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Abstract: Background: Environmental concerns about petroleum-based plastic packaging materi-
als and the growing demand for food have inspired researchers and the food industry to develop
food packaging with better food preservation and biodegradability. Nanocomposites consisting of
nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicro-
bial properties and sustainability of food packaging. Scope and approach: This review summarized
the recent advances in nanofiller and their applications in improved food packaging systems (e.g.,
nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide
nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium
dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment
methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The
potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorpo-
ration of nanofillers may increase Young’s modulus (YM) while decreasing the elongation at break
(EAB) (y = −1.55x + 1.38, R2 = 0.128, r = −0.358, p = 0.018) and decreasing the water vapor (WVP) and
oxygen permeability (OP) (y = 0.30x − 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition
of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by
an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period,
and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer
films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires
further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of
nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome
the challenges associated with traditional packaging materials. Strong regulatory frameworks and
safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to
explore how to realize the economic and technical requirements for large-scale implementation of
nanocomposite technologies.

Keywords: nanofillers; improved food packaging; active food packaging; intelligent food packaging;
degradable packaging; migration; toxicity

1. Introduction

Food packaging is primarily designed to preserve and/or store food and protect
it from physical, chemical, and biological contamination, thereby ensuring food quality
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throughout its life cycle, and maintaining its organoleptic properties [1,2]. Food packaging
also serves as a container, facilitates transport, distribution, and warehousing, promotes
marketing, and provides useful information and portion control to consumers [3].

The high prevalence of foodborne disease (i.e., nearly 600 million cases and 420,000 deaths
each year worldwide [4]), global food crisis (i.e., almost 238 million people facing high levels
of acute food insecurity [5]), and diversification of global food production has led to increasing
demands for eco-friendly and safer food packaging. The main synthetic polymeric food
packaging materials in use are easy to process, thermally flexible, lightweight, cost-effective,
and can be chemically processed into a variety of lengths and shapes with functions such as
antioxidants to meet the varying needs of food products [6]. For example, the functionalization
of polyvinyl chloride (PVC) polymer with additional bioactive natural antioxidants vanillic
acid, cinnamic acid, coumaric acid, caffeic acid, and naringenin prolonged the oxidation of
linseed oil by 1 to 6 days over virgin PVC [7]. Polypropylene (PP) grafted with tannic acid
showed similar antioxidant effects and slowed down the oligomerization of linseed oil [8].
Hazer and Ashby [9] also reported that menthol and lipoic acid-modified PP and PVC (i.e.,
PP-Mnt, PP-Lip, PVC-Mnt, and PVC-lip) could be applied as antioxidant packaging materials
for vegetable oils and oil-containing foods. However, some synthetic polymer-based plastic
packaging (e.g., polyester: polyethylene terephthalate (PET), polyethylene (PE)) have inherent
defects in poor mechanical properties, cytotoxicity and ecotoxicity risk, slow degradation, and
other environmental concerns. Thus, it is imperative to develop non-toxic, recyclable, sustain-
able, biodegradable, and more environmentally friendly alternatives, such as biopolymers, for
food packaging.

Biopolymers offer the potential for more environmentally friendly food packaging
materials due to their better biodegradability, non-toxicity, and sustainability compared
to plastics [6]. They are directly extracted from polysaccharides (e.g., cellulose, starch,
alginate, and chitosan) and proteins (e.g., casein, gluten, and gelatin), synthesized from
renewable biomass-derived monomers (e.g., poly (lactic acid) (PLA)), and produced by
fermented products of natural or genetically modified microorganisms (i.e., polyhydrox-
yalkanoates) [6]. They can control moisture and gas exchange, retain aromas and texture,
and have antimicrobial activity [10]. Nevertheless, in most applications, these biopolymers
lose these properties in high-humidity environments due to their hydrophilic nature of
the structural groups. Meanwhile, their mechanical properties are usually barely compa-
rable to the strength of the plastic materials currently applied in industry [11]. Therefore,
recent research has concentrated on formulating biocomposites (via blending or lami-
nating), using the different properties of the materials (e.g., polymer blends, particles,
cross-linking agents, and plasticizers) to compensate the limitations of each technology
usually used in isolation [11]. For example, Jiang et al. have crosslinked poly(vinyl al-
cohol) (PVA), citric acid, and chitosan into a composite film. It had better permeability
(WVP: 5.26 × 10−4 g h−1 m−2 Pa−1 mm), mechanical properties (tensile strength (TS): ap-
prox. 16.5 MPa), and creep resistance (EAB: approx. 570%) than the PVA-free film (WVP:
8.08 × 10−4 g h−1 m−2 Pa−1 mm, TS: approx. 7.5 MPa, EAB: approx. 500%) [12]. This film
prolongs the shelf-life of cherries (up to 13 days) compared to unpackaged cherries, which
become dehydrated (wrinkled) and discolored after 7 days [12].

Additionally, the addition of discontinuous nanofillers (e.g., NPs, nanocrystals, nanofibers,
nanotubes) to continuous biopolymers could generate bio-nanocomposites with at least one
external size ranging from 1 to 100 nm. They are structural materials with higher homo-
geneity and structural interactions, providing better mechanical, barrier, and antimicrobial
properties than the original biopolymers [3]. The high aspect ratio (L/D) of nanofillers also
increased the interfacial area between the nanofillers and polymer matrix, which increased
load transfer and stress distribution in the nanocomposites, leading to increased stiffness,
strength, and toughness [13]. For example, the addition of 1.5 wt% MMT to 6% w/v corn
starch and 2% v/v lemongrass oil nanoemulsions significantly increased the TS and EAB of
bio-nanocomposite films by 37% and 16.50%, respectively, as compared to the control [14].
The high surface area-to-weight ratio of nanofillers enhances the interaction between the
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nanofillers, polymer chains, gases, and liquids, thereby improving the barrier properties [3].
For example, cellulose nanocrystal (CNC)-coated paper with immobilized AgNPs reduced
WVP and OP by about 45% and 93%, respectively, and extended the shelf-life of strawberries
by up to 7 days compared to unpackaged strawberries [15]. Furthermore, the large surface
area of nanofillers promotes their accumulation on the microbial cell surface. Meanwhile, their
nano-size enables them to penetrate the cell membranes more easily, interact with microbial
proteins and enzymes, disrupt their normal functions, generate reactive oxygen species (ROS),
and inhibit microbial growth [16]. For example, pectin/AgNPs nanocomposite films signifi-
cantly inhibited Escherichia coli (E. coli) (diameter of inhibition zone (DIZ) (mm): 8.4 ± 1.2 mm)
and Saccharomyces cerevisiae (S. cerevisiae) (DIZ: 3.9 ± 0.8 mm) [17]. Additionally, the addition
of natural pigments (e.g., anthocyanins) to the nanocomposite film can change the color with
pH and ammonia concentrations, thus indicating food freshness [18].

However, nanofillers may migrate from food packaging into food products because
their decreased size and increased surface area per unit volume result in shorter diffu-
sion distances (x) and higher concentration gradients (Cp) according to Fick’s second law
(Equation (1)). This raises concerns about consumer health and safety [19]. Equation (1) de-
scribes the non-stationary diffusion of substances, i.e., changes in substance concentrations
over time and space [20].

∂Cp

∂t
= D

(
∂2Cp

∂x2

)
(1)

CP: the concentration of the migrating material in the polymeric material; D: the diffusion
coefficient; t: the penetration duration; x: the distance between the package and the food.

Furthermore, Bott, Störmer, and Franz [21] further reported that the NPs migration
process mainly depends on the partition coefficient (kp) between the polymer and the
food and their Dp in the polymer, which is determined by the temperature and molecular
size of the NPs (Equation (2)). Meanwhile, their experimental findings and migration
modeling showed that NPs are unlikely to migrate from food contact plastics [22]. This is
consistent with the findings of a systematic review [23] but different from some studies in a
review [24].

DP,i = Duexp
(
wi,e − wp,e ·0.14(14j + 2)2/3 −

ww2/3
j,e Tm,pR

RT
(2)

i: an abbreviation for substance i (i.e., NPs in this study); wi,e = (1 + 2π/i)i/e, j = (i1/3);
wj,e = (1 + 2π/j)j/e; p = (Mr,p/14)1/3; wp,e = (1 + 2π/p)p/e; i = (Mr,i − 2)/14; w = e2π/e and
Du = 1 m2 s−1; Mr,i: relative molecular mass of the migrating substance (i); Mr,p: relative
molecular mass of the polymer (p); Tm,p: melting temperature of the polymer; R: gas
constant; T: absolute temperature in Kelvin; 0.14 (14j + 2)2/3: relative molar cross-sectional
of the diffusing particles.

Therefore, various nanofillers can enhance the mechanical and barrier properties
of nanocomposite films, enhance their antimicrobial properties, and help to display the
freshness of packaged foods with less environmental impact. However, the potential
migration of the nanomaterials into the food and the associated cytotoxicity requires
further research. It is necessary to summarize the latest research results to keep abreast of
the latest developments in nanocomposites for novel food packaging (Graphical Abstract).

2. Use of Nanofillers for Improvement of Food Packaging

Nanocomposites have higher mechanical strength, gas barrier properties (e.g., O2, CO2,
volatiles, and flavor) and UV barrier properties compared to original biopolymers [19,25]
(Figure 1), and commonly used nanofillers include nanoclays, carbon nanotubes, cellulose-
based nanofibers or nanowhiskers, starch nanocrystals, chitosan NPs, and silicon dioxide
NPs (SiO2 NPs).
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flects consumer judgment of the visual appearance of fresh produce. Next, the low UV 
transmittance of nanocomposites can reduce the oxidization and decomposition of food-
stuffs due to UV irradiation [26]. 

 

Figure 1. Schematic representation of the use of nanofillers to improve the physiochemical prop-
erties of food packaging, which keeps apples fresh after about 10 days of storage. Created with
BioRender.com.

The mechanical properties of nanocomposites mainly consist of TS, YM, and EAB,
which indicate the maximum mechanical stress, the resistance to linear or uniaxial elastic
deformation, and the deformation range of the packaging film, respectively [26]. For
nanocomposites made with specific biopolymers, TS, YM, and EB show the extent of their
rigidity and flexibility. Greater TS and YM show stronger molecular linkages and less
fluidity, while larger EB shows looser linkages and greater fluidity [26]. Meanwhile, the
addition of different NPs can improve the rigidity of the nanocomposites by enhancing the
interaction force between the film matrices, resulting in increased TS and YM and decreased
EAB [26].

Gas barrier properties include water vapor and oxygen barrier properties, which are
primarily associated with the curvature degree of the pathway diameters in the polymer
network structure, calculated by the Nielsen equation (Equation (3)) [27]. Maintaining
normal moisture levels in fresh foods is vital to avoid quality deterioration caused by water
loss, while preventing some dried foods (e.g., bread) from absorbing water and oxygen
from the environment helps to prevent oxidative deterioration of packaged food [26].

Pc

Pm
=

1 − Vf

1 + L
2D Vf

(3)

Pc: the permeability of the polymer composite, Pm: permeability of the unfilled
polymer matrix, Vf: the volume fraction of filler, L

D : the aspect ratio (length/thickness) of
the filler.

Determining the transmittance of the nanocomposite films at selected wavelengths
from 200 to 800 nm allows to investigate their UV–visible light barrier properties. This
is because the high light transmittance of nanocomposites in the visible region directly
reflects consumer judgment of the visual appearance of fresh produce. Next, the low
UV transmittance of nanocomposites can reduce the oxidization and decomposition of
foodstuffs due to UV irradiation [26].
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2.1. Nanoclay

Nanoclay was one of the first nanocomposite polymers to enter the market. For
example, Nanocor Inc. (Chicago, CA, USA) used nanoclay in multilayer PET bottles and
sheets for food and beverage packaging to minimize the CO2 loss from the drink and the
O2 ingress into the bottles [28]. Currently, nanoclay is also one of the most commonly
used NPs in food packaging, but it works toward balancing the high cost and improved
mechanical properties of food packaging [28].

The natural clay material called montmorillonite (MMT) is widely applied as a nanofiller
in food packaging due to its large specific surface area and large L/D (50–1000) [29]. MMT
consists of an octahedral layer of aluminum hydroxide or magnesium hydroxide located
on a shared edge between two silicon oxide tetrahedra [25,30]. The clay structure of
MMT is formed by the periodic accumulation of hundreds of negatively charged silicate
lamellae into particles or tentacles with a diameter of 8–10 mm [31]. The imbalance of
the negative surface charge is due to the isomeric substitution of Si4+ for Al3+ or Al3+ for
Mg2+ within the silicate layer, which is compensated by exchangeable cations (usually Na+

and Ca2+) that occupy the interstitial layer space [32]. This high surface-to-volume ratio
and cation-exchange properties give MMT suitable miscibility and load-bearing capacity
with cationic polymers [32]. MMT is also often chemically modified to induce swelling
of the clay, which improves the dispersion of MMT in the polymer matrix and allows
better intercalation and potential exfoliation of the polymer chains into the expanded clay
structure [33–35]. Delamination of the MMT silicate layer can be composited with polymers
to form nanocomposite films, while their mechanical properties are also enhanced by strain
alignment of MMT with polymer chains [36]. For example, the addition of 2 wt% of Cloisite
15A nanoclay to Salvia miltiorrhiza seed mucilage nanocomposite film increased YM, EAB,
and TS by about 20%, 42%, and 58%, respectively, as compared to composites without NPs.

However, the optimal concentration and type of nanoclay remain to be determined.
For example, the addition of 3 wt% of Cloisite 15A nanoclay decreased the EAB and TS of
nanocomposite by 31% and 7%, respectively, as compared to the addition of 2 wt% [37].
Consistently, the addition of 1 wt% of halloysite to the xylan–arginine matrix also increased
the YM by ~10.87% and TS by ~24.97% compared to the control film. The incorporation of
3 wt% and 5 wt% of halloysite decreased the YM and TS values compared to the 1 wt%
addition of halloysite [38]. Nevertheless, the same study reported that the incorporation
of Bentonite into the nanocomposite films led to a linear increase in TS and YM values.
The optimum concentration of 5 wt% increased the TS and YM by 112.62% and 76.25%,
respectively, in comparison to the control film [38].

Additionally, the presence of van der Waals gaps (~1.26 nm) between the stacks formed
by multiple clay layers can create a tortuous diffusion channel, which greatly reduces
the permeation of gases, moisture, flavors, and other small molecules through the food
packaging material, ultimately extending the shelf-life and improving the quality of the
packaged food [30,39]. Gaume et al. [40] showed that the incorporation of 5 wt% MMT-Na+
(Cloisite® Na+) MMT to PVA reduced OP and WVP by almost 3 and 6 times, respectively,
compared to virgin PVA. Chandio et al. [41] further applied MMT-Na+ to water-soluble
poly(vinyl alcohol) (PVOH), where the use of 10 wt% MMT-Na+ reduced the WVP by a
factor of about 7 and was economical. However, the addition of 2.5 wt% MMT-Na+ only
reduced the WVP and OP of the pectin nanocomposite films by approximately 33% and
26.85% (i.e., a factor of 1.49 and 1.37) compared to the neat polymer, respectively [42].
Similarly, the addition of 6–8 wt% MMT to pomegranate peel pectin reduced WVP by
30–40% (i.e., a factor of 1.43–1.67) [43]. These findings suggest that the polymer matrix,
NPs loading, and polymer–NPs interactions should be considered when improving the
final permeation/barrier properties of nanocomposites.

2.2. Carbon Nanotubes

Carbon nanotubes (CNTs) are cylindrical nanomaterials rolled up from carbon al-
lotropes with diverse nanoscale diameters (2–80 nm). The number of concentric tubes
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determines the different types of CNTs, i.e., one-atom-thick single-walled carbon nanotubes
(SWCNTs) or multi-walled carbon nanotubes (MWCNTs) [44]. The incorporation of CNTs
as nanofillers in polymers improved the mechanical, thermal, and conductive properties of
nanocomposites due to their exceptional TS up to 500 GPa, YM up to 1 TPa, and thermal
conductivity of 3500 W m−1 K−1 [45]. For example, the addition of 1 wt% CNT signifi-
cantly improved the TS and YM properties of polylactic acid and poly (ε-caprolactone)
packaging films by about 25.54% and 28.41%, respectively [46]. Consistently, the addition
of 0.3 wt% ZnO-doped multi-wall nanotubes (MWCNTs-ZnO) significantly increased the
TS of the PVA nanocomposite film by 116% compared to that of the pure PVA film [47].
Furthermore, the EAB of the PVA film modified with 0.9 wt% MWCNTs-ZnO was also
significantly increased by 81% compared to that of pure PVA films since MWCNTs-ZnO
helps to stretch the chain or improve the orientation of the polymer. Meanwhile, the in-
teraction of MWCNTs-ZnO with hydrogen bonding in PVA may form interchain bonding,
which enhances the cohesion of the PVA network and strengthens the nanocomposites, thus
requiring a greater tensile force to pull it off [47]. The 0.6 wt% of MWCNTs-ZnO could also
reduce the WVP of PVA nanocomposite film, making it easier to retain the moisture of fresh
vegetables for more than 4 days compared to pure PVA films. This is because nanofillers
increase the tortuous path for water molecules through the nanocomposite film [47].

Additionally, CNTs were discovered in 1991. However, the potential environmental
and health risks, as well as the benefits of using CNTs in food packaging, have not been
fully assessed within the context of the traditional Life Cycle Assessment (LCA) combined
with Risk Assessment (RA) [48]. The potential cytotoxicity of CNTs to human cells (at
least in contact with the skin) due to the possibility of unintentional migration has been
a concern, limiting their commercial application in food packaging [49]. The release of
carbon NPs from nanocomposite film has been extensively assessed over the past decade
under different time, temperature conditions, and food simulants [50,51].

Surface functionalization and modification of CNTs can improve their compatibility
and interaction with the polymer matrix, making them biocompatible and non-toxic to a
certain extent [52]. Specifically, techniques such as polymer grafting/encapsulation, polynu-
clear aromatic compounds, surfactant adsorption, and NPs decarbonization can modify
van der Waals forces and π-stacking interactions, thereby altering the surface properties
of CNTs and improving their compatibility in the polymer matrix [52]. Meanwhile, the
carboxyl or amino modification of CNTs has been reported to help PLA-based materials
change the stiffness storage modulus and mechanical properties [53]. In addition, the
presence of metal impurities in CNTs may lead to differences in cytotoxicity, thus requiring
special consideration for the development of improved purification techniques such as
neutron activation analysis, ICP-MS, etc. [52].

2.3. Cellulose-Based Nanofibers or Nanowhiskers

Since the first announcement of using cellulose whiskers as a reinforcing phase by
Favier et al. [54]. in 1995, the use of cellulose-based nanowhiskers has yielded novel
nanocomposites with enhanced properties and has triggered research into starch nanocrys-
tals and chitosan NPs (CNPs) [55]. Cellulose-based nanomaterials are widely found in
plant cell walls and are also ubiquitous and strong natural polymers with unique char-
acteristics, such as being cost-effective, environment-friendly, and easy to recycle [56,57].
Meanwhile, the nanoscale structure and the high specific surface area of cellulose give the
cellulose nanocomposites superior mechanical and barrier properties, even at low cellu-
lose nanofiller loadings. The agglomeration problem caused by high nanofiller loadings
can also be avoided [58]. Therefore, although there were relatively few reports on these
cellulose-based nanomaterials in the literature prior to 2010 compared to nanoclays, the
last decade has seen a much more rapid growth in their use and research [55].

The nanocellulose isolated from cellulose can be divided into cellulose nanofibers
and cellulose nanowhiskers, depending on the chemical and mechanical production
process [59]. Cellulose nanofibers are prepared by mechanical shearing, which disinte-
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grates the hydrogen bonds between the cellulose chains, leading to further aggregation
of the elementary fibrils to form the nanofibers containing amorphous and crystalline
regions [60]. On the other hand, cellulose nanowhiskers are very small crystalline nanopar-
ticles made by a chemically based process of acidic or oxidative hydrolysis, whereby the
amorphous regions of cellulosic materials can be rapidly hydrolyzed to form isolated and
pristine crystalline regions [61].

Sucinda et al. [62] reported that adding 1 wt% Napier cellulose nanowhisker (NWC)
resulted in TS and YM of the film being approximately 5.78% and 7.48% higher than those
of pure PLA films. Meanwhile, PLA/1.0 wt% NWC bio-nanocomposite films showed the
lowest UVA and UVB transmittance of 7.44% and 3.65%, respectively, without affecting
the transparency (λ800 = 20.32%). This is because 1 wt% of NWC is well dispersed in the
PLA matrix and therefore does not lead to aggregation affecting transmission. It increases
nanofiller interaction with the matrix, providing more free space between the PLA polymer
chains, which improves chain mobility and enhances mechanical properties. Consistently,
Haghighi et al. [63] showed that the addition of 7.5 wt% bacterial cellulose nanowhisker
(BCNW) improved the TS, EAB, and YM of gelatin/PVA blend-based bio-nanocomposite
films by about 21.56%, 41.18%, and 19.10%, respectively, compared with that of pure
gelatin/PVA blend films. However, the addition of 10wt% BCNW resulted in a significant
decrease in the mechanical properties of the composite nanofilms due to the disruption of
the cross-sectional morphology caused by the BCNW agglomeration [63]. Furthermore,
Li et al. [64] developed a novel cellulose nanofibers and corn straw core nanocomposites
(CNF/CSC)-100 (i.e., 100 mg CSC content in nanocomposites), which increased TS by
1.25-fold, 4.71-fold, and 8.04-fold compared to PP, poly (butylene adipate-co-terephthalate)
(PBAT), or poly (butanediol sebacate—butanediol terephthalate) (PBSeT), respectively.
Meanwhile, the WVP properties of CNF/CSC-100 film were also improved by 46.59%
over PBAT.

2.4. Starch Nanocrystals

Prior to 2010, there were far fewer studies on starch nanocrystals than on cellulose-
based nanomaterials [55], but in the last 10–15 years, the research and development related
to starch nanocrystals for food packaging applications has grown rapidly.

Starch is a relatively pure, non-toxic, and inexpensive raw material that does not re-
quire the same rigorous purification as lignocellulosic materials [65]. However, the isolation
of starch nanocrystals requires a longer acid hydrolysis process compared to cellulose, as
the crystalline lamellae of starch are more resistant to acid hydrolysis compared to the
amorphous regions. Therefore, optimizing the decomposition process and transitioning
from the micron to the nanoscale is an area for further research. Meanwhile, these starch
crystalline particles, which have been described as the remnants of nanocrystals, contain a
platelet-like morphology with a length of 20–40 nm, a width of 15–30 nm, and a thickness
of 5.7 nm [66]. This platelet-like morphology can provide other beneficial properties, e.g.,
improved barrier properties. Additionally, since most of the work prior to 2010 was con-
ducted using waxy maize/corn starch, there is an opportunity to explore other sources of
starch in food packaging to improve food preservation. For example, according to methods
provided by Zhou et al. [67], the 0.1 wt% rice starch nanocrystals were prepared through
acid hydrolysis (H2SO4) for 7 days, which were incorporated into native starch films, re-
sulting in an increase in TS and EAB of 26.8% and 991.5%, respectively [68]. This is because
starch nanocrystals can be used as structural enhancers to form three-dimensional (3D)
networks with cross-links in the film structure, thereby increasing fracture re-resistance and
improving the elongation of the material [68]. Furthermore, the WVP of 0.1 wt% rice starch
nanocrystals was 64% lower than the control because the addition of a low concentration of
rice starch nanocrystals changed the structure of the film and reduced the penetration of
water molecules through the film structure [68].

Consistently, Gharibzahedi et al. [69] fabricated spherical starch nanocrystals (SNCs)
from potato starch granules (PSGs) by ultrasound-assisted acid hydrolysis and developed
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new nanocomposite films by incorporating them to whey protein isolate (WPI) and purified
jujube polysaccharide (JPS). They reported that the best mechanical properties (i.e., TS:
14.0 MPa, EAB: 14.87%, and YM: 47.80 MPa) and suitable WVP (0.63 × 10−10 g/m Pa) and
OP (9.62 cm3/m2 d atm) were obtained using 10.0% WPI, 12.72% JPS, and 1.31% SNC,
resulting in better retention of physicochemical, sensory, and microbiological properties
of freshly cut carrots during cold storage up to 14 days. However, the addition of higher
concentrations (e.g., 12 wt%) of starch nanocrystals during film formation leads to an
increase in nanocrystal agglomeration, which may result in the formation of larger pores in
the film and promote gas passage through the film. As a result, the WVP value of the film
cannot be significantly increased (12 wt%: 4.2 ± 0.2 10−12·g·m·m−2·s−1·Pa−1 vs. 10 wt%
4.2 ± 0.1 10−12·g·m·m−2·s−1·Pa−1) [70].

2.5. Chitosan NPs

Chitosan is an N-deacetylated derivative of chitin, which is mainly derived from
seafood by-products such as crab and shrimp shells and fungal cell walls [71]. Chitosan
has more functional groups, such as chelated amino groups, which contribute to its an-
timicrobial and mechanical properties. Therefore, chitosan is a commercially available,
inexpensive, non-toxic, and biodegradable biopolymer used in food packaging [72]. CNPs
are basically fabricated by modifying chitosan biopolymers via tripolyphosphate (TPP)
cross-linking, microemulsion/reverse micelle technique, precipitation/coacervation meth-
ods, and emulsification approach [73]. These prepared CNPs have excellent mechanical,
barrier, and thermal properties, mainly due to their improved surface area, which in-
creases the interactions between CNPs and polymer matrix [71]. However, similar to starch
nanocrystals, there were few studies on the incorporation of CNPs into food packaging
before around 2014 [74,75]. However, the number of relevant studies has increased over
the last decade. For example, the 5 wt% CNPs (chitosan: TPP mass ratio = 3:1) could be
applied as a physical cross-linker to enhance the entanglement of the polymer chains in the
hydroxypropyl methylcellulose and hydroxypropyl starch (HPMC/HPS) matrices, which
significantly increased the TS and EAB by 39.46% and 229.16%, respectively, compared to
the control [76,77]. Meanwhile, the WVP value of 5 wt% CNPs/HPMC/HPS films was
reduced by about 33% compared to the control, which was attributed to the formation
of hydrogen bonds between chitosan and the HPMC film matrix, or the smaller-sized
NPs were better able to occupy the voids in the porous HPMC film matrix [76]. Con-
sistently, Roy et al. [78] showed that the incorporation of 1 wt% of curcumin-integrated
CNP(CNP@Cur) significantly increased the TS, EAB, and YM of pullulan/chitosan-based
functional composite film by 15%, 7%, and 4%, respectively, while the WVP was reduced
by 35%.

Furthermore, CNPs are formed by ionic gelation, where the positively charged amino
groups of chitosan electrostatically interact with the polyanions that act as cross-linkers [79].
Therefore, this polycationic characteristic of chitosan allowed the chitosan NPs to exert
broad antibacterial activities, including L. monocytogenes, E. coli, S. aureus, P. microbilis, and
P. vulgaris, etc. [78,80,81].

2.6. Silicon Dioxide NPs (SiO2 NPs)

Silicon is commonly found in soil deposits on the earth’s surface, normally in the form
of SiO2 in nature [82]. Due to their mesoporous nature, high specific surface area, and low
toxicity, SiO2 NPs were investigated as inorganic nanofillers to improve the mechanical and
barrier properties of nanocomposite films during the first decade of their initiation [83–85].
Starting around the 2010s, its food packaging applications expanded to be incorporated
into the bio-based polymeric matrix, etc.

For example, due to the strong hydrogen interaction between SiO2 NPs and the
polymer matrix, Hou et al. [86] reported that the TS of agar/sodium alginate (SA) nanocom-
posite film increased from 45.18 MPa to 74 MPa with the increase of SiO2 NPs addition
concentration from 0 to 10 wt%. Meanwhile, SiO2 can be evenly distributed in the molecular
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chain of the film, explaining the gradual increase in the EAB of the film from 33.04% to
52.99%. Consistently, Júnior et al. [87] also reported that the incorporation of 10 wt% SiO2 to
SA/hydrolyzed collagen (HC) blend films significantly increased the TS and EAB by 39.56%
and 83.59%, respectively, compared to the control. However, high concentrations (e.g.,
>10 wt%) of SiO2 can result in silica aggregation in the film, forming stress concentration
points and disrupting the functional structural integrity of the film matrix network. This
can reduce the degree of cross-linking between components of the polymer matrix, thereby
reducing TS and EAB, i.e., 109.67 ± 7.89 MPa and 10.28 ± 0.28% for SA/9 wt% SiO2 NPs,
while 87.20 ± 1.77 MPa and 5.60 ± 0.57% for SA/18 wt% SiO2 NPs [88]. Moreover, the
addition of 1–3 wt% SiO2 to soy protein isolate-based films progressively decreased the
WVP and OP of the films [89]. Since NPs can occupy the pores of the film matrix and
form a dense network structure, the path of water molecules in the film matrix can be
extended, thus reducing the diffusion of water molecules [90]. Meanwhile, the small-sized
NPs are more easily and uniformly dispersed into the macromolecular chains, which is
beneficial to improving the barrier property of the film. Therefore, the size (average diame-
ter) of the hybrid nanomaterials (SiO2–gallic acid NPs) decreased from 408.7 ± 3.20 nm to
112.7 ± 0.55 nm at the same concentration (8 mg/mL), leading to a decrease in the WVP of
chitosan films from 4.04 × 10−8 g·m/h·m2·Pa to the 3.82 × 10−8 g·m/h·m2·Pa [91].

The relationship between the changes in YM and EAB, the changes in WVP and
OP when adding nanofillers into nanocomposite film can vary because of the type of
nanofillers, their concentration, their dispersion degree in the polymer matrix, and the film
processing conditions. Table 1 shows more relevant studies indicating that in many cases,
the incorporation of nanofillers increases YM while decreasing EAB (r = −0.358, p = 0.018,
Figure 2a) and decreasing the WVP and OP (r = 0.197, p = 0.065, Figure 2b), as compared to
the virgin nanocomposite films. However, the weak correlations (i.e., r < 0.5) suggest that
further studies are needed to confirm the findings.

Table 1. Nanofillers are used in improved food packaging.

Study Nanofillers

Polymer
Matrix and
Added
Components

Mechanical Properties Barrier Features Thermal
Characteristics

TS (MPa) EAB (%)
Young’s
Modulus
(MPa)

WVP (g m−1

Pa−1 s−1)
OP (cc Mil
m−2

Day Atm)
Light Trans-
mittance (%)

Mobility
(Tg (◦C)

[92] MMT PET, PAA N/A N/A N/A
2.50 × 10−12 →
2.26 × 10−12

(−9.60%)

1.01 × 10−16

→ 1.7 × 10−18

(−98.32%)
N/A N/A

[93] MMT PVA boiled
rice starch

16.8 → 33.5
(+99.40%)

257 → 4.6
(−98.21%)

290.0 →
2220.0
(+665.51%)

N/A N/A N/A N/A

[94] Halloysite
nanotubes PLA 22.5 → 37

(+64.44%)
2.1 → 1.4
(−33.33%)

1800.0 →
4200.0
(+ 133.33%)

1.62 × 10−10→
1.27 × 10−10

(−21.60%)

1.06 × 10−13

→ 7.08 ×
10−14

(−33.33%)

N/A 58.49 → 57.42
(−1.83%)

[95] Bentonitte
Chitosan,
poplar hot
water extract

39.3 → 52.9
(+34.69%)

11.7 → 7.9
(−32.28%) N/A

8.71 × 10−11 →
6.72 × 10−11

(−22.85%)

3.36 × 10−8

→ 1.63 ×
10−18

(−51.48%)

280 nm:
35 → 28
(−20%)

N/A

[96] Kaolinite Chitosan 17.0 → 12.0
(−29.41%)

14.8 → 10.0
(−32.43%) N/A

9.61 × 10−11 →
7.92 × 10−11

(−17.58%)
N/A

400 nm:
87 → 77
(−11.49%)

N/A

[97] Sepiolite

Alginate,
sepiolite-
myrtle
berries extract

38.0 → 117.0
(+207.89%)

3.8 → 3.2
(−15.79%)

2.0 → 4.3
(116.08%)

1.79 × 10−6 →
1.62 × 10−6

(−9.49%)
N/A

600 nm:

90 → 73.8
(−18.00%)

N/A

[47] ZnO-doped
MWCNTs PVA (+116.00%) (+81.00%) N/A (−25.93%) N/A 250 nm

(−15.18%)
74.3 → 76.9
(+3.50%)

[98] CNTs Sodium
alginate/chitosan

17.5 → 24.2
(+38.29%)

16.9 → 21.8
(+28.99%) N/A N/A N/A N/A N/A

[99] MWCNTs GO, Ch.–PEO N/A N/A N/A N/A N/A
400 nm:
76% → 21%
(−72.37%)

N/A

[100] Starch
nanocrystals Corn starch 17.4 → 20.3

(+16.67%)
16.7 → 10.6
(−36.52%) N/A

3.58 × 10−14 →
2.89 × 10−14

(−19.27%)
N/A

800 nm:
74.8 → 54.0
(−27.80%)

N/A
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Table 1. Cont.

Study Nanofillers

Polymer
Matrix and
Added
Components

Mechanical Properties Barrier Features Thermal
Characteristics

TS (MPa) EAB (%)
Young’s
Modulus
(MPa)

WVP (g m−1

Pa−1 s−1)
OP (cc Mil
m−2

Day Atm)
Light Trans-
mittance (%)

Mobility
(Tg (◦C)

[101]
Quinoa
Starch
nanocrystals

Cassava starch 6.5 → 16.5
(+153.85%)

10.2 → 7.1
(−30.39%)

2.8 → 6.6
(+135.71%)

1.5 × 10−7 →
1.2 × 10−7

(−16.67%)
N/A N/A 15.0 → 23.1

(+54.00%)

[102] CNFs PVA 52.5 → 69.8
(+32.95%)

99.0 → 84.7
(−14.44%)

3578.0 →
4263.0
(+19.14%)

6.97 × 10−7 →
2.82 × 10−7

(−59.54%)
(−99.46%) 5.7 → 48.8 N/A

[103] CNFs Starch 8.9 → 16.5
(+85.39%)

83.2 → 9.0
(−89.18%)

289.0 →
743.0
(+157.09%)

12.0 × 10−11→
8.65 × 10−11

(−27.91%)
N/A

380 nm:
72.2→ 40.0
(−44.60%)

N/A

[104] CNCs Starch 16.2 → 24.6
(+51.85%)

13.1 → 3.6
(−72.51%)

12.9 → 21.0
(+62.35%)

2.08 × 10−10 →
1.84 × 10−10

(−11.54%)
N/A N/A N/A

[105] BC Gelatin 3.2 → 1.1
(−65.63%)

102.07 →
186.04
(+82.27%)

50.1 → 0.9
(−98.30%)

3.06 × 10−9 →
2.47 × 10−9

(−19.28%)
N/A N/A N/A

[106] CNP Corn
starch, thymol

7.7 →13.7
(+77.92%)

139.0 → 157.0
(+12.94%)

33.7 → 63.6
(+88.72%) N/A N/A N/A N/A

[107] CNP Starch 1.1 → 10.0
(+79.55%)

67.0 → 90.8
(+35.48%)

6.0 → 39.9
(+568.96%)

3.06 × 10−15

→1.75 × 10−15

(−42.81%)
(−48.12%) N/A N/A

[91] SiO2 NPs Chitosan
101.3 →
131.9
(+30.21%)

4.8 → 2.3
(−52.08%) N/A

1.34 × 10−11

→1.06 × 10−11

(−20.90%) N/A 400 nm:
(−85.19%) N/A

[108] SiO2 NPs PLA 43.3 → 34.7
(−19.86%)

2.6 → 2.9
(+11.54%)

1775.8 →
1840.6
(−3.65%)

3.81 × 10−3

→2.53 × 10−3

(−33.60%)
N/A N/A 51.4 → 51.6

(−0.39%)

Notes: TS: tensile strength; EAB: elongation at break; WVP: water vapor permeability, OP: oxygen permeability,
Tg: glass transition temperature (i.e., an amorphous polymer changes from the glassy state to the elastic or
rubbery state), MMT: montmorillonite, PET: polyethylene terephthalate, PAA: polyacrylic acid, PVA: poly (vinyl
alcohol), PLA: poly (vinyl alcohol), N/A: not applicable, CNTs: carbon nanotubes, MWCNTs: multi-walled
carbon nanotubes; GO: graphene oxide, Ch.–PEO: chitosan–polyethylene oxide; CNCs: cellulose nanocrystals;
CNFs: cellulose nanofibers, BC: bacterial cellulose, CNP: chitosan nanoparticles. +/−: increase or decrease in the
parameters of the nanocomposite properties compared to controls. The transmittance of the film shows its UV
(200–320 nm) and visible light (400–800 nm) barrier properties. The table includes control film values and optimal
film values for each parameter.
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Figure 2. Changes in (a) elongation at break (EAB) vs. Young’s modulus (YM): y = −1.55x + 1.38,
R2 = 0.128, r = −0.358, p = 0.018; and (b) changes in water vapor permeability (WVP) vs. oxygen
permeability (OP): y = 0.30x − 0.57, R2 = 0.039, r = 0.197, p = 0.065, when adding nanofillers as
compared to control. These correlations are obtained from the data in Table 1. r: Pearson correlation
coefficient; R2: Coefficient of determination. The orange line is the regression line.

3. Use of Nanofillers in Active Food Packaging

Active packaging is designed to extend shelf-life and maintain the quality and safety
of fresh food. There are three types: (1) scavenging systems produce the desired reaction
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in the food system without migration of the active ingredient from the package into
the food product, e.g., by absorbing oxygen, ethylene, and water; (2) releasing systems
control the migration of non-volatile compounds or the emission of volatile compounds
into the environment around foodstuffs, e.g., CO2 emitters and ethylene emitters; and
(3) antimicrobial systems [109].

Antimicrobial packaging is one of the most promising applications of active packaging
technology, which is generally synthesized majorly by incorporating NPs derived from
either metal or metal oxide, as well as essential oil (EO) loaded nanoemulsions [109].

Several antimicrobial mechanisms have been proposed for different nanometals and
have been studied based on the morphological and structural changes in bacterial cells
(Figure 3). Firstly, NPs can anchor and penetrate the bacterial cell wall, causing structural
changes in cell membrane permeability and leading to cell death [110]. Some NPs can also
be adsorbed onto bacterial surfaces, releasing positively charged metal ions that react with
bacterial cell membranes with negative charges, disrupting the integrity of the bacterial
outer and cytoplasmic membranes and generating ROS [110]. Secondly, the ROS on the
surface of NPs generate oxidative stress, which disrupts cell membranes, making them
porous, inhibiting cell wall synthesis, and promoting protein and DNA damage [111].
Thirdly, metal NPs enter cells and release metal ions, which can interact with sulfur- and
phosphorus-containing compounds such as DNA bases in bacterial cells, resulting in DNA
destruction and ROS generation [112]. Next, metal NPs could dephosphorylate the peptide
substrates on tyrosine residues, thereby inhibiting signal transduction [110]. Finally, metal
NPs may also exert their antimicrobial activity by decreasing ATP levels through the
collapse of membrane potential and electron transport, suppression of ATPase activity, and
inhibition of ribosomal subunit binding to tRNA [113].
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potential and electron transport with a decrease in ATP. Created with BioRender.com.

3.1. Silver NPs (Ag NPs)

Ag NPs have a large surface area, especially triangular and spherical Ag NPs. They
can accumulate considerably in the bacterial membrane, releasing Ag+, which is taken
up by the bacterial cell. The intracellular Ag+ concentrations varied over time, reaching a
maximum at 36 h (approximately 12.4 times the extracellular Ag+ concentration), while
the extracellular Ag+ concentrations gradually decreased [114]. The addition of AgNPs
to a composite mixed with hesperidin and pectin (3:1) released approximately 4 ppm
Ag+ within 6 h, leading to increased intracellular ROS in E. coli; and 6 ppm Ag+ within
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24 h, leading to protein leakage of E. coli up to 27.7 µg/mL [114]. Hong et al. [115] also
reported that the number of viable E. coli cells in beef samples wrapped with 2 wt%
Ag NPs/agar films was significantly reduced by approximately 95% compared to those
wrapped with pure agar films throughout the storage period (15 days at 5 ◦C). Meanwhile,
Grisoli et al. [116] reported that the release of 23.9% Ag+ (of the total dose) (i.e., ~7.57 ppm)
from the 1 wt% AgNPs film explained its greater antimicrobial efficacy against both E. coli
and S. aureus (microbial effect: ME > 7) compared to blank films (ME: 2.3 for E. coli; ME:
3.2 for S. aureus).

Furthermore, in contrast to Gram-positive bacteria, Gram-negative bacteria are more
susceptible to Ag NPs due to their thinner layer of peptidoglycan surrounded by an
outer membrane containing lipopolysaccharides (LPS), which can promote the intreat-
cion and penetration of Ag NPs [117]. For example, Huang et al. [118] showed that
gliadin@AgNPs continuously released Ag+ over a 24 h period, with a cumulative release
of up to 16.7% of the total release (i.e., 1.25 ppm) and showed higher antimicrobial activity
against Gram-negative E. coli than against Gram-positive resistant S. aureus. Similarly,
surface-immobilized Ag NPs of the same dimension with Grisoli et al. [116] released 15.1%
Ag+ over 24 h with ME values of 5.90 and 5.54 for E. coli and S. aureus, respectively [119].
Raghav et al. [117] also reported that AgNPs–carboxyl cellulose nanofibers (AgNPs-CCNFs)
hybrid materials exhibited greater antimicrobial activity against E. coli. (zone of inhibi-
tion(ZOI): 103.87 mm2) than Gram-positive E. faecali (ZOI: 65.04 mm2).

In addition, the antimicrobial properties of Ag+ can be improved by four orders of
magnitude by incorporating small, uniformly dispersed silver nanofillers on MMT nanoclay
compared to in situ precipitated bare silver particles, allowing precise control release of
nano-antimicrobial Ag+ [120].

3.2. Zinc Oxide NPs (ZnO NPs)

ZnO NPs show advantages over Ag NPs for food packages due to their low toxicity
to humans (GARS material (generally recognized as safe)) and relatively low cost [121].
Similar to Ag NPs, their antimicrobial effect is derived from the release of Zn2+ ions. Their
cytotoxicity is also dependent on the interfacial potential. Since the teichoic acid of Gram-
positive bacteria is attached to the peptidoglycan or the underlying plasma membrane,
their cell membranes are more negatively charged than those of Gram-negative bacteria.
The ZnO NPs generate more ROS when internalized into Gram-positive cells, leading
to cell wall disruption and cell membrane damage [122]. For example, the addition of
12.5 wt% ZnO NPs to gelatin/starch-based film significantly increased the ZOI against both
E. coli (85.30 ± 18.90 mm2) and S. aureus (67.28 ± 17.28 mm2) compared to the control (both:
0 ± 0 mm2) [123]. Similarly, Hashem et al. [124] also showed an antimicrobial effect against
both E. coli (DIZ: 15.1 ± 0.76 mm) and S. aureus (DIZ: 12.1 ± 0.71 mm) after incorporating
4 mL of ZnO NPs into HPS/PVA/PA films. Furthermore, the smaller sized ZnO NPs have
a greater surface area and chemical reactivity. They enhanced the release of Zn2+ by about
272% at 24 h and were more effective against S. aureus than larger sized ZnO, i.e., ZnO
NPs with a DIZ of 19.67 ± 0.58 mm vs. bulk ZnO’s 10.00 ± 1.00 mm, respectively, at a
concentration of 5000 µg/mL [125].

3.3. Other NPs

Alongside Ag and ZnO, TiO2 NPs are non-toxic to humans (GARS) [126]. TiO2 NPs are
one of the most common photocatalysts with stable and low-energy valence band electrons
and an empty conduction band. The band gap energy represents the energy difference
between the valence and conduction bands, i.e., the minimum light energy required for
a redox reaction to occur at the TiO2 surface during photocatalysis [127]. When TiO2
absorbs UV light with energies greater than the band gap energy, electron-hole pairs are
generated, which react with O2 or H2O adsorbed on the TiO2 surface to form ROS, such as
superoxide radicals and hydroxyl radicals [128]. These ROS then oxidize the unsaturated
polyphospholipid component of microbial cell membranes and DNA, ultimately causing
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damage to bacterial cells [128]. For example, the addition of 1 wt% of TiO2 NPs to the
chitosan film prepared with Cymbopogon citratus essential oil (1.5% v/v) helped to reduce
the total number of bacteria by around 1 log cycle compared to the control after 10 days of
storage [129]. The cellulose nanofiber/whey protein matrix containing 1 wt% TiO2 and 2%
w/v rosemary oil could also significantly reduce lipid oxidation and lipolysis of the lamb
meat during storage, extending its shelf-life from around 6 days (control) to 15 days [130].

Copper oxide nanoparticles (CuO NPs) are FDA-approved nanoparticles with excellent
antimicrobial properties because of their high specific surface area and the release of copper
ions [131]. The embedded 5 mM CuO NPs in 3 wt% of sodium alginate (SA) and 0.5 wt% of
CNW showed a high inhibitory effect against S. aureus (DIZ: 27.49 ± 0.91 mm), E. coli (DIZ:
12.12 ± 0.58 mm), Salmonella sp. (DIZ: 25.21 ± 1.05 mm), C. albicans (DIZ: 23.35 ± 0.45 mm)
and Trichoderma spp. (5.31 ± 1.16 mm), thus preventing microbial contamination in freshly
cut peppers [132]. Meanwhile, the addition of Ag, ZnO, and 2 wt% CuO NPs to the starch
polymer matrix produces a synergistic antimicrobial effect, inhibiting the growth of E. coli
and S. aureus more efficiently (i.e., a reduction of 91–94%) compared to the same wt% of the
individual NPs (i.e., a reduction of 83–87%) [133].

Gold nanoparticles (Au NPs), also known as gold colloids, range in size from 1 nm
to 100 nm [134]. Chowdhury et al. [135] reported that Au NPs enhanced the antimicrobial
activity of PVA–glyoxal films against E. coli with DIZ of 13 mm, boosting the shelf-life of
bananas up to 5 days. In the PVA film (FilmMIX-Ag/GNS) containing Ag NPs and gold
nanostars (GNS), the release of gold was negligible, but the release of Ag+ was slow and
persistent, resulting in a synergistic antimicrobial effect against E. coli and S. aureus, with
an ME value of more than 7 over 24 h [116].

The crystal morphology of iron oxide (Fe3O4) NPs includes a large number of edges,
corners, and potential reactive sites, which can contribute to their antimicrobial proper-
ties [136]. Fe3O4 NPs can interact with cell membranes and penetrate into the cell interior,
leading to membrane damage and bacterial inactivation [137]. El-Khawaga et al. [137]
modified Fe3O4 NPs with chitosan and the synthesized chitosan–Fe3O4 NPs showed an-
timicrobial activity against E. coli (DIZ: 18.0 mm, minimum inhibitory concentration (MIC):
0.625 µg/mL), B. subtilis (DIZ: 17.0 mm, MIC: 0.625 µg/mL), and C. albicans (DIZ: 14.2 mm,
MIC: 1.25 µg/mL). Similarly, Saedi et al. [138] showed that the carrageenan films incor-
porating Fe3O4-NH2-Ag had the strongest antimicrobial activity against L. monocytogenes,
destroying the entire bacterial population in less than 3 h. However, Carr/Fe3O4-Ag pre-
vented bacterial growth after 12 h. This was because Fe3O4 NPs were the best candidate
for carrying Ag+ [139], and modification with amine-containing materials enhances their
carrying capacity by binding Ag+ ions through the lone-pair bonding of their nitrogen
atoms, which act as chelating agents [140]. Therefore, the bacterial population adsorbed
more Ag+ compared to other films, and the amine functional groups also accelerated the
attachment of NPs to the bacterial surface [141], thus enhancing the destruction of the
bacterial cell wall.

Zeolites are tetrahedral atoms composed of crystalline metal oxides (e.g., Si, P, Al, Ti,
B, Ga, Ge, Fe, etc.) [142], which have been considered to be safe and non-toxic for humans
by the FDA [143]. Zeolites are crystalline hydrated aluminosilicates with a unique 3D
structural composition consisting of interconnected cage-like structures or cavities, which
allows them to complex molecular adsorption (e.g., histamine, water, and ethylene) and
cation exchange [143]. Therefore, zeolites have been used as an active-scavenging packaging
material to extend the shelf-life of fresh produce and meat products [143]. Hanula et al. [143]
showed that the active packages prepared by adding zeolite (clinoptilolite) and a
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3.4. EO-Loaded Nanoemulsion

Essential oils are secondary metabolites of plants and contain antimicrobial com-
ponents such as polyphenols, terpene compounds (monoterpenes, sesquiterpenes, and
diterpenes), and aldehydes [145].

Nanocapsules comprise a liquid or solid core surrounded by a polymeric coating
which completely isolates the encapsulated contents from the environment and serves
two functions, i.e., (1) providing a barrier to prevent factors such as oxidation and hy-
drolysis from destroying the encapsulated material in the nanocapsule and (2) controlling
the release of active compounds [57]. For example, Khachatryan et al. [146] developed
nanocapsules encapsulating propolis extract in a biodegradable natural polymer matrix,
thereby controlling the release of antimicrobial propolis components. Nanoemulsions are
also colloidal, kinetically stable systems characterized by very small droplet sizes ranging
from 10 nm to 1000 nm in oil-in-water emulsions containing solid spheres with amorphous
and lipophilic surfaces [147]. EO nanoemulsions provide a uniform distribution of partially
or fully hydrophobic components in the hydrophilic matrix. This encapsulation system
facilitates the controlled release of antimicrobial agents and enhances the antimicrobial
properties of the nanocomposite film [148].

The hydrophobicity of EO nanoemulsions can alter bacterial membrane structure, es-
pecially unsaturated fatty acids [148]. Phenolic compounds in EO can act as protonophores,
transporting protons across the lipid bilayer and resulting in proton kinetic dissipation [109].
Terpenoids cause loss of cell membrane integrity and proton dynamic dissipation [149].
High concentrations of aldehydes prevent bacterial cell division, while low concentrations
of aldehydes block cell division interactions [150]. Importantly, the antimicrobial activity of
EOs can be enhanced by encapsulation with a variety of NPs (e.g., liposomes, polymeric
NPs, and nanoemulsions), where the nanomaterials form an external nanocapsule while the
internal core is EOs. These two active agents can engage in surface disruption and energy
balance disruption through complementary actions, thus combating different pathogens by
different mechanisms [147].

3.5. Brief Summary of Antimicrobial Activity of Active Food Packaging

Lipid oxidation is related to methemoglobin formation and meat discoloration [151],
while weight loss is related to the loss of dry matter and moisture in fresh produce due
to transpiration and postharvest respiration [152]. Both lipid oxidation and weight loss
gradually increase with longer storage time. Therefore, reducing lipid oxidation and weight
loss can contribute to extending shelf-life.

Analyzing other relevant studies in Table 2, NPs could extend the shelf-life of food
products by lowering lipid oxidation by an average of ~350.74% and weight loss by ~28.39%
during the longest storage period compared to pure film (Figure 4A). However, the ef-
fectiveness of NPs in extending shelf-life may be influenced by the type of NPs used,
the polymer–NPs interactions, the food product, and storage conditions. More research
analyses are needed to fully understand the potential benefits of NPs in food preservation.

Additionally, the incorporation of NPs into the polymer films showed a significantly
greater antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034)
(Figure 4B). The differences in the antibacterial activity of the nanocomposite films against
Gram-negative A. niger and E. coli, and Gram-positive L. monocytogenes and S. aureus can
be explained by the variation in the initial bacterial loading, the dispersion of the tested
bacteria on the food surface, the bacterial susceptibility to the NPs, and the concentration
of NPs in the nanocomposite films [153].
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Figure 4. (A) Comparison of NP films and NP-free films for shelf-life extension applications, where
shelf-life is indicated by lipid oxidation and weight loss. (B). Comparison of antimicrobial activ-
ity of NP films and NP-free films against Gram-negative A. niger and E. coli, and Gram-positive
L. monocytogenes and S. aureus. The column indicates average changes in control film values and opti-
mal film values for each parameter during the longest storage period, expressed as mean ± standard
error. *: p < 0.05 between NP and NP-free film.

Table 2. The antimicrobial properties of metal-based NPs in active packaging.

Nanofillers
Polymeric
Matrix

Packaging
Form

Findings with Optimal NPs Compared to
Non-NPs

Application
Product ReferencesConcentration/Percentage

(%) Weight of Optimal
Metal-Based NPs

Types of Metal-
Based NPs

2% Ag NPs Agar Film

• Prevent direct oxygen contact by up to
15 days.

• Maintain color.
• Retard oxidative rancidity.

Fresh
beef loin [115]

2% Ag NPs Pullulan-
curcumin Edible film

• Show a greater antioxidant activity.
• Maintain the textural and

physicochemical meat attributes up to
14 days.

Broiler breast [154]

0.25% Ag NPs HPMC Film

• Inhibit the proliferation of C.
gloeosporioides at room temperature
(20 ◦C) up to 14 days.

• Maintain the physiological functions
and quality of papaya during storage.

Papaya
(Carica
papaya L.)

[155]

10% Ag NPs Cellulose Packets

• Prevent the growth of A. hydrophila at
room temperature (25 ± 2 ◦C) up to
7 days.

• Enhance shelf-life with no significant
changes in nutritional values and
moisture content.

Cabbages
and tomatoes [156]

5% Ag NPs PLA Film

• Effectively reduce vitamin C loss.
• Delay the decline of total phenols and

1-Diphenyl-2-picrylhydrazyl (DPPH) for
2 days.

• Retard the consumption of acid in
strawberry physiological
metabolic activities.

Strawberry [157]

5% Ag NPs (with
10% EOs) Chitosan Film • Increase shelf-life up to 12 days. Strawberry [158]

10% ZnO NPs PBAT Film
• Increase antimicrobial effects against

both E. coli (DIZ: 14.1 mm) and S. aureus
(DIZ: 15.1 mm)

N/A [159]
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Table 2. Cont.

Nanofillers
Polymeric
Matrix

Packaging
Form

Findings with Optimal NPs Compared to
Non-NPs

Application
Product ReferencesConcentration/Percentage

(%) Weight of Optimal
Metal-Based NPs

Types of Metal-
Based NPs

12.5% ZnO NPs Gelatin/Tapioca
starch Film

• Increase antibacterial effects against
both S. aureus ZOI: 67.28 mm2) and
E. coli (ZOI: 85.30 mm2).

N/A [123]

1.5% ZnO NPs Pectin Film • Increase antibacterial rates against both
E. coli by 97.2%, and S. aureus by 98.3%.

N/A [160]

4 mL ZnO NPs HPS/PVA/PA Film mats

• Increase antimicrobial activity against
E. coli, S. aureus, F. oxysporum, A. niger,
P. expansum, and A. flavus, with DIZ of
15.1, 12.1, 12.3, 16.0, 18.0, and
22.0 mm, respectively.

N/A [124]

0.5 g ZnO NPs

CMC Film

• Enhance antifungal activity (A. niger) by
~1.4 cm colony diameter.

• Inhibit the physiological and metabolic
activity of fruit during
postharvest storage.

Cherry
tomatoes

[161]

100 mg Cinnamaldehyde

1.5% ZnO NPs

PLA Film

• Increase the shelf-life up to 16 days.
• PLA/ZnO NPs/ZEO increased

antibacterial activity against S. aureus
(ZOI: 691 mm2), E. coli (ZOI:
200.67 mm2), B. cereus (ZOI: 513.33 mm2)
and P. aeruginosa (ZOI: 78.33 mm2), and
antioxidant activity by 69.14%.

• PLA/ZnO NPs/MEO increased
antibacterial activity against S. aureus
(ZOI: 513.33 mm2), E. coli (ZOI:
113.28 mm2), B. cereus (ZOI: 314.33 mm2)
and P. aeruginosa (ZOI: 63.56 mm2), and
antioxidant activity by 49.08%.

Fresh fish
fillets

[162]
1.5% ZEO

1.5% MEO

0.8 g Ag NPs
Starch/PBAT Film • Have synergistic effects on inhibiting

the growth of S. aureus and E. coli.
Peaches and
nectarines

[163]
0.2 g ZnO NPs

0.99 g in 15 mL water ZnO NPs

Chitosan Film

• Inhibit growth of E. coli, S. aureus, and
C. albicans, with DIZ over ap-prox.
30 mm, approx. 30 mm and over approx.
20 mm, respectively.

• Keep an acceptable visual appearance at
room temperature (30 ◦C and 60%
relative humidity) for 14 days.

Grape [164]
15 mL Ag NPs

1 mL citronella EO

0.015% TiO2 NPs
PLA Film

• Elevate antimicrobial activity against
E. coli (DIZ: 15 mm) and S. aureus (DIZ:
18 mm).

• Increase antioxidant activity.

N/A [165]

3% Lycopene

5% TiO2 NPs Alginate and
aloe vera

Edible
coating

• Inhibit the growth of S. aureus (DIZ:
21.89 mm), E. coli (DIZ: 17.98 mm), and
A. fumigatus (DIZ: 21.29 mm).

• Prolong the shelf-life with minimal mass
loss during storage up to 16 days.

Tomato [166]

0.003 g TiO2 NPs
Starch/PVA Film

• Extend shelf-life without sign of
microbial infection (S. aureus) up to
22 days.

Cherry
tomato

[167]
0.4 g elderberry

extract

1% TiO2 NPs
Chitosan Film

• Reduce total bacterial count, E. coli, and
S. aureus after 10 days of storage.

• Maintain color, taste, and odor.
• Reduce forming volatile compounds,

including ammonia, trimethylamine,
dimethylamine and methylamine.

Minced meat [129]

1.5% Cymbopogon
citratus EO
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Table 2. Cont.

Nanofillers
Polymeric
Matrix

Packaging
Form

Findings with Optimal NPs Compared to
Non-NPs

Application
Product ReferencesConcentration/Percentage

(%) Weight of Optimal
Metal-Based NPs

Types of Metal-
Based NPs

0.3% Ag NPs Chitosan/
polyethylene
oxide

Films
• Inhibit the activity of E. coli, S. aureus,

C. Albicans, and A. niger, with DIZ of 8,
11, 21, and 23 mm, respectively.

N/A [168]

0.8% TiO2 NPs

1% Ag NPs

PLA Films

• Delay the loss of firmness, titratable
acid, and vitamin C during storage.

• Extend the post-harvest life of mangoes
to 15 days.

Fresh mango [169]2% TiO2 NPs

9% Bergamot EO

3% CuO NPs Starch Film • Reduce colony counts of S. aureus and
E. coli.

N/A [133]

N/A Au NPs PVA/glyoxal Film
• Enhance antimicrobial activity against

E. coli (DIZ: 13 mm).
• Extend shelf-life up to 5 days.

Banana [135]

10% Fe3O4 NPs Chitosan/pectin Film • Inhibit the growth of S. epidermidis and
E. coli.

N/A [170]

Note: HPMC: hydroxypropyl methylcellulose; PLA: polylactic acid; EO: essential oil; PBAT: poly(butylene
adipate-co-terephthalate); PVA: polyvinyl alcohol; HPS: hydroxypropyl starch; PA: palmitic acid; N/A: used as
food packaging, but not specifically for foodstuffs; CMC: carboxymethylcellulose; ZEO: Zataria multiflora EO;
MEO: Menthe piperita EO; DIZ: diameter of inhibition zone; ZOI: zone of inhibition. This table includes the
parameters for the optimal metal-based NPs.

4. Use of Nanofillers in Intelligent Food Packaging
4.1. The Definition of Intelligent Packaging

Intelligent packaging can communicate with consumers, monitor, track, record, and
convey external or internal changes that occur in the product or its environment without
affecting the food along the food supply chain [25]. The intelligent packaging is mainly
categorized into indicators, sensors and data carriers [171]. For example, Figure 5a shows
the time–temperature indicator (TTI), providing consumers with information on the food
quality at specific temperatures and times. Figure 5b presents a freshness indicator that detect
changes within food packages, including microbial growth and metabolite levels, and further
indicate spoilage or degradation of the food. Figure 5c represents a pH sensor designed for the
quick measurement of pH levels and food quality. Figure 5d is radio-frequency identification
tags (RFID), providing information on storage, transport, distribution, and sale.
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4.2. Nanocomposites-Based Intelligent Films
4.2.1. Anthocyanins and Their Utility

Colorimetric nanocomposite-based intelligent packaging are increasingly being ap-
plied to monitor the freshness and assess the quality and safety of perishable foods, fresh
produce, and meat/seafood. It is designed to induce color/ammonia changes in response
to changes in environmental pH during food spoilage, which can be achieved by adding
natural dye. Since they offers naturalness, non-toxicity, and biodegradability compared
to synthetic dyes that may have toxicity and contamination concerns [172]. Among the
various natural dyes, anthocyanins (AN) are particularly pH-responsive and can therefore
be used to detect the presence of leakage (e.g., oxygen exposure) and to indicate micro-
biological safety by detecting the volatile nitrogen compounds and amines from spoiled
products and microbiological contamination [173]. However, incorporating AN into food
packaging generally suffers from some shortcomings, including a time-consuming and
costly extraction process and insufficient stability [174,175]. Zheng et al. [172] reported
that CNCs have negatively charged sulphonic acid groups on their surface, derived from
sulfuric acid hydrolysis. They could form ionic bonds with flavonoid cations in AN, thus
avoiding nucleophilic attack through water to modulate AN’s indicative properties. This
ionic bond could also change dynamically with the pH change. Thus, this chitosan/AN
intelligent packaging enhanced by CNCs intuitively monitors shrimp freshness and slows
down the spoilage process. The multifunctional bio-nanocomposite films (KCZ-MAE) pre-
pared from konjac glucomannan (KGM)/chitosan (KC) with Nano-ZnO NPs and mulberry
anthocyanin extract (MAE) also exhibited relatively large color changes from red (pH = 2–4)
to blue (pH = 10–12) in different buffer solutions, serving as a freshness indicator for chicken
millets [176]. Consistently, Wang et al. [177] also incorporated pH-responsive AN from
eggplant peel extract into the chitosan/esterified chitin nanofibers (CN) polymer matrix.
It was sensitive to pH 3–11 buffer solution and possessed suitable ammonia and acid
sensitivity, making it suitable for detecting pork spoilage. Furthermore, it is also a trend
to use hybrid pigments in packaging materials. Duan et al. [178] incorporated curcumin
and AN dye pigment into electrospun Lapland/chitin nanofibers (379.07 ± 100.14 nm) as
indicators of freshness of Plectorhynchus cinctus fish, i.e., pink for fresh products and pinkish
blue for deteriorated products.

AN phenolic compound can be applied to TTIs due to their temperature-sensitive
nature [179]. The structures of AN change upon thermal degradation, which is influenced
by the severity and conditions of heating [179]. Rachmelia and Imawan [180] developed
a TTI label by incorporating ANs extracted from black maize into a chitosan polymer
matrix, which showed the fastest color change from violet to blue to yellow at the higher
temperature of 40 ◦C, whereas the slowest color change was at the lower temperature of
10 ◦C. Consistently, Amiri et al. [181] fabricated a TTI based on paraffin wax film containing
black carrot ANs to monitor fish products. There was no change in color after 48 h of
exposure at temperatures of −5 ◦C and 25 ◦C, whereas significant color changes were
observed at higher temperatures (15 and 25 ◦C), which also corresponded to a significant
increase in Thiobarbituric acid reactive substances (TBARS) and total volatile basic nitrogen
(TVB-N), as well as a decrease in organoleptic parameters. Eskandarabadi et al. [182]
also stabilized ANs extracted from red cabbage on MMT as a natural TTI for the active
intelligent packaging film.

4.2.2. Other Compounds and Their Application

Curcumin is a diphenolic hydrophobic compound derived from the roots of turmeric [183].
Wu et al. [184] reported that the release rate of curcumin at low pH (~2) was higher than that
at neutral pH 6 and 7.4, respectively, suggesting that curcumin is a pH-sensitive compound
to inform consumers about the food freshness. Salarbashi et al. [185] reported that soluble
soybean polysaccharides/15 wt% SiO2 NPs/curcumin nanocomposite films changed color
from yellow, orange to orange-red upon exposure to acidic, neutral, and alkaline media,
respectively, revealing their application in detecting pH changes during shrimp spoilage.
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Carbon quantum dots (CDs), known as fluorescent carbons, can be used as a fluo-
rescent “on/off” sensor for detecting relative humidity (RH) [186]. Rahman and Chowd-
hury [187] showed that increasing the bread’s RH resulted in the quenching of the fluores-
cence of the nanocomposite film containing CDs due to the hydrogen bonding of water
molecules from the wetted bread with the nanocomposite film.

Additionally, Zhai et al. [188] developed a novel colourimetric hydrogen sulfide (H2S)
sensor based on gellan gum-capp Ag NPs for real-time monitoring of meat spoilage, since
Ag has a superb ability to bind to H2S, forming Ag2S [188]. This gas sensor could analyse
H2S with a detection limit of 0.18 µM at pH 7 and showed excellent selectivity for H2S
against other volatile components produced from chicken breast and silver carp during
spoilage, showing a visible color change from yellow to colorless [188]. Consistently, Kwon
and Ko [189] also developed CNC-AgNP composites as efficient colourimetric freshness
indicators for poultry products or broccoli.

5. Use of Nanofillers in Photodegradable and Biodegradable Food Packaging
5.1. Photodegradable Food Packaging

Photodegradation is the ROS formation on the surface of the photocatalytic materials
(e.g., TiO2) by UV radiation, which promotes polymer chain breakdown and accelerates
chain breakage [190]. Therefore, Goñi-Ciaurriz et al. [191] showed that under ~24 h UV
exposure with 1.0 mW/cm2 light intensity, the incorporation of 5 wt% TiO2 NPs decreased
the hydrogen-bonding elements of ethylene–PVA copolymers (EVOH) matrix, thereby
promoting the photo-oxidative degradation (i.e., discoloration) of nanocomposite films,
with total color variations (∆E) greater than 20, whereas neat EVOH polymer only had ∆E
less than 1. Furthermore, Goudarzi and Shahabi-Ghahfarrokhi [192] developed starch/TiO2
(3 wt%) bio-nanocomposites using photochemical reactions, showing photo-degradability
around 20% better than virgin starch/TiO2 films. Masoumeh et al. [190] further coupled
TiO2 with transition metals, i.e., Fe3O4, which lowered the band gap of TiO2 and improved
its photocatalytic activity at higher wavelengths of the electromagnetic spectrum. They
have reported that the addition of 10 wt% Fe3O4/TiO2 increased the photodegradation
of the starch nanocomposite film by approx. 232.17% as compared to neat polymers at
0–2 days of UV-A exposure timespan.

5.2. Biodegradable Food Packaging

Biodegradation of biopolymers undergoes two processes, i.e., conversion from poly-
mer to monomer and the mineralization of monomers into CO2, H2O, and biomass by
microbial bio-assimilation. Large biopolymers are digested by extracellular enzymes in
microorganisms (e.g., bacteria, fungi), while small molecules are transported to microor-
ganisms to undergo endoenzymatic digestion [193]. Therefore, there are two pathways to
alter the biodegradation mechanism, namely altering the crystallinity of the polymetallic
matrix and changing the microbial biodegradation pathway [194].

The addition of CNCs reduced the biodegradation rate of the PVA–gelatin matrix after
28 days of soil burial test, with the lowest weight loss (i.e., 12.58%) for the 5 wt% addition,
compared to 12.62% and 12.9% for 10 wt% and unreinforced films, respectively. This may be
because the 5 wt% CNCs can be better dispersed in the PVA–gelatin matrix to create a better
3D network structure, increasing the physical integrity of the composites and reducing the
biodegradation rate [195]. Similarly, the increased binding of chitosan–cellulose phthalate
acetate films because of an increase in the concentration of ZnO NPs from 2 wt% to 7.5 wt%,
resulted in an extended degradation time of about 5 months, whereas the pure chitosan
films were biodegraded within 4 weeks [196]. Yeasmin, Yeum, and Yang [197] also assessed
the biodegradation of pullulan (PULL), tempo cellulose nanofibrils (TOCNs), and MMT
nanocomposite films after 4 and 18 days using soil burial tests. They found that the addition
of MMT decreased the biodegradation rate because strong hydrogen bonds were formed
between the hydroxyl groups of the PULL matrix and the MMT, thereby increasing the
cohesion of the PULL matrix and reducing its water sensitivity.
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Furthermore, Oliver-Ortega et al. [198] reported that while the biodegradation process
seems to follow the same pathway, i.e., the crystallinity of the nanocomposite increases
from aging, which whitens the nanocomposite and decreases the edge mass. The incor-
poration of 2 wt% and 4 wt% of nanoclay (Bentonite) extended the biodegradation time
of PLA nanocomposites to 11 and 15 days, respectively, while the biodegradation of the
pure polymer time was about 6 days. Enzymatic biodegradation of nanocomposite films
begins at the surface, suggesting that enzymes may attach to the surface of the nanoclay.
Therefore, the biodegradation process may be more susceptible to inhibition by the nan-
oclay [198]. Similarly, the incorporation of 0.05% AgNPs reduced the biodegradation rate
of chitosan–gelatin nanocomposite films by about 9% after 14 days of exposure to the soil
as compared to the pure polymer [199]. This may be attributed to the antimicrobial activ-
ity of Ag NPs against soil microorganisms, inhibiting their attack on the polymer chains
weakened by the infiltration of soil moisture into the polymer network [199]. Furthermore,
Perera et al. [200] showed that the biodegradation of chitosan–alginate nanocomposite
film was significantly decreased by 10.95% during 3 months with increasing TiO2 NPs
concentration (0.1 wt%: 100%; 0.3 wt%: 89.06% ± 1.04) due to the antimicrobial properties
of TiO2 NPs.

However, Luo, Lin, and Guo [201] showed that TiO2-containing films started the
biodegradation stage earlier and produced a higher percentage of CO2 after 80 days of
incubation compared to pure PLA films, as indicated by biodegradation percentages being
78.9% for 0% TiO2, 86.9% for 1% TiO2, 92.0% for 2% TiO2, and 97.8% for 5% TiO2, respec-
tively. The uniformly dispersed TiO2 in the PLA matrix resulted in an easier penetration
of water molecules to the polymer matrix, then initiating the biodegradation process by
microorganisms. Similarly, the biodegradation phase of films containing organo-modified
MMT Halloysite nanotubes and Laponite® RD also began earlier than that of pure PLA
films [202]. Consistently, increasing carbon NPs concentration also increased the weight
loss behavior of PBAT composites, e.g., the composite films containing 3wt% CNPs and
5wt% CNPs degraded faster compared to pure PBAT, achieving 43.4% and 48.6% of weight
loss after 8 weeks, respectively [10].

The above comparative results suggest that the concentration and type of nanofillers
incorporated into biodegradable polymers should be balanced with the purpose of the food
packaging system. If the main purpose is to improve mechanical, barrier, and antimicrobial
properties by considering factors such as polymer–nanofiller compatibility, permeability,
and microbial interactions, the lower biodegradation rate may be compensated. Therefore,
nanocomposite systems need to be carefully designed and optimized to achieve the desired
biodegradation properties.

6. Migration Process

Migration is a mass transfer process whereby low molecular mass components initially
presenting in the food packaging (high concentration) are released into the contained
product (e.g., food or beverage) (low concentration) and eventually reach equilibrium. This
process is subjected to diffusion (diffusion coefficient (D), Equation (2)) and adsorption
(partition coefficient (kP), Equation (4)), respectively [203].

x
m

= kp × 1
n

(4)

x: mass of adsorbed air; m: adsorbed volume at pressure of P; kp and n: constants.
The development of nanocomposites may result in unintentional migration of nanofillers

into food products, raising safety concerns for consumers. Therefore, when developing
new food contact materials (FCM), overall and specific migration tests must be performed
using food simulants that can mimic food behaviors. There are six common food simulants,
including ethanol 10% v/v, acetic acid 3% v/v, ethanol 20% v/v, ethanol 50% v/v, vegetable
oil, and poly-2,6-diphenyl-p-phenylene oxide [6,203].



Foods 2024, 13, 2014 21 of 34

6.1. Factors Affecting the Migration Process

The initial concentration of migrants in the polymer and types of foods/food simulants
should be considered for migration calculations. For example, Bott, Störmer, and Franz [21]
reported that after 10 days at 60 ◦C, the total silver migration concentration of Ag NPs at
concentrations of 50, 150, and 250 mg kg−1 was 2.4 µg dm2, 13.2 µg dm2 and 115.1 µg dm2

in 10% ethanol and 168.5 µg dm2, 444.8 µg dm2, and 1010.9 µg dm2 in 3% acetic acid,
respectively. However, no silver was released from the low-density polyethylene (LDPE)
polymer matrix containing any concentrations of Ag NPs, even after 10 days in 95% ethanol
at 60 ◦C and 24 h in isooctane at 40 ◦C.

The D demonstrates the kinetics of migration within a polymer matrix or foodstuffs,
quite being affected by temperature and time. Extreme temperature fluctuations (e.g., from
freezing to cooking temperatures) can increase the D and migration activity of the chemical
in the package by 6- to 7-fold, which in turn allows the chemical to overcome the attraction
of the surrounding molecules and separate from the polymer matrix [204]. Therefore, each
packaging material is only suitable for one contact temperature. Furthermore, the shorter
the distance between the material and the foodstuff, the faster and easier the diffusion of
migrants will be, as less time will be spent [6]. Moreover, according to Equation (2), D is
also mainly a function of the size or the free cross-section of the migrated NPs (measured
in molecular weight, i.e., Mr,i), which decreases exponentially with increasing migrant
size [205]. Bott, Störmer, and Franz [22] modelled the migration of spherical carbon NPs
from LDPE (10 days at 40 ◦C) as a function of size and sphere diameter and showed that
carbon NPs with a maximum diameter of 4 or 5 nm could potentially migrate (DLDPE:
1.6 × 10−20 and 2.1 × 10−22 cm2 s−1, respectively). If the concentration of 5 nm particles
would migrate, it should require 25,000 mg kg−1 and consists of all 5 nm particles, which is
completely unrealistic and therefore may never occur in FCM plastics. In summary, the
modelled migration rate decreases exponentially with increasing diameter and the chances
of a consumer being exposed to nanoparticles from FCM plastics are negligible and, in any
case, cannot be measured analytically.

The KP describes the relative solubility and concentration of the migrant in the polymer
matrix and food at equilibrium. The decrease in KP is related to the reduction in molecular
weight of nanofillers and the dynamic viscosity of polymers, which may increase the
migration process [206]. Moreover, the polarity of migrated molecules and food simulants
impacts the KP. The amount of migration from the multilayer polyamide to 3% acetic acid
was higher than for other food simulants because they have similar polarity [207]. Toluene
showed the best migration behaviour from LDPE and PP in isooctane compared to other
stimulants such as 50% ethanol, 3% acetic acid, and 10% ethanol, as toluene is only weakly
polar and isooctane is the only non-polar simulant [208].

6.2. Assessment Methods for Nanofillers

To characterize the nanocomposite structure, it is necessary to consider the dispersion
of the nanofillers, the variation in the mass matrix, and the type of nanofiller–polymer inter-
face. Given the complexity of nanocomposites and their small proportion of applications in
food packaging systems, detecting the migration of nanofillers into food products requires
more sensitive analytical techniques [209]. The independent methods cannot provide
all the required information about the concentration, composition, and physicochemical
properties of nanofillers in complex matrices [209]. There are only a few synthetic methods
available for the efficient detection of nanofiller.

Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and
exclusion chromatography (SEC) could segregate nanofillers down to 1 nm, facilitating di-
rectly studying the size, shape, structure, density, dispersion, and coagulation of nanofillers
in complex solid samples [6,24]. However, these methods are quite time-consuming as
they require the counting of more than hundreds of nanofillers to obtain comprehensive
and adequate information. Meanwhile, these methods are destructive, indicating that the
verification tests could not be conducted on the same sample [24].
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Inductively Coupled Plasma and Mass Spectrometry (ICP-MS) can evaluate dissolved
samples and is highly selective, sensitive, and accurate. It can rapidly quantify the elemen-
tal composition of spherically structured NPs down to 0.1 to 10 ppm [203]. A digestion
process is required before injecting the nanofillers into the ICP [210]. When combined
with Laser ablation, i.e., LA ICP-MS, the determination limits for Ag and Cu could be
adjusted from 0.03 mg/kg to <0.08 mg/kg and from 0.01 mg/kg to <4 mg/kg, respec-
tively [211]. Moreover, the NP Tracking Analysis (NTA) and Dynamic Light Scattering
(DLS) are recommended for suspension samples [203].

Furthermore, both wide-angle X-ray diffraction (XRD) (WAXS) and small-angle XRD
(SAXS) can assess solid samples. They are not destructive, and do not require sample
pretreatments. Thus, they can be used to assess the elemental composition or crystalline
arrangement of nanomaterials, as well as the form of different nanocomposites, such as
aggregation, intercalation, exfoliation, and dispersion. The other spectroscopic technique,
e.g., ultraviolet–visible spectroscopy (UV–VIS), is generally used to obtain information
such as the presence and characterization of nanomaterials due to its low costs and easy
usage [212].

These analytical methods are essential to ensure the safety and regulatory compliance
of nanocomposites used in food packaging. Additionally, the (re)assessment of nanotoxi-
cology, exposure estimates, and harmful effects on humans are required when additional
studies on the toxicological assessment of nanocomposites are feasible [24].

6.3. Application of Nanofiller to Reduce Migration

However, the incorporation of several nanofillers in polymers may reduce the migra-
tion process of chemicals from FCM to food as follows.

Migrants tend to choose paths with the least diffusion resistance in the polymer
chain, usually avoiding the positions occupied by NPs, resulting in longer paths [213].
The volume fraction of NPs, their orientation concerning the diffusion direction, their
shape and L/D ratio, and their dispersion degree could increase the tortuosity of the
diffusion path and reduce the overall diffusion rate in the nanocomposites [214]. For
instance, Dardmeh et al. [214] showed that the addition of 3 wt% Cloisite 15A to the PET
matrix effectively reduced the migration of terephthalic acid (TPA) under storage condi-
tions because the clay was uniformly dispersed in the PET matrix and formed exfoliated
structures. Consistently, de Abreu et al. [215] reported that Cloisite 30B nanoclays slowed
down the migration of caprolactam, 5-Chloro-2-(2,4-dichlorophenoxy)phenol (triclosan),
and trans,trans-1,4-diphenyl-1,3-butadiene (DPBD) from polyamide nanocomposites to
food simulants up to six times. Garofalo et al. [216] also showed that PA/PE multilayer
nanocomposite films could overcome the possible migration of NPs by using a functional
barrier between the nanomaterial and the food. Similarly, Seray and Hadj-Hamou [217]
also reported that the simultaneous use of these two nanofillers (i.e., ZnO NPs, Cloisite
nanoclay) in the PBAT matrix could reduce Zn2+ release due to the need for Zn2+ to diffuse
gradually in the increased tortuosity pathways formed by the dispersed Cloisite. This
provides a suitable candidate for the application of sustained and controlled release of
Zn2+ in active food packaging, which improves the inhibition of bacterial growth and
prolong the freshness and quality of packaged food products compared to the use of ZnO
NPs alone.

Furthermore, NPs act as heterogeneous nucleating agents in the polymer matrix,
thereby increasing crystallinity and reducing chemical migration. Farhoodi et al. [218] re-
ported that based on differential scanning calorimetry (DSC) analyses, the incorporation of
TiO2 NPs (3 wt%) into the polyethylene terephthalate (PET) matrix resulted in a substantial
increase in the final crystallinity of the PET polymers (XC = 39.68%) compared to neat PET
(XC = 33.48%). The results of gas chromatography showed that the migration of ethylene
glycol from the nanocomposites was lower than that from neat PET [218].
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7. Toxicological Effects of Nanofillers

The toxicity concerns of the migrated nanofillers involve cytotoxicity and ecotoxicity.

7.1. The Cytotoxicity of Migrated Nanofillers

Free NPs can penetrate the biological environment and inevitably come into contact
with various biomolecules (proteins, sugars, and lipids) dissolved in body fluids such as
interstitial fluids, lymph, or plasma, leading to potential cytotoxic effects [219]. Meanwhile,
nanofillers smaller than 6 nm are easily excreted through the kidneys, while those larger
than 200 nm accumulate in the liver and spleen [220] (Figure 6).
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The smaller nanofillers are more toxic than larger ones since they are more readily
and quickly absorbed and distributed by the organs (e.g., stomach and lungs). The wider
surface area compared to the total mass of the smaller nanofillers can also generate more
ROS, which can cause damage and malfunction to organelles, such as mitochondria and
nuclei, leading to apoptosis and cell death [219].

The hydrophilic and cationic nanofillers are more toxic than hydrophobic, neutral, or
anionic ones, partly due to their strong affinity for negatively charged plasma membranes.
Therefore, their circulation and residence time in the blood vessels is prolonged, increasing
the risk of blood clotting and cardiovascular disease [56].

The rods could be mostly uptake and have a longer blood half-life as compared to that
in spheres, cylinders, and cubes [221]. Nevertheless, Rozhina et al. [222] found that carbon
nanomaterials were more toxic and genotoxic for cells than nanoclays, regardless of shape.

Dermal contact, inhalation, and oral ingestion are the three main routes of human
exposure to NPs, with oral exposure being the most common [223] (Figure 6).

Children are more vulnerable to toxins. They absorb larger doses of pollutants per
unit of body weight compared to adults, since the detoxification organ systems are not
fully grown and developed [56]. Similarly, Wang et al. [224] orally administrated TiO2
NPs (~75 nm) to young rats (3 weeks) and adult rats (8 weeks) at doses of 0, 10, 50, and
200 mg kg−1 bw/d for 30 days. The liver edema was only evident in the young rats treated
with 50 and 200 mg kg−1 bw TiO2 NPs, but not in adult rats. Adult rats only showed
inflammatory cell infiltration in the 10 and 50 mg kg− 1 bw TiO2 NPs-treated groups.

Additionally, the cytotoxic risk is likely to increase if the daily intake of NPs migrated
from FCM (Daily Dietary Index: DDI, Equation (5)) exceeds the Reference Dose (RfD)
(e.g., a maximum migration of 0.05 mg/kg for some NPs by legislation [24]), resulting in
a Health Risk Index (HRI, Equation (6) [225]) greater than 1. Meanwhile, NPs typically
need to enter the cell membrane through penetration or endocytosis, taking time to exert
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cytotoxic effects. Therefore, the cytotoxic effects of migrated NPs can be influenced by the
dosage and duration of exposure.

DDI = A × B × C
BW

(5)

A: Concentration of NPs in food/migrate in food packaging (mg kg dry weight−1);
B: daily intake of food (kg wet weight day−1); C: conversion factor (e.g., 0.085: weight of
fresh vegetables converted to dry weight); BW: average human body mass (kg).

HRI =
DDI
RfD

(6)

However, the probability of NPs migration into food is small when NPs are fully
incorporated or encapsulated in the polymer matrix. Meanwhile, appropriate surface
treatments can modify the structure, size, solubility, behaviour of nanofillers and reduce
their cytotoxic or mutagenic effects on cells or cellular components. Therefore, the possible
health risks of migrated NPs from food packaging are still not clearly defined and require
further research.

In addition, legislation and regulation are also needed to protect consumers from
adverse exposure risks, while developing effective regulatory provisions is challenged by
limited scientific evidence and uncertainty.

7.2. The Ecotoxicity Effect of Nanofillers

Nanocomposites may cause contamination by releasing nanoscale compounds during
degradation. Even low concentrations of ZnO NPs can compromise membrane integrity
and reduce algal cell viability [226]. Ag NPs could inhibit embryonic development and
destabilize lysosomal membranes of adult hepatopancreatic cells in the oyster Crassostrea
virginica [226]. TiO2 NPs can reduce brood size and body length in large juvenile fish,
disrupt their digestive enzymes (e.g., amylase and esterase), interfere with nutrient uptake
and energy partitioning, and induce ROS production [226]. Therefore, the expanded use of
NPs in the food packaging industry has raised significant environmental concerns.

However, after the disposal of nanocomposites, several organisms in the environ-
ment might alter product properties, including photochemical transformation by light,
biotransformation by microorganisms, and oxidation by oxygen. These may lead to a lesser
environmental impact than starting materials [28].

Moreover, the final distribution of nanofillers after being discarded into the environ-
ment is not fully understood. Therefore, it is also difficult to determine whether nanocom-
posites ultimately contaminate and bioaccumulate the food chain and pose a risk to human
health. More robust techniques are required to characterize the real behaviour of NPs.

8. Conclusions and Future Perspectives

Compared to the previous reviews [142,193,227,228], this review discussed more com-
prehensively the improvement of mechanical, barrier, antimicrobial, photo-, and biodegra-
dation properties of nanocomposites by inorganic and organic nanofillers in the last five
years. It is also novel to summarize that the addition of EOs in nanoemulsions and nanohy-
brids can provide synergistic antimicrobial properties, help extend the shelf-life of packaged
foods and ensure food quality. Although some studies [142,228,229] have reported that the
migration process of nanofillers may cause cytotoxicity, this review used Bott’s equation
(Equation (2)) to explain that the migration process is negligible, especially when fully
incorporated or encapsulated in the host polymer matrix or surface modified. Furthermore,
this review also innovatively discussed how the incorporation of some nanofillers into the
polymer may reduce chemicals migration and achieve sustained controlled release of ions.
However, the bioaccumulation of nanocomposites through the food chain is unknown as
the final distribution of nanocomposites in the environment is unclear.
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Additionally, while some companies have successfully used nanoparticle-based poly-
meric materials in commercial food packaging, it remains a research challenge to scale
up production from laboratory to commercial scale. It is time-consuming and costly to
maintain consistent performance, ensure reproducibility, and meet regulatory requirements.
While research continues, these factors affect the decision to add NPs in food packag-
ing materials. Optimizing manufacturing technologies and costs, improving regulatory
frameworks and building trust between the food industry, packaging manufacturers and
consumers will help ensure safety and environmental sustainability of nanofillers.
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