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bi-directional (“figure-8”) sensors of (possibly) unequal orders
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A “figure-8” sensor is so labeled because its spatial pattern resembles the character “8” with regard
to the sensor’s axis. This figure-8 pattern narrows as the sensor’s order increases. Using two such
figure-8 directional sensors of higher order, oriented perpendicularly to each other—this paper pio-
neers closed-form signal-processing algorithms to estimate an incident signal’s azimuth-elevation
bivariate direction-of-arrival. Monte Carlo simulations verify these proposed algorithms’ efficacy

and statistical closeness to the corresponding Cramér-Rao bounds.
© 2019 Acoustical Society of America. https://doi.org/10.1121/1.5087824
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I. INTRODUCTION
A. “Figure-8” bi-directional sensors

A “figure-8” sensor is thus called because its directional
gain pattern resembles the digit “8,” like a dipole, with a
mathematical form of cosk(y), where y € [0,2n) denotes the
incident source’s arrival angle (measured with respect to the
sensor axis), and where the natural number k refers to the
figure-8 sensor’s order. A figure-8 sensor is highly directive,
enhancing the “random efficiency” (in suppressing back-
ground noises/interference that lie off-axis) and extending
the “distance factor” (i.e., the sensor’s spatial reach on-axis).
This gain response is bi-directional, sensitive to incident
energy from the back equally as from the front, but with little
sideway pickup.

A first-order figure-8 sensor (also known as a
“pressure gradient” sensor) is often implemented by mea-
suring the pressure difference across two sides of a dia-
phragm. This represents a first-order finite difference,
approximating a spatial derivative of the acoustic pres-
sure’s scalar field; hence, such sensors are called
“differential sensors.” This spatial derivative is propor-
tional to the acoustic particle velocity; hence, the first-
order figure-8 sensor is also known as a uniaxial “velocity
sensor” or a “velocity hydrophone.”

A kth-order figure-8 sensor (Chap. 8.5 of Olson, 1957;
Chap. 2.2 of Huang and Benesty, 2004) generalizes the first-
order figure-8 by measuring the acoustic pressure field at &
+ 1 closely spaced points on a straight line, then computing
the kth-order finite difference among them to approximate a
measurement of the kth-order partial derivative of the pres-
sure field (Olenko and Wong, 2013, 2015), hence a direc-
tional pattern of cos‘(y). Please refer to Song and Wong
(2012) for a brief discussion of higher-order figure-
8 sensors.
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Figure-8 sensors have been implemented:

@) First-order figure-8 acoustic sensors are implemented
in hardware in Bastyr et al. (1999), McConnell et al.
(2001), and Raangs et al. (2001).

(ii))  Second-order figure-8 acoustic sensors are imple-
mented in hardware in Brouns (1981), de Bree
(2003), Klinke (2003, 2006), Miles (2005), Olson
(1941), Rosenfeld (1962), Warren (2008), Warren
and Thompson (2003), Wiggins, 1959, 1950, 1951).

(iii)  Third-order acoustic sensors are implemented in hard-
ware in Beavers and Brown, (1970), Miles (2005),
and Wiggins (1959).

(iv)  Fifth-order acoustic sensors are implemented in hard-
ware in Hines et al. (2000).

(v)  Other higher-order acoustic sensors are implemented
in hardware in Miles (2005) and Wiggins (1959).

The above-mentioned hardware implementations of sec-
ond-order or higher-order figure-8 sensors date from 1942 to
2008, thereby showing figure-8 sensor technology has been
long established yet up-to-date with continuing relevance in
practical acoustics.

B. A bi-axial pair of higher-order figure-8 sensors

A pair of first-order figure-8 sensors has long been in
practical use for acoustic measurements. It is so common
that it has a special name: the “u-u probe.” The u-u probe’s
hardware implementations are discussed in Bastyr er al.
(1999), McConnell et al. (2001), and Raangs et al. (2001).
The u-u probe’s beam patterns and directivity have been
studied in de Bree et al. (2008) and de Bree and Wind
(2010). The u-u probe’s closed-form algorithm for azimuth-
elevation bivariate direction finding has been proposed in
Song et al. (2015). This paper will generalize the aforemen-
tioned pair of first-order figure-8 sensors to arbitrarily higher
orders, where the sensors’ orders could be (but do not need
to be) unequal.

0001-4966/2019/145(3)/1241/18/$30.00 © 2019 Acoustical Society of America 1241
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FIG. 1. (Color online) The nine configurations for a pair of figure-8 sensors, oriented orthogonally along some Cartesian axes.

Suppose two figure-8 sensors are oriented orthogonally
but each aligned with a different Cartesian coordinate. There

would thus be (;

suppose the two sensors are located apart, but their relative dis-
placement is along any one of the three Cartesian coordinates.
Then, there would altogether be 3 x 3 =9 different combina-
tions of orientations and displacement. Please see Fig. 1. For
each of these nine configurations, this paper will advance new
direction-finding algorithms in closed form.

More mathematically: The nine configurations of Fig. 1
may have their 2 x 1 array manifolds all be symbolized com-
pactly as

) = 3 different pairs of coordinates. Further

ki (j2mAp) 7.
a(e—axis) _ '1116’ A/ 1)
GL T Lk ’

'

where
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sin(0) cos(¢), if {; =x,
= sin(0)sin(p), if § =y,
if =1z
sin(0) cos(¢), if e =x,
w=1 sin(0)sin(¢), if e=y,

if e=12z.

In the above, 0 € [0,7] refers to the polar angle (also known
as the zenith angle) measured from the positive z axis, ¢
€ [0, 2m) denotes the azimuth angle measured from the posi-
tive x axis, 4 represents the incident signal’s wavelength, {;
€ {x,y,z} denotes the orientation of ith uniaxial sensor with
i=1,2and {; # {,, ko represents the order of the figure-8 sen-
sor located at the Cartesian origin, k; refers to the order of
the other figure-8 sensor, the superscript e specifies the dis-
placement axis between two uniaxial sensors, &/"/* equals
the spatial phase factor introduced by any displacement

Suetal.
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between the two sensors, A. symbolizes the distance
between two constituent sensors, and /A represents the wave-
length of the incident signal.’

For example, suppose one figure-8 sensor of order &y is
aligned along the x axis and is placed at (x,y) =(A,,0), and
another figure-8 sensor of order kq is aligned along the y
axis. This perpendicular pair of figure-8 sensors, of (possi-
bly) unequal orders, has a 2 x 1 array manifold of

(eaxis)( oy | [sin(0) cos(¢p)]" e2n(A/2) sin(0) cos()
a, (¢>—[[sin<0)sin(¢)]k° |

2

These various configurations’ array manifolds are inter-
related as follows:

(x—axis) _ —axis n
a0, ¢) = apm (0, o +5+ 2nn) : 3)

)—axis o (x—axis) T
s 0.0) —alt (0.0 T romm). @
aﬁf;a"is)(ﬂ, ) = aﬁff"is) (0, ¢+ g + 2nn> ) 5

Each above identity involves re-aligning an x-oriented direc-
tional sensor to become y-oriented or vice versa.

Each configuration realizes spatial resolution in three
ways:

(a) the orientation and the length of the spatial displace-
ment between the two sensors;

(b) the order of the first figure-8 sensor;

(c) the order of the second figure-8 sensor.

A higher-order figure-8 sensor has a narrower gain pattern,
which results in greater sensitivity toward incident directions
more parallel to the sensor’s orientation axis. The aforemen-
tioned configurations will be compared by their obtainable
precision in estimating an incident signal’s azimuth-
elevation direction-of-arrival (DOA).

C. Organization of this paper

This paper will propose direction-finding formulas in
closed forms for each configuration and will derive the cor-
responding Cramér-Rao bounds (CRBs) to compare across
different configurations.

The rest of this paper is organized as follows: Section
IT will derive new closed-form estimators of an incident
signal’s azimuth-elevation DOA for the various configura-
tions (a),(b),(d),(f),(h),(i). Section III will do the same for
configurations (c),(e),(g). Section IV will present the cor-
responding CRBs in order to compare the various configu-
rations for their theoretically attainable estimation
precision. Section V will present Monte Carlo simulations
to verify the proposed estimators’ efficacy and statistical
closeness to the CRBs. Finally, Sec. VI will conclude the

paper.
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Il. NEW CLOSED-FORM ESTIMATORS OF THE DOA

In eigen-based (also known as “subspace-based”) algo-
rithms for parameter estimation, an intermediate step would
first estimate each incident source’s steering vector.
However, this estimate is ambiguous to within a complex-
valued multiplicative scalar, unknown to the algorithm. That
is, the following is available for the subsequent algorithmic
steps of direction finding:

a(e—axis) - Ca(ffaxis) (©6)

~
(16 .6 0

where ¢ represents a complex-valued scalar.?
This unknown ¢ may be eliminated by forming the
ratio

A(efaxis):| k
[aChCz 1_71_1161271(&/;.)#

, 3 (7
|:a(sfax1s):| yléﬂ
2

4.6

where [-]; symbolizes the ith element of the vector inside the
square brackets.
Equation (7) yields the estimates

7N A(efaxis):|

ki P ki

M) — M sgn Ui (8)
néo |:El\<ffaxi5>i| 171;0

pe

2
~(e—axis)
1 ki |:a« P :|
=g | sen | ) L ©)
27'CA5 ;120 |:a(67ax1s):|
ape) 2

where sgn(-) refers to the sign of the entity inside the paren-
theses. Equations (8) and (9) require prior knowledge of the
sign of 17]{‘ / né‘), unless k; and k, are both even.

The nine configurations in Fig. 1 will have closed-form
direction-finding algorithms derived for them in Secs. [T A
and III below.

The sensors’ orders affect the below-proposed algo-
rithms as follows:

e The lower the sensor order, generally, the less computa-
tion and the simpler the hardware.
e The prior information required of the source’s incident
region may be reduced (from one octant to one quadrant
of the sphere) if an even order is used.
For configurations (c),(e),(g)—where the two sensors are
oriented differently between them and differently from the
inter-sensor displacement—the two sensor’s orders must
be equal for bivariate direction finding.

For configurations (c),(e),(g), with k; = ko, prior infor-
mation is needed as to which i of the sphere from which the
source would impinge, whereas the other configurations
require such prior knowledge to which é of the sphere
regardless of k; and k0.3 45

Suetal. 1243
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A. Configuration (a): yy=p=uand g, =v

Here, Eqgs. (8) and (9), respectively, become

Fy(ky.ko,0,¢) :=

PN [A(x— axis):|

uk ax’y . uk
R = |———=1ison| —
oo [5@%5)} 8\ ok )
X,y )
Fa (ki ko,0,¢) :=

el
27tAXL e v [ﬁ(xfaxis)}
X,y )

Straightforward mathematical manipulations give

1/ko
(FZ(kl ) kOv 63 d))kl)

(10)

Fl(kl;k()v 07 d))
F2(k17k07 67 d))

)

Fz(k1,ko>97¢)k1/ko_l
Fl(kla k07 07 d))l/ko

which results in
sgn <3> . (11)
u

tan(a) =

Assuming sgn(v/u) is prior known, tan(¢) can be deter-
mined via Eq. (11). Additionally, assuming that sgn(u) is
prior known, ¢ in Eq. (11) can be unambiguously deter-
mined as

~

FZ(kl 7k076a¢)k1/k071 )

T
~[1 —sgn(u)] +tan™" (sgn(u -
2 Fl(klak();ead))l/ko

if sgn(v) >0;

<)
Il

~—

FZ(kl 7k0a0a¢)kl/k071 )

Y
~[3+sgn(u)] —tan"! <sgn(u
2 Fl(klvkoaead))l/ko

if sgn(v) <O0.

(12)
From Egs. (10) and (12),
sin(0) :LA:FZ(kl,ko,e, ¢)sec($). (13)
cos ((b)

Assuming that sgn(w) is prior known, 0 in Eq. (13) can be
unambiguously determined as

n—sin’l(Fz(kl,ko,(?,(j))sec(?b)), if e [g,n}
(14)

sin*l(Fz(kl,ko,e,@sec(@)), if 0e [o,

)
|
SR
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B. Configuration (b): g =u=vandy;=u
Here, Egs. (8) and (9), respectively, become
Fy (ki ko,0,) ==
;;61\ [ai;axis)} 1
- ~(y—axis) seh
[ax,y L

Fa (ki ko.0.¢) ==

~ A ubt
X,y

Straightforward mathematical manipulations give

tan (3&)

—

U
(@)
Fy(ky, ko, 0, ¢)

NG
<F1(k1,k0, 0, ¢) Fa(ky, ko, 0, p) 0)

which results in
sgn (U) . (16)
u

tan(a) =

Assuming that sgn(v/u) is prior known, tan(¢) can be
determined via Eq. (16). Furthermore, assuming that sgn(u)
is prior known, ¢ in Eq. (16) can be unambiguously deter-

mined as

b

F2(k17 kOv 07 ¢)1_k0/k1
Fl(klak07 97 ¢)1/kl

F2(kl 7k0795¢)17k0/k1
Fiy (ki ko,0, )"/

T

\S]

[1—sgn(u)]+tan™" <sgn(u)

if sgn(v)>0;

<)
Il

Fa(ky,ko,0,)" /%
Fl (k17k0797¢)1/k1

§[3+sgn(u)] —tan~! <sgn(u)

if sgn(v) <O0.

17)
From Eqgs. (15) and (17),
sin(0) = LA = F(ky, ko, 0, ¢)csc ($> (18)
sin(qS)

Assuming that sgn(w) is prior known, 0 in Eq. (18) can be
unambiguously determined as

sin’l(Fz(kl,ko,H, d))csc(a))), if 0¢ [O,g);
T —sin”! (Fz(kl,ko,(),(b)csc(a))), if 0¢ B,n}.

19)

/9\:

Suetal.
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C. Configuration (d): yy=p=uand g, =w
Here, Egs. (8) and (9), respectively, become

Fl(k] ,kn,@,(b) =
/]: |:é\x—axis):| i
(“_) G P . (u_)
who [A(xfaxis):| g who /7
a’
X,z )
Fa (ki ko,0,) :=
o) i
=0 0\ e | 20
T oA, | e [a(xfaxis):| (20)
X,z 5

Straightforward mathematical manipulations give

Falk ko, 0,00 ) "
cos(0)] = | = | 2\LL20 5 P) 7
| ‘ |W| <F1(klak0767d))

which results in

FZ (klu k07 97 ¢)kl/k0

COS(/é) =
Fl (kl B k07 07 ¢)l/k0

sgn(w). 21

o~

Assuming that sgn(w) is_prior known, cos(6) can be
determined via Eq. (21). And 0 in Eq. (21) can be unambigu-
ously determined as

) . (22)

cos@) — = Fa(ki, ko, 0, p)csc (D). (23)
sm(G)

Fz(kl ) kOa 97 d))kl/kﬂ
Fl(kh k07 07 ¢)1/k0

0 = cos™! (sgn(w)

From Egs. (20) and (22),

Assuming sgn(v) as prior known, $ in Eq. (23) may be
unambiguously determined as

$ - COS?I(FZ(kUkOa 65 QS)CSC(@)), if d) € [077T);
21 — cos™H(Fy(ky, ko, 0, d))csc(@)), if ¢ € [n,2n).
(24)

Configuration (h) may be handled similarly.

D. Configuration (f): py =uand yo=pu=w

Here, Eqgs. (8) and (9), respectively, become

Fi (ki ko,0,0) ==
e {azfaxis)} .
u o X,z . Uk
(WT) ] <w_k> 25)
X7 5

J. Acoust. Soc. Am. 145 (3), March 2019

Fa (ki ko,0,¢) :=

~(z—axis)
e } uk‘ |:ax.z :|
a

z

Straightforward mathematical manipulations give
cos(0) = Fy(ky, ko, 0, ). 27)
Thus, 0 can be unambiguously determined through Eq. (27)
0 = cos™ (Fa(ky, ko, 0, $)). (28)
From Egs. (25) and (26),
|sin(0) cos(¢)| = [a
= |(Fy (k1,ko, 0, p)Fa (k1. ko, 0, ) ) /M1,

which results in

cos() = sgn(u)esc(0)|F, (ki ko, 0, ¢)'/"
X F(ki, ko, 0, p)F/. (29)

o~

Assuming sgn(u) as prior known, cos(¢) can be determined

via Eq. (29). Moreover, assuming that sgn(v) is prior known,

¢ in Eq. (29) can be unambiguously determined as

cos™ (sgn(u)ese(0)|F1 (k1. ko, 0, ¢)"/"
Fa(ki ko, 0,)°,) i ¢ € [0, m);

21 — cos ™! (sgn(u)csc(§)|F1 (k1. ko, 0, p)'/"
Fa(k ko, 0,)*/" ), if ¢ € [n,27).

b=

Configuration (i) may be handled analogously.

E. Configurations (c),(e),(9)

Configurations (c), (e), and (g) cannot lead to any
closed-form eigen-based direction-finding formula if ko # k;.
These three configurations (and these three alone) have the
commonality of x; and 7, and u being all different, i.e.,

M F N # 1WF 1.

To see why, consider configuration (e), wherein 1, = u,
1, =w, and u=v. Hence,

Fy (ki ko,0,0) :=

[ﬁ\i‘—zaxis)} e

L Isen (— )> (30)

|:a(y—ax1s):| whko
X,z 2

Fy (ki ko,0,¢) ==

|:El\£y;axis):|
- 1

{aifz_aXiS)] .

—

uk
who )

D=

A uk >
ya — 31
21A, Sen <w"0 3D

Suetal. 1245
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Square both sides of Eq. (30) to give
(sin2(0) cos?(¢))"
(cos2(0))"
_ { sin2(9) [1 - Sinz(d))] }kl . (32)
[1- sinz(())}ko

From Eq. (3l), sin(¢) = F,(ki,ko,0,¢)/sin(0).
Substitute F»(ky,kq,0,¢)/sin(0) for sin(¢) in Eq. (31) to give

o (1 Pt 007 |
i sin(0)

[Fl(klvko, 07 ¢)]2 =

[Fl(k],ko, 07 ¢)]2 =

[1- sinz(Q)]k0

:sinz(B) — Fa(ky, ko, 0, ¢)2} )
[1 — sinz(H)]k0 .

(33)

No closed-form solution exists for this.
Similar difficulties arise for configurations (e) and (g).

lll. THE SPECIAL CASE OF ko= ki =k

At kg=k; =k, Egs. (8) and (9) degenerate to

TABLE I. DOA estimation formulas applicable for ky = ko =k.

[ ~(e—axis) |
e _ten (M) i kisodd,
— Fle-axis) bl
ﬂ . 1“G.L |
<’72) agezaxis)-
A :1, 2 A>:1 7 if kiseven;
_aCl L s
~(e—axis)
1 i [a," 7" } . .
L2 san m Lo ] if kisodd,
21 A, Up) {ﬁ(efams)}
o .6 2
H= [A(e—axis):|
12 P |y if kiseven
2m A, {A(é*axi@} 7 '
0.6 2

Table I shows the closed-form formulas for azimuth and
elevation angle estimation using configuration (c), (e), and
(g) at ko =k, = k. The estimators of ¢ and 6 for the other six
configurations—(a),(b),(d),(f),(h),(i)—can be deduced from
Table II by setting ky = ko = k.

A. Configuration (c): py=uandyo=vand p=w

For this configuration, the estimation of ¢ and 0 is not
possible when k| #kg, as shown in Sec. I E. However, when
ki1 =ko=k, Egs. (8) and (9) would give

Configuration DOA estimation formulas Prior information required
© R g[l — sgn(u)] +t3n71<58n(”)‘Fl(ka 0, ¢)71/k|)~, if sgn(v) > 0; ¢ € {0%) Vs E,n) \S {n%) \S {327[,271)
¢ =
203+ sgn(u)] —tan”! (sen(u) 1 (k,0.9) ")), ifsen(v) < 0.
0 = cos ' (Fy(k, 0, ¢))
© [l —sgn(z*) — 8(x)] + sin~! <csc(§)F2(k7 0, (b)), if sgn(u) > 0; ¢ {,E7E> Vs F73”>
3= 22 22
n—sin”! (csc(@)Fz(k, 0, (l)))7 if sgn(u) < 0. 0c {og) vs Em}
2k 2
in! \/ﬂ k0.0 4Pk 0.07) o,
_ 1+ Fa(k.60,9)
0=
27k 2
T[*Sil'lil Fl(k‘ Oa d)) +F2(];7;)a d)) , 1fsgn(w) <0.
1+ Fy(k, 0, )"
R 5 o[, ifg=0
% = sin (mcsc(())L (sgn( = )) and d(y) = {0, ity £0
© R cos™ (csc(@)Fz(k, 0, d))) if sgn(v) > 0; ¢ €10,m) vs [r,2m)
¢ = 96{0,z> Vs F,n}
21 — cos~ <csc 0)F,(k,0,¢) ) if sgn(v) < 0. 2 2

1+ Fi(k, 0,¢)"

)
Il

7k 3
sin~! (\/Fl (.9, 9)7 +Falk, 9 ?) ) ) if sgn(w) > 0;

2/k 2
n—sin~! (\/Fl (.9, 9)" + Falk, ,07 ?) ) , ifsgn(w) <0.

1+ Fi(k, 0, )"

1246  J. Acoust. Soc. Am. 145 (3), March 2019
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TABLE II. DOA estimation formulas applicable for any k; and k.

Configuration DOA estimation formulas Prior information required
@ Fa(ki, ko, 0, )" /%01 L 3m\  [ax
g[l — sgn(u)] + tan™! (sgn(u) % >, if sgn(v) > 0; RS {075) vs {57“) VS |5 ) Vs 77275 )
~ 1(k1, ko, 0,
¢ = . Falio o, 0 ¢)k1/kg—l 0e {0,%) or En}
5[3 + sgn(u)] — tan™! (sgn(u) ;(lk(;c—70<[>)1/k“ ), if sgn(v) < 0.
1(k1, ko, 0,
sin™! (Fa(kr ko, 0, $)sec( ) if0 e [o%)
0=
7 — sin” (Fak1. ko, 0, §)sec(B)), if0 En}
®) n Fa(ky, ko, 0, ¢)' 007k n n 3n 3n
- » Ko, U, . 0,= ) vs |z,m)vs |m,— ) vs |=,2m
1 —sgn(u)] + tan~" | sgn(u) B T if sgn(v) > 0; S { ’ ) { ’ ) ) ’ )
- 2 Fi(ki ko, 0, )"/ : : : :
¢ = i Faky ko, 0, )~/ 0e {0,%) Vs [g,n}
“[3+sgn(u)] —tan~! | sgn(u)| " || ifsgn(v) < 0.
2 Fi(ki ko, 0, )"/
sin™! (Falki ko, 0, pJese(d)),  if0e {o, g)
0=
7 — sin” (Fa (k1. ko, 0, $)ese(B)), if0 En}
d ~ If kyisodd :
@ cos™! (Fz(lq,ko,&d))csc((?))7 if ¢ el0,n); 1S
¢ = {n) {n) {371) Fn )
. o |0,=) vs |z,m) vs |m,—=— ) vs |=,2n |,
27— cos ! (Falki ko, 6, $)ese(D)), it @ € [, 2n). 2) 2 2 2
ki /ko 0e {Oﬁ) vs F,n}
7 = cos! Fa(ki, ko, 0, )" 2 2
=cos™ | sgn(w) T . )
Fy(ki, ko, 0, )% If kyiseven :
¢ €1[0,7) vs [r,2m),
0e {O,g) Vs [g,n}
® 3 cos™! (sgn(u)esc(0)|Fy (k1 ko, 0, )/ Fa (ki ko, 0, )71, if ¢ e0,n); If ko is odd :
= N ) ) T T 3n 3n
2m — cos~! (sgn(u)esc(B)|Fy (k1. ko, 0, )"/ Falki ko, 0,6)°/)), if ¢ € [m,2m). ve {°’§> h {5> v {7) v [?2“)’
0 = cos™ (Fa(ky, ko, 0, )

T 7
0e {0,5> vs [§7n:|

If kyiseven :

b3 fis 37 3n
¢ € {0,§> Vs {5,n> Vs {m?) Vs {7,211)
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TABLE II. (Continued)

Configuration DOA estimation formulas Prior information required
(h) . 3 If ky isodd :
alt = sen(y?) = 5]+ sin (Bxth a0, )ese@). it g [0.5) 0|2 ): e -
¢ = . ¢ € {Oi) Vs {5,n> Vs {m;)vs. {77271),
n—sin! (Fz(khkm 0, ¢)CSC(9)>7 if ¢¢ {—7—) T bid
2°2 0e {0,—) vs [—77I:|
2 2
N kl/k() 3 .
0 = cos™! sgn(w)‘ M If kyiseven :
Fi(ki, ko, 0, )™ e AT 3n2 Y n 3n
) 2 T S 2" )
T T
0e {05) vs [577'[:|
& y—axis) . -
ay — gin- 1| 4 0 con (2 [a“ ] . _JL ity =0
Y=sin"! | 35 csc(0) £ sgn(w> [a y,m)]l and o(y) = {07 ity £0.
v,
) If ko is odd :

[l — sgn(v) — 6(v)] + sin”~! <sgn(v)csc(§)|F1(k1,k0, 0, q&)l/k'Fz(quco7 0, (b)k"/k' |)7

podif d)e{o,g)UFan);

7 — sin”! (sgn(v)csc(@)\Fl (k1 ko, 0, d))l/k' Fy(ky, ko, 0, ¢)k"/k‘ \)7 ifp € [
Fa(ky, ko, 0, )"/ )

0 = cos™! sgn(w)‘
< Fy (k1 ko, 0, )%

n 3n
272

)

¢ < {Og) Vs EJL) Vs {n,%) Vs {37“,271),
T fid
XS {05> Vs [Em}

If kyiseven :

¢ e {O%) vs Bn) Vs {m%) vs {37“,271)
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F[ (k,O.d)) =

- [a(zfaxis):|

E k o X,y 1 s n(u_")
v T [a(z—axis):| g Uk ’
X,y 2
Fo(k,0,0) ==
~(z—axis)
~ A ”k> {aw ]1
w.—2 A ya sgn(F — . (34)

Y]

[A(z—axls)]
X,y 2

Straightforward manipulation gives
)|}
u

and therefore

= |Fy(k, 0,¢)""",

tan( ) |Fy(k,0,¢)" 1/k|sgn<£>. (35)

Assuming that sgn(v/u) is prior known, tan(a) can be
determined via Eq. (35). Additionally, assuming that sgn() is
prior known, ¢ in Eq. (35) can be unambiguously determined as

[1 — sgn(u)] + tan™" (sgn( )F1(k,0,¢)" l/k|)

if sgn(v) > 0;

T
2

<)
I

gp+%mm_mm(%mﬂFme¢)WD

if sgn(v) <O0.

From Eq. (34),
cos(0) = w = Fy(k, 0, §). (36)

Thus, 0 in Eq. (36) can be unambiguously determined as

o~

0 = cos ' (Fa(k,0,)). 37

B. Configuration (e): 5y =uand g, =wand u=v

For this configuration, the estimation of ¢ and 0 is not
possible when kj #ko, as pointed out in Sec. Il E. However,
when k| = ko =k, from Egs. (8) and (9)

Fi(k,0,0):=
/l: [ayfaxis):| P
u L X,Z 1 u
() = Fgr;BT‘%“QJ>’ o9
X,z 2
Fa(k,0.¢) :=

V= / ya sgn< >{ yam] ) (39)

27‘EAy [ (y— axm]
2

J. Acoust. Soc. Am. 145 (3), March 2019

Straightforward deduction from Egs. (38) and (39)

2k sin’ (6) cos? a
Fi(k, 0, )" _cosz@)(>
sin’ (5) (1 — sin® (@))
N 1 — sin? (5)
sin? (0) (1 = Fa(k, 0,0/ 502 (D) )
- 1 —sin?(0)
sin2(0) — Fa(k, 0, ¢)
- 1 —sin?() 7
hence,
i () = P10 01" gL 28 (40)
1+ Fi(k, 0, )"
As 0 € [0,7], sin(0) > 0. Thus, Eq. (40) gives
inld) = JFI (6,0, 9)"" + Falb 0,4)° an
1+ Fi(k,0, )"

Assuming sgn(w) as prior known, 0 in Eq. (41) can be
unambiguously determined as

F
sin”! J !

it sgn(w) > 0;

L1 Fl
T — SIn

if sgn(w) < 0.

(ka Ha ¢)2/k + F2(k7 07 d))z
1 +F1 (ka Oa ¢)2/k

i

)
Il

(k, 0, $)** + Fa(k, 0, $)*
14 Fy(k, 0, ¢)**

(42)
From Egs. (39) and (42),
sin@) _ v Fa(k, 0, ¢)esc (D). (43)
sin(())

Assuming sgn(u) as prior known, 5 in Eq. (43) can be unam-
biguously determined as

71 —sgn(z) = 6(2)] +sin” (ese(B)F2(k. 0, 9)),
5 B if sgn(u) > 0;
7T —sin~ (csc(@)Fz(k 0,9)),
if sgn(u) < 0;
where

|:a)(( y:axis):|
- 1

[a/(v};—axis)}
- 2
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Configuration (g) may likewise be handled.

IV. CRAMER-RAO BOUNDS

Given the statistical data model (i.e., given how the
observed data are statistically related to the to-be-estimated
parameters), any unbiased estimator’s error covariance is
lower bounded by the CRB.

To focus on the nine configurations in Fig. 1, a simple
statistical signal/noise model will be used in the following
analysis. More complicated signal/noise models can readily
be addressed, using the same analytical approach.

Suppose a pure-tone signal s(t,) = /P,e/CHTsH)
impinges from the far field upon any of the sensor-pairs in Fig.
1.% Here, P denotes the signal’s unknown power, ¢ symbolizes
the signal’s unknown deterministic initial phase, f signifies the
signal’s prior known frequency, and T, refers to a time-
sampling period that satisfies the Nyquist sampling requirement.

At the mth time instant, a 2 x 1 data vector would be
collected

Z(mTy) = af Y s(mT,) + n(my), (44)

where n(mT;) is the additive noise vector, which is statistical
uncorrelated over time and across the two sensors, Gaussian
distributed, zero-mean, with an unknown variance of P,,.

With M number of snapshots, the entire dataset may be
represented as a 2M x 1 vector

T
2= |U(T).... M1
=s@al ™ 4 [A(1), A1) (45)
de:‘ﬂ de:fn

Here, s:=/Pel?[e® ... ¢MT]" represents an M x 1
vector, ® symbolizes the Kronecker product, and n refers to
a 2M x 1 vector with a covariance matrix I =1y
®diag(P,, P,), and I, signifies an M x M identity matrix.
Collect all (deterministic) unknown scalars into a 5 x 1
vector of ¥ = [0, ¢, ¢, P,,P,|". The corresponding 5 x5
Fisher information matrix (J) would have an (i,j)th entry of

ou ou
[J];; = 2Re ( ) | R i
o] o),
or or
+Tr|I ' —1! , (46)
ol o
where Tr[-] denotes the trace operator and 1 refers to

Hermitian transposition.
Then, the bivariate DOA’s deterministic/conditional
CRBs equal

(
0 )
CRBY (0, ¢) = I,

Table III summarizes all configurations’ CRBs. Some
qualitative observations thereof':

1250  J. Acoust. Soc. Am. 145 (3), March 2019

@) Each CRB is symmetric.
(i-1)  with respect to € =90° over 0 € [0,180°],
(i-2)  with respect to ¢p = 180° over ¢ € [0,360°],
(i-3) with respect to ¢ =90° over ¢ € [0,180°], and
(i-4) with  respect to ¢=270° over ¢
€ [180°,360°].

To see the effects of the two figure-8 sensors’ respec-
tive orders of (ko,k;): Fig. 2 compare the polar angle
(0) CRBs for configuration (a) at various (kg,k;) under
a constraint of ko + k; =4, ie., at (ki,kg)=(1,3),
(2,2), (3,1). Figure 3 does the same for the azimuth
angle (¢).

(i)  Configuration (a) becomes more sensitive along the x
axis (y axis) as k; =k, (kp=k,) increases, thereby
shifting the CRBs’ bases of Figs. 2 and 3 from near ¢
~ 90° toward ¢ ~ 180°.

(iii))  Due to the functional relationship in Eq. (3) between
array manifolds of configurations (d) and (h),

CRBY (0, ¢) = CRB! (0 ¢ +;+2nn)

CRB(Y (0, ¢) = CRB" (9, b+ g + 2n7‘c),
where n represents any integer.
Similarly for configurations (e) and (g) on account of
the functional relationship in Eq. (4)

CRB (0, ) = CRB' (9 ¢ —g—l—Znn)

CRB((6, $) = CRB'® ( ¢—g+2nn)

Likewise, for configurations (f) and (i) on account of
the functional relationship in Eq. (5)

CRB! (0, $) = CRB (0 o+ +2nn>

CRB,, M0, p) = CRB (0 ¢+ +2nn>

Each pair of identities here involve re-aligning an x-
oriented directional sensor to become y-oriented or
vice versa.

Figure 4 plots the cumulative histograms of the CRBs for
all nine configurations. Because of the equivalence in the six
unnumbered equations above, Fig. 4 has only six pairs of
graphs. Each cumulative histogram represents the fraction of
all possible DOAs at which the estimation would be at least as
precise as specified by the abscissa. These cumulated histo-
grams have been evaluated over a 4050-point uniform grid
over the unit-sphere’s surface. As the CRB represents the best
obtainable unbiased estimation error variance, the higher this
cumulative histogram the better. Some qualitative observations:

(iv)  For configuration (a) [(b)]: the case of ko= k, = 1[3],
ky=k,=3[1] {i.e., the yellow dashed (blue dashed-

Suetal.
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TABLE III. CRBs for elevation and azimuth angle estimation using the nine configurations.

Configuration 2M 5-CRB} (0, ) 2M -CRBY (0, )
(a) 2 2
((0, )™ + v(0, $)*") [(271%‘) u(0, §)° sin*(§) + (kF + k3) cos* (¢) — k1% cos(26h) + 2kiko cos* () sin2(¢)} (u(0, )™ + v(0,$)*) (( %) u(0, $)* + (ki fko>2> sin’(¢)
2 2
(20%) s, (0,97 cos0) con9 (20%) tatute. g7 (0,97 sin’0)
“u(0, ¢) = sin(0) cos(¢)
*u(0, $) = sin(0) sin(¢p)
(b) 2 R
(0, $)™* + v(0, §)™) {(mA—) u(0, ¢)* cos () sin® () + (ks — ko)? cos () — k12 cos(2) + 2kiko cos2<¢)} cos? () (u(0, )™ + v(0, $)™) ((m%) v(0, ) + (ky — ko)2>
2 2
(211 %) k12 u(0, ¢)* v(0, $)*° cos?(0) sin® () <2n %) k2 u(0, $)* v(0, $)* sin®(0)
( ) 2k 2k 2
c s u(0, )" +v(0, ) cos?(¢) sin? () (u(0, $) + v(0, ¢)zk>(2n%)
2k
(27{7) (0 d)> (0 d)) sin ( > (27-[&)2]{2 u(o 4))2/»' L‘(O ¢)ZL
; } )
(d) 2 2
cos?~ 20 (0) ( cos* (0) + u(0), ¢>”')((2n%) u(0, $)* +k12) (cos?(0) + (0, ¢)™) [( A,) u(0,§)? cos* (0) + (ki — ko)? cos*(6) + 2kiko cos?(0) — ko cos(20)
2k +2 . 2 2
d? ko? u(0, ¢) sin”(0) (271%) ko2u(6, $)* v(0, $)? sin® (6) cos?h (6)
(e) A 2 A 2
cos2 2 (0)(cos* (0) + u(0, ¢)2k)((2n—> u(0, §)* cos* () + k2 sin2(¢)> cos? () (cos? (0) + u(0, 4;)”)(( )> v(0, ¢)* cos* (0 )+k2>
2 2 2 2
(271%) u(0, §)* (ku(@, $) +kcosz(9)) (271%) u(0, $)* sin’(0) cos (0) (lcu(@, $)* +kcosz(9))
(f) coso u(0, ) 2
AN ©) +u(é¢) cos? () (cos? (0) + u(0, ¢)*) [(271%) cos?(0) sin® (0) + (k; — ko)? cos*(0) + 2k; ko cos?(0) — ko2 cos(20)
€ 2k . 2 o A
(2717) u(0, )™ sin”(0) cos*o (6) AN N
(27‘57) k2 u(0, $)* 0(0, $)? sin®(0) cos?ho+2(0)
(2 2 5
cos? 2(0) (cos? () + v(6, $)*) <<2n%> (0, §)* sin® () + K cosz((j))) sin? () (cos* (0) + v(0, $)*) | k ( (271%) u(0, $)* cos* (0 ))
(27:%) v(H,qS)Zk(kv(H,tﬁ)z+kcosz(9))2 (271%) o(0, ) sin2(9)0052’<(6)(kv(0,d))2+kcos2(0))2
(h) 2
cosZ’Zk"(H)(cosz""‘(H)+u(9,¢)2k')<<2nA—> (0, §)* +k12> (cos (0 )+u(9,d))2k'){(k1 cos2(0) + ko sin?(0))” + (271%) (0, ¢)* cos* (0 )}
2 2
<2n AT) ko? v(0, )™ sin’ (0) (zn%) ko? u(0, )% 00, $)™ sin (0) cos? (0)
® cos?o (0) + v(0, ¢)*

2
(m%) (0, ¢)* sin®(0) cos?* (0)

2
sin® () ((cos™ (0) + o(0, )" ) {(k1 cos2(0) + ko sin®(0))? + (M%) sin(0) cosz((’)}

(271%)2 k2 u(0, ¢)?

(0, ¢)* sin?(0) costo+2(0)
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FIG. 2. (Color online) Configuration (a), i.e., x axis—oriented sensor at (4/2,0,0) and y axis—oriented sensor at (0,0,0), and A./L = 3 under the constraint of
ky +ko=4.

1252

dotted) curve in Fig. 4(a) [Fig. 4(b)]} has the worst
cumulative histogram. This case concentrates most
directivity along the x axis (y axis) at the expense of
the directivity along the y axis (x axis): Not only is
the inter-sensor aperture along the x axis (y axis), the
x-oriented (y-oriented) figure-8 sensor is allowed an
order of 3 versus the y-oriented (x-oriented) sensor’s

J. Acoust. Soc. Am. 145 (3), March 2019

)

order of 1. This observation would suggest that dis-
tributing the directivity over more Cartesian axes
would lead to a better CRB cumulative histogram.

In configuration (c), the inter-sensor spacing favors nei-
ther horizontal axis over the other horizontal axis. Instead,
the directivity along the x and y axes depends only on
(ko,k1). Among the three curves plotted for this

Su etal.
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FIG. 3. (Color online) Configuration (a), i.e., x axis—oriented sensor at (4/2,0,0) and y axis—oriented sensor at (0,0,0), and A, /1 = %, under the constraint of K; + ky=4.

(vi)

configuration (c), the (ko,k1) = (2,2) case most evenly dis-
tributes the directivity between the x and y axes; it is this
case that gives the best cumulative histograms, thereby
reinforcing the earlier mentioned point that more evenly
distributed directivity gives the best CRB performance.

For configurations (d) and (h), the sensor at the
Cartesian origin (corresponding to k¢) offers no hori-
zontal directivity. Moreover, both the other sensor

J. Acoust. Soc. Am. 145 (3), March 2019

(corresponding to k) and the inter-sensor axis favor
the ko axis—i.e., the x axis for configuration (d), but
the y axis for configuration (h). The three curves for
configurations (d) and (h) differ by how much direc-
tivity to share between the vertical axis and the kg
axis. If more directivity is allocated to the vertical
axis, the horizontal &, axis (already favored by the
inter-sensor axis) would be less over-emphasized.

Suetal. 1253
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FIG. 4. (Color online) The CRB’s cumulative histogram.

Indeed, this case leads to the best cumulative histo-
gram. This echoes yet gain the aforementioned point
that more evenly distributed directivity produces the
best CRB performance.

For configurations (e) and (g), directivity is shared
among all three axes, regardless of the specific
numerical settings of ky and k, thereby leading to the
three curves being close among themselves.

J. Acoust. Soc. Am. 145 (3), March 2019

(viii) Configurations (f) and (i) enjoy vertical directivity,

both from the ky sensor’s vertical orientation and
the inter-sensor axis also being vertical. The only
horizontal directivity is provided by the k; sensor’s
horizontal orientation. Hence, a larger k; would less
over-emphasize the vertical axis; this indeed gives
the best cumulative histograms. This further
strengthens the repeating observations here that

Suetal.
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FIG. 4. (Continued)
more evenly distributed directivity leads to the best Figure 5 plots the estimates’ root-mean-square error
CRB performance. (RMSE) versus the signal-to-noise ratio (SNR), where
1 100 )
V. MONTE CARLO SIMULATIONS RMSE = |7o-> (7 =),

i=1
The statistical data model here will be same as that in
Sec. IV. The Monte Carlo simulations use the following where y € {0,¢}, and 7, symbolizes the estimation result of
numerical settings: 0 =45°, ¢ =45°, A /) = % the ith Monte Carlo trial.
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FIG. 5. (Color online) Monte Carlo simulations of proposed algorithm versus maximum likelihood estimation versus CRB for the estimator of elevation angle
0 and azimuth angle ¢ using configuration (a) with the following settings: M =500, 0 =45°, ¢ =45°, A,/L=1/2.

Figure 5 clearly shows the proposed estimators to
approach the CRB asymptotically as the signal-to-noise
power increases.

Also plotted in Fig. 5 is the maximum likelihood estimator
(MLE), which is a statistically efficient estimator (i.e.,

1256  J. Acoust. Soc. Am. 145 (3), March 2019

asymptotically approximates the error is also plotted CRB). The
MLE data points indeed lay effectively on the CRB curves for
SNR >20dB, thereby verifying the correctness of the CRB
curves. The deviation at small SNR values is probably exasper-
ated by the nonlinear regions of inverse trigonometric functions.
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The proposed estimators’ RMSE performance is visually
indistinguishable from the MLE’s, for any SNR above 25 dB.
At a more adverse (i.e., lower) SNR, the proposed estimators
do admittedly incur larger RMSEs than the MLE; the proposed
estimator requires much less prior information than does the
MLE. The former needs no prior knowledge of the additive
noise’s probability density at each sensor, but the MLE does
require this prior information. Moreover, the MLE requires an
iterative optimization of the likelihood function. Such an itera-
tion has many disadvantages: The iteration can be computa-
tionally burdensome for real-time applications; the iterative
search requires a good initial estimate of the unknown parame-
ter to start off the iteration to converge at the global optimum
(instead of a local optimum).

VI. CONCLUSION

An orthogonal pair of figure-8 bi-directional sensors suf-
fice for azimuth-elevation bivariate direction finding. For this,
new algorithms have been advanced here in closed form,
regardless of each sensor’s respective order and the two sen-
sors’ separation. Moreover, CRB analysis suggests that the
DOA estimates would generally be the most precise if the sen-
sors’ directivity and the inter-sensor axial directivity are evenly
distributed along the three Cartesian coordinates.
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"Incidentally, first-order figure-8 sensors have been used in a collocated
and perpendicular triad, called a “tri-axial velocity-sensor,” or a “velocity-
sensor triad,” or a “vector sensor,” or a “vector hydrophone.” For compre-
hensive reviews of the tri-axial velocity-sensor literature, please consult
Awad and Wong (2012), Tam and Wong (2009), and Wu and Wong
(2012). Higher-order figure-8 sensors have also been used in a collocated
and perpendicular triad in Song and Wong (2012).

’This endnote briefly reviews the eigen-based parameter estimator.
Consider a wireless signal {s(m),Vm =1,2,...,M} impinging upon two
sensors, which produces a 2 x 1 data vector of z(m) = s(m)a + n(m) at
the mth time instant. The 2 X 1 vector a here represents sensor-pair’s array
manifold, and {n(m),Vm =1,2,...,M} represents the additive noise at
the sensor-pair and is spatially uncorrelated between the two sensors.
From M such time instants of data, form a 2 x 2 spatial covariance matrix
of C := (1/M) M a(t)[2(tn)]", where the superscript “/7” refers to the
Hermitian operator. Suppose also that {s(),Vs} and {n(¢),Vr} are each
temporally ~stationary and are not cross-correlated between them.
Consequentially, C ~ C = P;aa’’ + P,I, where P, symbolizes the imping-
ing signal’s power, P, represents to each sensor’s noise power, and I
denotes a 2 x 2 identity matrix. The 2 x 2 matrix Q is Hermitian, and
asymptotically approaches C as M — oo. Moreover, C has a 2 x 1 princi-
pal eigenvector asymptotically equal to ca, where ¢ could be any
complex-valued scalar of a magnitude of 1/||a|| and is algebraically inde-
pendent of a. Hence, the principal eigenvector of the sampled data-
covariance matrix C is approximately ca.

3The three configurations of (c),(e),(g) allow closed-form eigen-based esti-
mation of the bivariate DOA only if ko= k;. Section II E will explain why.
Common to these three configurations (and only these three configura-
tions) is that 17, 75, and p together do not have three distinct values in the
array manifold of Eq. (1).

“If the two figure-8 sensors are spatially collocated (i.e., A, = 0), the nine con-
figurations of Fig. 1 will reduce to only three configurations: Configuration
(@), (b), (¢): ni=u, npy=v; Configuration (d), (e), (: ni=u, N=w;
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Configuration (g), (h), (i): n; = v, o =w. This is because there would be no
displacement axis between the two collocating sensors. The steering-vector
estimate of (6) would then correspondingly simplify to

which is entirely real-valued except for the unknown complex-valued
scalar of c. In order to eliminate the unknown ¢, form

m'\ _ sl
77150 [ailvévz]Z

This gives one real-valued constraint, but there exists two real-valued
unknown scalars in € and ¢, thereby forming an under-determined
situation. Therefore, if the two figure-8 sensors are spatially
collocated, bi-axial direction finding would not be viable.

3If the two sensors’ locations are inter-changed, The complex exponential
factor in Eq. (1) would move from the first entry to the second entry.
Consequentially, Eq. (7) would have its complex exponent complex-
conjugated; and Eq. (9) would have its right side negated. Therefore, the
only modification to the subsequent estimation formulas is to re-define
Fo(ky,ko,0,0) as

. ~(e—axis)
ki [ay ¢ :|
Z | sgn —17,10 e
15 [ﬁ(e—yax1s):| .

.l

F2(k17k0a95 ¢) =

2nA,

®Nearly pure-tone acoustic signals could arise naturally, e.g., in rotary-
wing aircraft or in a ship/submarine’s propeller. Pure-tone signals can also
be obtained by decomposing wideband signals into distinct frequency-bins
(e.g., via a short-time discrete Fourier transform). Each frequency-bin’s
performance would be given by the Cramér-Rao lower bound (CRLB)
analysis keyed to that frequency-bin.
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