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Abstract: Optimizing spaced repetition schedules is of great importance for enhancing long-term
memory retention in both real-world applications, e.g., online learning platforms, and academic ap-
plications, e.g., cognitive science. Traditional methods tackle this problem by employing handcrafted
rules while modern methods try to optimize scheduling using deep reinforcement learning (DRL).
Existing DRL-based approaches model the problem by selecting the optimal next item to appear,
which implies the learner can only learn one item in a day. However, the most essential point to
enhancing long-term memory is to select the optimal interval to review. To this end, we present a
novel approach to DRL to optimize spaced repetition scheduling. The contribution of our framework
is three-fold. We first introduce a Transformer-based model to estimate the recall probability of a
learning item accurately, which encodes the temporal dynamics of a learner’s learning trajectories.
Second, we build a simulation environment based on our recall probability estimation model. Third,
we utilize the Deep Q-Network (DQN) as the agent to learn the optimal review intervals for learning
items and train the policy in a recurrent manner. Experimental results demonstrate that our frame-
work achieves state-of-the-art performance against competing methods. Our method achieves an
MAE (mean average error) score of 0.0274 on a memory prediction task, which is 11% lower than the
second-best method. For spaced repetition scheduling, our method achieves mean recall probabilities
of 0.92, 0.942, and 0.372 in three different environments, the best performance in all scenarios.

Keywords: spaced repetition; deep reinforcement learning; memory models; half-life regression;
transformers

1. Introduction

The study of effective learning for enhancing long-term memory has been a focal point
in both the educational and academic fields. One such strategy, spaced repetition, has
been proven to effectively enhance long-term memory by strategically scheduling review
intervals [1,2]. Quantitative experiments conducted by Ebbinghaus [3] illustrate that human
memory decays with a delay since the last review of the content but can immediately be
reinforced by reviewing it. Traditional approaches have explored applying rule-based
strategies for spaced repetition scheduling, such as the Pimsleur [4] and Leitner [5] systems.
These strategies are intuitive to understand but lack the flexibility to adopt individual
learning patterns. In real-world applications, spaced repetition scheduling is currently
widely used in practice, especially in online learning platforms, such as SuperMemo [6],
Anki [7], Duolingo [8], and MaiMemo [9].

With the large number of online learners on e-learning platforms, it is feasible to
collect large-scale training data [9,10]. In addition, with the development of deep learning,
the field has witnessed a paradigm shift towards data-driven methods, particularly deep
reinforcement learning (DRL) [11–13]. Since review scheduling of spaced repetition can
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be viewed as a sequential decision-making process, it is natural to adopt DRL for spaced
repetition optimization [14–17]. Reddy’s study is a pioneer work that formulates instruc-
tion as a partially observable Markov decision process (POMDP) planning problem [14].
TADS [17] employs a time-interval prediction module and Dyna-style planning [18] for
spaced repetition optimization. However, these methods can suffer several drawbacks in
real-world applications. Firstly, the simulation environments used in these works are ruled-
based without real-world data, which may deviate from real-world situations. Secondly,
previous works formulated the reinforcement learning problem as deciding the next item,
which implies only one item will be learned in each learning session. However, in realistic
situations, the learning process contains multiple days while a number of items should be
learned in a day. The main purpose of the spaced repetition algorithm is to determine the
optimized interval to review an item.

To address the above challenges, we propose the DRL-SRS framework, which stands
for the deep reinforcement learning approach for optimizing spaced repetition schedul-
ing framework. The framework contains two modules. Our work first introduces the
Transformer-based Half-Life Regression (THLR) model, which predicts the half-life of
learning items with greater accuracy than traditional models based on real-world data.
By capturing the temporal dynamics of recall likelihood, THLR provides a more nuanced
understanding of the process of forgetting. Furthermore, following the problem definition
of SSP-MMC [9], we develop a simulation environment that emulates the learner’s daily
review process, considering both inter-day and intra-day time dynamics. Although previ-
ous works have tried simulating student interactions for educational systems [19], they are
not feasible for spaced repetition optimization. Lastly, we propose a deep reinforcement
learning model for spaced repetition optimization based on a Deep Q-Network (DQN)
augmented with a Long Short-term Memory (LSTM) mechanism.

Through extensive experiments, we demonstrate that our proposed framework signifi-
cantly improves upon existing spaced repetition optimization methods. The results indicate
that our approach not only enhances recall probabilities but also optimizes the scheduling
process, leading to more efficient use of the learner’s time and cognitive resources.

The rest of this paper is organized as follows: Section 2 reviews related work in spaced
repetition optimization and reinforcement learning. Section 3 discusses the background
knowledge like models for human memory used in our framework and basics of rein-
forcement learning. Section 4 details our methodology, including problem formulation,
THLR model, simulation environment, and the DRL-based spaced repetition optimization.
Section 5 presents our experimental results and analysis. Finally, Section 6 concludes the
paper and discusses future research directions. The main innovation and features of our
proposed framework against competing methods are summarized in Tables 1 and 2.

Table 1. Baseline methods in this paper for memory prediction. A comparison of integrated features
is summarized in this table. ✓ denotes that the corresponding feature is equipped.

Learning-Based Temporal Dynamics Attention Mechanism

Pimsleur [4] - - -
Leitner [5] - - -
HLR [8] ✓ - -
DHP [9] ✓ - -
GRU-HLR [10] ✓ ✓ -
THLR (ours) ✓ ✓ ✓
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Table 2. Competing methods in this paper for spaced repetition scheduling. A comparison of
innovation and features is summarized in this table. ✓ denotes that the corresponding feature
is equipped.

Learning-Based Temporal Dynamics Reinforcement Learning

RANDOM - - -
ANKI [7] - - -
MEMORIZE [20] - - -
HLR [8] ✓ - -
Ours ✓ ✓ ✓

2. Related Work

Optimizing spaced repetition schedules [8] for enhancing long-term memory has
been an important area of extensive research. Previous approaches to spaced repeti-
tion optimization can be divided into two categories, traditional approaches and recent
reinforcement-learning approaches.

2.1. Traditional Spaced Repetition Algorithms

Prior to the introduction of deep learning paradigms, most scheduling algorithms
were rule-based, leveraging heuristics derived from cognitive psychology and behavioral
studies. Early works like Pimsleur [4] and Leitner [5] used simple rules, prioritizing items
based on their novelty and difficulty. These methods are intuitive but lack the flexibility
for individual memory patterns. SuperMemo [6] and Anki [7] are more sophisticated
approaches that employ handcrafted rules to decide the next review interval and priorities
of items within a learning session. Other methods such as the greedy algorithm [21]
optimize the scheduling by selecting the item that maximizes the conditional marginal
gain. MEMORIZE [20] uses stochastic optimal control to make a trade-off between recall
likelihood and review times. However, these traditional approaches rely on the reliance of
predefined rules and cannot adapt to the dynamic learning process of individual learners.

2.2. Reinforcement Learning for Spaced Repetition

The advent of deep reinforcement learning has marked a significant shift in the
optimization of spaced repetition schedules. DRL-based methods model the student as an
environment and use agents to learn optimal policies through interactions. These methods
have the advantage of learning from data and can adapt to individual learners’ behaviors
and performance.

One of the pioneering works in this area is the application of DRL to spaced repetition
by Reddy [14], who formulated the review scheduling problem as a Partially Observable
Markov Decision Process and used Trust Region Policy Optimization (TRPO) to learn an op-
timal policy. Sinha [15] introduced a method that uses a Recurrent Neural Network (RNN)
to model the student’s memory mechanism, providing pseudo rewards at each learning
event to guide the policy learning process. This approach improved upon the assumption
of constant intervals by incorporating the student’s memory state into the decision-making
process. Upadhyay [16] proposed a deep reinforcement learning framework that simulta-
neously decides the time intervals of reviews and the content for the students, treating the
review process as a Marked Temporal Point Process (MTPP). This method, while innovative,
assumes that the student is available for learning at the exact times determined by the
policy, which may not align with the student’s availability. The Time-Aware scheduler
with Dyna-Style planning (TADS) [17] approach by Yang et al. addresses some of these
limitations by incorporating varying time intervals between learning events and using
Time-LSTM networks to learn an optimal content selection policy. TADS integrates Dyna-
style planning to improve sample efficiency, leveraging both model-based and model-free
reinforcement learning techniques.
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Deep-learning-based approaches, particularly those utilizing reinforcement learning,
have shown promise in creating more flexible and personalized spaced repetition schedules.
These methods can learn from individual learning patterns, although they come with
challenges such as naive simulation environments, improper problem definition, and the
use of ineffective DRL algorithms.

3. Background
3.1. Models for Human Memory
3.1.1. Exponential Forgetting Curve

The Exponential Forgetting Curve (EFC) [3] is one of the most well-known memory
models that depicts the forgetting curve along time elapsed. It states that an item has the
highest recall likelihood when it has been reviewed and it is forgotten at an exponential
rate. In this paper, we use the equation proposed in [22], which states the recall probability
of a learning item as follows:

precall = e−θ·∆/S, (1)

where θ, ∆, and S denote the item difficulty, the time elapsed since the last review, and the
student’s memory strength of the item, respectively.

3.1.2. Half-Life Regression

Settle and Meeder [8] define half-life regression (HLR) as follows:

precall = 2−∆/h, (2)

where p, ∆, and h denote the recall likelihood, the elapsed time since the last review, and the
half-life parameter, respectively. In practice, the ground-truth half-life h is estimated using
a dedicated model. The estimated half-life parameter ĥΘ is calculated in [8] by:

ĥΘ = 2Θ·x, (3)

where x = (x⊕, x⊖, lex) is the feature vector, composed of the correct recall times, incorrect
recall times, and the lexeme tag, separately. The HLR model is optimized using the
following objective:

JHLR = (p− p̂)2 + α(h− ĥ)2 + λ ∥ Θ ∥2, (4)

where p and p̂ are recall probability and predicted recall probability, respectively.

3.1.3. Difficulty–Half-life–P(recall) HLR

The Difficulty–Half-life–P(recall) (DHP) HLR model is proposed in [9] to enhance the
original HLR model. By taking recall probabilities, recall results, and difficulties of an item
into consideration, DHP models the human memory with a Markov property. The state
transition equation is defined as:[

hi+1
di+1

]
=

[
hi · (eθ1·xi + 1) eθ2·xi

di di + θ3

]
·
[

ri
1− ri

]
, (5)

where hi, ri, di, {θ1, θ2, θ3} and xi indicate the half-life, the recall result, the difficult, model
parameters, and the collection of states of the item at the i-th timestamp, respectively.

3.2. Reinforcement Learning

Conventional reinforcement learning (RL) algorithms [23] contain an environment,
an agent (policy), and reward functions. The agent (or policy) π learns to behave in such
a way as to maximize a notion of cumulative reward. The learning process is based on
the agent’s experiences, which consist of states S , actions A, and rewards R. In general,
our goal is to find the best policy π∗(s) such that getting the best discounted cumulative
rewardR = ∑∞

t=t0
γt−t0 rt, where γ is the discounted factor and rt is the reward at step t.
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4. Methodology

As illustrated in Figure 1, our framework consists of three components, the THLR
memory prediction module, a simulation environment, and a DRL-based spaced repetition
algorithm. The THLR memory prediction module is used for estimating the recall probabil-
ity of learning items, taking into account the probability history, recall history, and interval
history. The simulation environment mimics a learner’s daily review process, considering
both inter-day and intra-day dynamics. The DRL-based spaced repetition optimization
utilizes a DQN with an LSTM mechanism to learn the optimal review intervals for effective
long-term memory retention. The problem formulation and detailed descriptions of the
three components are given below.

Policy

Memory Environment

Action

Observation 𝒐𝒐𝒕𝒕

LSTM Network

Hidden States 𝒉𝒉𝒕𝒕−𝟏𝟏

Reward 𝒓𝒓

THLR - Recall Probability 
Estimation Model

Transformer Network

Memory Internal States

probability history

recall history

Action 𝒂𝒂𝒕𝒕
Hidden States 𝒉𝒉𝒕𝒕

Recall Probability 𝒑𝒑𝒕𝒕

𝒑𝒑𝟏𝟏⋯𝒕𝒕−𝟏𝟏,𝒓𝒓𝟏𝟏⋯𝒕𝒕−𝟏𝟏,𝑻𝑻𝟏𝟏⋯𝒕𝒕−𝟏𝟏

Interval history
…

Figure 1. The overall view of our proposed framework for spaced repetition optimization using deep
reinforcement learning. The arrow represents the computation flow.

4.1. Problem Formulation

The goal of spaced repetition optimization is to schedule learning items such that the
learner memorizes all items in the long-term memory, meanwhile, minimizing memory
costs. In detail, given N learning items, the whole learning process consists of a learning
event sequence in which a learning event e is represented as a vector ei = (wi, ∆i, ri, pi).
For an incoming item wi, which has not been reviewed for ∆i days, the probability of
the learner recalling the item successfully is equal to pi. The optimization algorithm has
to determine the optimal interval for the item after the recalling result ri. In this paper,
we formulate this problem into a reinforcement learning paradigm. We define each RL
component as follows:

• State space. The state space S depends on the memory model. For EFC, the state
space encodes the item difficulty, the time delay, and the memory strength. For DHP,
the states include the difficulty, the time delay, and the recall result.

• Action space. The action space A = {1, 2, · · · , T} consists of review intervals ranging
from 1 to the maximum interval T. The action at ∈ A indicates that the current item
was scheduled at days ago after its review at time t.

• Observation space. Away from the internal memory states, the agent can only obtain
observations O including the time delay, the recall result, and the recall probability no
matter the choice of memory model.

• Reward function. Following previous works [14,15,17], we construct the reward
function using the recall probability of the current item, which is provided by the
memory modelM.

To this end, our goal is to find the optimal policy performing the best action (optimal
interval) to gain maximum rewards.
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4.2. Transformer-Based Half-Life Regression

The first component of our framework is to calculate the half-life for a given item effec-
tively. Unlike previous half-life regression methods [8–10,24], we adopt Transformer [25] to
predict the half-life of given items, since Transformer has been proven to be effective for
time-series prediction [26]. To this end, we propose Transformer-based Half-life Regression.
The use of a Transformer for half-life regression is based on several considerations. Firstly,
as with HLR [8], the Transformer can effectively capture temporal dynamics. Secondly,
rather than manually designing the state transition like DHP [9], THLR can flexibly adopt
various memory patterns. Finally, the Transformer achieves better performance than other
recurrent networks, such as gated recurrent unit (GRU) networks [27], in experimental
results. At the same time, we do not consider more complex Transformer variants since the
features used in our task are relatively simple.

Given {r1:t−1, p1:t−1, ∆1:t−1}, the predicted half-life is calculated by:

ĥt = Transformer(r1:t−1, p1:t−1, ∆1:t−1), (6)

where the following factors are considered in our model:

• Previous recall results r1:t−1;
• Previous recall probabilities p1:t−1;
• Previous review intervals ∆1:t−1.

Based on the estimated half-life, we can calculate the recall probability of the item
according to [8]:

pt = 2
− ∆t

ĥt . (7)

4.3. Schedule Optimization Environment

The second component of our framework is the simulation environment. The environ-
ment is based on the memory model trained in Section 4.2 or other baselines such as EFC
and HLR. Unlike previous works [14,17], the environment proposed in this paper contains
two phases, inter-day and intra-day. In the intra-day phase, the environment simulates
the learner to respond for items due today one by one, until the daily time limit costlimit
is reached. Successful recall and unsuccessful recall cost costrt=1 and costrt=0, respectively.
For a new item (never reviewed before), the item will be arranged for review the next day
and the time cost is costnew. When the daily cost is exhausted, the remaining items are
postponed to the next day, and the date day is processed to the next day day = day + 1.

The detailed simulation process of our environment is shown in Algorithm 1. It
represents the current item. The properties, due_day, last_day, type, attempts, intervals, recalls,
and probabilities of It represent newest day to review, last day of review, item type, number
of attempts, interval history, recall result history, and recall probability history of the
item, respectively.M indicates the memory model used in the environment. The method
M.get() fetches the next item from the memory.M.prob(It) calculates the recall probability
of the current item It. The methodM.put(It) puts the item with updated states back into
the memory.
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Algorithm 1: The simulation process of the environment
Data: Action at, MemoryM
Result: Reward r, Observation ot, Termination

1 Initialize the environment parameters;
2 while not terminated do
3 Get the current item due today: It =M.get() with It.due_day == day;
4 if It.type == REVIEW then
5 Calculate recall probability pt =M.prob(It); /* The item type is

review item */
6 It.attempts← It.attempts + 1;
7 It.intervals.append(at); /* Record interval history */
8 if random() < pt then
9 rt ← 1; /* Successful recall */

10 cost← cost+costr=1;

11 else
12 rt ← 0Unsuccessful recall cost← cost+costr=0;

13 Update interval states of MemoryM;
14 It.recalls.append(rt); /* Record recall history */
15 It.probabilities.append(pt); /* Record probability history */

16 else
17 cost← cost + costnew; /* The item type is new item */
18 It.type← REVIEW;

19 It.due_day← It.due_day + at; /* Set the next day to review */
20 It.last_day← day;
21 Put the item back to reviewM.put(It);
22 r ← pt ; /* Reward is equal to recall probability */
23 if cost ≥ costlimit then
24 cost← 0;
25 next_day(); /* The learning quota of today is running out */

26 if no next item or session ends then
27 Terminate the session; Set reward to 0;

28 Get observation and other information;

29 Close the environment;

4.4. Reinforcement-Learning-Based Spaced Repetition Optimization

The third component of our framework is the RL-based spaced repetition policy.
In general, we can use any off-the-shelf RL algorithm. In this paper, we assume that the
policy cannot access the internal states of the learner except the observations. In addition,
the action space is discrete for our environment. Based on the above considerations, we
choose the model-free, off-policy Deep Q-Network [28] for the policy. In addition, to capture
the temporal dynamics of memory, we adopt Long Short-term Memory [29] for the policy
network and train the policy using a recurrent style.

4.4.1. DQN Algorithm

The main idea behind DQN is that if we had a Q function Q∗ : A×S → R to compute
the reward if the policy to take an action a in a given state s, to maximize the reward, we
have the equation:

π∗(s) = arg max
a

Q∗(s, a). (8)
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Since the optimal Q function is unknown, we use a neural network Qπ to approximate
it. For each training step, we have:

Qπ(s, a) = r + γQπ(s′, π(s′)), (9)

where r is the step reward, and s′ is the previous state. The difference between two
consecutive steps is the temporal difference error δ:

δ = Q(s, a)− (r + max
a

Q(s′, a)). (10)

To minimize the temporal difference error, DQN optimizes the Huber loss L over a
batch of data sampled from the replay buffer:

L =
1
|B| ∑

(s,a,s′ ,r)∈B
L(δ), (11)

where:

L(δ) =
{

1
2 δ2 for|δ| ≤ 1
|δ| − 1

2 otherwise
. (12)

4.4.2. Recurrent-Style Planning

Previous works use features of current time while ignoring the temporal relations [14].
Considering the importance of temporal relations between learning events, we adopt
LSTM for the policy network and train the policy using a recurrent style [30]. The policy
π(·, ·) takes not only the current state but also hidden features that encode previous states
as inputs.

5. Experiments

In the experiment section, we assess the performance of our framework according to
two aspects: memory prediction and schedule optimization. The goal of memory prediction
assessment is to evaluate the accuracy of recall probability prediction. The goal of schedule
optimization assessment is to assess the effectiveness of the scheduling.

5.1. Environments

The simulation environment is implemented using OpenAI Gymnasium (v1.0.0
alpha1) [31]. The spaced repetition policy is implemented by Tianshou (v0.5.0) [32]
and PyTorch (v2.2) [33]. All the experiments are performed on a computer with an
RTX4090 GPU.

5.2. Memory Prediction
5.2.1. Baselines

We compared THLR with the following baselines:

• Pimsleur [4] is a pioneer work in introducing an initial scheduling system that utilized
a geometric progression, characterized by a common ratio of five.

• Leitner [5] is a method using tangible containers, which manages the frequency of
flashcard reviews by transferring them between boxes of differing dimensions.

• HLR [8] proposes a parameter to measure the storage strength of memory and gives
the recall probability according to the half-life and the time interval.

• DHP-HLR [9] is a variant of HLR that considers the item difficulty.
• GRU-HLR [10] is an improved version of DHP-HLR that uses recurrent neural net-

works to update internal parameters.
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5.2.2. Evaluation Metrics and Experimental Settings

We use mean absolute error (MAE) and mean absolute percentage error (MAPE) to
evaluate the performance of our model and baselines. In this experiment, we use the dataset
collected by [9], which contains 220 million review event logs from the online e-learning
platform MaiMemo, processed into 71,697 groups.

5.2.3. Results and Analysis

Table 3 shows the experimental results for memory prediction. We can see that our
method outperforms all the baselines in predicting recall probabilities with the lowest MAE
and MAPE, which illustrates that THLR has remarkable effectiveness in predicting recall
probability. To show the significance of our method, we also conduct a Wilcoxon Signed-Rank
Test [34] over baselines w.r.t. the two measurements. The p-value is 0.03125, which shows that
we should reject the H0 assumption (the algorithms are equal) at the 95% confidence level.

Table 3. Experimental results for memory prediction. The bold item indicates the best performance.

MAE MAPE

Pimsleur 0.3169 165.69%
Leitner 0.4535 133.92%
HLR 0.1070 76.65%
DHP 0.0779 46.35%
GRU-HLR 0.0307 18.88%

THLR (ours) 0.0274 16.70%

Among all baselines, Pimsleur and Leitner are traditional, rule-based models that do
not adapt to individual learning patterns, resulting in the highest MAE and MAPE values.
This verifies that it is difficult to learn a good memory prediction model using handcrafted
rules from real-world data. HLR introduces a parameter to measure memory strength and
provides recall probabilities based on the half-life and time interval, which improves the
prediction accuracy but still falls short compared to more sophisticated models. DHP and
GRU-HLR are more advanced models that consider more environment variables. DHP
takes half-life, recall probability, recall result, and item difficulty into consideration and
utilizes handcrafted transition equations. GRU-HLR utilizes recurrent neural networks
to update internal parameters, which improves the flexibility compared to DHP. Thus,
GRU-HLR shows a slightly better result compared to DHP. The two models both show
significant improvements over the traditional models.

THLR, the proposed model in this paper, outperforms all baselines by a considerable
margin. The use of the Transformer network allows the effective capture of temporal
dynamics in learning trajectories, which is crucial for accurate recall probability estimation.
The results suggest that the THLR model’s ability to flexibly adapt to various memory pat-
terns and its effectiveness in time-series prediction contribute to its enhanced performance.
The lower MAPE and MAPE values signify that the THLR model is better at estimating
recall probabilities.

5.3. Schedule Optimization
5.3.1. Baselines

We compared our framework with the following baselines:

• RANDOM is a baseline that chooses a random interval from [1, halflife] to schedule
the next review.

• ANKI [7] is a variant of the SM-2 algorithm, which is used in a popular learning
application.

• MEMORIZE [20] is a spaced repetition algorithm based on optimal control that is
trained to determine the parameter to minimize the expectation of review cost.
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• HLR [8] is a baseline to schedule the next review interval equal to the half-life.

To test the effectiveness of spaced repetition algorithms in different environments, we
conduct experiments on the following memory models:

• EFC [3] is one of the most recognized memory models that illustrates the relationship
between the forgetting curve and the time decay.

• DHP [9] is a memory model with the Markov property for explainability and simplicity
and handcrafted state-transition equations. It takes half-life, recall probability, recall
result, and item difficulty as state variables.

• THLR is the simulation environment proposed in this work.

5.3.2. Evaluation Metrics and Experimental Settings

As in [14,17], we evaluate the performance by using the average recall probability
(ARP) over all items after the last learning event.

We set the limit of daily learning cost as 600 and the number of items as 1000. The learn-
ing cost of a new item, a recalled review item, and a forgotten review item are 12, 3, and 9,
respectively. The maximum duration of the simulation is set as 1000 days.

5.3.3. Results and Analysis

Table 4 shows the experimental results for spaced repetition optimization, where the
columns represent different methods and the rows represent different simulation environments.

Table 4. Experimental results for spaced repetition optimization. The bold item indicates the best
performance.

EFC DHP THLR
SUM MEAN SUM MEAN SUM MEAN

RANDOM 52,439.40 0.867 28,803.55 0.475 13,482.70 0.178
ANKI 13,264.31 0.637 13,702.83 0.584 12,425.18 0.185
MEMORIZE - - 35,350.10 0.817 12,694.96 0.169
HLR - - 10,516.85 0.468 25,169.26 0.355

Ours 88,548.67 0.920 162,482.57 0.942 18,572.39 0.372

In general, the results indicate that the proposed framework (referred to as “Ours”)
outperforms all baselines in terms of ARP across the three memory models, suggesting that
it effectively optimizes the scheduling of review intervals to enhance long-term memory
retention. To investigate the significance of our proposed method, we perform a Friedman
test [35] w.r.t. different simulation environments over baseline methods. The p-value is
0.0094, which suggests that we reject the H0 assumption (the algorithms are equal) at the
0.99% confidence level, i.e., our method significantly outperforms the baselines.

For the EFC environment, MEMORIZE and HLR cannot be applied in this environment
because they require the half-life parameter, which is not contained in the environment.
ANKI shows a worse result than RANDOM. Our method achieves a moderate improvement
compared to RANDOM and ANKI. For the DHP environment, ANKI shows moderate
performance and is slightly better than RANDOM. MEMORIZE shows better performance
than the other baseline methods. However, HLR’s performance is worse than that of
RANDOM. For the THLR environment, ANKI and HLR show better results than RANDOM.
However, the performance of MEMORIZE is even worse than that of RANDOM.

Across all environments, ANKI shows a moderate performance. It performs slightly
better than RANDOM in DHP and THLR but does not adapt as effectively to the EFC
environment. MEMORIZE illustrates a significant improvement compared with RANDOM
in DHP but fails in THLR. HLR shows a worse performance than that of RANDOM in
DHP but gets a better result in THLR. The experimental results illustrate that none of the
baselines show consistent performance across all environments. In contrast, our proposed
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framework beats all competing methods over all environments. The experimental results
show our framework’s superior performance for spaced repetition optimization utilizing
Deep Q-Networks augmented with a Long Short-term Memory mechanism for learning
optimal review intervals.

6. Conclusions

This paper introduces a novel deep reinforcement learning framework, DRL-SRS, aimed
at optimizing spaced repetition scheduling to enhance long-term memory retention. This
framework is particularly relevant for applications in online learning platforms and cognitive
science research, where the efficiency of memory retention is paramount. Our approach
addresses the limitations of traditional rule-based methods and previous DRL-based models
by introducing three key innovations. Firstly, we developed a THLR model to more accurately
estimate the recall probability of learning items, capturing the temporal dynamics of a learner’s
memory trajectory. Secondly, we constructed a simulation environment that emulates a
learner’s daily review process, considering both inter-day and intra-day time dynamics.
Thirdly, we employed a DQN augmented with an LSTM mechanism to learn the optimal
review intervals for learning items. For future works, there are two valuable directions to
explore. First, incorporating personal features to enhance personalized experiences for learners,
in that, the scheduler can be further refined with personalized data to output individually
optimized review intervals, e.g., relaxed scheduling for learners who are performing well.
Second, incorporating multi-modal learning data, such as visual, auditory, and kinesthetic
inputs, can improve the accuracy of describing the difficulty of learning items. However, most
current research works only consider language learning, i.e., text inputs.
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