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A B S T R A C T

In liner shipping, stakeholders are increasingly committed to adopting autonomous and environmentally friendly 
transportation solutions, especially for truck operations managing container transfers. Beyond reducing labor 
costs, truck platooning technology—which enables autonomous trucks to operate in close formations, thereby 
significantly decreasing fuel consumption—promises to revolutionize fleets involved in maritime container 
transport. However, the potential of these benefits hinges on the process of developing and implementing 
optimization plans that address the specific challenges of container logistics, particularly in integrating truck 
platooning plans. In response to this need, this study extends the traditional instant-dispatch strategy by pro-
posing a novel, data-driven dispatch strategy. We develop algorithms for both models and conduct extensive 
experiments focusing on truck operations for sea freight containers. Our findings reveal significant advantages of 
the data-driven dispatch strategy: it substantially reduces the total costs and fuel consumption associated with 
truck deliveries compared to the instant-dispatch strategy.

1. Introduction

Intermodal transportation, which involves the transit of sea freight 
containers to their final destinations using trucks, plays a crucial role in 
the supply chain management (Li et al., 2023). Numerous countries and 
regions around the world are actively enhancing their transportation 
infrastructures, both maritime and terrestrial, to facilitate the efficient 
flow of containers. However, this rapid expansion of infra-
structure—from seaports to inland road networks—poses substantial 
challenges. These include a significant increase in carbon dioxide (CO2) 
emissions and elevated energy consumption (Jiang et al., 2024). In 
2018, the transportation sector accounted for 23% of global energy- 
related CO2 emissions (IEA, 2020), with the highest dependency on 
fossil fuels among all sectors (IEA, 2022). In nearly half of all countries, 
it is the predominant emitter within the economy (UN, 2021). These 
issues have catalyzed global discussions focusing on balancing the 
growing demand for transportation with the imperative to reduce CO2 
emissions (Attanasio et al., 2023).

Fortunately, advancements in intelligent transportation systems 
have enhanced the energy efficiency of transportation networks. A 
notable innovation is truck platooning, where vehicles travel closely as a 

convoy, forming a road train. This configuration significantly reduces 
air drag, leading to aerodynamic efficiencies (Zhang et al., 2020). This 
technique can yield energy savings of up to 16 % (Bonnet and Fritz, 
2000). Additionally, truck platooning improves traffic flow and can in-
crease road capacity by up to 200% (Tsugawa et al., 2016), thereby 
reducing congestion without the necessity for costly new infrastructure 
developments (Robinson et al., 2010).

The numerous advantages of platooning underscore the necessity of 
effective platoon scheduling, particularly when maritime-shipped goods 
are transferred to land-based transportation networks. Optimal opera-
tion and scheduling of platoons not only mitigate greenhouse gas 
emissions but also enhance road capacity and yield significant cost 
savings for enterprises, holding substantial practical value. Conse-
quently, developing an optimal transportation scheduling strategy that 
minimizes costs while efficiently coordinating platoon dispatches for 
freight transport is essential for linking maritime and terrestrial com-
ponents of global supply chains. This paper explores the truck pla-
tooning scheduling problem with the goal of minimizing total costs 
incurred during the transportation of the required requests. Utilizing 
extensive historical data on trucking requests, we aim to devise cost- 
effective truck platooning dispatch strategies through a data-driven 
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mathematical programming model.

2. Literature review

The pre-departure planning of scheduling and routing plays a crucial 
role in making truck platooning a common practice in the transport 
sector. To the best of our knowledge, there have been relatively few 
studies published in this emerging field of platooning research. This 
paper presents the current state of the literature concerning platoon 
coordination methods by centrally planning trips in advance. Larson 
et al. (2016) studied the mixed-integer programming (MIP) algorithm 
for the combined vehicle routing and platoon scheduling problem, 
improved the computational efficiency by introducing auxiliary pa-
rameters and constraints, and explored the effect of waiting at initial and 
intermediate points. Larson et al. (2015) formulated the queuing prob-
lem as an integer programming for both same and different starting 
positions, proved its NP-hardness, developed optimal pairing and piv-
oting heuristics and improved these heuristics with local search for ef-
ficiency, but found that large real-world instances remain problematic. 
Luo et al. (2018) built the mixed-integer linear programming (MILP) 
efficient clustering heuristic algorithm that integrates routing, sched-
uling, individual speed selection, and platoon formation/dissolution, 
which first separates the set of trucks and then routes each group indi-
vidually. Meisen et al. (2008) presented the mining frequent sub-routes 
problem for platoon driving, formulated the algorithm to find truck 
platoon sequential pattern (TPSpan), and solved the problem by pruning 
parameters to increase the efficiency. Nourmohammadzadeh and Hart-
mann (2016) formulated a mathematical MIP model considering vehicle 
deadlines, employing the LINDO solver for small samples and a Genetic 
algorithm for larger instances, promoting the development of an effec-
tive genetic algorithm based on the prior elimination of irrational 
routes. Sokolov et al. (2017) addressed a combinatorial optimization 
problem that integrates platoon coordination with vehicle routing to 
maximize fuel savings by synchronizing routes and departure times, 
comparing central coordination with an uncoordinated ad hoc approach 
through simulations, using the MIP formulation by Larson et al. (2016)
as a basis, and demonstrating a substantial increase in platooning pos-
sibilities through reasonable waiting times at the origin. Zhang et al. 
(2016) introduced and analyzed a platoon scheduling problem that aims 
to minimize total delivery costs by considering travel time variance. The 
model accounts for driving costs, schedule miss penalties, and fuel costs, 
highlighting the conflicting goals of timely arrival and fuel savings 
through platooning. Zhang et al. (2017) formulated and analyzed a 
freight transport platoon coordination and departure time scheduling 
problem under travel time uncertainty, aiming to minimize expected 
costs. You et al. (2023) studied the multi-trip container drayage problem 
with truck platooning, addressing its NP-hardness by proposing a 
branch-and-price-and-cut algorithm with a route-based set partitioning 
model and tight linear relaxations to achieve exact solutions. Xu et al. 
(2022) addressed the truck routing and platooning problem, considering 
drivers’ mandatory breaks, state-and-position-dependent fuel-saving 
rates, designated intermediate relays, and platoon size limits, aiming to 
route trucks to their destinations on time with the minimal fuel costs. 
They used a MILP model and a hybrid algorithm combining partial-MILP 
and iterated neighborhood search to solve the problem.

Existing studies often assume pre-known information of future de-
mands to create scheduling models, which is unrealistic since we only 
have access to historical and current requests. This paper seeks to bridge 
this gap by developing a data-driven optimization approach that lever-
ages historical data to develop more realistic scheduling models for 
truck platooning.

The main contributions of this paper are as follows. First, we consider 
two approaches: the traditional approach that dispatches a platoon once 
requests are received during a decision period, and a data-driven 
approach that predicts future demands based on the distribution pat-
terns of historical request data and makes the decision by solving a 

mathematical optimization model. Second, we conduct computational 
experiments using a truck delivery center as a case study, comparing the 
total cost and the fuel cost of the two approaches in several cases. These 
experiments validate the superiority of the data-driven dispatch 
strategy.

The remainder of this paper is organized as follows. Section 3 pro-
vides problem description and formulates the models of the two ap-
proaches. Section 4 verifies the proposed method with a concrete 
example. Section 5 concludes this paper.

3. Problem formulation

Assume that there is one delivery center and a set of U customers, 
each indexed by u. The delivery center has been making platoon dis-
patching decisions for T periods, indicating that the historical requests 
during the past T periods are available. In order to verify the effective-
ness of our proposed data-driven methods, we split the original dataset 
into the training and testing data sets in the ratio of 4:1, indicating that 
the delivery center designs strategies using the first 80% of data (i.e., the 
information on the first 0.8T periods, including the number of requests 
generated on each period) and evaluates the performance of the stra-
tegies using the last 20% of data. We denote the training data set by T1, 
where each period t ∈ {1,2,⋯,T 1}, and the testing data set by T2, 
where each time period tʹ ∈ {1,2,⋯,T 2}. We adopt the ratio of 4:1 
because it is the most widely used data set splitting ratio (Sadeghi 
et al.,2022). In most cases, other ratios (e.g., 3:1) have little or no effect 
on model performance (Ferentinos,2018; Tseremoglou et al.,2022).

Now, we use the test set to describe our studied problem. Specif-
ically, at a specific decision period tʹ ∈ {1,2,⋯,T 2}, each customer u ∈

{1,⋯,U} can place a number of requests, represented by nu
tʹ. In this 

paper, we assume that a request needs to be satisfied by a truck. The aim 
is to minimize the total costs, which includes the platoon costs and the 
delay costs for the planning horizon of the test period. The platoon cost 
is calculated using the unit cost c1 for the first truck and the unit cost c0 
of the following trucks. The first truck in the platoon incurs a unit cost c1 
that encompasses the driver’s salary, fuel expenses, and the cost asso-
ciated with overcoming the air resistance. The trucks that hang after the 
first truck have a unit cost of c0, which is only the cost of fuel, since there 
is no driver as well as less air resistance. Then, it can be seen that c0 < c1.

After collating requests from all customers during a specific decision 
period, the delivery center must decide whether to dispatch the platoon 
immediately at the corresponding time period tʹ (denoted by xtʹ = 1) or 
to defer the deliveries to subsequent periods (denoted by xtʹ = 0). The 
unit delay penalty for delaying customer u’s request at period tʹ is rep-
resented by pu

tʹ. Consequently, if the delivery center chooses to defer the 
deliveries to subsequent periods, there will be delay penalties (delay 
costs), which are equal to the unit delay penalty multiplied by the 
number of delayed requests, i.e., 

∑U
u=1pu

tʹnu
tʹ. Here, we assume that if a 

request at a certain period is not immediately met, the delay penalty for 
that unmet request will only incur at that period; that is to say, if the 
request is still not met at the next period, the request will not incur delay 
penalty at the next period.

Now if we choose to send a platoon at period t (i.e., xtʹ = 1), the 
number of trucks in the platoon, denoted by Dtʹ, is the sum of the un-
satisfied requests up to period tʹ, denoted by Atʹ, and the new requests 
generated at period t́ , 

∑U
u=1nu

tʹ. Therefore, we have Dtʹ = Atʹ +
∑U

u=1nu
tʹ. 

Both Dt and At are measured by the number of trucks.

3.1. Method I: Instant-dispatch strategy

In this strategy, we assume that as long as there is a request coming 
during a decision period, the decision maker would dispatch a platoon. 
The notation is shown in Table 1, and the model, referred to as [M 1], can 
be formulated below. Model [M 1] is followed by Algorithm 1, which 
solves model [M 1]. 
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[M 1]minw1 =
∑T 2

tʹ=1

[xtʹ(c1 + c0(Dtʹ − 1) ) ] (1) 

subject to 

xtʹ ≥ I(Dtʹ ≥ 1), ∀tʹ ∈ {1,2,⋯,T 2} (2) 

Dtʹ =
∑U

u=1
nu

tʹ ,∀tʹ ∈ {1,2,⋯,T 2} (3) 

xtʹ ∈ {0,1}, ∀tʹ ∈ {1,2,⋯,T 2} (4) 

Objective function (1) aims to minimize the total cost w1 for the test 
planning horizon, where c1 +c0(Dtʹ − 1) is the cost of dispatching a pla-
toon at the current period tʹ, and 

∑T 2
tʹ=1[xtʹ(c1 + c0(Dtʹ − 1) ) ] is the total 

cost for all of the testing periods. In Constraints (2), I(*) is an indicator 
function. It indicates that the value of the function is 1 if the condition in 
the parentheses I(*) is satisfied; so, Constraints (2) indicate that as long 
as a request is received at period tʹ, then a platoon will be dispatched. For 
this reason, Dtʹ in Constraints (3) indicates the total number of requests 
generated at period tʹ. In [M 1], since platoons will be dispatched when 
requests are generated, there will be no delayed cost. Constraints (4)
define the domains of decision variables.

Given model [M 1], we then present Algorithm 1 below to show the 
solution process of the model.

Algorithm 1. Solution process of model [M 1]

Input: U (the number of customers), T (the number of periods), c0 (the cost of the first 
truck), c1 (the unit cost of the following trucks), nu

t (the requests from every 
customer at every period) 
Output: w1 (total cost) 
1:Let w1←0 
2:T 2←0.2T 
3:For t́ ←1, 2,⋯,T 2 // Enumerate the possible values of dispatch period 
4:If Dt́ > 0 
5:xt́ ←1 

6:Dt́ ←
∑U

u=1
nu

t́  

7:w1←w1 + xt́ (c1 +c0(Dt́ − 1) )
8:Else 
9:w1←w1 + 0 
10:End for

The instant-dispatch strategy, while offering immediate response capa-
bilities, presents several significant drawbacks. It leads to higher oper-
ational costs due to the increased fuel consumption and vehicle wear and 
tear, which in turn escalate maintenance expenses. Additionally, more 
frequent dispatches necessitate more labor hours, increasing driver 
costs. This strategy also has a negative environmental impact, as inef-
ficient dispatching results in more trips and higher fuel consumption, 
thereby contributing to a larger carbon footprint and environmental 
degradation. Scalability is another major issue; as the volume of orders 
grows, managing instant dispatches becomes increasingly challenging, 
causing bottlenecks and inefficiencies. This strain on resources and 

infrastructure further complicates scaling up operations. The strategy’s 
limited flexibility is evident in its inability to adapt to changing condi-
tions such as traffic patterns, weather, or sudden demand spikes, making 
it inherently reactive rather than proactive. This lack of adaptability 
hampers the ability to anticipate and mitigate potential issues. More-
over, the instant-dispatch strategy often fails to leverage data analytics, 
resulting in a lack of insights that could otherwise inform decision 
making, optimize routes, and predict demand. Consequently, decisions 
are less informed and more prone to errors, highlighting the need for a 
more sophisticated, data-driven approach.

3.2. Method II: Data-driven dispatch strategy

From the above section, we know that the training set T1 and the 
testing set T2 are obtained from the same distribution. When making 
dispatching decisions at one period in the testing set T2, we do not know 
the exact number of requests that will be received in the future periods, 
but we know the number of requests of every period in the training set 
T1, which has the same distribution. Therefore, we can use the training 
set T1 to develop a data-driven strategy to make a decision on whether to 
send a platoon or not for each period of the testing set T2.

For example, there are T data points, where T may equal 20, and the 
training set T1 may contain the first 16 data points while the testing set 
T2 contains the last 4 data points. Suppose we are at the first period of 
T2, which means tʹ = 1, and for every customer u, we receive nu

tʹ re-
quests. From the decision-making perspective, we do not know the re-
quests that we will receive in the future T2 − tʹ periods; therefore, we use 
T1 to generate S scenarios of uncertain requests in the future T2 − t́  pe-
riods, as an approximation for the future data. Each scenario is repre-
sented by s, s ∈ {1, ⋯, S}. We choose the simplest method, random 
sampling, as the method for generating a scenario: we randomly select 
T2 − tʹ periods (with the historical demand information) from the T1 
dataset to form one scenario. This is repeated S times, generating S 
scenarios, each with U rows representing customers and T2 − tʹ columns 
(j ∈ {1,2,⋯,T2 − tʹ}) representing future T2 − tʹ periods. This approach is 
shown visually in Fig. 1.

Then, we develop an optimization model [M 2] to obtain the optimal 
solution xtʹ using the data of the current period tʹ and the S scenarios for 
future periods. The model [M 2] operates each time when we approach to 
a new time period to make a decision. When xtʹ = 1, it means we will 
send a platoon at the current period tʹ. When xtʹ = 0, we will not send a 
platoon at tʹ. The notation is shown in Table 2 and model [M 2] is con-
structed below. Model [M 2] is followed by Algorithm 2, which solves 
model [M 2]. 

[M 2]min
x

xt’ (c1 + c0(Dt’ − 1) ) + (1 − xt’ )
∑U

u=1
pu

t’ nu
t’ 

+
1
S
∑S

s=1

∑Tʹ

j=1

[

xs
j

(
c1 + c0

(
Ds

j − 1
))

+ (1 − xs
j )
∑U

u=1
pu,s

j nu,s
j

]

(5) 

subject to 

Table 1 
Notation for model [M 1].

Notation Meaning

T 2 The number of periods in the testing set T2

t́ The index of the testing period, where t́ ∈ {1, 2, ..,T 2}

xt́ The binary decision variable, denoting whether to dispatch the platoon 
immediately at period t́  or not

c1 The cost of the first truck in a platoon
c0 The unit cost of the trucks following the first truck in a platoon
Dtʹ The sum of the requests accumulated before and at period t́  after the 

previous platoon sent
U The number of customers, indexed by u ∈ {1,2,⋯,U}

nu
tʹ A deterministic parameter representing the number of requests by 

customer u at period t́

Fig. 1. The data-driven dispatch strategy.
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Dtʹ =
∑U

u=1
nu

tʹ + Atʹ (6) 

Ds
j =

∑U

u=1
nu,s

j + As
j∀j ∈ {1,⋯,Tʹ}, s ∈ {1,⋯, S} (7) 

As
j = As

j− 1 +
∑U

u=1
nu,s

j− 1 − xs
j− 1Ds

j− 1∀j ∈ {2,⋯,Tʹ}, s ∈ {1,⋯, S} (8) 

As
1 = Dtʹ(1 − xtʹ)∀s ∈ {1,⋯, S} (9) 

xs
Tʹ ≥ I

(
Ds

Tʹ > 0
)
∀s ∈ {1,⋯, S} (10) 

xtʹ ∈ {0,1} (11) 

xs
j ∈ {0,1}∀j ∈ {1,⋯,Tʹ}, s ∈ {1,⋯, S}. (12) 

Objective function (5) aims to minimize the total cost, where 
xtʹ(c1 +c0(Dtʹ − 1) )+(1 − xtʹ)

∑U
u=1pu

tʹnu
tʹ is the cost at the current period tʹ 

and 1
S
∑S

s=1
∑Tʹ

j=1(x
s
j (c1 + c0

(
Ds

j − 1
)
)+(1 − xs

j )
∑U

u=1pu,s
j nu,s

j ) is the 

approximated expected cost of dispatching platoons in future Tʹ periods. 
Constraint (6) indicates that if we choose to send a platoon at period tʹ, 
the number of trucks in the platoon Dtʹ is the sum of the unsatisfied 
requests up to period tʹ (we name it Atʹ, which can be precomputed) and 
the requests generated at period tʹ, which is 

∑U
u=1nu

tʹ. Constraints (7)
indicate that the number of trucks in the platoon dispatched at the end of 
the jth future period in scenario s is the sum of the unsatisfied requests 
up to the jth future period in scenario s (we name it As

j ) and the requests 
generated at the jth future period in scenario s from all of the U cus-
tomers, which is 

∑U
u=1nu,s

j . Constraints (8) indicate that if we have dis-
patched a platoon at the (j − 1)th future period in scenario s, As

j will be 0; 
otherwise, As

j will be the sum of the unsatisfied requests up to the 
(j − 1)th future period in scenario s (we name it As

j− 1) and the requests 
generated at the (j − 1)th future period in scenario s from all of the U 
customers 

∑U
u=1nu,s

j− 1. Constraints (9) indicate that if we have dispatched 
a platoon at period tʹ in scenario s, the unsatisfied requests up to the first 
next period in scenario s, which is As

1, will be 0; otherwise, As
1 will be Dtʹ. 

Constraints (10) indicate that as long as a request is generated at the last 
period in scenario s, then a platoon must be dispatched. In practice, we 
need to linearize Constraints (10) using the Big-M method: M • Ds

Tʹ ≥ xs
Tʹ, 

where M is a very large number. Constraints (11)–(12) define the do-
mains of the decision variables. In order to better demonstrate the above 
method as well as to visualize how to solve model [M 2] to calculate the 
cost, we outline the detailed pseudo codes in Algorithm 2.

Algorithm 2. Solution process for model [M 2]

Input: All of the parameters in Tables 1 and 2
Output: platoons (set of the number of trucks for each platoon sent), dispatch 
solutions solutions, totalcost 

(continued on next column)

(continued )

Algorithm 2. Solution process for model [M 2]

1:Let totalcost←0 
2:Let platoons←[ ], solutions←[]

3:Let t́ ←1;T 2←0.2T 
4:Let At́ ←0 
5:While t́ < T 2 

6:Let J←T 2 − t́  

7:Set nu,s
j , pu,s

j by taking J random columns of the training data 
8:Formulate the model [M 2] with parameters nu,s

j , pu,s
j 

9:Solve the model [M 2 ] by GUROBI to obtain xt́ ,Dt́  

10:If xtʹ = 0 
11:cost←

∑

u
pu

t́ nu
t́  

12:At́ ←At́ +
∑U

u=1
nu

t́  

13:Else 
14:cost←(Dt́ − 1)c0 +c1 

15:At́ ←0 
16:End if 
17:totalcost←totalcost+cost 
18:solutions←solutions ∪ xt́  

19:platoons←platoons ∪ Dt́  

20: Update the training data by adding nu
t́  to the training data 

21:t́ ←t́ +1 
22:End while 
23:t́ ←T 2 // Obtain xt́  and cost for the last period T 2 for testing data 

24:If 
∑U

u=1
nu

t́ > 0 or At́ > 0 

25:xt́ ←1;Dt́ ←At́ +
∑U

u=1
nu

t́ ; cost←(Dt́ − 1)c0 + c1 

26:Else 
27:xt́ ←0;Dt́ ←0; cost←0 
28:End if 
29:totalcost←totalcost + cost 
30:solutions←solutions ∪ xt́  

31:platoons←platoons ∪ Dt́

After making the decision for period tʹ, we add the data of tʹ = 1 to the 
training set T1 and get the new T1 set. We move to the next period of T2, 
which means tʹ = 2. We start the next round of operation and obtain the 
optimal solution, and so on.

4. Computational experiments

The experiments are run on a laptop computer equipped with Apple 
M2 Pro CPU and 16 GB of RAM, and model [M 2] is solved using the 
GUROBI solver within Jupyter. We first set the values of parameters for 
drawing the basic results, and then we conduct computational experi-
ments to examine the impacts of these parameters.

4.1. Experiment and parameter settings

The number of customers is set to U = 3. We denote each period by a 
month and the total number of periods by T = 120, so the testing data 
T 2 = 0.2T = 24, which is 24 months (2 years). When formulating the 
model [M 2], we build S = 3 scenarios.

The numbers of requests nu
t and the unit penalties pu

t are sampled 
from normal distributions. The mean of the distribution for nu

t is a 
random number from the set {0,⋯, 25}, while the variance is a number 
from the set {1,⋯, 5}. Similarly, the normal distribution for pu

t has the 
mean in the range {200,⋯, 300} and the variance in {1,2, 3}.

Next, to set the value of the parameter c1, we conduct a survey of 
logistics companies. According to our results, the total cost of one FAW 
Qingdao 6.8-meter-long truck to deliver goods from Heng Shui to Wei-
fang (420 kms, 20 h) is approximately $117/workday, including the fuel 
cost of $48, the loss charge of $2, the highway toll fees of $28, the driver 
cost of $36, and the insurance and tax of $3. Given that each month 
spans 25 workdays, the value of the parameter is set to c1 = 117 • 25 =

$2925 per period.
Finally, we set the value of the parameter c0 by removing the driver 

cost and lowering the fuel cost with respect to the first truck’s cost, c1. 

Table 2 
Newly introduced notation for model [M 2].

Notation Meaning

pu
tʹ The unit penalty of delaying customer u’s requests at period t́

S The number of scenarios developed
s The index of scenarios, where s ∈ {1,⋯, S}
Tʹ The number of future periods, which is T 2 − t́
j The index of future periods, where j ∈ {1, 2,⋯,T2 − t́ }
xs

j The decision variable for the jth future period in scenario s
Ds

j The sum of the remaining requests at the end of the jth future period in 
scenario s

pu,s
j The unit delay penalty for customer u’s requests for the jth future period 

in scenario s
nu,s

j The number of requests from customer u at the jth future period in 
scenario s

As
j The unsatisfied requests up to the jth future period in scenario s
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According to 0, the fuel cost is reduced by approximately 16 %, resulting 
in only $40 of fuel cost. Adding the loss charge of $2, the highway toll 
fees of $28, and the insurance and tax for $3, we get $73per day, which 
corresponds to c0 = 73 • 25 = $1825 per period.

4.2. Basic results

This subsection analyses the cost saved by following the data-driven 
dispatch strategy as opposed to the instant-dispatch strategy. We 
generate and test 30 cases with different distribution parameters for the 
numbers of requests nu

t and the unit penalties pu
t .

Fig. 2 shows the total cost saved by Model [M 2] (data-driven dispatch 
strategy) compared to Model [M 1] (instant-dispatch strategy), calcu-
lated as the total cost obtained from Model [M 1] minus the total cost 
obtained from Model [M 2]. In half of the cases, including Cases 0, 1, 2, 4, 
5, 9, 11, 14, 15, 19, 21, 22, 27, and 29, Model [M 2] has total costs lower 
than Model [M 1]. This is the money saved in two years of operation. 
Compared to the traditional instant-dispatch strategy, data-driven 
dispatch strategy can help truck delivery centers save a significant 
amount of costs.

Additionally, in Fig. 3, we have separately illustrated the fuel costs 
saved by the data-driven dispatch strategy over the instant-dispatch 
strategy. As shown in Fig. 3, half of the cases, Model [M 2] has fewer 
fuel costs than Model [M 1], indicating that data-driven dispatch strategy 
is more effective in conserving fuel energy. Furthermore, in all of these 
cases, there are no cases where Model [M 1] yields lower total cost and 
fuel consumption than Model [M 2].

The credibility of this study lies in the extensive testing of numerous 
case studies, all of which consistently demonstrated that the data-driven 
strategy is more cost-efficient than the instant-dispatch strategy.

Based on our results, we recommend that stakeholders consider 
historical data when making future decisions regarding platooning. By 
doing so, they can accurately forecast future demand and make 
informed decisions about platoon size, thereby reducing the operational 
costs associated with platooning. These measures will also contribute to 
the preservation of the natural environment and the mitigation of 
transportation-related issues.

5. Conclusions

We have developed a data-driven framework designed to support the 
real-time decision-making processes of service providers in the context 
of truck platooning, with the primary goal of minimizing operational 

costs. This framework incorporates tailored optimization models and 
efficient algorithms to ensure the effective scheduling of autonomous 
trucks, facilitating the sequential fulfillment of multiple delivery 
requests.

To assess the effectiveness of the proposed decision-making tools, we 
conducted numerical experiments and case studies. These investigations 
focus on the influence of delivery request patterns on the cost-saving 
performance of platoon services. Based on our findings, we provide 
targeted suggestions for improvement measures and guidelines to rele-
vant stakeholders.

The innovation of this study lies in addressing the future demand 
uncertainty when making platooning decisions. Specifically, we handle 
the uncertain demand by using historical demand data. This paper 
makes contributions to both theoretical knowledge and practical 
implementations, enhancing innovative industrial mobility and sup-
porting the decarbonization of international trade and commerce. For 
future truck platoon optimization, historical data can be leveraged to 
design data-driven models that align closely with actual conditions, 
thereby benefiting both the company’s operations and the environment 
cleanness.

The methodology presented in the paper has several limitations. 
First, while the model offers a theoretical solution, its computational 
complexity may hinder practical applications, particularly for large- 
scale problems. Second, the paper assumes that the platoon fleet 
serves three customers in the same end city, meaning that the trucks 
have identical start and end points. If the end points are in different 
cities, route planning must be considered when making decisions.
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