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Abstract: We studied the movable singularities of solutions of autonomous non-algebraic first-
order ordinary differential equations in the form of y′ = I(y(t)) and y′ = I1(y(t)) + I2(y(t)) + · · ·
+ In(y(t)), aiming to prove that all movable singularities of all complex solutions of these equations
are at most algebraic branch points. This study explores the use of the constructing triangle method
to analyze complex solutions of autonomous non-algebraic first-order ordinary differential equations.
For complex solutions in the form of y = w + iv, we treat the constructing triangle method as a way
to construct a right-angled triangle in the complex plane, with the lengths of the adjacent sides being
w and v. We use the definitions of the trigonometric functions sin and cos (the ratio of the adjacent
side to the hypotenuse) to represent the trigonometric functions of complex solutions y = w + iv.
Since the movable singularities of the inverse functions of trigonometric functions are easy to analyze,
the properties of the movable singularities of the complex solutions are then easy to deal with.

Keywords: movable singularities; autonomous non-algebraic first-order ordinary differential equations;
trigonometric functions
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1. Introduction

In recent years, there have been a lot of papers concerning algebraic solutions of
first-order autonomous algebraic ordinary differential equations (AODEs), Grasegger [1]
analyzed radical solutions of AODEs. Vo and Zhang [2] also analyzed rational solutions
of AODEs. Feng and Gao [3,4] introduced an algorithm to determine the existence of
non-trivial rational solutions of autonomous first-order ordinary differential equations, and
Winkler [5] generalized them to systems of autonomous ordinary differential equations.
Falkensteiner and Sendra [6] analyzed formal power series solutions of AODEs. They
found that any formal power series solution pertaining to autonomous first-order algebraic
ordinary differential equations exhibits convergence. Building upon this finding, Cano,
Falkensteiner, and Sendra [7] broadened the scope to encompass fractional power series
solutions and presented an algorithm capable of computing all such solutions. First-order
nonlinearly coupled ordinary differential equations were studied in [8]. Singularities of
singular solutions of algebraic ordinary differential equations have also been studied in
recent years [9]. Saji and Takahashi studied singularities of singular solutions of first-
order differential equations of the Clairaut type. In [10], Cui and Hui studied a second-
order differential equation with indefinite and repulsive singularities for the first time.
Nevertheless, there are merely a handful of steps involved in addressing the challenge of
analyzing solutions of autonomous non-algebraic first-order ordinary differential equations.
In our research, we focused on studying movable singularities of solutions of autonomous
non-algebraic first-order ordinary differential equations in which we consider complex
solutions only.
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The distinctive features of autonomous non-algebraic first-order ODEs in comparison
to other forms of ODEs are described below.

Absence of Explicit Dependence on the Independent Variable: Autonomous ODEs
do not explicitly depend on the independent variable. For a first-order autonomous ODE,
this means the equation can be written as F(y, y′) = 0 or in the standard form dy

dx = f (y),
where y is the dependent variable and y′ is its derivative. In contrast, non-autonomous
ODEs explicitly depend on the independent variable, e.g., F(x, y, y′) = 0.

Invariance to Time Shifts: Autonomous ODEs do not depend on the independent
variable; their solutions are invariant to time shifts. This means that if y(t) is a solution,
then y(t + c) (where c is a constant) is also a solution. This property is not shared by
non-autonomous ODEs.

Simplification of the Integration Process: The absence of explicit reliance on the
independent variable in autonomous ODEs leads to a streamlining of the integration pro-
cess. Specifically, as these ODEs do not depend explicitly on variables like time (t), the
integration is narrowed down to solely examining the dependent variable and its deriva-
tives. This eliminates the requirement to take into account variations in the independent
variable during the integration process, thereby simplifying the steps involved in solving
such equations.

Absence of Algebraic Terms: As the name indicates, algebraic ODEs contain algebraic
terms or expressions in addition to the derivatives. The algebraic terms can be polynomials,
square roots, fractions, etc. Non-algebraic ODEs do not explicitly contain algebraic terms
or expressions in their formulation.

Relationship to Dynamical Systems: Solutions of autonomous ODEs can be studied
in the phase plane (the y − y′ plane), where qualitative features like equilibrium points,
stability, and periodic orbits can be easily visualized (see [11]). Non-autonomous ODEs
depend explicitly on time or some other external parameters. This means the system’s
behavior evolves not only based on its internal state but also on external influences. Due
to this difference, the concept of a cocycle in dynamical systems specifically describes
how trajectories of non-autonomous dynamical systems evolve under time shifts. Math-
ematically, consider a non-autonomous dynamical system governed by an equation of
motion x(t + 1) = f (x(t), u(t), t), where x(t) is the state at time t, u(t) is an external con-
trol input, and f describes the system’s evolution. Cocycle properties describe how the
system’s trajectory starting from a point x0 at time t0 relates to the trajectory starting from
a shifted point x1 at a later time t0. However, since solutions of autonomous ODEs are
invariant to time shifts, the concept of a cocycle does not apply to autonomous dynamical
systems. For more information on this, especially the stability of non-autonomous systems,
please see [12–14].

In this paper, we consider autonomous non-algebraic first-order ordinary differential
equations of the form

y′ = I(y(t)) (1)

and we also consider autonomous non-algebraic first-order ordinary differential equations
of the form

y′ = I1(y(t)) + I2(y(t)) + · · ·+ In(y(t)) (2)

in which In is non-algebraic in y for t > 0.
In algebraic ordinary differential equations [15], some singularities are known as

movable singularities since their locations change as we transition from one solution to
another by altering the initial conditions. For example, the general solution of

w′ =
w
2
(z2w2 − 2

z
+

1
z2w2 ) (3)

is w(z) = z−1
√

tan(z − c), where c is an arbitrary constant. The singularity at z = 0 is
fixed, while all other singularities (which are located at z = c + ( nπ

2 ), n ∈ Z) are movable
square-root branch points. This pertains to a specific type of algebraic singularity where,
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in the vicinity of such a singularity at z = z0, there exists a rational number r > 0 such
that the solution can be expressed as the sum of a Laurent series in (z − z0)

r with a finite
principal part in this region. Readers can find further details in Ince [16] or Hille [17]. This
is also supported by Painlevé ’s theorem.

Theorem 1. (Painlevé) All movable singularities of all solutions of an equation of the form y′ =
R(z, y), where R is rational in y with coefficients that are analytic in z on some common open set,
are either poles or algebraic branch points.

For linear equations or linear systems of algebraic ordinary differential equations,
singularities are where the coefficients or inhomogeneous terms of the given differential
equations or systems become singular. In the case of nonlinear equations or nonlinear
systems of algebraic ordinary differential equations, singularities are those points around
which the solution function could not be expressed through Taylor expansions or infinite
series. For example, consider

y′′ = y2 + x. (4)

In the neighborhood of a singular point x0, we can simplify to:

y′′ = y2, (5)

and look for a power-law behavior y ∼ A(x − x0)
p. Substituting into Equation (5), we have

y ∼ 6(x − x0)
−2, (6)

and we can substitute y = 6(x − x0)
−2 + δ(x), z = x − x0 to obtain

δ
′′
=

12
z2 δ + z + x0 + δ2. (7)

Obtain the equation for δ:

δ = − x0

10
z2 − z2

6
+ Cz4 +

D
z3 − 1

7z3

∫ s

0
s4δ2(s)ds +

z4

7

∫ z

0
s−3δ2(s)ds

= − x0

10
z2 − z3

6
+ Cz4 + J(δ), (8)

where we can see that y cannot be expressed as an infinite series around the singular point
x0. Also, the solution has a pole at x0. For examples of solutions of algebraic ordinary
differential equations that have algebraic branch points, please see [15], Theorem 2. The
Painlevé theorem concerns the behavior of solutions at movable singular points and ensures
that the global behavior of solutions is predictable and controllable. For equations that pass
the Painlevé test but whose solutions have more complicated singularities, we can identify
base points in the equivalent system of equations, as shown in [18].

Remark 1. All movable singularities of all solutions of an equation of the form y′ = I(z, y), where
I is irrational in y, are either algebraic branch points or logarithmic singularities. For example, the
solutions of y′ =

√
y2 − z2 are ln(y +

√
y2 − z2) = z + C; y = ±z are algebraic branch points.

Additionally, the solutions of y′ = 1
y ln(y−z) are

∫
y ln(y − z)dy =

∫
dz; y = z are logarithmic

singularities. However, since equations are irrational in y, I(z, y) cannot be expressed as a power
series of y; intuitively, there are no poles.

If I(y(t)) is algebraic in y, y = 0 implies y′ = 0, indicating a critical point for au-
tonomous nonlinear equations (see more details on critical points for autonomous nonlinear
equations in [19,20]). Furthermore, critical points are algebraic singularities, as shown in
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Section 2. However, in autonomous non-algebraic first-order ordinary differential equa-
tions, I(y(t)) is non-algebraic in y; y = 0 does not necessarily imply y′ = 0. Readers can
gain a more intuitive understanding from the examples in Section 5. Specifically, we are
interested in the behaviors of the singularities in this unstudied case. We aim to prove the
main theorems outlined below.

Theorem 2. All movable singularities of all complex solutions of an autonomous first-order
ordinary differential equation of the form

y′ = I(y(t)), (9)

where I is non-algebraic in y, are at most algebraic branch points.

We can extend Theorem 2 to the theorem below.

Theorem 3. All movable singularities of all complex solutions of an autonomous first-order
ordinary differential equation of the form

y′ = I1(y(t)) + I2(y(t)) + · · ·+ In(y(t)), (10)

where In is non-algebraic in y, are at most algebraic branch points.

In Section 2, we introduce categories of singularities of inverse functions. In Section
3, we present proofs of Theorems 2 and 3. In Section 5, we show some examples where
all solutions of (1) and (2) have neither non-algebraic nor algebraic singularities, and
other examples where all solutions of (1) and (2) exhibit algebraic singularities rather than
non-algebraic ones.

The motivation for this study lies in its potential to provide a valuable tool for students
and researchers to analyze more singularity problems. The motivation also lies in the
potential for innovation and creativity that the constructing triangle method brings; it
opens up new possibilities to transform complex solutions of autonomous non-algebraic
first-order ODEs into inverse functions of certain trigonometric functions.

2. Categories of Singularities of Inverse Functions

In this section, we introduce several categories of singularities of inverse functions
and some lemmas.

Consider f : C → G, a non-constant holomorphic map between Riemann surfaces,
where C is the complex plane. Let z0 be a point in C such that f ′(z0) ̸= 0. Then, by Theorem
1, there exists a neighborhood V of the point w0 = f (z0) and a holomorphic map ϕ : V → C
such that f ◦ ϕ = idV . Below, we present the definitions of algebraic and non-algebraic
singularities, which are referenced from Alexandre Eremeko and Walter Bergweiler [21,22].

Definition 1. (Algebraic Singularity of the Inverse Function) If we define a curve γ : [ 0, 1] → G
from w0 to w1, and there is an analytic continuation of ϕ along γ for t ∈ [ 0, 1), for the image
Γ(t) = ϕ(γ(t)). If Γ(t) has a limit point at z1 ∈ D if t → 1, then by continuity f (z1) = w1, the
limit set of Γ(t) must consist of one point; otherwise, the limit set of the curve Γ would contain a
continuum, while the preimage of a point under f is discrete. Therefore, Γ ends at z1. If f ′(z1) ̸= 0,
then by the inverse function theorem, an inverse function should be defined, which is differentiable
through analytic continuation from ϕ to w1. But in the case of f ′(z1) = 0, the inverse function is
not defined, so ϕ has an algebraic singularity (branch point) at w1 ∈ G.

Specifically, if f (z1) ∈ C and f ′(z1) ̸= 0, or if f (z1) = ∞ and z1 is a simple pole of f ,
then z1 is called an ordinary point. If f (z1) ∈ C and f ′(z1) = 0, or if f (z1) = ∞ and z1 is a
multiple pole of f , then z1 is called a critical point and a is called a critical value. Critical
points are obvious algebraic singularities.
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Definition 2. (Non-algebraic Singularity of the Inverse Function) If we define a curve γ :
[ 0, 1] → G from w0 to w1, and there is an analytic continuation of ϕ along γ for t ∈ [ 0, 1), for
the image Γ(t) = ϕ(γ(t)). Suppose Γ(t) extends to ∞, where ∞ is the added point of the complex
plane C, making C a Riemann sphere. Γ is a curve parametrized by [ 0, 1), Γ(t) → ∞ as t → ∞,
and f (ϕ(γ(t))) has a limit point in G as t → 1, so Γ is an asymptotic curve of f . The asymptotic
curve of f is the non-algebraic singularity of the inverse function of f .

A transcendental singularity is a non-algebraic singularity. There are isolated tran-
scendental singularities and non-isolated transcendental singularities of inverse functions.
For detailed definitions, see [21]. The simplest isolated transcendental singularity of the
inverse function is a logarithmic singularity, which is defined below.

Definition 3. (Logarithmic singularity) Given S is an isolated transcendental singularity over a
point a, then there is an open disc V = B(a, r) of radius r around a such that S(V) is at a positive
distance from other singularities. In the map f : S(V)\ f−1(a) → V\{a}, V\{a} does not contain
critical values and asymptotic values. S(V) is a simply connected region bounded by a simple curve
in D, and both ends of the curve tend to ∞. This type of singularity is a logarithmic singularity.

There are two kinds of branch points, logarithmic branch points and algebraic branch
points, which are logarithmic singularities and algebraic singularities, respectively. A
branch point is a non-isolated singularity.

Definition 4. (Logarithmic branch point) A logarithmic branch point is a branch point whose
neighborhood of values wraps around an infinite number of times as their complex arguments
are varied.

Lemma 1. Let f : z → sin(z). Then f−1 : sin(z) → sin−1(z) is the inverse map on the Riemann
surface on which we only choose one piece of one-dimensional manifold that guarantees sin(z)’s
invertibility. Then, f−1 : sin(z) → sin−1(z) has two logarithmic branch points over ∞ and
infinitely many algebraic branch points (critical points) over −1 and 1.

The process of expressing arcsinz in the form of a logarithmic function in this proof is
referenced from [23].

Proof. Set

z = sin(ω) =
eiω − e−iω

2i
by Euler’s formula. Let

v = eiω,

which is equivalent to analyzing the equation

v − 1
v
= 2iz, (11)

Multiplying by v on both sides, (11) becomes

v2 − 1 − 2izv = 0,

Using a basic method to solve quadratic equations, the solution of (11) is

v = iz ± (1 − z2)
1
2 . (12)



Mathematics 2024, 12, 2074 6 of 20

Since z is a complex variable, (1 − z2)
1
2 is the complex square-root function. (12) is a

multi-valued function with two possible values that differ by a sign,

v = iz ± (1 − z2)
1
2

= iz ± e
1
2 log(1−z2)

= iz ± e
1
2 [Log|1−z2|+iarg(1−z2)]

= iz ± |1 − z2|
1
2 e

i
2 arg(1−z2),

Since v = eiω, it follows that

ω =
1
i

logv =
1
i

log(iz ± |1 − z2|
1
2 e

i
2 arg(−1−z2)),

Since ω = arcsinz,

arcsinz =
1
i

log(iz ± |1 − z2|
1
2 e

i
2 arg(1−z2)). (13)

The principal value of the arcsine function is obtained by employing the principal value
of the logarithm and the principal value of the square-root function. It is equivalent to
employing the principal value of the argument. Therefore, we simplify (13) to

Arcsinz = −iLog(iz ± (1 − z2)
1
2 ). (14)

As (1 − z2)
1
2 is a square-root function, z = ±1 are branch points.

Substitute z = 1
t into (14). Then, (14) becomes

Arcsinz = −iLog(
i
t
±

√
t2 − 1

t2 ) = −iLog(
i
t
±

√
t2 − 1

t
),

with z → ∞. Thus, t → 0,

Arcsinz → −iLog(
i
t
±

√
−1
t

),

Take
√
−1 = ∓i,

and then

Arcsinz → −iLog(
i
t
± ∓i

t
) → −iLog(0),

Since z = 0 is a branch point of Log(z), it means that z = ∞ is a branch point of Arcsinz.
Therefore, sin−1(z) has a branch point at z = ±i and z = ∞.

Remark 2. If a complex number is represented in polar form z = reiθ , then the logarithm of z is
logz = logr + iθ. The logarithm has a jump discontinuity of 2πi when crossing the branch point
z = 0. The singularity of log(z) at z = 0 is a branch point, where log(z) is a multi-valued function
because θ can be replaced with θ + 2πni for any n integer. Log(z) denotes the principal value of
log(z). Obviously, the point z = 0 under the function Log(z) is a logarithmic branch point.

3. Proof of Theorems 2 and 3

Now, we use the constructing triangle method to prove Theorems 2 and 3. The con-
structing triangle method utilizes the properties of triangles, such as the relationships
between angles and side lengths, to construct specific triangles that are related to the solu-
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tions of autonomous first-order ODEs. For a more detailed illustration of this methodology,
please see Section 4.

Proof. Assume y(t) = w(t) + iv(t) is the solution of (9). In the following, we abbreviate it
as y = w + iv, (w, v ∈ R) and construct a right triangle in the complex plane, in which one
of the angles is represented by y = w + iv, and the length of the hypotenuse is

√
v2 + w2.

Then, it is easy to see that

siny =
iv√

v2 + w2
, (15)

Substitute y = w + iv into siny,

sin(w + iv) = sinwcoshv + isinhvcosw, (16)

Equating (15) and (16):

sinwcoshv + isinhvcosw = i
v√

v2 + w2
,

we equate the real and imaginary parts:

sinwcoshv = 0, (17)

isinhvcosw = i
v√

v2 + w2
.

Therefore,

sinhvcosw =
v√

v2 + w2
. (18)

From (17), we have w = 0 + 2kπ or π + 2kπ. Then, by substituting them to (18), we have

sinhvcosw = 1sinhv =
v√

v2 + w2
,

sinhv =
ev − e−v

2
=

v√
v2 + w2

.

Assume u = ev. Then,

u − 1
u
=

2v√
v2 + w2

,

u2 − 1 − 2uv√
v2 + w2

= 0,

u =
v√

v2 + w2
±

√
v2

v2 + w2 + 1,

v = log(
v√

v2 + w2
±

√
v2

v2 + w2 + 1).
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Finally, we have the complex angle

y = 2kπ + ilog(
v√

v2 + w2
±

√
v2

v2 + w2 + 1), (19)

or

y = π + 2kπ + ilog(
v√

v2 + w2
±

√
v2

v2 + w2 + 1). (20)

Transform (19) and (20) into their principal value forms:

y = iLog(
v√

v2 + w2
±

√
v2

v2 + w2 + 1). (21)

In Section 2, two kinds of singularities were described: algebraic and non-algebraic singu-
larities. It is obvious that (21) does not exhibit algebraic singularities for w, v ∈ R.

If (21) has non-algebraic singularities, it is equivalent to

v√
v2 + w2

±

√
v2

v2 + w2 + 1 = 0, (22)

and it is straightforward to see that there is no solution for (22).
Assume y = w + iv (where w, v ∈ C are pure imaginary numbers) is the solution of (9).

Construct a right triangle in the coordinate plane in which one of the angles is y = w + iv,
and the length of the hypotenuse is

√
|v|2 + |w|2. Then, it is easy to see that

cosy =
iv√

|v|2 + |w|2
. (23)

Substitute y = w + iv into cosy,

cos(w + iv) = coswcoshv − isinhvsinw, (24)

Equating (23) and (24):

coswcoshv − isinhvsinw = i
v√

|v|2 + |w|2
,

we equate the real and imaginary parts:

coswcoshv = 0, (25)

−isinhvsinw = i
v√

|v|2 + |w|2
.

Therefore,

sinhvsinw = − v√
|v|2 + |w|2

. (26)

From (25), we have w = π
2 + 2kπ or −π

2 + 2kπ. Then, by substituting them into (26),
we have

sinhvsinw = 1sinhv = − v√
|v|2 + |w|2

,
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sinhv =
ev − e−v

2
= − v√

|v|2 + |w|2
.

Following the same process above, we have

y = iLog(
−v√

|v|2 + |w|2
±

√
v2

|v|2 + |w|2 + 1). (27)

It is obvious that (27) does not have non-algebraic singularities for w, v ∈ R. If (27) has
algebraic singularities, it is equivalent to

−v√
|v|2 + |w|2

= 0, (28)

or √
v2

|v|2 + |w|2 + 1 = 0. (29)

Solving (28) or (29), we have

v = 0, (30)

or

v = −
√
|v|2 + |w|2. (31)

If (30) holds, substitute (30) into (29). Then, we have
√

1 = 0, which is a contradiction. If
(31) holds, take w = 0i, and then (29) becomes√

v2

|v2| + 1 = 0,

which has a solution v = ±i. This proves Theorem 2.
Theorem 3 is proved in the same way as above. It is straightforward to see the general

solution of (9) is y = c0 +
∫ t

0 I(y(s))ds, and the general solution of (10) is
y = c0 +

∫ t
0 I1(y(s))ds +

∫ t
0 I2(y(s))ds + · · · +

∫ t
0 In(y(s))ds, which are just linear com-

binations of the solutions of equations of the form (9).

4. Methodology

In this section, we provide more detailed illustrations of how to use the constructing
triangle method to solve a specific non-algebraic first-order autonomous ordinary differen-
tial equation (ODE). This section serves merely as an example of how to apply this method.
For other differential equations, readers can be creative and construct other relationships
based on the triangle.

Consider a differential equation,{
du
dt = cosu(t)
u(0) = 1

(32)

Solve this differential equation:∫ 1
cosu

du =
∫

secudu = ln |tanu + secu| = t + C,
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|tanu(t) + secu(t)| = eteC.

Assume angle u(t) is located in the second quadrant, as shown in the Figure 1.

−x O x

zy

∠u(t)

Figure 1. The angle is obtuse.

It is easy to see that

tanu(t) = − y
x

,

secu(t) = − z
x

,

where z =
√

x2 + y2 is a non-negative number.

|tanu(t) + secu(t)| = | − y
x
− z

x
| = | − (y + z)

x
|,

and square both sides,

|tanu(t) + secu(t)|2 = | − (y + z)
x

|2 = | − (y + z)2

x2 | = |y
2 + z2 + 2yz

−x2 |.

Set

x2 = −2yz,

and then

|tanu(t) + secu(t)|2 = |y
2 + z2 − x2

2yz
|. (33)

By the law of Cosines theorem,

|cos(u(t)− π

2
)| = |y

2 + z2 − x2

2yz
| = (eteC)2 = e2te2C.

Since

cos(u(t)− π

2
) > 0,

cos(u(t)− π

2
) = e2te2C.

By trigonometric relation,

sin(u(t)) = cos(u(t)− π

2
) = e2te2C,



Mathematics 2024, 12, 2074 11 of 20

so we have transformed u(t) into an arcsin function.

u(t) = arcsin(e2te2C). (34)

Now, we want to further analyze the solutions of (34), which are complex.
In the process of writing (33), we set x2 = −2yz, which implies x2 < 0, y > 0, z > 0,

x =
√
−2yz = i

√
2yz. (35)

By substituting (35) into the definition of sin(u(t)− π
2 ), we have

sin(u(t)− π

2
) =

−x
z

=
−i

√
2yz

z
= −i

√
2y
z

. (36)

It is apparent that u(t) must be complex in order for sin(u(t)− π
2 ) to have a non-zero

imaginary part. Since

sin(u(t)− π

2
) = −i

√
2y
z

= −(−2y
z
)

1
2 ,

(1 − cos2(u(t)− π

2
))

1
2 = −(−2y

z
)

1
2 .

Squaring both sides, we have

1 +
2y
z

= cos2(u(t)− π

2
),

and then

cos(u(t)− π

2
) =

√
1 +

2y
z

.

Since u(t) is complex, cos(u(t) − π
2 ) must be complex, which implies

cos(u(t)− π
2 ) =

√
1 + 2y

z > 1. This implies 2y
z > 0, since y > 0.

The next steps are similar to those in Section 3. Suppose u(t)− π
2 = w + iv. Then,

sin(w + iv) = sinwcoshv + isinhvcosw,

By combining it with (36), we have

sinwcoshv + isinhvcosw = −i

√
2y
z

.

We equate the real and imaginary parts:

sinwcoshv = 0,

isinhvcosw = −i

√
2y
z

,

sinhvcosw = −
√

2y
z

.
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From sinwcoshv = 0, we have w = 0 + 2kπ or π + 2kπ. Take w = 0 + 2kπ. Then,

sinhvcosw = 1sinhv = −
√

2y
z

,

sinhv =
ev − e−v

2
= −

√
2y
z

.

Assume a = ev, and then

a − 1
a
= −

√
8y
z

,

a2 − 1 + a

√
8y
z

= 0,

a =
−
√

8y
z ±

√
8y
z + 4

2
,

v = ln(
−
√

8y
z ±

√
8y
z + 4

2
).

Finally, we have the complex angle u(t)

u(t) =
π

2
+ 2kπ + i ln(

√
8y
z ±

√
8y
z + 4

2
). (37)

From (37), we can easily see that there are no singularities in the solutions of (32) based
on the similar analysis in the previous sections.

Comparison with Numerical Methods

When dealing with non-algebraic first-order autonomous ODEs, we may utilize nu-
merical methods. It is essential to check whether non-algebraic first-order autonomous
ODEs in the form of (32) are convergent and stable before applying a numerical method,
since if the initial value problem is not robust to small perturbations, there is no hope that
any numerical method can approximate its solution.

Consider the initial value problem for a system of ODEs{
y′ = I(y(t))
y(0) = c0

(38)

and the perturbed problem {
z′ = I(z(t)) + δ(t)
z(0) = c0 + δ

(39)

where δ(t) is an integrable function and δ0 ∈ R.

Definition 5 (Stability of the Cauchy problem (see [11])). The Cauchy problem (38) is said to
be stable within the time interval [0, T] if for any perturbations δ0 and δ(t) such that

∥δ0∥ ≤ ϵ, and ∥δ(t)∥ ≤ ϵ, ∀t ∈ [0, T] (40)
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we have that

∥z(t)− y(t)∥ ≤ Cϵ, ∀t ∈ [0, T] (41)

where C is a finite constant that does not depend on ϵ.

We also want to prove the theorem below.

Theorem 4. Let D ⊂ Rn be an open set, y0 ∈ D. If I(y(t)) is Lipschitz continuous in D and δ(t)
is integrable, then the initial value problem (38) is stable.

Proof. We need to show that for any δ0 and δ(t), the difference between the solutions of (38)
and (39) is bounded in some time interval [0, T] and that the difference tends to zero as
ϵ → 0. First, we notice that if D is open and ϵ is small enough, then the initial condition
(y0 + δ0) is in D. If f (y(t)) is Lipschitz continuous,

∥ f (z)− f (y)∥ ≤ L∥z − y∥, ∀y, z ∈ D, (42)

and since δ(t) is integrable, problems (38) and (39) can be equivalently written as

y(t) = y0 +
∫ t

0
I(y(s))ds, (43)

z(t) = y0 + δ0 +
∫ t

0
I(z(s))ds +

∫ t

0
δ(s)ds, (44)

for all t ∈ [0, T].
Subtracting (43) from (44) and taking the norm yields

∥z(t)− y(t)∥ = ∥δ0 +
∫ t

0
[I(z(s))− I(y(s))]ds +

∫ t

0
δ(s)ds∥

≤ ∥δ0∥+
∫ t

0
∥I(z(s))− I(y(s))∥ds +

∫ t

0
∥δ(s)∥ds

≤ (1 + t)ϵ + L
∫ t

0
∥z(s)− y(s)∥ds, (45)

and we use Grónwall’s inequality to conclude that

∥z(t)− y(t)∥ ≤ (1 + t)etLϵ ≤ (1 + t)eTLϵ ≤ Cϵ. (46)

This proves that if (38) is Lipschitz continuous, then it is stable. To show that (32) is
stable, the remaining task is to show that (32) is Lipschitz continuous.

By the mean value theorem, there exists a c ∈ (y1, y2) such that

I(y1(t))− I(y2(t)) = I′(c(t))(y1 − y2),

so that

|I(y1(t))− I(y2(t))| = |I′(c(t))(y1 − y2)| ≤ |I′(c(t))||y1 − y2|.

If I is a trigonometric function in (32), it is easy to see that |I′(c(t))| ≤ 1. Thus, I(t, y) is a
Lipschitz continuous function in (32). Combined with Theorem 4, (32) is stable.
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Since equations in the form of (38) are stable, a numerical scheme can be applied. Here,
we use Euler’s method with h = 0.1 to find approximate values for the solutions of the initial
value problem (32) at t ∈ [0, 100]. The Euler’s scheme is 0-stable and convergent, since

Yn = Yn−1 + hYn−1 = (1 + h)Yn−1 = (1 + h)nY0,

with n → ∞ and h → 0 in such a way that nh = X a constant, then

lim
n→∞

(1 + h)nY0 = eX ,

so the method converges as h → 0.
We rewrite Equation (32) as

I(u(t)) = cosu(t), t0 = 0 and u0 = 1. (47)

Euler’s method yields

u1 = u0 + hI(u0(t0)) = 1 + 0.1(cos(1)) ∼ 1.0540302305868139,

u2 = u1 + hI(u1(t1)) = 1.0540302305868139 + 0.1(cos(1.0540302305868139)),

∼ 1.1034373406650508

u3 = u2 + hI(u2(t2)) = 1.1034373406650508 + 0.1(cos(1.1034373406650508)).

∼ 1.1484903471

By repeating the above process, we eventually obtain the Figure 2 below.

Figure 2. Graph of solutions of du
dt = cos(u(t)).

In the graph, we can easily see that there are no singularities in the solutions of (32).
When comparing the efficiency and accuracy of numerical methods with the construct-

ing triangle method for solving the differential equation du
dt = cosu(t), numerical methods

may not be as precise as the constructing triangle method. In practice h ̸= 0, Yn oscillates
as a trigonometric function. By using the constructing triangle method, solutions u(t)
have been expanded into a logarithmic equation, and the existence of singularities can be
easily observed.



Mathematics 2024, 12, 2074 15 of 20

5. Some Examples

In Examples 1–3, we present some autonomous first-order ordinary differential equa-
tions in the form of (9) and (10), where all movable singularities of all solutions are neither
non-algebraic nor algebraic singularities.

5.1. Example 1: When I(y(t)) = cosy(t)

Given the ordinary differential equation{
dy
dt = cosy(t),
y(0) = c0.

(48)

dy
dt

= cosy ⇒ dy
cosy

= dt ⇒
∫ 1

cosy
dy =

∫ t

0
dt,

it is known that

d
dy

∫ 1
cosy

dy =
d

dy
ln |tan(

π

4
+

y
2
)|,

∫ 1
cosy

dy = ln |tan(
π

4
+

y
2
)| = t + C, (49)

y(t) = 2arctan(et+C)− π

2
,

From the relation

arctanx = arcsin(
x√

1 + x2
),

we have

y(t) = 2arcsin(
et+C√

1 + e2(t+C)
)− π

2
= arcsin(

e2(t+C)

1 + e2(t+C)
− 1), (50)

inf
e2(t+C)

1 + e2(t+C)
− 1 = lim

t→0
lim

c→−∞

e2(t+C)

1 + e2(t+C)
− 1 = −1, (51)

sup
e2(t+C)

1 + e2(t+C)
− 1 = lim

t→0
lim
c→∞

e2(t+C)

1 + e2(t+C)
− 1 = 0. (52)

From Lemma (1), arcsin(z) has a logarithmic branch point at z = ∞. As we see in (51) and (52),
e2(t+C)

1+e2(t+C) − 1 does not tend to ∞, which implies that the solutions of (48) do not have
logarithmic singularities.

From Lemma (1), arcsin(z) has an algebraic branch point at z = ±1. Solving

e2(t+C)

1 + e2(t+C)
− 1 = ±1,

there are no solutions. Therefore, the solutions of (48) do not have algebraic singularities.
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5.2. Example 2: When I1(y(t)) = siny(t) and I2(y(t)) = cosy(t)

Given the ordinary differential equation:{
dy
dt = siny(t) + cosy(t) t > 0
y(0) = c0

(53)

dy
dt

= siny + cosy ⇒ dy
siny + cosy

= dt ⇒
∫ 1

siny + cosy
dy =

∫ t

0
dt,

it is known that ∫ 1
siny + cosy

dy =
∫ 1√

2cos(y − π
4 )

dy. (54)

We find that (54) is in the same form as (49), so the proof process is the same as in Example 1.

5.3. Example 3: When I(y(t)) = y(t) ln(y(t))

Consider the ordinary differential equation:{
dy
dt = y(t) ln(y(t)) t > 0
y(0) = c0

(55)

dy
dt

= y(t) ln(y(t)) ⇒ dy
y ln(y)

= dt ⇒
∫ 1

y ln(y)
dy =

∫ t

0
dt.

It is easy to see that

y(t) = eec0+t
(56)

which is an entire function that does not have singularities.
In Examples 4–6, we present some autonomous first-order ordinary differential equa-

tions in the form of (9) and (10), where all movable singularities of all solutions are non-
algebraic rather than algebraic singularities.

5.4. Example 4: When I(y(t)) = tany(t)

Given the ordinary differential equation:{
dy
dt = tany(t),
y(0) = c0.

(57)

dy
dt

= tany ⇒ dy
tany

= dt ⇒
∫ 1

tany
dy =

∫ t

0
dt,

it is known that

d
dy

∫ 1
tany

dy =
d

dy
ln |sin(y)|,

∫ 1
tany

dy = ln |sin(y)| = t + C, (58)

and we have

y(t) = arcsin(et+C). (59)
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By Lemma (1), arcsin(z) has a logarithmic branch point at z = ∞. Let

et+C → ∞,

so then

c0 = y(0) = arcsin(∞)

does not exist. Therefore, the solutions of (57) do not have non-algebraic singularities.
By Lemma (1), arcsin(z) has an algebraic branch point at z = ±1. Let

et+C = 1, (60)

and solving (60), we have the solutions

t = −C, (61)

We want time t to be a real number to guarantee that Equation (60) holds, which is equiva-
lent to finding some initial value c0 such that

c0 = y(0) = arcsin(eC), (62)

It is feasible that there exists some C ∈ R− such that (62) holds. Therefore, the solutions of
(57) have algebraic singularities.

If we set the initial value of (57) as y(0) = 1 using the Euler method, as shown in
Section 4, we obtain the Figure 3 below.

Figure 3. Graph of solutions of dy
dt = tan(y(t)).

It is easy to observe in the graph that the singularities of the solutions of (57) exist.

5.5. Example 5: When I(y(t)) = tany(t) and I2(y(t)) = secy(t)

Given the ordinary differential equation:{
dy
dt = tany(t) + secy(t),
y(0) = c0.

(63)
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dy
dt

= tany + secy ⇒ dy
tany + secy

= dt ⇒
∫ 1

tany + secy
dy =

∫ t

0
dt,

it is known that∫ 1
tany + secy

dy =
∫ cosy

1 + siny
dy = ln |1 + siny|+ C,

ln |1 + siny| = t + C. (64)

We find that (64) is in the same form as (58), and the process is the same as in Example 3.

5.6. Example 6: In R-C Circuit

As shown in [24], if a circuit is described by linear differential equations, then we can
simplify it by adding an imaginary part to the voltage or current:

V(t) = V0cos(ωt + ϕ) + j · V0sin(ωt + ϕ) = V0ej·(ω+ϕ) (65)

Consider a simple RC circuit (resistor–capacitor circuit), whose differential equation
commonly describes the variation in the rate of change of the capacitor voltage with time.
The magnitude of the current flowing through the capacitor is proportional to the rate of
change of the voltage across the capacitor.

I =
∂Q
∂t

= C
∂V
∂t

.

where I represents the electric current, Q represents the charge on the capacitor, C represents
the capacitance, and V represents the voltage across the capacitor. To relate this to the
concept of singularity, we can consider a special case where the electric current I is a
sinusoidal alternating current, which means that I = ∂Q

∂t = sin(ωt + ϕ). Under such
conditions, the differential equation becomes:

I =
∂Q
∂t

= C
∂V
∂t

= sin(ωt + ϕ),

Using basic calculation, it is easy to find that the voltage source V is a cosine function.

V ∼
∫

sin(ωt + ϕ)dt ∼ cos(ωt + ϕ),

The voltage across the capacitor lags behind the current by 90 degrees in sine alternat-
ing current due to the properties of sin and cos functions. Since the voltage V across the
capacitor lags behind the current I flowing through it by a phase of π

2 radians, their ratio
will give the reactance multiplied by an exponential with a negative phase constant. By
Ohm’s law,

VI = Z,

where Z is the impedance of a capacitor, and we have

Z =
V
I
=

1
ωC

e−
iπ
2 = − i

ωC
,

where e−
iπ
2 = cos π

2 − isin π
2 = −i. Z

′
= dV

dI is the derivative of voltage V with respect
to current I, which describes how the voltage changes when a small change occurs in
the current. It is easy to see that Z

′
approximates to a secant function since V is a cos

function and I is a sin function. Then, we can use forms of dV
dI ∼ tan(Φ) ∼ −i to analyze

the singularities of the derivative of the impedance function, where Φ is some unknown
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function. It is easy to see that the singularities extend to π
2 + 2kπ throughout the entire

complex plane.
In electrical or mechanical systems, much more complicated circuits, such as nonlinear

circuits, can be handled by extending the mathematical techniques shown in [24]. A
waveform that is not sinusoidal is called a complex wave. A complex wave can be written
as a Fourier series of sines and cosines, and each term in the series can be treated using the
method described here (for more information, see [25]).

6. Discussion

We firmly believe that the concepts and techniques outlined herein can be utilized
to explore a wide range of singularity issues encompassing intricate ordinary differential
equations. The potential avenues for future research based on this paper can be extended to
a wider domain of differential equations. Solutions of partial differential equations can be
constructed from solutions of ordinary differential equations. The essence of the procedure
relies on identifying a suitable set of nonlinear ODEs, all of which by construction admit
the solutions of non-algebraic first-order autonomous ordinary differential equations as
their solutions.
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