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A Meshless Collocation Method Based on Radial
Basis Functions and Wavelets

S. L. Ho, Shiyou Yang, H. C. Wong, and Guangzheng Ni

Abstract—A meshless method based on collocation with radial
basis functions (RBFs) and wavelets is proposed. It is shown
that the proposed method takes full advantage of both RBFs
and wavelets. The bridging scales are employed to preserve the
mathematical properties of the entire bases in terms of consistency
and linear independence. A numerical example that is used to
validate the proposed method is reported.

Index Terms—Collocation, meshless method, radial basis func-
tion, wavelet.

1. INTRODUCTION

URING the past decade, the application of meshless or

mesh-free methods to solve partial differential equations
(PDEs) has received considerable attention in virtually all
engineering disciplines. Since the meshless method can elimi-
nate the construction of a tedious and difficult mesh, which is
required by the widely used finite element (FE) method, mesh-
less methods are very attractive in solving problems involving
large deformations or problems requiring repeatedly adaptive
mesh updating. According to the approximation approaches
used in the derivation of the discrete mathematical models,
the meshless methods can be categorized mainly into two
groups, namely, Galerkin integration-based methods and point
collocation-based methods. For the former, the discritization is
based on the approximation of the PDEs in a weak form, and
for the latter, the discritization is set up by directly approxi-
mating the PDEs in a strong form. Since the shape functions of
the Galerkin integration based methods do not have the delta
function properties, some special techniques must be designed
to enforce the boundary conditions. Moreover, integration
“cells” are also necessary when computing the stiffness matrix.
Hence, these algorithms are not truly meshless. Consequently,
additional efforts are necessary in developing collocation-based
meshless methods. The radial basis-based collocation method,
among others, has been researched extensively with proven
success in solving many PDE problems [1]-[4]. Numerical
results have demonstrated that the RBF-based methods 1) are
truly mesh-free and 2) are computationally accurate and simple
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in numerical implementation. However, the main drawback of
globally supported RBFs is that the associated stiffness matrix
is full. Due to its inefficiency to deal with a full matrix, there is
an upper limit in the number of collocation points of globally
supported RBF collocation methods. Moreover, when the
spacing between collocation points is very small, the stiffness
matrix will become very ill-conditioned, leading to serious
numerical singularity and degradation in numerical accuracy.
By using some compactly supported RBFs, one might avoid the
need to manipulate the full coefficient matrix in the traditional
globally supported RBFs. However, such an approach will
have significant errors when one interpolates the derivatives
on the boundary [1]. In order to address this problem and to
take full advantage of both RBFs and wavelets, a meshless
collocation method using RBF interpolation to enforce the
boundary conditions is proposed. In order to retain the desirable
mathematical properties such as the consistency and linear
independence of the shape functions of the proposed method,
the bridge scales are generalized and used in the proposed
algorithm. An iterative solution procedure is also introduced to
solve the discrete algebraic equation set. Computer simulations
on a two-dimensional (2-D) problem are conducted, and the
numerical results are presented to validate and demonstrate the
advantages and shortcomings of the proposed method.

II. COLLOCATION METHOD BASED ON RBFS AND WAVELETS
A. Wavelet Approximation

For any function u(z,y) € £, its approximation using
wavelets can be given as

w(w,y) = cijdij(w,y) ()
)

where .J is the resolution or scale parameter, and
{i(@.y) = ¢ (@)¢] (v) k)

where ¢7(z) = 27/24(27z — i) is the one dimensional (1-D)
scale function of the wavelets, and it can be determined from
the following two-scale relation:

L-1
px) =D prd(2z — k). 3)
k=0

In the proposed algorithm, the Daubechies’ scale function
is used. Hence, L is an even integer. Due to the compact sup-
porting properties of the wavelets, the stiffness matrix based on
the collocation with wavelets is sparse and banded. However, the
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wavelet-based collocation method is rather inflexible in dealing
with arbitrary solution domains.

B. Interpolation Using RBF

Although RBFs have originally been used in the interpo-
lation of scattered multivariate data, recently, there has been
an increasing interest to use them to solve PDEs since the
meshless method based on collocation with RBFs is truly
meshless, and the shape function is interpolant, rendering them
simple in numerical implementation. However, one needs to
manipulate a full stiffness matrix when using them to solve a
practical problem. To make the best use of both wavelets and
RBFs, a meshless collocation method based on a combination
of wavelets and RBFs in which the RBF interpolation is used
only to enforce the boundary conditions is proposed.

Since the RBF interpolation is only used for enforcing
boundary conditions in the proposed method, the globally
supported RBFs will be used in this paper because of their
high interpolation accuracies. The interpolation of a function
u(z,y) : D — R on the basis of its values u; at some scattered
data points X; = (z;,vy;) € D(: = 1,2,...,N) in terms of
some radial basis function H is

N
u(X) = diH(|IX — X;I) )
j=1
where || - || is the Euclidean norm.

In the numerical implementation, a transformation is used to
consider the difference in the dimensional sizes of different co-
ordinate directions, i.e.,

=) (@) e

C. Combined Interpolation of RBFs and Wavelets

For the proposed algorithm to work in a more general form,
the entire domain of the problem is divided into three subre-
gions (see Fig. 1): Q1 is where only the RBF interpolation is
present; €2, is where only the wavelets contribute to the approx-
imation of the solution variable; and 2% is where both RBFs and
wavelets have influences. In regions {2 and €2,,, the interpola-
tion of the solution variable is the standard form of (4) and (1),
respectively. To develop a general interpolation formula in re-
gion Q% for the solution variable u(X') using both RBF’s and
wavelets, one begins with

N
w(X) =Y dH(|X = X;|) + Y el (X). (6
=1

To ensure that the required mathematical properties of the en-
tire bases such as consistency and linear independence are re-
tained, the bridging scale concept is used to modify the wavelets
[5]. Thus, in region 2%, (6) becomes

N
u(X) = Zde(llX - X5 + Zci,jd_ﬁ,j(X) @)
j=1 i
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Fig. 1. Schematic diagram of the division of the solution domain.
where ¢ j (X)) is the modified wavelet based on bridging scales
and is defined as

ba(X) = 67, (X) = D H(IXINgk(X:)  ®

where H;(| X)) = H(|X - Xi)).

The objective to modify the wavelets as defined from (2) to
(8) is to make the wavelet interpolation contain only the parts
of the solution variable that are not included in the RBF inter-
polation, thereby ensuring a hierarchical decomposition of the
solution variable.

D. Discrete Mathematical Model

Without a lost of generality, one considers the following 2-D
Poisson’s equation on the domain €2 bounded by boundary I" =
I'pUl'y:

Q:Lu=-f/p8 ©

I'p:u=wug (10)

Ty : Du=q/f (11)
where

0? 0? 7]

L= Ox2 + 8y27D ~on’

As described previously, the RBF interpolation is used to im-
pose only the boundary conditions in the proposed algorithm.
In other words, the wavelet approximations have no contribu-
tion on boundary point collocations. Based on the collocation
method, and substituting (7) into (9)—(11), one obtains the dis-
crete equations as

I
S

Lgf] Lg?s] {d}: -4 "

¢
D[H] 0 %

Obviously, even for a natural boundary condition of (11)
when ¢ is equal to zero, it should also be enforced explicitly in
a collocation method.

In the wavelet approximation as formulated in (1), there is no
intrinsic relation between the wavelet coefficients and colloca-
tion points. Thus, one needs to have some “virtual” collocation
points only when deriving the discrete mathematical model of
(12). Hence, the number of collocation points in the subregion
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where only wavelets have influence can be different from the
number of the coefficient ¢; ;. In such case, the least square ap-
proach is used to solve (12) since the number of the equation set
is not equal to that of its degree of freedoms (DoFs). Further-
more, since the discretization of the boundary conditions pre-
cludes the discretizations of the derivatives at these boundary
collocation points, the density of the collocation points in the
boundaries should be higher than that of the inner regions in its
neighborhood. In the numerical implementation, half of these
boundary points are used for boundary condition collocations,
whereas the other half of the boundary points are used for (par-
tial) derivative collocations.

E. Decoupling and Solving of RBF and Wavelet Systems

Since the RBF interpolation is used only to enforce the
boundary conditions, the DoF of the RBF system is very
small in general when compared with that of the wavelet
system. Moreover, the ratio between the values of quantities
in submatrix L[H|] and those in submatrix L[¢] of the stiffness
matrix of (12) may be too large or too small, and this is a
good recipe for poor matrix conditioning. Thus, if the discrete
linear equation set of (12) is solved as a whole, some numerical
technique are needed to guarantee good performances in the
evaluation of the numerical solutions. To avoid this poor matrix
conditioning problem and to consider the fact that the DoFs
of the RBF system are far smaller in general than those of
the wavelet system, the two matrix systems are decoupled
and solved separately and iteratively in the proposed method.
Mathematically, (12) is reformulated as

L(H) “EY )

H |{d}=q uw p—| 0 |{c} (13)
D(H) u 0

L(H)]{c} = {—g} CLENd). a4

Thus, the iterative solution procedure for the two matrix sys-
tems can be described as follows.

1) Equation set (13) is first solved by initializing the wavelet
coefficients {c} to zero.

2) Equation (14) is then solved with the values of the newly
solved {d} as known variables.

3) Equation (13) is solved again using {c} of step (2).

4) The solutions of {¢} and {d} between two successive it-
erations are compared. If the error is within a prescribed
value, the iterative process is stopped; otherwise, go to
step (2) for the next iteration cycle.

III. NUMERICAL EXAMPLE

The computation of the end fields of a practical power trans-
former with complicated geometries, as shown in Fig. 2, is se-
lected as the numerical example to validate and to demonstrate
the advantages and shortcomings of the proposed method. The
governing equations are

0%y 0%
EW + €a—y2 =0
e

¢lr, = 1,¢[r; =0 =0. (15)

?
on r,

1023

I
Spacer
Oil
M Spacer
L3 LI ol
2 ! I
Spacer A Spacer 2
(2]
0Oil
(2]
5 2]
I 2
Iz

Fig. 2. Schematic diagram of the end region of the studied transformer
(1-Electrostatic ring, 2-Insulation cylinder).

Fig. 3. Node arrangement of the proposed method.

Three different methods, i.e., the proposed one, the ele-
ment-free Galerkin (EFG) method [6], and the FE method are
used to study this problem. For the convenience of performance
comparisons, the same node distribution with a total number
of 1236 nodes is used for all three methods. In the proposed
method, the Daubechies’ scale function with L. = 8 is used.
The RBF being used is h(r) = (r? + 0.1)70-04,

In the numerical implementation of the proposed method, the
solution domain is divided into two different subregions where
i) % are very thin layers near the boundaries where both RBFs
and wavelets have common influences, and ii) £2,, is the residual
of the solution domain where only the wavelets are contributing
to the interpolation. As explained previously, since the coeffi-
cients of the wavelet approximation have no intrinsic relations
with the collocation points, there is no need to generate the con-
crete collocation points and one only needs “virtual” colloca-
tion points in €2,,. Thus, a very simple node arrangement, as de-
picted in Fig. 3, is needed for the proposed algorithm. It should
be pointed out that in order to guarantee a high interpolation
accuracy in the boundaries, the densities of the nodes on these
boundaries are generally twice as high as those in its neighbor-
hood inner regions, as shown in Fig. 3. For the EFG method,
the Lagrange multiplier method is used to enforce the essen-
tial boundary conditions. Thus, a total of 102 additional DoFs
are required for this method. To compare the accuracy of the
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TABLE 1
PERFORMANCE COMPARISON OF DIFFERENT METHODS.

No FE No wavelet

Total DoFs  Relative Error  CPU (s)
nodes Bases
Proposed 1236° 1044 10444210° 1.14x107 2.9
FEM 1236 / 1236 0. 3*
EFG 1236 / 1236+102a 2.76x107 4.2

—

(=

Fig. 4. Computed equipotential contours of the end field of the power
transformer.

=il

numerical solutions obtained by using different methods in this
paper, a discrete Ly norm of relative error is defined below. The
values of the solution variable ¢, as computed by using the FE
method, which has now become the standard method for dealing
with PDEs, are selected as the base values. Moreover

N pfem _ gmeshless 2
Zi:l 4)5““-1—10712

N

Error =

(16)

where N is the nodal number.

The corresponding performance comparison results of dif-
ferent methods on a practical power transformer are given in
Table I. The equipotential lines of the end fields computed by
using the proposed algorithm are shown in Fig. 4. From these
numerical results one can see the following.

1) Unlike FE and Galerkin integration-based meshless
methods, the numerical integration is not required for the
proposed algorithm in assembling the stiffness matrix.
This feature makes the proposed method the most effi-
cient one among the three methods, although the number
of DoFs of the proposed method is slightly higher than
those of the other two methods.

2) Compared with the traditional FE method, the proposed
algorithm is truly “meshless,” even in terms of integration
cells in numerical implementations.
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3) Compared with the Galerkin integration-based meshless
methods, the most salient characteristics of the proposed
method are i) no special technique is required to deal with
the essential boundary conditions, and ii) no matrix inver-
sion is needed in the development of the shape functions,
rendering it computationally efficient.

4) Compared with conventional globally supported RBF-
based collocation methods, the stiffness matrix of the pro-
posed algorithm is banded and sparse.

5) Compared with Galerkin integration-based meshless and
FE methods, the quality of the solution of the proposed
algorithm is, however, relatively low. In other words, to
obtain the same level of accuracy of the numerical solu-
tions, more collocation points will be required with the
proposed method. In addition, the natural boundary con-
ditions have to be enforced explicitly in the proposed al-
gorithm.

IV. CONCLUSION

As part of our efforts toward designing an efficient and robust
meshless method for solving 3-D boundary value problems, a
mesh-free method based on collocation with RBFs and wavelets
is proposed in this paper. Numerical results on a typical 2-D en-
gineering problem are reported. The primary numerical results
demonstrate that there are good potentials in using proposed al-
gorithm to solve 3-D electromagnetic problems, and an exten-
sion of the proposed algorithm to 3-D problems is being inves-
tigated by the authors. Besides, the related techniques such as
the incorporation of the symmetric RBF collocation formula-
tion, the multilevel scheme for adjusting the scale of the radial
functions, and that for updating the scale of wavelets are also
being studied in order to develop a simple and efficient solver
of boundary value problems in practical engineering studies.
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