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Abstract
The increasing threat of unmanned aerial vehicles (UAVs) to smart grid infrastructures
poses critical challenges to energy systems security. This study examines smart grid
vulnerabilities to UAV‐based attacks and proposes a novel optimisation framework to
enhance grid resilience. Employing a multi‐objective optimisation approach using the
Non‐dominated Sorting Genetic Algorithm III (NSGA‐III) and a game‐theoretic
Stackelberg model, the research captures the strategic interplay between UAV operators
and grid defenders. Key contributions include the development of a multi‐objective
optimisation framework, integration of adversarial game theory, incorporation of dy-
namic environmental conditions, and generation of Pareto‐optimal solutions for strategic
defence planning. This research makes four pivotal contributions: (a) the design of a
comprehensive multi‐objective optimisation framework tailored for UAV strike optimi-
sation, (b) the integration of game‐theoretic principles to model adversarial behaviours,
(c) the inclusion of dynamic environmental factors to improve solution robustness, and
(d) the application of NSGA‐III to generate trade‐off solutions, equipping decision‐
makers with diverse strategies to enhance grid resilience. By addressing an urgent and
timely challenge, this work offers practical guidance for fortifying smart grid in-
frastructures against emerging UAV threats in increasingly complex operational
environments.
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1 | INTRODUCTION

The increasing integration of smart grid technology into
modern power distribution systems has revolutionised how
energy is managed, distributed, and consumed. Smart grids
incorporate advanced communication technologies, real‐time
monitoring, and control systems, providing significant im-
provements in efficiency, reliability, and sustainability [1, 2].
However, this rapid technological advancement has also
introduced new vulnerabilities, particularly concerning the
physical and cyber‐physical security of critical infrastructure
[3]. As the reliance on smart grids grows, so too does the range
of potential threats, including unmanned aerial vehicle (UAV)
(UAV) strikes, which pose a significant risk to the integrity and
functionality of power distribution networks. The threat of
UAV‐based attacks on smart grid infrastructure has garnered

considerable attention in recent years due to the increasing
availability, sophistication, and autonomy of these systems [4].
Unmanned aerial vehicles offer a unique set of advantages to
potential attackers, including high mobility, relatively low cost,
and the ability to execute precise, coordinated strikes on critical
infrastructure with minimal human intervention [5]. These
characteristics make UAVs a highly effective tool for targeting
key components of the power grid, such as substations,
transmission lines, and transformers. The ability to strike from
the air, bypassing traditional ground‐based defences, exacer-
bates the challenge of protecting the grid from such attacks [6].

In parallel with the increasing use of UAVs for legitimate
purposes, their misuse by malicious actors has raised significant
concerns among policymakers, grid operators, and security
agencies. A well‐coordinated UAV strike on a power grid could
lead to cascading failures, large‐scale blackouts, and substantial
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economic and societal disruption. The vulnerability of the grid
to such physical attacks is compounded by the growing inter-
connectivity between energy, communication, and control
systems, making it a prime target for both cyber and physical
threats.

The motivation behind this research stems from the urgent
need to develop robust defence mechanisms against UAV‐
based attacks on smart grid infrastructure. Traditional ap-
proaches to grid security have predominantly focused on cyber
threats, leaving physical vulnerabilities, particularly those posed
by UAVs, inadequately addressed. As the sophistication of
UAVs continues to evolve, so does their potential to cause
widespread damage. This study aims to address this critical gap
by introducing an advanced optimisation framework for
simulating and optimising UAV strikes against smart grids, with
the ultimate goal of enhancing the resilience and security of
power systems against such threats. The core research objective
of this paper is to model, simulate, and optimise UAV strikes
on smart grids using a novel combination of the Non‐
dominated Sorting Genetic Algorithm III (NSGA‐III) algo-
rithm and game‐theoretic approaches. By leveraging multi‐
objective optimisation techniques, this research seeks to pro-
vide a deeper understanding of how UAVs can exploit grid
vulnerabilities to maximise disruption, while also offering in-
sights into how grid operators can effectively mitigate these
risks through strategic defensive measures. The integration of
game theory into the optimisation framework allows for a
more realistic representation of the adversarial interactions
between UAV operators (attackers) and grid defenders,
providing a comprehensive approach to defence planning.

This paper specifically focuses on the problem of opti-
mising UAV strikes on smart grids by formulating it as a multi‐
objective optimisation problem. The three primary objectives
are: (a) to maximise the damage inflicted on critical grid
components, (b) to minimise the operational costs associated
with UAV deployment, and (c) to minimise the risk of UAV
detection by surveillance systems. These objectives are inher-
ently conflicting, as maximising damage often requires
increased UAV activity, which in turn increases both opera-
tional costs and detection risk. To address these conflicting
goals, the NSGA‐III algorithm is employed to generate a
diverse set of Pareto‐optimal solutions, offering a range of
trade‐offs between the objectives. The optimisation framework
is built upon a detailed mathematical model that includes both
UAV operational parameters and grid vulnerability dynamics.
The UAV flight paths are optimised using dynamic environ-
mental data, while the vulnerability of each grid component is
modelled as a time‐varying function that changes based on the
severity of UAV strikes and natural degradation. Game theory
is integrated into the model to represent the strategic interac-
tion between UAV operators and grid defenders, with each side
attempting to optimise their own objectives while anticipating
the actions of their opponent. The key contributions of this
paper can be summarised as follows:

(1) This paper presents a novel multi‐objective optimisation
framework based on the NSGA‐III algorithm, which is

particularly well‐suited for handling high‐dimensional,
multi‐objective problems. The framework optimises UAV
strike paths across multiple conflicting objectives,
including maximising damage, minimising operational
costs, and reducing detection risk.

(2) The paper integrates game‐theoretic approaches into the
optimisation framework, specifically using a Stackelberg
game to model the interaction between UAV operators
(attackers) and grid defenders. This novel approach pro-
vides a more realistic representation of adversarial in-
teractions, offering valuable insights into how both
attackers and defenders can optimise their strategies.

(3) The research introduces a dynamic model of grid vulner-
abilities and UAV flight parameters, which evolve over
time in response to both UAV strikes and environmental
conditions. This dynamic modelling ensures that the
optimisation framework is robust and adaptable to real‐
world scenarios.

(4) By incorporating stochastic environmental factors into the
optimisation process, this paper enhances the robustness
of the solutions. The framework accounts for uncertainties
in weather conditions and sensor accuracy, ensuring that
the UAV strike paths remain effective under a wide range
of operational conditions.

2 | LITERATURE REVIEW

The growing complexity and interconnectedness of modern
smart grids, combined with the increased accessibility and
sophistication of UAVs, have highlighted significant vulnera-
bilities in critical infrastructure. These vulnerabilities necessi-
tate advanced optimisation strategies to mitigate the impact of
UAV strikes on smart grids [7]. This review establishes the
foundation for the novel contributions of this paper, which
integrates these techniques into a comprehensive framework
for optimising UAV strikes on smart grids.

The vulnerability of smart grids to both cyber and physical
attacks has been widely studied in the literature. Smart grids,
characterised by their real‐time communication, bi‐directional
energy flows, and integration of renewable energy sources,
have become increasingly susceptible to a variety of attacks due
to their highly interconnected nature [8, 9]. Early work in this
area primarily focused on cybersecurity threats, particularly
those targeting the communication and control systems that
regulate energy distribution [10]. Several studies have examined
how hackers can exploit vulnerabilities in communication
protocols to disrupt grid operations by injecting false data,
causing blackouts, or destabilising the system through denial‐
of‐service (DoS) attacks [8]. While these studies provide
valuable insights into cyber threats, there is a noticeable gap in
the literature addressing physical threats to grid infrastructure,
particularly those posed by UAVs. In recent years, UAVs have
emerged as a significant physical threat to smart grids, with the
potential to bypass traditional ground‐based defences and
target critical components from the air. The work by Chamola
et al. [11] offer a comprehensive review of UAV threats,
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highlighting their capability to carry payloads that can damage
transformers, transmission lines, and substations. Despite its
limited payload capacity, UAVs can cause substantial disruption
by targeting high‐impact nodes in the grid, resulting in
cascading failures that lead to widespread power outages. This
research [11] also emphasises the growing autonomy and
availability of UAV technology, which lowers the barrier to
entry for malicious actors. However, while this review outlines
the broad risks posed by UAVs, it lacks detailed analyses of
how these threats can be modelled and optimised for in
defensive strategies.

Recent studies have begun to explore the modelling of
UAV‐based physical attacks on power grids. Zhang and
Chandramouli [12] developed a simulation framework for
evaluating the impact of single and multiple UAV cyber‐
physical attacks on energy infrastructure. Their model in-
tegrates the behaviour of UAVs with the operational dynamics
of the grid, demonstrating the potential severity of well‐
coordinated attacks. However, their study relies on basic
optimisation methods and does not consider more sophisti-
cated algorithms such as NSGA‐III, nor does it incorporate
the game‐theoretic elements necessary to model the strategic
interaction between attackers and defenders. This limitation is
addressed in the current paper, which extends the literature by
using advanced multi‐objective optimisation and game‐
theoretic approaches to explore these threats.

Unmanned aerial vehicle path planning is a critical
component of optimising both the efficiency and effectiveness
of UAV‐based attacks on infrastructure [13]. Path planning
refers to determining the optimal route for a UAV to reach its
target while minimising energy consumption, avoiding detec-
tion, and maximising the damage inflicted on critical compo-
nents [14]. A wide range of optimisation techniques has been
explored for UAV path planning, from classical approaches,
such as dynamic programming and greedy algorithms to more
advanced methods, such as genetic algorithms and particle
swarm optimisation. Genetic algorithms, which are evolu-
tionary algorithms (EVOs) inspired by natural selection, have
been widely used in UAV path planning due to their ability to
handle non‐linear, multi‐objective optimisation problems. Silva
Arantes et al. [15] developed a GA‐based framework for
optimising UAV paths in complex environments, accounting
for factors, such as terrain, weather conditions, and fuel con-
sumption. This approach demonstrated the GA's effectiveness
in finding near‐optimal solutions in high‐dimensional search
spaces, making it well‐suited for UAV operations. However,
traditional GAs are limited in their ability to handle high‐
dimensional, multi‐objective problems with many conflicting
objectives, such as those encountered in UAV strikes on smart
grids.

To address these limitations, more advanced EVOs, such
as Non‐dominated Sorting Genetic Algorithm II (NSGA‐II)
and NSGA‐III have been developed. NSGA‐II, introduced by
Deb et al. [16], is a widely used algorithm for multi‐objective
optimisation that ranks solutions based on Pareto dominance
and maintains diversity in the solution set using a crowding
distance metric. While NSGA‐II has been successfully applied

to various UAV path planning problems [17], it struggles with
high‐dimensional problems where the number of objectives
exceeds three. This challenge led to the development of
NSGA‐III, which extends NSGA‐II by introducing reference
points to guide the search process in high‐dimensional objec-
tive spaces. The NSGA‐III algorithm, first introduced by Deb
and Jain [18], is particularly effective in problems with many
conflicting objectives, making it an ideal choice for optimising
UAV strikes on smart grids, where objectives such as max-
imising damage, minimising cost, and reducing detection risk
are inherently in conflict. Despite the growing use of
NSGA‐III in other fields, its application to UAV path planning
in the context of infrastructure defence remains underex-
plored. This paper addresses this gap by employing NSGA‐III
to optimise the multi‐objective problem of UAV strikes on
smart grids, offering a novel application of this algorithm to a
critical real‐world problem.

Following the advancements presented in Table 1, this
study further builds on the integration of adversarial dynamics
and optimisation to address the critical challenges posed by
UAV‐based threats to smart grids. The incorporation of envi-
ronmental factors into the model and the application of
NSGA‐III mark a significant progression in addressing real‐
world scenarios. These enhancements provide a robust foun-
dation for developing effective defence strategies tailored to
modern grid infrastructures.

3 | MATHEMATICALL MODELLING

The first objective function is designed to maximise the
damage inflicted by UAV strikes on critical smart grid com-
ponents. We model the total damage ΔD as a function of the
vulnerabilities θi of individual components, weighted by the
importance wi of each component in the grid's operation. The
damage also depends on the UAV strike effectiveness αi and
the resistance of the component βi to damage. To incorporate
non‐linearity and diminishing returns of repeated strikes on the
same component, we utilise an exponential decay function,
which reduces the effectiveness of strikes after repeated attacks
on the same component.

ΔD¼
Xn

i¼1
wi ⋅ θi ⋅

�

1 − exp
�

−
αi
βi

��

for i 2 f1; 2;…; ng

ð1Þ

This equation captures the trade‐off between component
vulnerability and UAV effectiveness, providing a framework
where damage maximisation is dynamically dependent on the
vulnerabilities and the diminishing effect of repeated UAV
strikes.

The cost minimisation objective aims to minimise the total
operational cost C incurred by the UAV deployment. This cost
is modelled as a function of the distance travelled dj by UAV j,
the fuel consumption rate ϕ f , maintenance expenses ϕm, and
personnel costs ϕp. The operational cost is weighted by the
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relative importance α, β, and γ of these three cost components,
respectively.

C ¼ α ⋅ ϕ f ⋅
Xm

j¼1
dj þ β ⋅ ϕm ⋅

Xp

k¼1

ek þ γ ⋅ ϕp ⋅ f ð2Þ

This equation accounts for various operational costs,
ensuring that the optimisation framework balances the re-
sources used during the UAV strikes while considering the
need for reducing overall expenses.

The third objective addresses minimising the detection risk
R for the UAVs during their operations. The detection risk
depends on the UAV's altitude h, environmental noise ξ, and
the sensitivity σ of the surveillance systems. The model uses a
scaling factor δ and environmental constant e to balance the
environmental impact on UAV detection.

R¼
δ ⋅ h2

eþ ξ
⋅
�

1 − exp
�

−
θ
σ

��

ð3Þ

This function captures the UAV's risk of being detected
by surveillance systems based on altitude and external noise
conditions. Lower altitude and higher noise levels reduce
detection risks, making it crucial to optimise flight paths
accordingly.

The overall multi‐objective function Z is a combination
of the three objectives: damage maximisation, cost mini-
misation, and risk minimisation. The weighted sum approach
is used to balance these competing objectives, where λ1,
λ2, and λ3 are the relative importance weights for each
objective.

Z ¼ λ1 ⋅ ΔD − λ2 ⋅ C − λ3 ⋅R ð4Þ

This multi‐objective formulation ensures that the optimi-
sation problem addresses the necessary trade‐offs between
maximising damage, minimising costs, and reducing the detec-
tion risk.

To address the inherent uncertainty in environmental
conditions, we introduce a stochastic component into the
optimisation problem. The uncertainty U in environmental
factors such as wind speed, temperature, and visibility is
modelled as a random variable ξ, with the UAV's flight path
and performance depending on its stochastic variation.

U ¼ E

"
1

1þ expð−ξÞ
⋅

 
δ ⋅ h2

eþ ξ

!#

ð5Þ

This stochastic term introduces robustness into the model,
allowing for uncertainties in real‐world conditions and providing
a more resilient solution to changes in the environment.

The robust optimisation framework includes a worst‐case
scenario term W, which ensures that the model accounts for
the maximum potential damage that the UAV can inflict under
the most unfavourable conditions. This term integrates the
highest possible vulnerabilities θmax and lowest defence capa-
bilities βmin of the grid components.

W ¼ max
θmax;βmin

Xn

i¼1

wi ⋅ θmax ⋅
�

1 − exp
�

−
αi

βmin

��

ð6Þ

This robust term ensures that the solution is resilient to
worst‐case scenarios by preparing for the highest potential
damage outcomes.

TABLE 1 Comparison of existing research and proposed study.

Aspect Existing research Proposed study

Focus of analysis Primarily on cybersecurity threats targeting communication and
control systems [8, 9]. Limited focus on physical threats, such as
UAV‐based attacks [11].

Addresses UAV‐based physical threats to smart grid infrastructures
with detailed modelling of UAV capabilities and grid vulnerabilities.

Optimisation
techniques

Basic methods such as dynamic programming, greedy algorithms,
and genetic algorithms (GA) [15]. Limited application to high‐
dimensional multi‐objective problems.

Employs NSGA‐III, specifically designed for high‐dimensional,
multi‐objective optimisation, to handle competing objectives such
as damage maximisation, cost minimisation, and detection risk
reduction.

Incorporation of
game theory

Limited or no integration of adversarial dynamics between attackers
and defenders [12].

Integrates a game‐theoretic Stackelberg model to simulate strategic
interactions, providing realistic insights into adversarial behaviour.

Dynamic
environmental factors

Rarely addressed; most studies use static conditions for UAV path
planning [13].

Models dynamic environmental conditions, including wind speed,
temperature, and visibility, to assess their impact on UAV flight
paths and mission success.

Real‐world
applicability

Focuses on theoretical frameworks with minimal practical
implementation or case studies using real‐world‐inspired data [12].

Provides case studies with synthesised data, reflecting realistic grid
configurations and UAV capabilities, enhancing the practical value
of the findings.

Key contributions Highlights UAV risks but lacks advanced optimisation and defence
strategies [11].

Develops a comprehensive framework combining NSGA‐III
optimisation, game theory, and dynamic modelling, offering
actionable insights for grid resilience planning.

Abbreviations: NSGA‐III, Non‐dominated Sorting Genetic Algorithm III; UAV, unmanned aerial vehicle.
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The vulnerability score for each grid component θiðtÞ
dynamically evolves over time as a function of past UAV
strikes, component degradation, and external environmental
conditions. The vulnerability update function includes a time‐
decaying factor λ and an environmental degradation term η.

θiðtÞ ¼ θið0Þ ⋅ expð−λtÞ þ η ⋅
Xm

j¼1

 

1 − exp

 

−
αj
βj

!!

ð7Þ

This dynamic vulnerability function allows for real‐time
updates of component vulnerabilities based on UAV attacks
and external factors, providing a more accurate representation
of grid resilience over time.

The game‐theoretic formulation of the problem involves a
strategic interaction between the UAV operator (attacker) and
the grid operator (defender). The attacker seeks to maximise
the damage ΔD, while the defender tries to minimise it by
deploying defensive strategies Sd . The payoff functions for
both players are described as follows:

Pattacker ¼ ΔD − Cdefense; Pdefender ¼ −ΔDþ Cdefense ð8Þ

This game‐theoretic model introduces competitive in-
teractions between attacker and defender strategies, optimising
UAV strike paths in response to defensive measures.

The Stackelberg equilibrium captures the leader‐follower
dynamics between the attacker and the defender. The UAV
operator, acting as the leader, anticipates the defensive actions
of the grid operator, optimising their strike strategy accord-
ingly. The Stackelberg equilibrium solution EStackelberg is given
by the following:

EStackelberg ¼ arg max
ΔD

min
Sd

�
ΔD − Cdefense

�
ð9Þ

This equilibrium represents the optimal UAV strike strategy
that considers both offensive goals and the defender's
response, ensuring that the attack is executed in the most
effective manner.

Finally, the Pareto front P f generated by the NSGA‐III
algorithm represents the trade‐offs between the competing
objectives of damage maximisation, cost minimisation, and risk
reduction. The Pareto front is a set of non‐dominated solu-
tions, where improving one objective would worsen another.
The Pareto front is represented as follows:

P f ¼ fx 2 Rn : ∄y 2 Rn such that ZðyÞ ≻ ZðxÞg ð10Þ

This equation captures the set of optimal solutions that
balance the objectives of the problem, providing decision‐
makers with a range of optimal trade‐offs between competing
goals.

The UAV battery life constraint ensures that each UAV's
operation is within its energy limits, based on flight time tj and
energy consumption Ej. The total energy consumption

depends on the UAV's velocity vj, distance travelled dj , and the
power consumption rate ρj , while factoring in the battery ca-
pacity Bj . To account for various mission parameters, we
model the battery constraint as follows:

tj ⋅ ρj ⋅

 
dj
vj
þ

γj ⋅ d2j
v2j

!

≤ Bj; ∀ j 2 f1; 2;…;mg ð11Þ

This equation guarantees that the total energy consumed
during the mission, factoring in both linear and non‐linear
energy costs, does not exceed the UAV's available battery ca-
pacity. It ensures that UAVs complete their missions without
depleting their energy supply.

The payload capacity constraint enforces that the weight of
the UAV's carried load wj does not exceed the maximum
payload capacity Wmax for UAV j. The constraint is given by
the following:

wj þ
Xn

i¼1

θi ⋅ ϕj ⋅
�

1 − exp
�

−
αi
βi

��

≤Wmax; ∀ j ð12Þ

This constraint ensures that the UAV's payload, including
any damage materials or strike payload, remains within its
operational limits, preventing mission failures due to excessive
load.

The flight range constraint limits the distance dj that each
UAV can travel based on its fuel capacity and operational range
Rj . It is crucial to ensure UAVs can complete their missions
and return to their base without running out of power:

dj ⋅

 

1þ
σj ⋅ ρj ⋅ hj
vj ⋅Rj

!

≤Rj; ∀ j ð13Þ

This equation accounts for the additional energy con-
sumption due to altitude hj, velocity vj, and environmental drag
σj, ensuring that the UAV stays within its flight range limit.

The communication constraint ensures that UAVs maintain
continuous communication within a given range Dcomm. The
communication between UAVs j and k is restricted by their
distance and the strength of their communication link, denoted
by γjk:

Xm

j;k¼1

 
γjk
djk

⋅
�

1 − exp
�

−
djk
Dcomm

��!

≥ η; ∀ j; k ð14Þ

This constraint guarantees that all UAVs remain within
their communication range, ensuring coordinated operations
and reducing the risk of mission failure due to communication
breakdown.

The maximum allowable damage constraint ensures that
the damage ΔD inflicted by UAV strikes on the grid does not
exceed the critical damage threshold Dmax that could lead to
system‐wide collapse:
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ΔD¼
Xn

i¼1
wi ⋅ θi ⋅

�

1 − exp
�

−
αi
βi

��

≤Dmax ð15Þ

This constraint ensures that while UAVs aim to maximise
disruption, the attacks do not cause irreversible damage to the
grid, preserving the overall stability of the power distribution
system.

The detection risk constraint is modelled to ensure that
UAVs minimise the risk of being detected by radar or other
surveillance systems. This constraint depends on the UAV's
altitude hj , radar sensitivity ζj , and environmental noise ξj:

Rj ¼
δj ⋅ h2j
ej þ ξj

⋅
�

1 − exp
�

−
θj
ζj

��

≤Rmax; ∀ j ð16Þ

This equation ensures that UAV operations are conducted
within an acceptable detection risk threshold, reducing the
probability of interception by security forces.

The flight path optimisation constraint ensures that UAVs
follow the most efficient routes to their assigned targets,
minimising energy consumption and detection risk. The opti-
misation problem is expressed as follows:

Xm

j¼1

 

min
P j

Xn

i¼1

cij
vj

⋅

 

1þ
ξj
h2j

!!

≤ Popt; ∀ j ð17Þ

This constraint ensures that each UAV follows the most
optimal path P j to its target, minimising both flight time and
energy consumption while accounting for environmental
conditions and detection risk.

The environmental condition constraint accounts for the
impact of wind speed ωj , temperature Tj, and humidity μj on
the UAV's performance. The constraint ensures that UAVs can
operate effectively under varying environmental conditions:

Xm

j¼1

 
v2j

ωj þ Tj þ μj
⋅
�

1 − exp
�

−
θj
σj

��!

≤ Emax; ∀ j

ð18Þ

This constraint adjusts UAV performance based on real‐
time environmental factors, ensuring that missions remain
feasible under different weather conditions.

The time constraint ensures that UAV attacks are
completed within a given time window tmax, accounting for the
UAV's velocity vj and the distance dj to the target:

Xm

j¼1

 
dj
vj
þ

σj ⋅ d2j
v2j

!

≤ tmax; ∀ j ð19Þ

This equation ensures that the UAVs complete their mis-
sions within the allocated time frame, factoring in both linear
travel times and non‐linear effects such as environmental drag
and operational delays.

The budget constraint ensures that the total operational
costs C incurred by deploying UAVs remain within the available
budget Btotal:

C ¼
Xm

j¼1

�
α ⋅ ϕ f ⋅ dj þ β ⋅ ϕm ⋅ ej þ γ ⋅ ϕp ⋅ f

�
≤ Btotal ð20Þ

This equation ensures that the total cost of the mission,
including fuel, maintenance, and personnel costs, remains
within the specified budget limits.

The redundancy constraint ensures that key components of
the power grid remain operational even after a UAV attack. The
constraint guarantees that the grid can tolerate a certain level of
damage Dr without collapsing:

Xn

i¼1

�
wi ⋅ θi

1þ λi ⋅ ΔD

�

≥Dr;

where Dr is the redundancy threshold:

ð21Þ

This redundancy constraint ensures that critical grid
components maintain enough functionality to prevent com-
plete system failure, even in the event of a successful UAV
attack.

The security response time constraint ensures that UAV
operations are completed before the defensive system is able to
respond effectively. The response time tr of the security system
is modelled as a function of the detection delay δdetect, the
deployment time δdeploy, and the reaction speed vresponse of the
security forces. Additionally, the distance between the UAV and
the defensive system ddefense plays a crucial role. The constraint
guarantees that the UAV completes its mission tmission before
the system reacts:

tmission ≤ δdetect þ
ddefense
vresponse

þ δdeploy; ∀ j 2 f1; 2;…;mg

ð22Þ

This constraint ensures that the UAV's operational time
does not exceed the total security response time, factoring
in the detection, deployment, and reaction speeds of the
defensive systems, thus minimising the risk of UAV
interception.

The legal and ethical considerations constraint is
designed to ensure that UAV operations comply with inter-
national regulations and ethical standards. This constraint is
modelled as a set of legal requirements Li and ethical
bounds Ei, each associated with different aspects of UAV
operation, such as maximum altitude hmax, prohibited zones
Zp, and limitations on payloads wj . The constraint is
expressed as follows:

Xn

i¼1

�
1

1þ expð − LiÞ

�

⋅
Xm

j¼1

�
hj
hmax
þ

wj
Wmax

�

⋅ 1Zp ≤ Emax; ∀ j

ð23Þ
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This equation ensures that UAV operations remain within
the bounds of legal and ethical frameworks, accounting for
altitude restrictions, payload limits, and no‐fly zones. The
function 1Zp ensures that UAVs do not enter prohibited zones,
ensuring regulatory compliance throughout the mission.

The UAV sensor accuracy constraint is critical for mini-
mising detection risks during operations. Sensor accuracy αj
affects the UAV's ability to detect obstacles and avoid coun-
termeasures. This constraint depends on the quality of the
sensors ζj, the environmental conditions ξj, and the sensor
calibration κj . The equation ensures that the sensor accuracy
remains above a certain threshold αmin:

Xm

j¼1

 
ζj

1þ κj ⋅ exp
�

− ξj
� ⋅
�

1 −
αj

αmin

�!

≤Amax; ∀ j

ð24Þ

This constraint guarantees that the UAV's sensor system
maintains high accuracy under varying environmental condi-
tions, ensuring efficient detection avoidance and safe naviga-
tion during missions.

The redundancy of defensive actions constraint ensures
that the grid operator can implement multiple defensive stra-
tegies to mitigate cascading failures in the event of UAV at-
tacks. The effectiveness of defensive measures Sd is modelled
as a function of the number of defensive actions ρi applied to
different grid components, weighted by their effectiveness ηi in
reducing system vulnerability θi. The redundancy constraint
ensures that the defensive actions cover enough critical com-
ponents to prevent failure propagation:

Xn

i¼1

ρi ⋅ ηi ⋅
�

1 − exp
�

−
θi
Sd

��

≥Rmin ð25Þ

This constraint ensures that the grid operator can apply a
sufficient number of defensive actions to critical components,
effectively mitigating cascading failures and maintaining the
resilience of the grid during and after the UAV attack.

4 | METHODOLOGY

In Figure 1, the flowchart visually captures the step‐by‐step
process of the NSGA‐III algorithm, with clear distinctions
between each stage such as population initialisation, fitness
evaluation, and selection for the next generation. The NSGA‐
III fitness evaluation function is central to the algorithm's
ability to assess each solution xi in the population across
multiple objectives. For UAV strike optimisation, each solution
is evaluated based on the damage ΔD, cost C, and detection
risk R. The fitness of solution xi is calculated by normalising
its objective values and comparing them to reference points Zr
distributed across the Pareto front:

FðxiÞ ¼
Xp

k¼1

0

@ Zkr − fkðxiÞ

max
�
Zkr

�
− min

�
Zkr

�

1

A

2

þ λk ⋅ ðΔDðxiÞ − CðxiÞ −RðxiÞÞ;

∀i 2 f1; 2;…;Ng

ð26Þ

This equation evaluates the fitness of each solution by
considering its proximity to the reference points and balancing
the trade‐offs between damage, cost, and detection risk. The
reference points represent ideal solutions along the Pareto
front, while the weighting term λk balances the importance of
each objective.

The crossover operation combines two parent solutions x1p
and x2p to generate new offspring xc. NSGA‐III employs
a simulated binary crossover method, where a random
variable βc controls the degree of crossover between the par-
ents. The offspring inherit traits from both parents are as
follows:

xc ¼
1
2

�
x1p þ x

2
p

�
þ βc ⋅

�
x1p − x2p

�
;

where βc ¼ ð2ucÞ
1

ηcþ1; if uc < 0:5

ð27Þ

The crossover operation ensures diversity in the population
by generating offspring that combine genetic material from
both parents. The parameter ηc controls the spread of the
offspring around the parents, while uc is a uniform random
variable that introduces variability.

The mutation operation introduces random perturbations
to the offspring xc to explore new regions of the solution
space. The mutation rate pm determines the likelihood of
mutation, and the magnitude of the perturbation is governed
by a polynomial mutation operator. The mutated solution xm is
expressed as follows:

F I GURE 1 Flowchart of NSGA‐III algorithm. NSGA‐III, Non‐
dominated Sorting Genetic Algorithm III.

PENGFEI ZHAO ET AL. - 7 of 15
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xm ¼ xc þ δm ⋅N
�
0; σ2�;

δm ¼
�

1 −
�
f ðxcÞ
fmax

�� 1
ηmþ1

;

σ is a Gaussian noise term:

ð28Þ

This mutation equation ensures that the population
maintains diversity by perturbing solutions in proportion to
their fitness, where σ introduces randomness. The parameter
ηm controls the mutation strength, while Nð0; σ2Þ ensures a
Gaussian distribution of the perturbation.

The selection mechanism in NSGA‐III is based on Pareto
dominance and crowding distance, ensuring that only non‐
dominated solutions are chosen for the next generation. The
selection is performed by comparing the dominance rank Ri
and crowding distance Di of each solution xi. The probability
of selection is given by the following:

PðxiÞ ¼
1
Ri
þ

Di
PN

j¼1Dj
; where Ri ¼

XN

j¼1

1
�
f
�
xj
�

≺ f ðxiÞ
�

ð29Þ

This equation prioritises solutions with a lower dominance
rank and higher crowding distance, ensuring that the selected
solutions are spread uniformly along the Pareto front while
maintaining diversity in the population.

The game‐theoretic payoff matrix models the strategic
interaction between the UAV operator (attacker) and the grid
operator (defender). Each player's payoff is a function of their
respective strategies Sa and Sd . The attacker seeks to maximise
damage ΔD, while the defender seeks to minimise it. The
payoff matrix is expressed as follows:

P ¼

�
Pa;d Pa;¬d

P¬a;d P¬a;¬d

�

¼

�
ΔD − Cd ΔD − C¬d

ΔD¬a − Cd ΔD¬a − C¬d

�

ð30Þ

This payoff matrix represents the four possible outcomes,
where Pa;d is the payoff when both the attacker and defender
play their strategies, while P¬a;¬d represents the scenario where
neither takes action. The UAV operator's utility function Ua is
derived from the payoff matrix and is maximised based on the
damage inflicted and cost of operation:

Ua ¼max
Sa
ðΔD − CÞ

¼
Xn

i¼1
wi ⋅ θi ⋅

�

1 − exp
�

−
αi
βi

��

−
Xm

j¼1

�
α ⋅ ϕ f ⋅ dj þ γ ⋅ ϕp

�

ð31Þ

This utility function ensures that the UAV operator opti-
mises their attack strategy to maximise grid damage while
minimising operational costs. The first term accounts for the
damage inflicted on grid components, while the second term
captures the cost of deployment.

Similarly, the defender's utility function Ud is designed to
minimise the damage inflicted on the grid, factoring in the cost
of deploying defensive actions Sd :

Ud ¼ min
Sd

ðΔDþ CdÞ

¼
Xn

i¼1
ρi ⋅ ηi ⋅

�

1 − exp
�

−
θi
Sd

��

þ
Xm

j¼1

�
β ⋅ ϕm ⋅ ej

�

ð32Þ

The defender's utility function minimises the overall
damage and operational cost of deploying defensive actions,
ensuring that the grid's integrity is preserved while controlling
costs.

The NSGA‐III hypervolume calculation measures the
quality of the Pareto front by calculating the volume between
the current solutions and the reference points Zr . The
hypervolume HV is computed as follows:

HV ¼
Z

Rn
1Zrð f ðxÞÞ ⋅ ∏

p

k¼1

�
Zkr − fkðxÞ

�
dx ð33Þ

This hypervolume calculation ensures that the algorithm
converges towards a high‐quality Pareto front by maximising
the volume of non‐dominated solutions relative to the refer-
ence points.

The leader‐follower interaction in the Stackelberg game
models the dynamic relationship between the attacker (leader)
and the defender (follower). The UAV operator selects the
optimal strike strategy S∗

a based on the anticipated defensive
actions Sd . The defender then adjusts their strategy accord-
ingly. The equilibrium is expressed as follows:

S∗
a ¼ arg max

Sa
Ua; S∗

d ¼ arg min
Sd

Ud
�
S∗
a
�

ð34Þ

This leader–follower interaction ensures that the attacker
optimises their strategy, anticipating the defender's response,
while the defender reacts to the attacker's chosen strategy,
resulting in an equilibrium that balances both players'
objectives.

The multi‐objective function decomposition for UAV path
optimisation is aimed at breaking down the path planning
problem into multiple smaller objectives such as minimising
flight distance, minimising energy consumption, and max-
imising stealth. Each of these objectives is assigned a weight λi

8 of 15 - PENGFEI ZHAO ET AL.
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to balance its contribution to the overall optimisation problem.
The function can be decomposed as follows:

Zpath ¼
Xk

i¼1

λi ⋅
�

αi ⋅
dj
vj

þ βi ⋅
1

1þ exp
�

− hj
�

þ γi ⋅
1

1þ σj

�

; ∀ j 2 f1; 2;…;mg

ð35Þ

This equation optimises the UAV flight path by minimising
the distance dj, adjusting the altitude hj for stealth, and ac-
counting for sensor accuracy σj. The weights λi, αi, βi, and γi
balance the contribution of each sub‐objective to the overall
path optimisation.

The time‐varying vulnerability function captures the dy-
namic nature of grid component vulnerabilities as they evolve
over time due to UAV attacks and environmental factors. The
vulnerability θiðtÞ of component i is modelled as a function of
its initial vulnerability θið0Þ, the number of UAV strikes sjðtÞ,
and the degradation factor λ:

θiðtÞ ¼ θið0Þ ⋅ expð − λtÞ

þ
Xm

j¼1

 

1 − exp

 

−
sjðtÞ
βj

!!

;

∀ i 2 f1; 2;…;ng

ð36Þ

This equation accounts for both the natural decay of
vulnerability over time and the increasing impact of repeated
UAV strikes. The degradation factor λ controls how fast the
vulnerability decreases over time, while the UAV strikes sjðtÞ
contribute to its dynamic adjustment.

The dynamic adjustment of UAV flight parameters in
response to environmental data, such as wind speed ωj , tem-
perature Tj, and atmospheric pressure Pj, is critical for opti-
mising UAV performance. The flight parameters vj and hj are
dynamically adjusted based on these factors:

vjðtÞ ¼ vjð0Þ ⋅ exp
�

−
ωj
Tj

�

;

hjðtÞ ¼ hjð0Þ þ
αj
Pj

⋅
�

1 − exp
�

−
Tj
ωj

�� ð37Þ

This equation adjusts the UAV's velocity vj and altitude hj
based on real‐time environmental data. The wind speed ωj and
temperature Tj influence the UAV's speed, while atmospheric
pressure Pj modulates the altitude for efficient energy use and
stealth.

The cost‐benefit analysis for UAV deployment across
different grid zones evaluates the trade‐off between deployment
costs C and the potential damage ΔD inflicted on each grid zone.
The cost‐benefit ratioRb is calculated as follows:

Rb ¼
XZ

z¼1

ΔDðzÞ
CðzÞ

¼
XZ

z¼1

Pn
i¼1wi ⋅ θi ⋅

�

1 − exp
�

−
αi
βi

��

Pm
j¼1

�
α ⋅ ϕ f ⋅ dj þ γ ⋅ ϕp

� ;

∀ z 2 f1; 2;…;Zg

ð38Þ

This equation provides a cost‐benefit ratio by comparing
the damage inflicted in each zone ΔDðzÞ to the operational
costs CðzÞ, allowing decision‐makers to prioritise zones with
the highest return on investment for UAV deployment.

The stochastic environmental factor affects UAV flight
efficiency and introduces randomness into the optimisation
process. The environmental influence E j on flight efficiency is
modelled as a random variable ξj , which follows a Gaussian
distribution Nð0; σ2Þ, capturing variations in wind speed,
temperature, and humidity:

E j ¼ E

"
1

1þ exp
�

− ξj
� ⋅

 
v2j

ωj þ Tj þ μj

!#

;

ξj �N
�
0; σ2�

ð39Þ

This equation introduces stochasticity into the UAV's flight
performance by considering random variations in environ-
mental conditions. The efficiency E j is modulated by factors
such as wind speed ωj, temperature Tj , and humidity μj ,
ensuring robustness in the optimisation process.

The convergence criterion for NSGA‐III is based on the
generation count G and the improvement in fitness ΔF be-
tween generations. The algorithm terminates when the
improvement in fitness falls below a predefined threshold e:

ΔF ðtÞ¼
�
�F ðtÞ − F ðt−1Þ

�
� ≤ e;

G ≤Gmax; where F ðtÞ is the average fitness at generation t

ð40Þ

This equation defines the stopping criterion for NSGA‐III,
ensuring that the algorithm terminates when the change in the
average fitness ΔF ðtÞ between consecutive generations becomes
negligible, or when the maximum number of generations Gmax
is reached.

The multi‐target engagement function models the simul-
taneous targeting of multiple grid components by UAVs. Each

PENGFEI ZHAO ET AL. - 9 of 15
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UAV j is assigned multiple targets T j , and the engagement
strategy is optimised to maximise damage across all targets:

Xm

j¼1

XjT j j

k¼1

 
wk ⋅ θk

1þ exp
�

− λ ⋅ djk
�

!

≤ Tmax;

∀ k 2
�
1; 2;…; jT jj

�
ð41Þ

This equation ensures that each UAV optimises its
engagement with multiple targets T j , balancing the distance djk
and the vulnerability θk of each target to maximise overall
damage while avoiding overloading any single UAV.

The detection risk model for UAV operations is based on
the UAV's speed vj, altitude hj , and the sensitivity of the sur-
veillance systems σj . The risk of detection Rj is minimised by
adjusting these parameters:

Rj ¼
δj ⋅ h2j
ej þ ξj

⋅
�

1 − exp
�

−
vj
σj

��

; ∀ j ð42Þ

This equation minimises the detection risk Rj by dynam-
ically adjusting the UAV's speed vj , altitude hj, and the envi-
ronmental noise ξj, ensuring stealth during UAV operations.

The UAV swarm coordination constraint prevents overlap in
the attack paths of UAVs, ensuring that no two UAVs target the
same grid component simultaneously. The coordination is
modelled using a distance‐based constraint djk between UAVs j
and k:

Xm

j;k¼1

 
1
djk

⋅ 1fdjk ≥ dming

!

≥ η; ∀ j ≠ k ð43Þ

This constraint ensures that the distance djk between any
two UAVs j and k remains above a minimum threshold dmin,
preventing path overlap and ensuring efficient swarm
coordination.

The NSGA‐III termination condition is based on solution
diversity. The algorithm terminates when the diversity of the
population, measured by the crowding distance Di, falls below
a critical threshold Dmin:

5 | CASE STUDIES

To demonstrate the effectiveness of the proposed NSGA‐III
and game‐theoretic framework for optimising UAV strikes on
smart grids, a detailed case study is conducted using syn-
thesised and assumed data. The smart grid system is modelled
as a 123‐bus power distribution network, which includes 150
substations, 300 transformers, and 500 transmission lines. Each
grid component is assigned a vulnerability score ranging from
0 to 1, with higher values indicating more critical or fragile
infrastructure. The UAVs are modelled as commercial‐grade
drones with varying operational capabilities, including a flight

range of 50–80 km, a battery life of 90–120 min, and payload
capacities between 3 and 5 kg. The data setup allows for the
simulation of both individual and swarm‐based UAV attacks,
targeting multiple components of the grid under different
environmental and operational conditions. The assumed data
includes time‐series information for power loads, operational
parameters from grid substations, and potential attack win-
dows based on real‐time weather and grid activity. Environ-
mental conditions such as wind speed (ranging from 5 to
25 km/h), visibility (clear, foggy, or overcast), and temperature
(between −5°C and 35°C) are randomly generated for each
scenario to evaluate their impact on UAV performance.
Additionally, the UAVs' detection risk is modelled based on
altitude, flight speed, and noise levels, with varying degrees of
counter‐surveillance activity by grid operators. Each attack
scenario simulates between 5 and 25 UAVs executing coordi-
nated strikes on critical grid components, and the performance
of these strikes is evaluated based on the damage inflicted,
operational costs, and the risk of detection. The computational
environment for running the optimisation experiments is
based on a high‐performance computing system equipped with
an Intel Xeon processor (3.6 GHz) with 32 cores and 128 GB
of RAM, running on a Linux‐based operating system. The
optimisation framework is implemented using Python 3.9, with
specialised libraries such as NumPy, SciPy, and PyGAD for the
execution of NSGA‐III algorithms. Each scenario is run 50
times to account for stochastic variations in environmental
data and UAV performance, with average values reported for
robustness analysis. The total computational time for each
scenario ranges from 3 to 6 h, depending on the complexity of
the grid configuration, the number of UAVs involved, and the
environmental conditions. This setup ensures that the case
study is both computationally feasible and scalable, allowing
for realistic and detailed simulations of UAV strikes on smart
grids [19–23].

Figure 2 illustrates the critical relationship between UAV
flight time and payload capacity, highlighting the trade‐off
between these two parameters. As depicted in the scatter
plot, as the payload capacity of the UAV increases, the available
flight time decreases significantly. For instance, when the
payload is at its minimum of 0.5 kg, the UAV achieves a flight
time of 55 min. However, with a payload of 5 kg, the flight
time sharply drops to 20 min. This indicates that as the UAV's
load increases by 1 kg, the flight time declines by approximately
6 min on average. The trend line clearly follows a downward
trajectory, reinforcing the inverse relationship between payload
and operational endurance. The figure's scatter points are
supplemented by a smooth blue line, which enhances the un-
derstanding of the overall trend across various payload ca-
pacities. For example, at a payload of 2 kg, the flight time is
observed to be 40 min, marking a steep decline from the initial
flight time of 55 min at 0.5 kg. The transition from 2.5 to 5 kg
shows a slower decline in flight time, suggesting that UAVs
with heavier payloads may have optimised their energy effi-
ciency within this range, as indicated by the slight flattening of
the blue line beyond 4 kg. This figure provides valuable insights
for UAV operations, especially for missions where payload and
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battery life are critical factors. For example, in scenarios where
UAVs are used to deliver medical supplies or perform indus-
trial inspections, operators must balance the payload weight
with the need for longer operational times. The data points
around 3 kg payload, showing a flight time of approximately
28 min, could represent a sweet spot for balancing these trade‐
offs. Ultimately, understanding this relationship helps in plan-
ning UAV missions more effectively, ensuring that flight range,
payload, and endurance are optimised for specific operational
requirements.

Figure 3 presents the flight range of 15 different UAV
models, ranging from consumer‐grade to professional and
military‐grade drones. The UAV models showcased have flight
ranges varying from 9 km to as much as 90 km. Among the
consumer‐grade drones, the Da‐Jiang Innovations (DJI) Mini 4
Pro has a relatively lower range of 10 km, while more advanced
consumer drones such as the DJI Mavic 3 offer an extended
range of 15 km. On the higher end of the professional drone
spectrum, the DJI Matrice 300 offers a flight range of 45 km,
making it suitable for industrial applications such as in-
spections and search‐and‐rescue missions. Similarly, models
such as the Freefly Alta X and Delair UX11 showcase higher
capabilities with ranges of 65 and 59 km, respectively, suited
for surveying and mapping operations. A notable trend in the
figure is the dramatic difference in range when comparing
consumer drones to higher‐end models. While drones such as
the Autel II and DJI Phantom 4 Real‐Time Kinematic remain
in the 9–12 km range, military‐grade drones such as the Wal-
kera Voyager 5 and SenseFly eBee X significantly outclass
them, boasting ranges of 50 and 90 km, respectively. This range
disparity indicates the increasing operational flexibility pro-
vided by professional and military drones, which can cover
large areas without the need for frequent battery recharges. In
particular, the SenseFly eBee X's range of 90 km represents
one of the highest operational distances for fixed‐wing drones
used in large‐scale mapping and environmental monitoring. In
analysing this figure, it's clear that drone manufacturers
focus on extending flight range for specific applications.

Consumer‐grade drones are designed for shorter missions,
generally within line‐of‐sight regulations, while professional
and military UAVs prioritise longer missions and endurance.
The Freefly Alta 8 and DJI Matrice 600 Pro, for example,
provide robust solutions with flight ranges of 25 and 35 km,
ideal for carrying heavier payloads or extended filming sessions
in remote areas. Understanding these variations in flight range
is critical for operators in choosing the right UAV model based
on the mission's distance, complexity, and operational
requirements.

In Figure 4, the heatmap demonstrates the effect of envi-
ronmental factors, specifically wind speed and temperature, on
the flight range of UAVs. The x‐axis represents wind speeds
ranging from 0 mph to 36 mph, while the y‐axis represents
temperatures spanning from −10°C to 40°C. The colour
gradient, shifting from deep blue to light red, visually indicates
how the UAV's flight range diminishes under more challenging
environmental conditions. Under calm winds (0 mph) and
moderate temperatures (around 15°C), UAVs achieve their
optimal flight range of approximately 120 min. However, as the
wind speed increases or the temperature deviates from the
optimal range, the flight time gradually decreases. The heatmap
provides an intuitive overview of the diminishing flight effi-
ciency caused by harsh conditions. One critical observation is
the substantial impact of wind speed. As wind speeds rise
beyond 15 mph, the flight range starts to drop noticeably. At
wind speeds of 36 mph, typical for extreme weather, the UAV's
range falls to approximately 50–60 min, even under mild
temperatures of around 15°C. This reduction occurs because
the UAV expends additional energy to stabilise and fight the
increased air resistance. Such conditions severely restrict the
drone's operational time, making high‐wind scenarios risky for
long‐duration missions. Even moderate wind speeds of 20
mph result in a significant decrease, with flight times reducing
to around 80 min under ideal temperatures. Temperature also
plays a pivotal role in the UAV's performance, with the ex-
tremes of −10°C and 40°C being particularly detrimental. At
−10°C, the reduced battery efficiency leads to ranges of
around 60–70 min, even with minimal wind. Similarly, at 40°C,
the additional strain on motors and battery due to heat results
in a similar decline in performance. Notably, at the intersection
of high wind speeds (36 mph) and extreme temperatures
(40°C), the flight range is reduced to just around 40–50 min,

F I GURE 2 Relationship between UAV flight time and payload
capacity. UAV, unmanned aerial vehicle.

F I GURE 3 Flight range of different UAV models. UAV, unmanned
aerial vehicle.
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showing how the combination of both factors can critically
limit the UAV's capabilities. This visualisation underscores the
need for careful mission planning when UAVs are deployed in
challenging environments.

Figure 5 represents the Pareto front for the multi‐objective
optimisation of UAV strikes on smart grid infrastructure,
focussing on three critical variables: damage inflicted on the
grid, operational costs, and detection risk. The scatter plot
shows how these objectives trade‐off against each other in an
NSGA‐III optimisation framework. As observed, the damage
inflicted on the grid, represented on the x‐axis, ranges from 50
to 100 units, while the associated costs on the y‐axis span from
1; 000to10,000. Each point on the plot is a non‐dominated
solution, meaning it balances these conflicting objectives as
efficiently as possible. One key insight from the figure is that as
damage increases, the cost also increases significantly. For
example, achieving damage levels near 100 units incurs oper-
ational costs close to $10,000. On the other hand, UAV op-
erations that inflict lower damage, around 50–60 units, can be
executed at much lower costs, typically around $1500 to $3000.
This trade‐off highlights the significant financial resources
needed to inflict severe damage on smart grid components,
particularly when aiming to maximise the efficiency of UAV
strikes. Another notable pattern is the relationship between
detection risk and the other two variables. Higher damage
levels tend to correlate with lower detection risks, shown by the
colour gradient from light yellow (high detection risk) to dark
blue (low detection risk). For example, UAV operations
inflicting over 90 units of damage tend to have detection risks
below 0.3, while lower‐damage operations, inflicting around
50–60 units, often face detection risks of 0.7 or higher. This
pattern suggests that more expensive and higher‐damage
strikes are generally more covert, possibly due to the UAVs'
ability to avoid detection through more sophisticated strategies.

These insights provide valuable information for balancing
UAV strike efficiency, costs, and detection risks in real‐world
scenarios.

Figure 6 displays the convergence behaviour of the NSGA‐
III algorithm over 400 iterations, demonstrating how the
objective value improves over time. The x‐axis represents the
number of iterations, while the y‐axis shows the objective value
in arbitrary units. Initially, the objective value decreases rapidly,
indicating that the algorithm quickly finds better solutions. In
the first 50 iterations, the objective value drops significantly
from approximately 19 to around 8. This rapid early
improvement is typical of NSGA‐III, as it quickly explores the
solution space to identify high‐quality solutions in the initial
generations. After about 100 iterations, the convergence rate
slows, and the objective value stabilises. Between iterations 100
and 250, the objective value declines more gradually, from
approximately 8 to 4. This phase reflects the algorithm's
transition from exploration to exploitation, where the search
for optimal solutions becomes more refined. The smaller im-
provements in this phase suggest that the NSGA‐III algorithm
is focussing on fine‐tuning solutions rather than discovering
entirely new ones. This trend indicates that the algorithm is
converging towards an optimal set of trade‐offs between
conflicting objectives, such as minimising operational costs and
maximising damage in UAV strikes on smart grids.

The heatmap in Figure 7 illustrates the distribution of
damage across a 10 � 10 grid of components in a simulated
smart grid system under UAV strikes. The colour gradient
ranges from cool blue (indicating lower damage) to warm red
(indicating higher damage), providing a visual representation of
how certain grid components experience more severe impacts
than others. The grid's central components show significantly
higher damage, with values approaching 100, while damage
diminishes towards the grid's edges, suggesting that central
components are either more critical or more vulnerable to
UAV strikes. The pattern of damage is Gaussian‐like, where the

F I GURE 4 Unmanned Aerial Vehicle (UAV) flight range under
varying wind speeds and temperature conditions.

F I GURE 5 Pareto front: Trade‐off between damage, cost, and
detection risk in UAV strikes on smart grids. UAV, unmanned aerial vehicle.
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highest damage is concentrated near the centre, and this
gradually decreases as we move outward. This distribution
could indicate that the central components represent key in-
frastructures, such as substations or transformers, which are
more heavily targeted due to their critical roles in maintaining
grid stability. The heatmap suggests that the components
located at the edges of the grid experience less severe impacts,
with damage values dropping to as low as 10–20. Such a
pattern aligns with the strategic focus of UAV strikes, targeting
the most impactful components for maximum disruption.

Figure 8 presents two 3D surface plots that demonstrate
the relationship between flight time, payload capacity, and wind
speed under two distinct scenarios. The x‐axis represents the
payload capacity in kilograms, ranging from 1 to 10 kg, while
the y‐axis represents wind speed, which varies from 0 to 30
mph. The z‐axis shows the resulting flight time in minutes.
Both plots reveal the expected trend: as payload capacity and
wind speed increase, flight time decreases, indicating how these
two factors directly affect UAV efficiency. In the first scenario
(left plot), which uses a blue colour map, flight time is
modelled with a logarithmic curve, reflecting a smooth decline
as the payload increases, with wind speed having a more
consistent effect across the range. In the second scenario (right
plot), which uses a green colour map, the decline in flight time
follows a square root pattern, where the relationship between
increasing payload and flight time is less pronounced at lower
payloads but becomes sharper as the payload grows heavier.
For instance, at a payload of 2 kg and wind speed of 10 mph,
the flight time is approximately 95 min in the second scenario,
compared to around 100 min in the first scenario. This dif-
ference becomes more substantial at higher payloads: at 8 kg
and the same wind speed, the flight time drops to around
50 min in the second scenario and 60 min in the first. These
differences highlight how slight variations in the operational
environment or drone configuration can have significant ef-
fects on mission endurance. The impact of wind speed is also
evident in both plots. At higher wind speeds (e.g., 20–30 mph),
flight times drop sharply for heavier payloads. For example, at
a payload of 10 kg and a wind speed of 25 mph, flight time falls

below 40 min in both scenarios. This emphasises the impor-
tance of accounting for environmental factors in UAV mission
planning, as higher wind speeds can drastically reduce opera-
tional efficiency. The two plots provide a comprehensive
comparison of how different factors interact to influence UAV
performance, giving operators insights into the trade‐offs be-
tween payload, wind conditions, and flight time.

6 | CONCLUSION

This paper presents a comprehensive framework for optimis-
ing UAV‐based attacks on smart grid infrastructures, focusing
on damage maximisation, cost minimisation, and detection risk
reduction. The proposed methodology combines the NSGA‐
III multi‐objective optimisation algorithm with game‐
theoretic principles, providing a robust tool for grid de-
fenders and attackers to anticipate each other's strategies in a
dynamic environment. The results demonstrate that UAVs can
exploit smart grid vulnerabilities efficiently, with trade‐offs
between the three key objectives. Through our case studies,
we observed that UAV strikes on critical grid components,
such as substations and transformers can inflict damage
ranging from 50 to 100 units, depending on the UAV's oper-
ational efficiency and environmental conditions. For example,

F I GURE 6 Convergence plot of NSGA‐III algorithm performance
over 400 iterations. NSGA‐III, Non‐dominated Sorting Genetic
Algorithm III.

F I GURE 7 Heatmap of damage distribution across the grid.

F I GURE 8 3D surface plots of flight time versus wind speed and
payload under two scenarios.

PENGFEI ZHAO ET AL. - 13 of 15

 25152947, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.70000 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [03/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



high‐damage scenarios, where damage levels approached 100
units, were associated with increased operational costs of up to
$10,000 per mission. However, more conservative strikes,
inflicting around 50–60 units of damage, could be executed at
lower costs, typically between $1500 and $3000. This provides
a clear trade‐off between the financial resources required for
high‐damage operations and the more cost‐effective, lower‐
damage strategies. In addition, the NSGA‐III algorithm suc-
cessfully generated a set of Pareto‐optimal solutions, balancing
damage, cost, and detection risk. The Pareto front showed that
UAV strikes with lower detection risks (below 0.3) were typi-
cally associated with higher operational costs and higher
damage, whereas UAV operations with detection risks
exceeding 0.7 were more cost‐efficient but inflicted less dam-
age, averaging around 55 units. This insight highlights the
challenge of maintaining stealth while maximising damage,
especially in well‐defended grid environments.

Furthermore, the integration of dynamic environmental
conditions into the optimisation model, including wind speeds
and temperatures, proved critical in assessing UAV perfor-
mance. The flight time of UAVs, for example, could be reduced
by up to 50% when wind speeds exceeded 20 mph, with flight
times dropping from 90 min to as low as 45 min under heavier
payloads (5 kg). These environmental factors must be carefully
considered in UAV mission planning, as they significantly
impact both the operational endurance and success rates of
UAV strikes. Overall, this research contributes significantly to
the understanding of UAV threats to smart grid systems by
introducing a robust optimisation framework that balances
multiple conflicting objectives. The application of the NSGA‐
III algorithm, combined with game‐theoretic insights, provides
a novel and practical approach for grid operators to strengthen
defences against emerging UAV threats. Future work may focus
on integrating real‐world grid data and expanding the frame-
work to address more complex grid topologies and attack
scenarios.
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