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A B S T R A C T

The Discrete Element Method (DEM) has been widely used to study the macro–micro behaviour of granular 
materials at large strains (>1%). However, investigations over a wider strain range are lacking. This study 
conducts DEM triaxial tests on specimens with different particle physical properties to examine their influence on 
macro–micro behaviour from small strains (below 1 %) to large strains. Small-strain behaviour is characterised 
by the maximum shear modulus, elastic range and stiffness degradation rate. Large-strain behaviour is analysed 
through the peak stress ratio, critical state stress ratio and void ratio. Then, the micro-mechanisms underlying 
these results are examined using the Stress-Force-Fabric (SFF) relationship, which links the (macro) stress ratio 
and (micro) anisotropy source. This study is the first to apply the SFF relationship to small strain behaviour. 
Results reveal the qualitative relationship between particle physical properties and macro-behaviour at different 
strains: increasing particle Young’s modulus enhances the maximum shear modulus but accelerates stiffness 
degradation; increasing shearing and rolling friction significantly reduces the stiffness degradation at small 
strains and enhances strength and dilation at large strains. This study also highlights the limitation of the Hertz 
contact model in capturing both small-strain and large-strain behaviour quantitatively using a single set of pa-
rameters. Hence, modellers should calibrate model parameters based on whether their focus is on large-strain or 
small-strain behaviour. For micro-behaviour, the relative importance of anisotropy sources depends on strain 
level rather than particle physical properties. At small strains, the mechanical anisotropy source (both normal 
and tangential forces) primarily controls stiffness and its degradation. At large strains, material strength is 
influenced by both mechanical and geometrical anisotropy sources, with anisotropy from the normal force being 
the most significant, followed by contact normal, tangential forces, and branch vector.

1. Introduction

Granular materials, such as sand, are ubiquitous in natural envi-
ronments and industrial applications. The mechanical behaviour of 
granular materials is of both theoretical interest and practical impor-
tance in fields such as civil engineering, geophysics, and materials sci-
ence and geo-energy engineering (Cui et al., 2023; da Cruz et al., 2005; 
Dai et al., 2024; Radjai et al., 2017; Thornton and Antony, 1998). It has 
been investigated by many researchers, focusing on different aspects 
under different strain levels. At large strains, the strength, dilatancy, and 
critical state have received significant interest (Bolton, 1986; Fu and 
Dafalias, 2011; Li and Dafalias, 2012; Wood, 1990). At small strains, the 
degradation characteristics of stiffness become a focus since it is 
well-known that soil stiffness decreases with increasing strain by two to 

three orders of magnitude (Atkinson, 2000; Bentil et al., 2023; Bentil 
and Zhou, 2022; Clayton, 2011; Ng et al., 2020; Oztoprak and Bolton, 
2013; Yimsiri and Soga, 2000; Zhou et al., 2015).

The DEM has proven to be a valuable tool for studying and quanti-
fying the complex macro–micro mechanical behaviour of granular ma-
terial (O’Sullivan, 2011). As a result, DEM has been widely used in 
studying the large-deformation behaviour of granular materials (Cheng 
et al., 2004; Thornton and Antony, 1998; Wang et al., 2017; Wang et al., 
2016) and also the small-strain behaviour but which is received 
comparatively less attention (Gu et al., 2013; Nguyen, 2022; Nie et al., 
2024; Otsubo et al., 2017; Reddy et al., 2022; Sitharam and Vinod, 2010; 
Zhou and Xu, 2024).

In the DEM simulations, the computed macro-behaviour is funda-
mentally determined by the interactions between particles and their 
physical properties (i.e., contact model parameters) (Wu et al., 2022). So 
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far, some research has examined the influences of contact model pa-
rameters on granular material behaviour at either small strain (Gong 
et al., 2024; Otsubo and O’Sullivan, 2018; Reddy et al., 2022) or large 
strain (Antony and Kruyt, 2009; Hartmann et al., 2022; Mohamed and 
Gutierrez, 2010; Plassiard et al., 2009; Wensrich and Katterfeld, 2012). 
These previous parametric studies focus on one strain level, and the 
parameters in DEM simulations are often calibrated to match the 
observed experimental results. However, the calibration results for small 
and large strains may differ significantly. For instance, the calibrated 
value of particle Young’s modulus can be up to 140 GPa at small strains 
(Reddy et al., 2022) but can be as low as 4 GPa at large strains (Gu et al., 
2020; Hartmann et al., 2022; Cheng et al., 2017). With the aim of un-
derstanding granular material behaviour and improving the modelling 
capability, it is necessary to explore whether common contact model like 
the Hertz model can accurately model both small-strain and large-strain 
behaviour using a single set of model parameters. If not, it is important 
to understand the extent to which we can model the behaviour and 
which features of the behaviour cannot be accurately represented. To 
address these questions, it is crucial to fully understand the influences of 
particle physical properties on the mechanical behaviour of granular 
materials across different strain levels. This forms the motivation of this 
paper to conduct a comprehensive parametric study on specimens from 
small to large strains.

In addition to the influence of particle physical properties on macro- 
behaviour, some studies have also aimed at understanding the micro- 
mechanisms in granular materials. Based on the results at large 
strains, it has been well recognised that anisotropy at a microscopic level 
has a significant influence on the macro-behaviour of granular material, 
such as critical state (Li and Dafalias, 2012; Li and Dafalias, 2015), 
liquefaction and phase transformation behaviour (Guo and Zhao, 2013; 
Sitharam et al., 2009). The anisotropy in the granular can be classified 
into geometrical anisotropy (fabric expressed by the direction of contact 
normal and branch vectors) and mechanical anisotropy (induced by 
external force and related to contact force). The SFF framework, which 
builds an analytical correlation between the anisotropy and shear 
strength, has been widely used to study the macro–micro behaviour at 
large strains (Guo and Zhao, 2013; Li and Yu, 2011; Ouadfel and 
Rothenburg, 2001; Sitharam et al., 2009). For instance, based on SFF, 

numerous studies have demonstrated that mechanical anisotropy is a 
dominant contributor to shear resistance in granular materials (Guo and 
Zhao, 2013; Ouadfel and Rothenburg, 2001; Sufian et al., 2017; Zhao 
et al., 2018), whereas geometric anisotropy related to branch vector has 
a negative impact on shear strength (Ouadfel and Rothenburg, 2001; 
Zhao et al., 2018). However, the application of the SFF framework at 
small strains is lacking. So far, some researchers have explored the 
change of a specific anisotropy, such as contact normal anisotropy, at 
small strains (Li et al., 2022; Nguyen, 2022; Reddy et al., 2022; Zhou and 
Xu, 2024). This micro information is useful for understanding the small 
strain stiffness behaviour, but they are not comprehensive enough to 
explain the stiffness and its degradation. The SFF framework may pro-
vide an analytical tool to address this problem. Thus, a unified SFF 
analysis in both small and large strains is required to provide new in-
sights into the contribution of anisotropy source of granular materials 
across different strain levels. In addition, the influence of contact model 
parameters on each form of anisotropy source needs to be understood.

Given the above discussion, this study aims to address several sci-
entific questions: (1) how do particle physical properties affect the 
mechanical behaviour of granular materials across different strain 
levels? (2) is it possible to accurately model both small-strain and large- 
strain behaviour using a single set of model parameters? (3) is the SFF 
framework valid at small strains? (4) how do anisotropic sources affect 
the stiffness characteristics at small strains? (5) how do contact model 
parameters affect each anisotropy source from small to large strains?

This paper begins with a detailed description of the DEM simulation 
of triaxial tests conducted using the open-source DEM package YADE 
(Šmilauer et al., 2015). A series of triaxial tests were performed to 
investigate the behaviour of granular materials under varying stress 
levels and physical properties at both small and large strain conditions. 
Following this, an overview of the SFF relationship is provided, along 
with its validation. The typical relationship between micro anisotropy 
and macro stiffness, as well as between micro anisotropy and macro 
strength, is also presented. Subsequently, the influence of particle 
properties on the macro–micro behaviour of granular materials is 
examined, focusing on small strain stiffness behaviour and the stress–-
strain relationship at large strains. The paper concludes with a summary 
of the most salient findings.

Nomenclature

A[*] Anisotropy tensors
a[*] Second invariant of the anisotropy tensors
d Mean particle diameter
Ep Youngs’ modulus of particle
ec Critical state void ratio
Fn,Fs Normal force and shear force at contact
f i(n) Distribution functions of contact force
bi(n) Distribution functions of branch vectors
E(n) Distribution functions of contact normal
Gsec Secant shear modulus
G0 Maximum secant shear modulus
I Inertia number
kn, ks, kr Resultant normal, tangential and rolling stiffness
Mr Rolling moment at contact
Mp Peak stress ratio
Mc Critical state stress ratio
m Curvature parameter of the stiffness degradation curve
Nc Number of the contact
n Contact normal vector
ṕ Mean effective stress
q Deviatoric stress

V Volume of the specimen
Xnorm Normalized micro-contact parameters
Ynorm Normalized macro features
αr Dimensionless rolling stiffness coefficient parameter
β0,βi Fitting parameter of the linear multiple regression
γ̇ Loading rate
γe Elastic shearstrain of the stiffness degradation curve
γr Reference shear strain of the stiffness degradation curve
δn Relative normal displacement
Δδs Relative incremental relative tangential displacement
Δθr Relative incremental relative rotation
δ Kronecker Delta
εa,εv, εq Deviatoric strain, volumetric strain and axial strain
η Stress ratio
μr Rolling friction coefficient
μs Shear friction coefficient
ν The Poisson’s ratio of particle
σ Stress tensor
σ0 Magnitude of the isotropic state stress component
σ0 Isotropic state stress component
σc Stress component of contact normal
σb Stress component of branch vector
σf Stress component of contact force
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2. Details of numerical simulation

2.1. Simulation procedures of triaxial test

The drained triaxial test using DEM in this study comprises four 
stages: (1) particle generation, (2) specimen packing, (3) isotropic 
compression, and (4) triaxial shearing test. Firstly, a predetermined 
number (3,656) of non-spherical particles that represent sand grains 
were randomly generated without overlap within a cubic box featuring 
periodic boundaries. The implementation of periodic boundaries helps 
to reduce the required particle number by mitigating boundary effects 
and prevents strain localisation during the shearing process (Modenese, 
2013; Thornton and Zhang, 2006).

Non-spherical particles were selected to reflect the natural structure 
of the sand. The focus of this study is the influence of particle physical 
properties, so a simple clump-based shape was employed to approximate 
the aspect ratio and roundness of Toyoura sand, similar to previous 
works (Azéma and Radjaï, 2010; Kodicherla et al., 2019). The chosen 
particle shape is a compromise between the realistic morphology 
modelling of actual particles and the high computational time of DEM 
simulations. As depicted in Fig. 1, a clump particle consists of three 
aligned spherical members, with the spheres at both ends being of equal 

diameter. The aspect ratio (AR = lmin/lmax) and roundness (Ro =
∑

ri/N
rmax

= rmin
rmax

) were set to 0.74 and 0.70, respectively, in alignment with 
the average value observed in Toyoura sand (Altuhafi Fatin et al., 2016; 
Le et al., 2020). It should be noted that the particle size is characterised 

by the minimum axis length of the clump, i.e., the size of the largest 
sphere within the clump. With reference to natural Toyoura sand, the 
particle size distributes within the range from 0.1 to 0.3 mm. During 
generation, the major orientation of particles adjusted to the horizontal, 
and specific orientations within the horizontal plane were randomly 
assigned to mimic the natural fabric of sand under gravity. Particle 
density (2,650 × 103 kg/m3) is scaled up by a factor of 1,000, which is a 
widely adopted technique to increase timestep and accelerate the quasi- 

Fig. 1. (a) Schematic of a DEM specimen before shearing and (b) 2D schematic diagram of the particle shape defined in this study.

Table 1 
Summary of the contact model parameter analysis in DEM simulations.

Parameter Ep (GPa) μs αr μr

Reference case 70 0.3 1.0 0.5
Young’s modulus, 

Ep

0.7, 7.0, 
70

0.3 1.0 0.5

Shearing friction, μs 70 0.1, 0.3, 0.5, 
0.7

1.0 0.5

Rolling stiffness, αr 70 0.3 0.1, 0.5, 
1.0

0.5

Rolling friction, μr 70 0.3 1.0 0.1, 0.5, 
0.9

Table 2 
Approximation of the distribution function and the corresponding anisotropy 
tensor.

Approximation for the distribution 
function

Calculation of anisotropy 
tensor

Contact normal

E(n) =
1
4π

(
1 + Ac

ijninj

) (T1)
Ac

ij =
15
2

[

ϕc
ij −

ϕc
kk
3

δij

]
(T2)

  ϕc
ij =

1
Nc

∑Nc

α=1
nα

i nα
j

(T3)

Contact forces

fn
(n) = fn

0

[
1 + Afn

ij ninj

]
(T4)

Afn
ij =

15
2fn

0

[

Kn
ij −

Kn
kk
3

δij

]
(T5)

 
Kn

ij =
1
Nc

∑Nc

α=1

fn,αnα
i nα

j

1 + Ac
kln

α
knα

l

(T6)

  fn
0 = Kn

ii
(T7)

f t
i (n) = fn

0

[
Aft

iknk −
(

Aft
klnknl

)
ni

]
(T8)

Aft
ij =

15

3f0
n

[

Kt
ij −

Kt
kk
3

δij

] (T9)

 
Kt

ij =
1
Nc

∑Nc

α=1

f t,αtα
i nα

j

1 + Ac
kln

α
knα

l

(T10)

Branch vectors

bn
(n) = bn

0

(
1 + Abn

ij ninj

)
(T11)

Abn
ij =

15
2bn

0

[

Dn
ij −

Dn
kk
3

δij

]
(T12)

 
Dn

ij =
1
Nc

∑Nc

α=1

bn,αnα
i nα

j

1 + Ac
kln

α
knα

l

(T13)

bt
i (n) = bn

0

[
Abt

iknk −
(

Abt
klnknl

)
ni

]
(T14)

Abt
ij =

15
3bn

0

[

Dt
ij −

Dt
kk
3

δij

] (T15)

 
Dt

ij =
1
Nc

∑Nc

α=1

bt,αtα
i nα

j

1 + Ac
kln

α
knα

l

(T16)

  bn
0 = Dn

ii
(T17)
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static process (O’Sullivan, 2011; Thornton and Antony, 2000).
At the stage of specimen packing, the specimen is subjected to 

isotropic compression to a predetermined confining pressure of 10 kPa, 
a value often employed by other researchers (Gu et al., 2020). In this 
step, the friction parameters, including both shearing and rolling fric-
tion, are adjusted to different values to create specimens with varying 
relative densities (Modenese, 2013). The maximum and minimum void 
ratios are attained by adopting the maximum friction parameter 
(equivalent to the original values of friction parameters used in the 
subsequent process) and minimum friction parameter (set to zero), 
respectively. Upon completion of the packing, the friction parameters 
are reset to their original values and maintain constant throughout the 
subsequent loading process.

After that, the specimen undergoes isotropic compression to reach a 
target pressure. Finally, the specimen is subjected to triaxial compres-
sion/shear. During the loading process, the quasi-static condition is 
maintained by applying a low loading rate. The load rate is determined 
according to Inertia number I = γ̇d

̅̅̅̅̅̅̅̅
ρ/ṕ

√
, where γ̇ is the loading rate, d is 

the mean particle diameter, ρ is the particle density, and p′ is the mean 
effective stress (da Cruz et al., 2005). The threshold of I is typically 10-3 

to ensure the quasi-static condition (Yang et al., 2021), and the value 
chosen in this study is 10-4.

2.2. Contact models

During the above simulation procedure, the interaction between 
particles is modelled using the Hertz-Mindlin contact model with Mohr- 
Coulomb sliding friction and rolling resistance (Johnson, 1987; Mod-
enese, 2013). The contact model computes the normal force Fn, shear 
force Fs (Cundall, 1988; Mindlin and Deresiewicz, 1953) and rolling 
moment Mr (Belheine et al., 2009; Iwashita and Oda, 1998) at the 
contacts as follows: 

Fn =

{
2/3knδn, δn < 0

0, δn ≥ 0
(1) 

ΔFs =

{
ksΔδs, Fs < |Fn|μs

0, Fs ≥ |Fn|μs

(2) 

ΔMr =

{
krΔθr,Mr < |Fn|Reμr

0,Mr ≥ |Fn|Reμr

(3) 

The contact motion terms δn, Δδs, and Δθr represent the relative normal 
displacement, the incremental relative tangential displacement and the 
incremental relative rotation, respectively. Correspondingly, the vari-
ables kn, ks, and kr denote the resultant normal stiffness, tangential 
stiffness and rolling stiffness, respectively. The maximum shear force 
and the maximum rolling moment are both related to the normal contact 
force and can be characterised by a failure criterion that follows the 
Mohr-Coulomb form (Estrada et al., 2008; Iwashita and Oda, 1998), as 
shown in Eq. (2) and Eq. (3), respectively. Here, μs represents the inter- 
particle friction coefficient; while μr is the rolling friction coefficient, 
which dictates the threshold for the plastic tangential force and rolling 
moment, respectively.

The calculation of the resultant stiffness term (kn, ks and kr) is pre-
sented in Eqs. (4–6): 

Fig. 2. The relationship between stress ratio (η) and calculated stress ratio (aη)

based on the SFF relationship for reference cases under different pressure.

Fig. 3. Typical SFF for reference case under p0́  = 300 kPa: (a) stress ratio at 
large strains and (b) shear modulus at small strains.

Table 3 
Summary of variables describing the macro–micro behavior at small and large 
strains.

Small strains Large strains

Macro behavior G0, γe, γr, m Mp, εpeak, Mc, ec, erattler
c

Micro behavior aG
c , aG

fn , aG
ft aη

c , aη
fn , aη

ft
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kn = 2Ec
̅̅̅̅̅
Re

√
δ

1
2
n

(4) 

ks = 8Ge
̅̅̅̅̅
Re

√
δ

1
2
n

(5) 

kr = αrksR2
e (6) 

where parameter αr is a dimensionless coefficient parameter for the 
rolling stiffness. The expressions for the three stiffness coefficients 
incorporate the equivalent particle radius Re, the equivalent effective 
Young’s modulus Ee and the equivalent effective shear modulus Ge, 
which are defined as follows: 

Re =

(
1
R1

+
1
R2

)− 1

(7) 

Ee =

(
1 − ν2

1
E1

+
1 − ν2

2
E2

)− 1

(8) 

Ge =

(
2(1 + ν1)(2 − ν1)

E1
+

2(1 + ν1)(2 − ν1)

E2

)− 1
(9) 

where E1 and E2 are the Young’s moduli of the contacted particles 1 and 
2, respectively; R1 and R2 denote the radius of these particles; ν1 and ν2 
are their Poisson’s ratios. It should be noted that each clump member 
(sphere) employs the contact model introduced above to determine the 
interaction forces and moments. The forces and moments influence the 
whole clump. The spheres within the same clump do not interact with 
each other.

2.3. Numerical programs of triaxial test

According to Section 2.2, there are five parameters (Ep, ν, μs, μr, αr) in 
the contact model totally. A parametric study with a total of 52 simu-
lations was conducted to examine the influence of these contact model 
parameters on the macro–micro behaviour at different strain levels, as 
summarised in Table 1. When examining the influences of a specific 
parameter, all other variables are constant and equal to the values in the 
reference case. The choice of these values is considering the typical 
range observed in quartz sand (Reddy et al., 2022; Sandeep et al., 2018; 
Sandeep and Senetakis, 2018a; Sandeep and Senetakis, 2018b) and the 
typical values utilised in DEM simulations (Hartmann et al., 2022; 
Huang et al., 2014; Cheng et al., 2017; Rorato et al., 2021; Thornton, 
2000). A preliminary study shows that Poisson’s ratio (ν) has a minimal 
influence on the results; therefore, this parameter has been excluded 
from our analysis. Additionally, to explores the impact of initial 
confining pressure (p0́ ), four values were selected: 0.1, 0.2, 0.3, and 1 
MPa. In the subsequent section, only the results from the dense speci-
mens are presented, as there is a particular interest in the strain- 
softening behaviour observed at large strains. The dense state of the 
specimen was generated by setting the friction μs to varying small value 
(<0.05) and μr equivalent to 0 before isotropic compression. This step 
can also ensure that the void ratio of all the specimens remains consis-
tent (around 0.57 to 0.59).

3. Macro-micro analysis approach: SFF relationship

To investigate the contribution of different forms of micro anisotropy 
to the macroscopic stiffness and strength across small to large strain 
ranges, this study employs the SFF relationship. The following section 

Fig. 4. The influence of particle Young’s modulus Ep on the small strain stiffness behaviour: (a) G0 , (b) γe , (c) γr , (d) m.
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provides a brief overview of the SFF relationship, while a comprehensive 
derivation and explanation can refer to the works of Ouadfel and 
Rothenburg (2001) or Li and Yu (2011). Then, a validation of the SFF 
relationship and typical results will also be presented. For the first time, 
the SFF relationship is extended to investigate the small strain stiffness 
behaviour.

3.1. Decomposition of stress tensor

The SFF relationship expresses the stress tensor of granular materials 
as follows: 

σij =
Nc

V

∫

n
f i(n)bj(n)E(n)dn (10) 

where Nc represent the number of contacts; V denotes the volume of 
specimen; and f i(n), bj(n) and E(n) correspond to the distribution 
functions of contact force, branch vectors and contact normal, respec-
tively; n is the contact normal vector (while dn can be treated as a solid 
angle element). Eq. (10) indicates that the overall stress is a product of 
the combined effects of various microscopic anisotropy sources. By 
introducing an appropriate analytical approximation for the distribution 
functions in Eq. (10) and subsequently integrating it, an explicit rela-
tionship between macroscopic stress and microscopic anisotropy can be 
derived. Following Ouadfel and Rothenburg (2001), the distribution 
function can be devided into: an isotropic term (1/4π, fn

0ni and bn
0nj) and 

a deviatoric term (E*(n), f*
i (n) and b*

j (n)): 

E(n) =
1
4π + E*(n) (11a) 

f i(n) = f
n
0ni + f

*
i (n) (11b) 

bj(n) = b
n
0nj + b

*
j (n) (11c) 

Then, substituting the distribution functions in Eq. (11a-c) into Eq. 
(10), the stress tensor becomes 

σij =
Nc

V

∫

n

[
f

n
0ni + f

*
i (n)

][
b

n
0nj + b

*
j (n)

][ 1
4π + E*(n)

]

dn (12a) 

Next, by performing the product and then integrating Eq. (12a), the 
stress tensor can be decomposed into 23 = 8 terms, denoted as follows: 

σij = σ0
ij + σc

ij + σb
ij + σf

ij + σcb
ij + σcf

ij + σfb
ij + σcfb

ij (12b) 

where σ0
ij is a spherical component which corresponds to an isotropic 

state; the deviatoric anisotropy tensors σc
ij, σb

ij, and σf
ij, represents the 

contribution of individual anisotropy from contact normal, branch 
vector and contact force, respectively. The remaining anisotropy ten-
sors, denoted as σcb

ij , σcf
ij , σfb

ij , σcfb
ij are defined as the pair or trio products of 

anisotropy-related quantities, for example, the superscript ‘cb’ of tensor 
σcb

ij mean the tensor presenting the overall contribution from both the 
contact normal and branch vector.

The components (σcb
ij , σcf

ij , σfb
ij , σcfb

ij ) of the high-order products of the 
basic tensor are generally considered negligible small and can be 

Fig. 5. The influence of particle Young’s modulus Ep on the contribution from each anisotropy source to the small strain stiffness at p0 ′ = 0.3 MPa: (a) overall DEM 
result (marker) and SFF result (line); (b) aG

fn , (c) aG
c , (d) aG

ft .
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ignored (Guo and Zhao, 2013; Sufian et al., 2017). Therefore, these 
terms are omitted in this study, allowing Eq. (12b) to be simplified as 
follows: 

σij = σ0
ij + σc

ij + σb
ij + σf

ij (13) 

Currently, the stress tensor has been decomposed into four compo-
nents, but the calculation of each component is still unknown. As 
introduced above, an appropriate analytical approximation for the dis-
tribution functions in Eqs. (11a-c) is needed. The deviatoric part of the 
distribution for the contact force, branch vectors and contact normal is 
usually quantified by their corresponding “anisotropy tensors”, as 
follows: 

E(n) =
1
4π + E*(n) =

1
4π

(
1 + Ac

ijninj

)
(14a) 

f i(n) = f
n
0ni + f

*
i (n) = f

n
0ni + f

n
0

[
Aft

iknk +
(

Afn
kl − Aft

kl

)
nknlni

]
(14b) 

bj(n) = b
n
0nj + b

*
j (n) = b

n
0nj + b

n
0

[
Abt

jknk +
(
Abn

kl − Abt
kl

)
nknlnj

]
(14c) 

Here, the superscript of each anisotropy tensor, c, bn, bt, fn, ft, stand 
for the contact normal, normal branch vectors, tangential branch vec-
tors, normal contact force and tangential contact forces, respectively. 
Knowing the relationship between the distribution functions and the 
anisotropy tensor, each stress component in Eq. (13) can expressed in 
terms of anisotropy tensors as follows (Ouadfel and Rothenburg, 2001): 

σ0
ij = σ0δij =

Ncf
n
0b

n
0

V
δij (15) 

Fig. 6. The influence of particle Young’s modulus Ep on the large-strain behaviour: (a) Mp (solid line) and Mc (dash line); (b) εpeak ; (c) ec (solid line) and erattler
c 

(dash line).

Fig. 7. The influence of particle Young’s modulus Ep on the anisotropy source at large strain (p0 ′ = 0.3 MPa): (a) aη
fn ; (b) aη

ft ; and (c) aη
c .
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σc
ij =

2
5

σ0Ac
ij (16) 

σb
ij =

2
5

σ0Ab
ij (17a) 

Ab
ij =

2
5

(

Abn
ij +

3
2
Abt

ij

)

(17b) 

σf
ij =

2
5

σ0Af
ij (18a) 

Af
ij =

2
5

(

Afn
ij +

3
2
Aft

ij

)

(18b) 

Consequently, the stress tensor can be expressed as: 

σij =
Nf

n
0b

n
0

V

[

δij +
2
5
Ac

ij +
2
5

(

Abn
ij +

3
2
Abt

ij

)

+
2
5

(

Afn
ij +

3
2
Aft

ij

)]

(19) 

Eq. (19) is known as the SFF relationship. Now, the only remaining 
unknown part is the calculation of each anisotropy tensor in Eq. (19), 
which is provided in Table 2.

The first column of Table 2 lists the distribution function represented 
by the anisotropy tensors, while the second column gives the calculation 
or definition of these tensors. The computation of the anisotropy tensors 
is straightforward. The symbols used in Table 2 are defined as follows: 
fn, f t in Eq. (T6) and Eq. (T10) denote the magnitudes of the normal 
contact force and tangential contact force, respectively, while bn, bt in 
Eq. (T13) and Eq. (T17) represent the magnitudes of the normal branch 
vector and tangential branch vector. It is noteworthy that fn

0 and bn
0 are a 

measure of the mean normal force and the mean normal branch vector in 
the assembly, respectively, which may differ from those derived by 
averaging over all contacts (Guo and Zhao, 2013; Ouadfel and Rothen-
burg, 2001; Sufian et al., 2017).

3.2. Stress ratio-anisotropy relationship and stiffness-anisotropy 
relationship

The term “stress ratio-anisotropy relationship” is first introduced by 
Ouadfel and Rothenburg (2001), to describe the exact relationship be-
tween stress ratio and the invariants of anisotropy tensor. Similarly, in 
this study, the term “stiffness-anisotropy relationship” is used to 
describe the relationship between stiffness and the contribution from the 
invariants of anisotropy tensor. Following is the key derivation process.

To quantify the degree of anisotropy of each anisotropy tensor, the 
second invariant of the anisotropy tensor is introduced: 

a[*] =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2
A[*]

ij A[*]
ij

√

(20) 

Here, the notation [*] represents the script c, bn, bt, fn, ft of each 
anisotropy tensor. In the triaxial condition, the calculation can be 
simplified as: a[*] = A11 − (A22 +A33)/2, where A11, A22, and A33 are the 
diagonal elements of the tensor. Similarly, the mean effective stress p’ 
and deviatoric stress q of the stress tensor is given by ṕ = σii and q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3/2σijσij

√
. In triaxial condition (σ2 = σ3), the q is taken as q = σ1 − σ3.

Based on Eq. (19) and Eq. (20), a relationship between stress ratio (η) 
and the term involving the second invariant of the anisotropy tensor can 
be established: 

Fig. 8. The influence of inter-particle friction μs on the small strain stiffness behaviour: (a) G0 , (b) γe , (c) γr , (d) m.
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η =
q
p’ =

2
5

(

ac − abn −
3
2
abt + afn +

3
2
aft

)

(21) 

The negative sign associated with the branch vector anisotropy is 
suggested by Ouadfel and Rothenburg (2001). For conciseness, the co-
efficient and the second invariant can be represented by a single term, 
yielding a more compact relationship between the stress ratio and the 
invariants of the anisotropy tensor: 

η =
q
p’ = aη

c + aη
bn
+ aη

bt
+ aη

fn + aη
ft = aη (22) 

Here, aη on the right side of Eq. (22) denotes the sum of the second 
invariant related term of the anisotropy tensor, aη

c , a
η
bn

, aη
bt

, aη
fn , a

η
ft , which 

represents the contribution of contact normal, normal and tangential 
branch vector, normal and tangential forces to the stress ratio, 
respectively.

Following a similar approach in Eq. (22), the “stiffness-anisotropy 
relationship” is proposed in this study to investigates the contribution of 
anisotropy source to the stiffness, quantified by the secant shear 
modulus, defined as Gsec = q/3εq, where εq = 2/3(ε1 − ε3) is the 
deviatoric strain. By multiplying p’ on both sides of Eq. (22), it is 
straightforward to establish the relationship between total deviatoric 
stress and the stress component from each anisotropy, which can be 
expressed as: 

q = aq
c + aq

bn
+ aq

bt
+ aq

fn + aq
ft = aq (23) 

Obviously, the terms are given by aq
[*] = pʹaη

[*]. Subsequently, by 
dividing the deviatoric strain on both sides of Eq. (23), one can deduce 
the relationship between the secant shear modulus and each anisotropy 
component, i.e., “stiffness-anisotropy relationship”: 

Gsec = aG
c + aG

bn
+ aG

bt
+ aG

fn + aG
ft = aG (24) 

Hence, the term aG
[*] = aq

[*]/3εq, represents the contribution of each 
anisotropy component to the stiffness. Through the application of Eq. 
(22) and Eq. (24), this study can explore the contribution from different 
forms of anisotropy sources at both small (i.e., aG

c , aG
bn

, aG
bt

, aG
fn , a

G
ft ) and 

large strains (i.e., aη
c , a

η
bn

, aη
bt

, aη
fn , a

η
ft ).

3.3. Validation of the SFF and typical SFF results at large and small 
strains

To validate the SFF relationship employed in this study, the stress 
ratio (aη) based on Eq. (22) is plotted against the stress ratio (η) obtained 
from typical DEM simulations (reference cases in Table. 1) with different 
confining pressures, as depicted in Fig. 2, with the 1:1 dashed line 
signifying aη = η. A good linear correlation is observed between the SFF- 
based stress ratio and measured stress ratio, indicating that the simpli-
fied SFF relationship, which omits some high-order terms Eq. (12b), is 
reasonable in this study.

The typical SFF relationship at small strain and large strain are 
presented in Fig. 3a and 3b, respectively. At large strains (Fig. 3a), the 
anisotropy components associated with contact force (aη

fn 
and aη

ft ) rapidly 
increase to a peak and then gradually decrease to a steady value. The 
branch vector-related components (aη

bn 
and aη

bt
) demonstrate a negative 

impact on the stress ratio, consistent with the previous studies (Ouadfel 
and Rothenburg, 2001; Zhao et al., 2018). The contact normal term (aη

c) 
exhibits a more gradual increase to a steady value. At sufficiently large 
strain (critical state or steady state), the anisotropy from normal force 

Fig. 9. The influence of inter-particle friction μs on the contribution from each anisotropy source to the small strain stiffness at p0 ′ = 0.3 MPa: (a) overall DEM result 
(marker) and SFF result (line), (b) aG

fn , (c) aG
c , (d) aG

ft .
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(aη
fn ) emerges as the primary contributor to the strength, followed by the 

contact normal (aη
c), and then the tangential force (aη

ft ), with the 
tangential and normal branch vector (aη

bt 
and aη

bn
) contributing nega-

tively and minimally.
At small strains (Fig. 3b), only the contact force anisotropy compo-

nent contributes to the stiffness and its degradation. Initially, the 
tangential contact force (aG

ft ) has a steady positive contribution to the 
stiffness, but a significant decline follows this. Similarly, the normal 
force component (aG

fn ) also sustains a steady positive contribution before 
significantly decreasing. Within the small strain range, neither the 
contact normal (aG

c ) nor the branch vector (aG
bn 

and aG
bt

) obviously in-
fluences stiffness and its degradation, although the contact normal is the 
second important contributor to the strength at large strains.

Another interesting observation in Fig. 3b is that the contribution 

from tangential force (aG
ft ) to maximum shear modulus is slightly larger 

than that from normal force (aG
fn ), and the degradation rate of tangential 

force is faster than normal forces. Moreover, the degradation of the 
tangential force and normal force occurs near the elastic strain threshold 
(where shear modulus started to decrease), which may signal the onset 
of (obvious) inter-particle sliding (Nguyen, 2022; Zhou and Xu, 2024).

Recent research (Zhou and Xu, 2024) highlighted the importance of 
an evident increase in the contact normal anisotropy for the stiffness 
degradation mechanism. They compared the evolution of contact 
normal anisotropy directly with the stiffness degradation curve rather 
than computing the contribution of the contact normal, as done in this 
study. However, this study suggests that contact force anisotropy is the 
most significant factor controlling stiffness degradation. More critically, 
results in Fig. 3b revealed that the contact normal has a negligible 
contribution to both stiffness and its degradation at small strains despite 

Fig. 10. The influence of inter-particle friction μs on the large-strain behaviour: (a) Mp (solid line) and Mc (dash line); (b) εpeak ; (c) ec (solid line) and erattler
c 

(dash line).

Fig. 11. The influence of inter-particle friction μs on the anisotropy behavior at large strains (p0 ′ = 0.3 MPa): (a) aη
fn ; (b) aη

ft ; and (c) aη
c .
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a small peak near the elastic strain threshold observed. Considering the 
SFF at small strains reproduces the stiffness degradation curve with 
satisfactory accuracy, as same as its good precision at larger strains, 
analysis in this study using SFF may be more demonstrated in explaining 
the mechanism of small strain stiffness and its degradation.

The findings on anisotropy sources in this study are based on a simple 
clump-based shape model. However, these findings should remain 
qualitatively generalizable when employing other particle shape 
modelling approaches. Many studies have utilized different modeling 
methods, such as, super-ellipsoid (Zhao et al., 2018; Zhao and Zhou, 
2017), polyhedral (Azéma et al., 2013), and clump models (Gong and 
Liu, 2017). These studies consistently demonstrated conclusions similar 
to those in this study at large strains: contribution from normal force 
anisotropy is dominated, followed by contact normal and tangential 
forces, with the normal and tangential branch vectors being negative 
and minimal. This study is the first one to apply the SFF relationship at 
small strains, and thus, there are no existing studies for direct compar-
ison. Nevertheless, given the consistent results observed at large strains 
across various particle shapes modelling algorithms, it is reasonable to 
infer that our findings at small strains are also generalisable.

4. Macro behaviour and the micro mechanism

4.1. Quantitative description of macro behavior at small strain and large 
strain

To quantitatively describe the macro behaviour of granular material 
at small and large strains, the secant stiffness degradation curve (Gsec −

γ), the stress–strain (η − εa) relationship and the void ratio-strain rela-
tionship (e − εa) are determined. And several key parameters that 
determine the properties of these curves are selected to describe the 

behaviour of granular materials in different strain ranges.
For small-strain behaviour, a hyperbolic stiffness degradation model 

proposed by Oztoprak and Bolton (2013) was employed to fit the Gsec −

γ curve: 

Gsec = G0

/(

1 +

[
γ − γe

γr

]m)

(25) 

where Gsec is the secant shear modulus; G0 is the maximum (elastic) 
shear modulus at a very small strain; γe is the elastic strain threshold 
below which soil stiffness starts to reduce with increasing strain; γr is the 
reference shear strain (strain at Gsec / G0 = 0.5); m is the curvature 
parameter. The last two parameters govern the degradation rate of 
stiffness.

For large-strain behaviour, the peak stress ratio Mp and its corre-
sponding axial strain εpeak, the critical state stress ratio Mc (the stress 
ratio at the maximum axial strain ~ 40 %) is used to describe the η-εa 
curve, the critical state void ratio ec and critical state effective void ratio 
erattler

c is selected for the e − εa curve. The calculation of the effective void 
ratio does not consider rattlers (particles with only one or zero contacts) 
as part of the void space, while the void ratio does.

The parameters presented above provide a comprehensive descrip-
tion of the material’s macro response under different strain conditions, 
while the characterization of micro-anisotropy sources is detailed in 
Section 3. For the sake of brevity, only the dominant micro-anisotropy 
component is analysed, while the tangential and normal branch vector 
contribute negatively and minimally in all cases and thus will be 
neglected in the following analysis. Table 3 summarise the variable 
describing the macro response feature and micro anisotropy source at 
small and large strains.

Fig. 12. The influence of rolling stiffness coefficient αr on (a) γe and γr , (b) m; and influence of rolling friction μr on (c) γe and γr , (d) m.
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4.2. Effects of particle Young’s modulus on macro–micro behaviour

Fig. 4 and Fig. 5 present the relationship between particle Young’s 
modulus (Ep) and the stiffness parameters (G0, γe, γr and m), as well as 
the contribution of each anisotropy source (aG

c , aG
fn , a

G
ft ) to the stiffness 

under different Ep values.
As shown in Fig. 4a, G0 increases almost linearly with the increase of 

Ep on a logarithmic scale. This observation could be explained by the 
theory proposed by Chang and Liao (1994) for randomly packed 

spheres: G0 = Zmkn
4πR(1+e)

(
5kt

3kn+2kt

)

, where Zm is the mechanical or effective 

coordination number. This equation shows that the normal contact 
stiffness G0 is proportional to kn. Based on Eq. (4), kn has a linear rela-
tionship with Ep if other parameters remain unchanged. Thus, the in-
crease of G0 should be proportional to the Ep if all other conditions 
remain constant. Gong et al. (2024) have studied the effect of particle 
modulus on G0 and also reported that the G0 is solely dependent on 
mechanical coordination number and contact stiffness. Furthermore, 
Fig. 5a shows how anisotropy components contribute to the increase of 
G0 with increasing Ep. The maximum values of mechanical anisotropy aG

fn 

and aG
ft increase with Ep and remain the dominant contributors to G0. 

This may be attributed to the influence of contact stiffness on the 
magnitude of contact forces (as shown in Eqs. (4–5)). An increase in Ep 
enhances the contact stiffness, thereby increasing the magnitude of 
contact forces. Consequently, as described in Eqs. (T6) and (T10), this 
leads to an increase in mechanical anisotropy at the small strain range, 
where the structure of the contact network may not change significantly. 
Interestingly, the contact normal also increases with Ep, although its 

contribution to G0 remains negligible.
Fig. 4b, c and d demonstrate that the γe , γr , and m decrease with the 

increase of Ep . The decrease in γr is almost linear on the log–log axis. The 
change in degradation rate (m) and onset (γe , γr) could be explained 
using the SFF relationship, as shown in Fig. 5b, 5c and 5d. The degra-
dation of aG

fn 
and aG

ft becomes earlier with higher Ep . The degradation of 
aG

c also occurs earlier, although it has a minimal effect on the G0.
The influence of Ep on the large-strain behaviour at both the macro 

(Fig. 6) and micro scales (Fig. 7) is presented. As shown in Fig. 6a and 
6b, Mc remains constant with increasing Ep. In contrast, Mp exhibits a 
slight increase, and εpeak has a small decrease as Ep increases from 0.7 to 
7 GPa, beyond which they remain nearly constant up to 70 GPa. From a 
micromechanics perspective (Fig. 7), an increase in Ep accelerates the 
increase rate of all anisotropy components (aη

[*]) at the beginning of the 
shearing, resulting in the anisotropy sources in specimens with higher Ep 
reaching the peak or steady value more rapidly (i.e., εpeak decrease). 
Concurrently, the increase of Ep raises the peak of aη

fn , which causes the 
increase of Mp in the specimens. However, the steady value of each 
anisotropy component remains constant, and thus Mc is unchanged.

Fig. 6c suggests that both ec and erattler
c increase with increasing Ep. 

Besides, an important observation is that the increase of Ep eliminates 
the influence of the mean effective stress p’ on the two critical state void 
ratios (ec and erattler

c ). That is, in low Ep (< ~10 GPa), ec and erattler
c de-

creases with the p’, which is similar to the actual sand’s response 
(Verdugo and Ishihara, 1996). However, in high Ep (> ~10 GPa), ec and 
erattler

c remains almost identical (more obvious in ec) under different 
mean effective stress. Additionally, the difference between the ec and 
erattler

c become larger with the increase of Ep. Although a high Ep value is 

Fig. 13. The influence of rolling stiffness coefficient αr on the contribution from each anisotropy source to the small strain stiffness at p0 ′ = 0.3 MPa: (a) overall DEM 
result (marker) and SFF result (line); (b) aG

fn ; (c) aG
ft ; (c) aG

c .
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Fig. 14. The influence of μr on the large-strain behaviour: (a) Mp (solid line) and Mc (dash line); (b) εpeak ; (c) ec (solid line) and erattler
c (dash line).

Fig. 15. The influence of rolling friction μr on the anisotropy behaviour at large strains (p0 ′ = 0.3 MPa): (a) aη
fn ; (b) aη

ft ; and (c) aη
c .

Fig. 16. The importance of micro contact parameter on the macro feature at both small and large strains.
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necessary to achieve reasonable G0 (around 100 ~ 500 MPa for the 
stress level and void ratio in this study), it comes at the cost of sacrificing 
some important aspects or features of large-strain behaviour, such as the 
p’-dependent critical state void ratio (ec and erattler

c ).

4.3. Effects of inter-particle friction on macro–micro behaviour

Fig. 8 and Fig. 9 illustrate the influence of inter-particle friction (μs) 
on small-strain behaviour at both macro and micro scales. As shown in 
Fig. 8a, G0 remains unaffected by μs when μs exceeds 0.3, a finding that 
aligns with the observations reported by Reddy et al. (2022). This in-
dependence of G0 on μs can be further explained by the micro anisotropy 
analysis in Fig. 9b and 9d, which shows that the contribution from 
contact force (aG

fn 
and aG

ft ) also remains unchanged with increasing μs for 
μs > 0.3.

Fig. 8b-d shows that the γe, γr, and m exhibit a decrease as μs de-
creases, indicating that μs governs the onset and rate of stiffness 
degradation. At the micro-scale (Fig. 9b and 9d), the “elastic strain” of 
aG

fn 
and aG

ft (i.e., the shear strain at which the contribution from anisot-
ropy sources starts to drop) shifts to the left, which means their degra-
dation is advanced. This result explains the observation that γr and γe 
decreases with decreasing μs. The advanced degradation of anisotropy 
may be attributed to the increased instability in the contact network, 
which is induced by a decrease in μs. This decrease in μs makes it easier 
for the contact network to adjust its structure. For the contact normal 
(Fig. 9c), its peak (at γ ~ 1 %) significantly decreases with the decrease 
of μs. However, its overall contribution remains negligible. An inter-
esting observation is that the shear strain at which aG

c reaches peak is 
unaffected by μs.

The above paragraphs analyse the influence of μs on the small-strain 
behaviour and the micro mechanism. In the following, the goal is to 
compare these stiffness parameters (G0, γe, γr and m) with those observed 
results in real quart sand and then determine a suitable range for small- 
strain behaviour modelling. According to the database compiled by 
Oztoprak and Bolton (2013), γr ranges from 0.02 to 0.1 %, while γe 
ranges from 0 to 0.003 %. The typical values of m are 0.75 to 1.0 (the 
upper bound is plotted as dashed lines in Fig. 8b-d). Fig. 8 shows that 
with μs varying from 0.1 to 0.3, the γe remains below approximately 
0.004 %, and γr falls within 0.01 % to 0.4 %, the curvature parameter (m) 
varies from 0.65 to 1.00, similar to the range observed in real soil.

Furthermore, it is also essential to directly compare the measured 
inter-particle friction of granular materials with that used in this study. 
Sandeep et al. (2018) measured the friction of glass beads and quartz 
sand (Leighton Buzzard sand), with typical value ranging from 0.10 to 
0.23. When selecting friction within this range, the output in this study 
can fall within the typical parameter range of soil’s small strain stiffness 
response. Hence, employing the Hertz model and considering the typical 
Ep of quartz used in this study (~70 GPa), it is suggested that a 
reasonable selection range for μs is between 0.1–0.3 for quartz sand for 
small-strain behaviour.

Fig. 10 and Fig. 11 show the macro–micro behaviour of material at 
large strains under different μs. Fig. 10a indicates that both Mc and Mp 
exhibit a significant increase as μs increases. Concurrently, the disparity 
between Mp and Mc becomes larger with an increase in μs. The increase 
rate of Mp and Mc slows down with higher μs values, and the increase 
rate of Mc approaches near zero when μs exceeds a value of 0.3. Similar 
results have also been reported by Huang et al. (2014), although they did 
not consider the rolling friction in their simulation. This change in in-
crease rate can be attributed to the fixed rolling friction (μr). A previous 
study (Wensrich and Katterfeld, 2012) has demonstrated that the angle 
of repose is controlled by both rolling and shearing friction, such that 
when these two frictions are significantly different, the influences of 
further increases in the larger friction parameter are negligible. From the 
perspective of micro anisotropy sources (Fig. 11), the increase in both Mc 
and Mp with increasing μs is contributed by each form of anisotropy 

source. The increase in aη
fn , aη

ft and aη
c at the critical state becomes 

negligible when μs exceed 0.3. This observation is consistent with the 
results that the influences of further increases in μs are negligible to Mc 
when μs is larger than 0.3. Meanwhile, when μs exceeds 0.3, the increase 
of aη

fn 
at the peak state becomes negligible. However, aη

ft still has a 
considerable rise, so Mp can still increase, but at a lower rate.

In contrast to the trends observed in γe and γr, Fig. 10b shows that 
εpeak decreases with increasing μs. It should be noted that when μs is 
small (< 0.3), εpeak is quite large. This finding can be attributed to the 
fact that the higher μs led to a larger maximum void ratio, thereby 
enhancing the specimen’s relative density (despite the specimen having 
almost the same void ratio before shearing). In other words, when μs is 
small, the response of the specimen is strain-hardening and has no peak 
stress ratio, so εpeak represents the strain at which the shearing ends. As 
μs exceeds 0.3, the response of material transitions from strain- 
hardening (loose sand) to strain-softening (dense sand), leading to a 
significant decrease in εpeak. In the strain-softening cases, εpeak shows a 
slight decrease with increasing μs. Fig. 10c shows that both ec and erattler

c 
exhibit a nearly linear increase in response to increasing μs. However, 
the dependence of e on effective pressure cannot be modelled well. 
Although a detailed exploration of this behaviour is beyond the scope of 
this study, it is a valuable topic for future research.

In the following, the computed strength is compared with experi-
mental results obtained from quartz sand. According to experimental 
database of sand (Andersen and Schjetne, 2013), the typical lower 
bound value for Mc in quartz sand is 1.24 (grey dash line in Fig. 10a). As 
shown in Fig. 10a, when μs exceeds 0.3, the computed Mc values would 
larger than this lower bound, aligning well with the experimental 
findings. Additionally, the computed Mp increases from 1.5 as μs increase 
from 0.3, which falls within the reasonable range observed in experi-
ments (Andersen and Schjetne, 2013), approximately from 1.5 to 1.8 for 
dense sand (Dr > 80 %). However, the pressure dependence of Mp is not 
captured by the current model.

Based on these comparisons, it can be concluded that a μs value of at 
least 0.3 is required to accurately reproduce the strength feature for 
large-strain behaviour. However, this value differs significantly from the 
optimal value for simulating small-strain behaviour (0.1–0.3). One 
possible explanation for this discrepancy is that the simple particle 
shape adopted in this study underestimates the interlocking between 
particles during dilation.

4.4. Effects of rolling stiffness and rolling friction on macro–micro 
behaviour

The influence of the two rolling stiffness parameters (αr and μr) on 
stiffness behaviour and anisotropy is an important aspect of this study. 
As depicted in Fig. 12., the change in αr would affect the stiffness 
degradation rate and onset. That is, the increase in αr leads to increases 
in the γe, γr and m. On the other hand, μr also accelerates stiffness 
degradation rate (an elevated μr increases γr and γe), but its effects on m 
are relatively minor. As for G0, both αr and μr have negligible effects on it 
and thus are not shown.

Fig. 13 demonstrates the influence of αr on the contribution from 
each anisotropy source to the small-strain behaviour. As αr increase, the 
contribution from aG

ft (Fig. 13b) and aG
fn 

(Fig. 13c) but remain largely 
unchanged. Conversely, the “elastic strain” of aG

fn 
and aG

ft decreases with 
decreasing αr, resulting in a flatter curve shape for degradation. This 
observation is consistent with the decrease in γe, γr and m with 
decreasing αr, due to the fact that decreased rolling resistance would 
reduce particle “inter-locking”, thereby accelerating deformation and 
slippage within the contact network. Given that the influence of μr on the 
anisotropy contribution is similar to that of αr (primarily affecting the 
shape of the stiffness-anisotropy curve), the results for μr are not pre-
sented here for the sake of simplicity, as they do not provide additional 
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insights beyond those obtained from the αr analysis.
Regarding large-strain behaviour (Fig. 14), an increase in μr exhibits 

a similar effect to that of μs, whereas the change in αr has a very small 
influence on large strain response and is therefore not shown. Fig. 14
demonstrates that an increase in μr enhances the strength (both Mc and 
Mp) and increases the critical state void ratio (ec and erattler

c ), while the 
εpeak shows a slight decreasing trend. Additionally, the increase in 
strength caused by μr becomes slower with larger μr, which is attributed 
to the fixed value of μs, as discussed in Section 4.2.

Fig. 15 illustrates the evolution of each anisotropy source at large 
strains under different μr. The increase of strength, induced by μr, is also 
a collective contribution from the increase in each form of anisotropy 
components (aη

c , aη
fn 

and aη
ft ). The increase in Mp with increasing μr is 

primarily attributed to the increase of force anisotropy, which response 
changes from hardening to softening (a peak can be observed when μr >

0.1), as shown in Fig. 15a and Fig. 15b.

4.5. Sensitivity analysis of micro-contact parameters on macro features

The importance of micro-contact parameters on macro features is 
visualised through heat maps in Fig. 16. To quantify this importance 
relationship, a normalised linear multiple regression equation is 
employed: 

Ynorm =
∑4

i=1
βiXnorm

i + β0 (26) 

where Y norm represents the macro features at small strains (G0, log[γe], 
log[γr] and m) and large strains (Mp, εpeak, Mc and ec), and Xnorm denotes 
the micro-contact parameters (Ep, μs, μr and kr). Both X norm and Y norm 

are normalised by standardization, i.e., each original value is normalised 
by subtracting the mean (average) value and then dividing by the 
standard deviation. Although this equation assumes a linear relationship 
between micro-contact parameters and macro features, which is not 
entirely accurate based on previous results, it serves as a simplified 
approach to demonstrate the sensitivity of macro features to different 
micro parameters. The absolute value of βi indicates the relative 
importance of each micro-contact model parameter to the correspond-
ing macro feature, with smaller values suggesting less importance or less 
dependence. The sign of βi indicates whether there is a positive or 
negative correlation between the examined variables. It should be noted 
that although the data from only 100 kPa confining pressure is shown 
here as one example, the results from other stress levels exhibit similar 
trends.

The results clearly indicate that Ep is the most critical parameter 
controlling the maximum small-strain stiffness of the specimen, and it is 
also the primary parameter that controls the stiffness degradation rate 
and onset. However, Ep does not influence large-strain behaviour. In 
contrast, μs and μr have similar effects on both small- and large-strain 
behaviour, although the influence of μr is relatively smaller. At small 
strains, these two friction coefficients mainly influence the degradation 
rate and onset of stiffness, whereas at large strains, they substantially 
affect the strength (Mp, εpeak, Mc) and dilation (ec) of the specimen. The 
influence of αr is smallest compared to other contact model parameters.

5. Conclusions

The parametric study reveals the quantitative relationship between 
local contact model parameters and the macro response. That is, the 
increase of maximum shear modulus is found to be strongly correlated 
with the increase of particle Young’s modulus. The increase in critical 
state stress ratio and void ratio is induced by increasing shearing friction 
and rolling friction. Furthermore, the remaining macro characteristics, 

including stiffness degradation onset and rate, peak stress ratio and its 
corresponding axial strain, exhibit complex dependencies on multiple 
contact model parameters, including particle Young’s modulus, shearing 
friction, and rolling stiffness.

The results of this study highlight the limitations of DEM simulations 
employing the well-established Hertz contact model alongside simple 
clump shape modelling. It is difficult to quantitatively capture both 
small-strain and large-strain behaviors for quartz sand using a single set 
of model parameters, such as the pressure dependence of critical state 
void ratio, even with careful parameter selection. However, this contact 
model can accurately capture the behaviour at either small strains or 
large strains. Hence, modellers should calibrate model parameters based 
on whether their focus is on large-strain or small-strain behaviour. It is 
also recommended that future research investigate the influence of 
particle shape, which is known to significantly influence both small and 
large-strain behaviour. By incorporating more realistic particle shape 
modelling, it is possible to capture the behaviour across the entire strain 
range.

The primary focus of this study is on the relative importance of each 
anisotropy source’s contribution to strength and stiffness rather than 
their absolute changes. In this study, it is found that the relative 
importance of each anisotropy source is dependent on strain level rather 
than particle physical properties. That is, changes in contact model pa-
rameters always affect all forms of anisotropy at both small and large 
strains. However, these changes are consistent or proportional to each 
anisotropy source, thereby preserving the relative weight or importance 
between anisotropy sources.

At small strains, the most important anisotropy components are the 
contact forces, particularly tangential forces. Besides, the degradation of 
tangential force anisotropy is strongly related to the macro stiffness 
degradation, which may signal the onset of significant inter-particle 
sliding and evident mechanical stability change of contact network. In 
contrast, the contact normal contributes minimally to stiffness or its 
degradation, despite being the second most important contributor to 
strength at large strains. Changes in contact model parameters influence 
the mechanical anisotropy instead of geometric anisotropy, which in 
turn affects stiffness behaviour.

At large strains, all sources of anisotropy contribute to the material’s 
strength: the normal force anisotropy has the highest contribution, fol-
lowed by contact normal and tangential forces, the normal and 
tangential branch vector contribution are negative and minimal. Change 
of contact model parameters influence both the mechanical and geo-
metric anisotropy to affect the strength.
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Appendix 

This section presents the results of two forms of the SFF relationship: one with a fixed negative sign and another with a changeable sign determined 
by the coaxiality quantity Sr. The SFF relationship with a fixed negative sign, as recommended by Ouadfel and Rothenburg (2001), is used in this study, 
i.e., Eqs. (20–21). Conversely, another form of the SFF relationship employs a changeable sign determined by the coaxiality quantity Sr, which is 
adopted by Guo and Zhao (2013): 

a[*] = sign(Sr)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2
A[*]

ij A[*]
ij

√

(A.1) 

Sr = A[*]
ij σdev

ij (A.2) 

η =
q
p’ =

2
5

(

ac + abn +
3
2
abt + afn +

3
2
aft

)

(A.3) 

Fig. A.1 compares the SFF results based on Eqs. (21) with those derived from Eqs. (A.3) for specimens composed of spheres. The SFF calculations 
using Eq. (21) and those based on Eq. (A.3) are almost identical, as the contribution from the branch vector is minimal. This finding is consistent with 
the report by Guo and Zhao (2013). However, in the case of non-spherical particles (Fig. A.2), the SFF relationship based on Eq. (A.3) tends to 
overestimate the stress ratio compared to the stress ratio calculated from Eq. (21), as the contribution from the branch vector becomes more sig-
nificant, although still minor compared to other anisotropy sources. A similar result was also observed in the study by Zhao et al. (2018), where they 
found that the SFF relationship based on Eq. (A.3) tends to overestimate the stress ratio, while the complete form of SFF relationship using fixed 
negative sign achieves better consistency.

Fig. A1. SFF relationship (a) based on Eq. (21) and (b) based on Eq. (A.3) in a specimen consist of sphere.
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Fig. A2. SFF relationship (a) based on Eq. (21) and (b) based on Eq. (A.3) in a specimen consisting of clump particles used in this study.

Data availability

Data will be made available on request.
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