset is publicly
available in [39], and for this study, a subset of the data is used. The extracted subsets are
referred to as Dataset 3 (balanced) and Dataset 4 (unbalanced). The sample sizes for these
two datasets are provided in Table 6.

From the analysis of Table 8, the following conclusions can be drawn:
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1. Similar to the laboratory test data results, enhanced fault detection accuracy for both
balanced and unbalanced data is primarily achieved through the introduction of
probability modeling formulas and the reformulation of the loss function. These find-
ings further validate the theoretical discussion on the structure-preserving property
presented in Section 4.1.

2. Similar to the laboratory test data results, the increased computational efficiency, as
measured by time, for both balanced and unbalanced data is primarily attributed to
the exclusion of normalization in high- and low-dimensional probability modeling
as well as the utilization of SGD instead of SG. This observation further confirms the
theoretical discussion presented in Section 4.2.

3. As for the initialization, similar to the results shown in Table 7, the impact of low-
dimensional initialization alone on computational efficiency and accuracy is negligible,
and both high- and low-dimensional modeling not only preserve the structure but
also reduce the standard deviation.

Table 8. Results for the impact of UMAP components on time and accuracy using open-source data.

Scenarios

Dataset 3 (Balanced) Dataset 4 (Unbalanced)

Time (s) Accuracy Time (s) Accuracy

Mean Std Mean Std Mean Std Mean Std

t-SNE (baseline ) 31.766 3.545 0.935 0.022 32.472 3.778 0.923 0.025
Modeling (HD) 23.373 ↓ 3.620 ↑ 0.951 ↑ 0.021 ≈ 25.466 ↓ 3.703 ↓ 0.937 ↑ 0.021 ↓
Modeling (LD) 29.367 ↓ 3.468 ↓ 0.947 ↑ 0.020 ≈ 29.588 ↓ 3.715 ↓ 0.929 ↑ 0.023 ≈
Modeling (both HLD) 19.635 ↓ 2.711 ↓ 0.982 ↑↑ 0.020 ≈ 22.337 ↓ 3.693 ↓ 0.972 ↑↑ 0.021 ↓
Spectral embedding 33.249 ≈ 3.413 ↓ 0.933 ≈ 0.019 ↓ 33.549 ≈ 3.022 ↓ 0.925 ≈ 0.025 ≈
Loss function 32.472 ≈ 2.591 ↓ 0.982 ↑↑ 0.016 ↓ 33.632 ↑ 3.445 ↓ 0.971 ↑↑ 0.028 ↑
SGD 9.762 ↓↓ 3.402 ↓ 0.937≈ 0.022 ≈ 11.567 ↓ 3.402 ↓ 0.924 ≈ 0.024 ↓
UMAP 2.076 ↓↓ 1.672 ↓↓ 0.989 ↑↑ 0.015 ↓ 2.768 ↓↓ 2.821 ↓ 0.987↑↑ 0.020 ↓

Note: ↓: decrease, ↓↓: large decrease, ≈: approximately equal, ↑: increase, ↑↑: large increase.

Comparing Tables 7 and 8 yields the following observations:

1. UMAP demonstrates robust tolerance towards unbalanced data, as evident from both
laboratory data and open-source data applications.

2. Increasing the data size leads to a proportional increase in computational time. While
the impact on individual components is significant, the overall effect is relatively
modest. Consequently, UMAP can handle larger data sizes without experiencing a
substantial computational burden.

3. The laboratory data exhibit higher accuracy compared to the open-source data, sug-
gesting sensitivity to the datasets, defect types, and levels. Nonetheless, all results
demonstrate acceptable high-accuracy levels exceeding 99%.

4. A larger dataset presents higher standard deviations. This can be caused by the degree
of variation between samples, the computational errors, and the randomized selection
of sample batches for each evaluation.

5. Both case studies validate the aforementioned theoretical discussion concerning global
and local structure preservation as well as computational efficiency.

Comparing the performance of t-SNE and UMAP on our lab-collected datasets (Dataset 1
and Dataset 2) and open-source datasets (Dataset 3 and Dataset 4), the impact of different
datasets can be summarized as follows:

1. Impact of original data structure on accuracy: The original structure of high-dimensional
data affects the accuracy of both t-SNE and UMAP. In classification tasks, as shown in
this study, the clearer the relationships within clusters and between different clusters,
the higher the accuracy of both algorithms. This is evidenced by the results showing
that our lab experiment datasets present higher accuracy compared to the open-source
data. This is because our experiment was designed to separate different lubricant
levels with distinct patterns between clusters, while the differences between clusters
(bearing fault levels) in the open-source data were not as distinct. Thus, it can be
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inferred that the clearer the differences between data points in different clusters, the
better the accuracy of t-SNE and UMAP in classification tasks.

2. Impact of data volume on computational efficiency: Computational efficiency is
related to the volume of the data rather than the type of dataset. The larger the data
volume, the more computation time is needed. However, as the data volume increases,
UMAP shows a greater improvement in computational efficiency compared to t-SNE.

6. Discussions

Based on the results obtained in this study, the UMAP method is generally preferred
over T-SNE, provided the UMAP algorithm is available, as it demonstrates higher accuracy
and efficiency in most cases. However, it is noted that there may be certain scenarios where
the advantages of UMAP are not as significant, in which either method can be adopted.
Nevertheless, there are two specific situations where prioritizing the UMAP method over
T-SNE is recommended:

• Situation 1: In data structures where high-dimensional data are close while low-
dimensional data are far away, the T-SNE loss function penalizes discrepancies be-
tween low-dimensional and high-dimensional distances less severely. As a result, the
resulting 2D embedding may position clusters with relatively small overall disparities
farther apart than clusters with larger disparities. In such cases, the UMAP method
should be adopted, as it is less prone to producing misleading results. This is because
the UMAP loss function, which is based on binary cross-entropy, heavily penalizes
low-dimensional distances deviating from their corresponding high-dimensional
counterparts, regardless of the proximity of the high-dimensional distances. Conse-
quently, UMAP demonstrates superior ability to preserve the intrinsic data structure
in these scenarios.

• Situation 2: When multiple repeated trials are required and result consistency is
paramount, the UMAP method should be prioritized over T-SNE. This is due to
the different approaches used for initializing the low-dimensional data representa-
tion: T-SNE utilizes a random distribution, while UMAP assigns initial coordinates
via a graph Laplacian transformation that leverages high-dimensional data charac-
teristics. This distinction leads to UMAP exhibiting greater result stability across
repeated experiments.

7. Conclusions

This paper presents a comparative analysis of t-SNE and UMAP, two manifold
learning-based dimension reduction methods, from a mathematical perspective. The inves-
tigation focuses on two key aspects: global data structure preservation and computational
efficiency. The mathematical principles underlying these aspects are explored, revealing
that the global structure preservation property arises from high- and low-dimensional prob-
ability modeling and the design of the loss function. Computational efficiency is achieved
by eliminating the normalization process during modeling and adopting stochastic descent
instead of gradient descent. The impact of spectral embedding on the final results is min-
imal; however, when combined with high- and low-dimensional modeling and the loss
function, it presents significant influences. Two datasets, comprising both balanced and
unbalanced sample sizes, are employed for validation, including a laboratory test dataset
and an open-source dataset, both related to bearing condition-related operation states.

The results confirm the superiority of UMAP over t-SNE in terms of global data
structure preservation and computational efficiency. For the laboratory data, UMAP
reduces computational time by 90.49% (balanced data) and 90.06% (unbalanced data),
while increasing operation state identification accuracy by 8.29% (balanced data) and 9.03%
(unbalanced data). For the open-source data, UMAP reduces computational time by 93.46%
(balanced data) and 91.48% (unbalanced data), and increases operation state identification
accuracy by 5.78% (balanced data) and 6.93% (unbalanced data).
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