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Nonreciprocal μ-near-zero mode in PT -symmetric magnetic domains
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We find that a new type of nonreciprocal modes exists at an interface between two parity-time- (PT -) symmetric
magnetic domains (MDs) near the frequency of zero effective permeability. This mode is nonpropagating and
purely magnetic when the two MDs are semi-infinite, while it becomes propagating in the finite case. In
particular, two pronounced nonreciprocal responses could be observed via the excitation of this mode: one-way
optical tunneling for oblique incidence and unidirectional beam shift at normal incidence. When the two MDs
system becomes finite in size, it is found that perfect-transmission mode could be achieved if PT symmetry is
maintained. The unique properties of such an unusual mode are investigated by analytical modal calculation as
well as numerical simulations. The results suggest a different approach to the design of compact optical isolator.
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I. INTRODUCTION

Over the past few decades there has been much activity
on the nonreciprocity effect in optics [1–18]. Nonreciprocal
optical elements, such as optical isolators, have attracted
great attention owing to their capability of allowing light
to propagate only along a single direction, while strongly
suppressing backward scattering. The traditional way for cre-
ating nonreciprocal devices relies on magneto-optic Faraday
effect in the presence of an external magnetic field. However,
the intrinsic weakness of Faraday effects based on available
magneto-optical (MO) materials makes the Faraday rotator
bulky and hinders miniaturization of such devices. Later, the
photonic crystal (PC) made of MO materials [2] was suggested
to enhance the nonreciprocal response, and create compact and
integrated isolators and circulators. Recently, Raghu and Hal-
dane [3,4] theoretically predicted one-way edge modes could
be observed in MO photonic crystals, as optical counterparts
to chiral edge states of electrons in the quantum Hall effect.
These modes are confined to the region near the edge of the
two-dimensional (2D) PC, displaying one-way propagation
characteristics. Subsequently, experimental realizations and
observations of such electromagnetic one-way edge states
in different magneto-optical photonic crystal (MPCs) were
reported by several groups [5,6]. Nonreciprocal behavior has
also been demonstrated by considering dynamic modulation
in standard materials [7–9], the use of optomechanical [10]
and optoacoustic effects [11], and optical nonlinearities
[12–15].

On the other hand, considerable efforts have been in-
tensively devoted to a class of artificial optical materials
having balanced loss and gain: parity-time- (PT -) symmetric
metamaterials [19–34]. Such PT -symmetric systems have
non-Hermitian Hamiltonians, exhibiting with entirely real
eigenvalues when PT symmetry holds. Remarkably, the
system may undergo an abrupt phase transition (spontaneous
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PT -symmetry breaking) at some non-Hermiticity threshold,
beyond which some of the eigenvalues become complex. To
date, several PT -symmetric models have been demonstrated
with some intriguing light propagation behaviors, including
power oscillations [20], double refraction [20], unidirectional
invisibility [21–24], nonreciprocal light transmission [25–28],
and unattenuated surface modes [29–31].

It turns out that PT symmetry has a strong linkage to
perfect transmission states [32]. This type of spatial-temporal
symmetry can be more general than the usual symmetry-
related perfect transmission associated with mirror symmetry
or inversion symmetry. Since such a PT -symmetry-related
perfect transmission is complementary to nonreciprocity, it
is also useful for the design of optical isolator displaying
one-way perfect transmission with no gain medium such
as the case in this paper. In this work, we consider a
structure composed of two MDs with PT symmetry [17,18],
magnetized homogeneously in opposite directions, and find
a different type of nonreciprocal μ-near-zero (MNZ) modes
at the interface separating two MDs near the frequency of
zero effective permeability. The broken P and T symme-
tries, induced here simultaneously by the geometry and the
orientation of the external magnetic field, result in the asym-
metrical dispersion relations of the interface mode, whereas
the unbroken PT symmetry leads to the emergence of the
perfect-transmission mode [32]. Furthermore, two pronounced
nonreciprocal behaviors are exhibited by application of such
a MNZ mode for incident plane waves: one-way complete
optical tunneling at oblique incidence and unidirectional
beam shift at normal incidence. Calculations on nonreciprocal
dispersion relations, reflection spectra, and field patterns for
such a PT -symmetric system are employed to verify our
conclusions.

This paper is organized as follows. In Sec. II, the exact
analytical modal description is employed to investigate the
nonreciprocal MNZ mode in the PT -symmetric system we
proposed. Section III shows the numerical results of reflection
spectra and field patterns for the finite-size PT -symmetric
system. Finally, the conclusions are given in Sec. IV.
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II. ANALYTICAL MODAL DESCRIPTION OF
NONRECIPROCAL μ-NEAR-ZERO MODE

We start with two semi-infinite MDs constructed by MO
media oppositely magnetized in the Voigt geometry as shown
in Fig. 1(a). Under the external static magnetic field along ±z,
the two semi-infinite MDs are characterized, respectively, by
identical permittivities εm and magnetic permeability tensors
μ̄(x>0) and μ̄(x<0) [17,18]:

μ̄(x>0) =
⎛
⎝ μ1 i�1 0

−i�1 μ1 0
0 0 μ1

⎞
⎠ ,

μ̄(x<0) =
⎛
⎝ μ2 i�2 0

−i�2 μ2 0
0 0 μ2

⎞
⎠ . (1)

We take the following parameters for MDs [6], i.e., μ1 =
μ2 = 1 + ωmωh/(ω2

h − ω2), �1 = −�2 = −ωmω/(ω2
h −

ω2), where ωh = γH0 is the precession frequency, γ is the
gyromagnetic ratio, H0 is the applied magnetic field on
the two MDs, ωm = 4πγMs , and 4πMs is the saturation
magnetization. The parameters are chosen to fulfill PT sym-
metry μ̄(x>0) = μ̄∗

(x<0), which will lead to perfect-transmission
modes. The complex conjugate in μ̄ is associated with
time-reversal operation (see Appendix A). It should be noted
that only transverse electric (TE) polarization (i.e., electric
field along the z direction) is considered, and the e−iωt

FIG. 1. (Color online) (a), (b) Schematic diagram of the PT -
symmetric system. (a) Two semi-infinite MDs locate at x > 0 and
x < 0, respectively. (b) Finite-size bilayer MD slabs composed of two
halves of identical thickness a1 = a2 = a, embedded in surrounding
media (with refractive index n). Labels 0,1,2,3 are used to indicate
four different regions in our system. (c) The dispersion relation of
interface modes in (a). Yellow and white regions represent bands and
gaps of an infinite MD, respectively. (d) The radiative modes in (b).
The bulk band edge for magnetic materials (gray lines), light curves
for surround media (dashed lines), and the frequency line (dotted
lines) corresponding to zero effective permeability of MD are also
shown. In (c), (d), we set km = ωm/c (here c denotes the speed of
light in vacuum) as a scale to represent the transversal wave vector ky .
For the mode solutions in (d) for the finite-size bilayer MDs structure,
each magnetic layer is assumed to have equal thickness a = 0.008 m,
and the surrounding medium with refractive index n = 4.

time-dependent convention for harmonic field is used in this
work.

Before we solve for the solutions of the interface modes, it
should be noted that each MD also supports bulk modes given
by the dispersion relation k2 = εmμeffω

2/c2, where μeff is
the effective permeability defined as μeff = (μ2

1 − �2
1)/μ1 =

(μ2
2 − �2

2)/μ2 and k = (kx,ky,0) is the wave vector in the
xy-plane. Due to the resonance feature of μ1 (μ2), a typical
resonance gap is opened and the bulk modes are divided
into two groups of bands for μeff > 0 as shown in Fig. 1(c),
with the upper bands bounded by ω > ω0(= ωh + ωm) and
k2
y < εmμeffω

2/c2, and the lower bands bounded by ω <√
ωh(ωh + ωm) and k2

y < εmμeffω
2/c2.

To form guided waves at the interface between two MDs, the
field should decay exponentially away from the interface, and
can be written as follows: E(x > 0) = (0,0,A)e−αx+ikyy and
E(x < 0) = (0,0,B)eβx+ikyy . Here, A and B are the amplitudes
of the corresponding electric field components in two MDs.
α and β denote positive decay parameters, displaying the
relations with the parallel component of wave vector ky :
k2
y − α2 = k2

y − β2 = εmμeffω
2/c2 in two homogeneous gyro-

magnetic materials, with identical effective permeability μeff .
By solving the Maxwell’s equations, we have magnetic field
components H = (Hx,Hy,0)e−αx+ikyy for the x > 0 space
satisfying the following relations:

(
μ2

1 − �2
1

)
Hx(x > 0) = A

ω
(μ1ky − �1α),

(
μ2

1 − �2
1

)
Hy(x > 0) = −i

A

ω
(μ1α − �1ky). (2)

By replacing A, α, and �1 by B, −β, and −�2, respectively,
we could obtain the corresponding equations of magnetic field
for the space x < 0.

In most cases that the condition μeff �= 0 is fulfilled, the
magnetic field could be then easily obtained from Eq. (2). With
the boundary condition that the tangential field components
should be continuous across the interface, we could have the
usual “μeff �= 0” solution for an interface mode, shown with
black solid lines in Fig. 1(c) as well as in Ref. [18]. More
interestingly, if we take into account the possibility of μeff = 0
(here μ1 = �1) at ω0 = ωh + ωm, there exists an extra solution
of interface mode in this PT -symmetric system with

A = B = 0, α = β = −ky. (3)

We called such a nontrivial solution the μeff = 0 mode. It is
interesting that the mode is purely magnetic with no electric
field while the two orthogonal components of magnetic field
have the following unique relations:

Hx(x > 0) = −Hx(x < 0) = −iHy, (4)

indicating the certain phase difference between Hx and Hy with
π/2 in the left domains region and −π/2 at the right. Moreover,
in order to guarantee the positive decay rate (β > 0, α > 0), the
parallel component of wave vector ky should remain negative,
which leads to the emergence of a nonreciprocal μeff = 0 mode
shown by the red line in Fig. 1(c). Here, we use parameters
for MDs provided in a previous experimental study [6], i.e.,
εm = 15.26,H0 = 800 Oe, and 4πMs = 1884 G.
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The nonreciprocal μeff = 0 modes between two semi-
infinite domains form a flat band and thus they are nonprop-
agating, which makes the modes difficult to be excited. To
improve its optical response, we alter the infinite systems by
the finite-size bilayer MDs still with PT symmetry [shown
in Fig. 1(b), and here assumed with identical thickness a1 =
a2 = a], embedded in a uniform surrounding medium. Based
on the transfer matrix approach [16], the radiative modes for
such a bilayer system outside the light line for surrounding
mediums could be well solved. Two kinds of mode solutions
could be analytically separated as

sin(kxa)

kx

= 0 (5)

for reciprocal (symmetrical) modes and

1

kx0

{
cos(kxa)

[
k2
y

(
μ0

μ1
− μeff

μ0

)

− ω2

c2
(εmμ0 − ε0μeff)

]

+ ky�1

kxμ1
sin(kxa)

[
k2
y

(
μ0

μ1
+ μeff

μ0

)

− ω2

c2
(εmμ0 + ε0μeff)

]}
= 0 (6)

for nonreciprocal (asymmetrical) ones [Appendix B gives
the derivation of Eqs. (5) and (6)]. Here, ε0 and μ0 are the
permittivity and permeability for surrounding medium, and the
wave-vector components normal to the interface in background
and magnetic materials are taken as kx0 =

√
ε0μ0ω

2/c2 − k2
y ,

and kx = kx1 = kx2 =
√

εmμeffω
2/c2 − k2

y , respectively. The
reciprocal propagating modes in Eq. (5) for such bilayer MD
systems are identical to those in a single slab layer of MD, si-
multaneously independent of surrounding mediums. It should
be emphasized that the linear term of ky in Eq. (6) breaks
the spectral reciprocity (i.e., the left-right symmetry of the
dispersion relation), leading to strong nonreciprocal behaviors.
Furthermore, in the limit of a → ∞, there is always a solution
at ω0 identical with Eq. (3) for the infinite system in Fig. 1(a).

We plot in Fig. 1(d) the corresponding radiative electro-
magnetic modes within the light cone for surrounding media
with the refractive index n = 4. Each magnetic layer has equal
thickness a = 0.008 m. The reciprocal and nonreciprocal
modes are shown by blue and red lines, respectively. It is
found that the original flat and nonpropagating μeff = 0 mode
interacts with the propagating modes in bilayer MDs, and
extends to the bulk band for magnetic materials, thereby
becoming dispersive. So, we achieve a nonreciprocal μ-near-
zero (μeff � 0) radiative mode for thin films of MD structures,
and expect to see the nonreciprocal optical response for
the dispersive mode near the frequency ω0 corresponding to
μeff = 0, with direct illumination of external plane waves.

III. NUMERICAL RESULTS ON FINITE-SIZE
PT -SYMMETRIC MAGNETIC DOMAINS

To support our findings, we investigate the wave-
propagation behaviors through finite-size PT -symmetric
MDs, with numerical calculations on the reflection spectra

FIG. 2. (Color online) (a), (b) The reflectance spectra for finite-
size PT -symmetric MDs shown in Fig. 1(b), where R↑ and R↓
represent, respectively, the reflectances for upward (ky > 0) and
downward (ky < 0) rays either incident from left or right. (a) Contour
plot: reflectance as a function of ω and ky ; (b) 2D line plot: reflectance
as a function of ky with a frequency ω = 1.425ωm close to ω0, just
along the horizontal dotted line in (a). Gray and dashed lines in (a),
and the MDs structure parameters used here are the same as those in
Fig. 1(d).

(shown in Fig. 2), where R↑ and R↓ represent, respectively,
the reflectances for upward (ky > 0) and downward (ky < 0)
rays either incident from left or right. Apparently, it is seen
that reflectance dips shown as dark blue colors in Fig. 2(a) are
in excellent agreement with those radiative modes in Fig. 1(d),
and the dispersive and nonreciprocal μeff � 0 mode could be
well excited under external plane waves, as shown in Fig. 2(b)
with a particular example of the frequency ω = 1.425ωm close
to ω0. In contrast to the usual μeff �= 0 interface mode indicated
with a very narrow dip in Fig. 2(b), the coupled μeff � 0
mode shows strong nonreciprocity response over a much wider
region of the incident angle.

It should be noted that in a one-dimensionalPT -symmetric
system with balanced gain and loss, there exists a conservation
rule |1 − T | = √

RLRR [33], where T is the transmittance
through the entire system, RL and RR are, respectively, the
reflectances for left and the right rays traveling either upwards
or downwards. Such a system is reciprocal in the linear regime.
In contrast, the nonreciprocal “Hermitian” system discussed
in this paper obeys the standard conservation laws 1 − T↑ =
R↑ and 1 − T↓ = R↓ instead for upward and downward rays,
even the transmittances in opposite directions (T↑ and T↓)
are different (see Appendix C for discussion on scattering
problems in a multiport system). Nevertheless, our system is
still a PT -symmetric system without single P or T symmetry.

Further, 2D finite-element simulations using COMSOL MUL-
TIPHYSICS were carried out to verify the electromagnetic
nonreciprocal response of waves impinging on our proposed
finite-size PT -symmetric systems. Figure 3 depicts the spatial
field distribution with a frequency of ω = 1.425ωm at oblique
incidence. Counterpropagating plane waves are incident from
surrounding mediums upon either side of the bilayer MD
structures. For the case of the downward incidence shown
in Fig. 3(a), full transmission could be obtained due to the
excitation of μeff � 0 mode on the interface. Interestingly, it is
found that there exists a purely magnetic field with no electric
field along the interface. To see more clearly, we zoom in
and get a closeup view of the magnetic field H = (Hx,Hy) in
the two domains as shown in Figs. 3(b) and 3(c), with black
arrows representing the vector patterns of magnetic field. The
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FIG. 3. (Color online) Electric-field distribution at ω = 1.425ωm

under front illumination with ky = −4km (a), and back illumination
with ky = 4km (d). Magnetic-field patterns in (a) of Hx (b), and Hy (c)
in the regions filled with the two gyromagnetic materials at a zoom-in
view. Black arrows in (b), (c) show vector patterns of the magnetic
field H = (Hx,Hy). The MDs structure parameters are the same as
those used in Fig. 1(d). The big arrows shown in (a) and (d) guide us
to see the wave propagation.

fixed phase difference between Hx and Hy could be observed,
such as π/2 in the left domain region and −π/2 on the
right. These results are identical to Eq. (4) for the infinite
system. In contrast, for upward incidence in Fig. 3(d), such
excitation of μeff � 0 mode is almost completely suppressed,
resulting in low transmission through the structure. Therefore,
a nonreciprocal optical response is attained with one-way
tunneling for incident oblique waves through thin films of
PT -symmetric bilayer MD structure.

At normal incidence shown in Fig. 4, another interesting
phenomenon of nonreciprocal beam shift could be seen
by application of the μeff � 0 mode through such a finite
PT -symmetric structure. In Figs. 4(a) and 4(b) at a fre-

FIG. 4. (Color online) Electric-field distribution under the (a)
front illumination and (b) back illumination of an incident Gaussian
wave normal to interface with a frequency of ωA = 1.476ωm.
(c), (d) are similar to (a), (b), but for another case with a frequency
ωB = 1.634ωm. These two particular cases are marked in Fig. 2(a)
with points A and B, respectively. The vector patterns of power
flow in our system are also illustrated with black arrows in (a)–(d).
The MDs structure parameters are the same as those used in
Fig. 1(d). The profile of incident Gaussian beam is assumed to
be |Ez| = E0 exp (−y2/0.002) (SI unit), where E0 determines the
arbitrary overall amplitude in the linear regime. For clear illustration,
the power flow of incident waves is also shown by means of big
arrows.

FIG. 5. (Color online) (a) The reflectance spectra at a specified
incident angle with ky = −4km for a non-PT -symmetric bilayer
domain structure, with different applied magnetic field H0R on the
right domain (0 < x < a). Here, the applied field on the left domain
(−a < x < 0) is fixed with H0L = 800 Oe, and other parameters
are the same with those in Fig. 1(d). (b) Schematic diagram of two
bilayer MDs, similar to Fig. 1(b), but separating them with a little
displacement of horizontal distance d . (c) The reflectance spectra for
the structure in (b), with a1 = a2 = 0.004 m, and d = 0.002 m. Other
parameters and lines are identical to those in Fig. 1(d).

quency of ωA = 1.476ωm [corresponding to point A shown
in Fig. 2(a)], both incoming Gaussian waves, including from
left or right, undergo an upward lateral shift perpendicular
to the propagation direction after passing through the bilayer
MDs. Meanwhile, in the magnetic domain, the direction of
power flow indicated by black arrows always changes by an
upswept angle with respect to the power flow of the incoming
waves. The beam shift and nonreciprocal behavior can also
be understood by the excitation of μeff � 0 mode at point
A, with an upswept-angle direction of wave group velocity
vg , evaluated as vg = 
∇kω(k) from the dispersion relation of
Fig. 1(d). For comparison, at another resonant frequency of
ωB = 1.634ωm [corresponding to point B in Fig. 2(a)], the
incoming waves go straightforward with reciprocal response
shown in Figs. 4(c) and 4(d), because the reciprocal propa-
gating mode is excited with zero group velocity at point B
keeping along the horizontal direction.

We emphasize that the PT symmetry in our system is
actually not a necessary condition to achieve the spectral
nonreciprocity. Nevertheless, the PT symmetry can help
achieving perfect-transmission mode in one direction as
depicted in Fig. 5(a). For a non-PT -symmetric structure with
different applied magnetic field on the two magnetic domains,
it is seen that transmission through the entire system would be
partly suppressed, and the μeff � 0 mode shifts slightly.

Finally, owing to the possible difficulty in implementation
in practice of our proposed finite-size PT -symmetric struc-
tures, with two adjoined, but inversely magnetized MDs, we
consider another structure by separating these two MDs with
a little displacement, as illustrated in Fig. 5(b). Note that the
μeff � 0 mode shifts to the lower frequency shown in Fig. 5(c),
due to the variation of the effective index of the structures.

IV. CONCLUSION

In summary, we demonstrate a different type of nonre-
ciprocal μ-near-zero radiative mode in the PT -symmetric
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bilayer MDs, magnetized by opposite directions. Such an
unusual mode occurs close to the frequency when the effective
permeability for MDs approaches to zero, and could be well
excited when the infinite system shrinks to a finite one. In
particular, we see two pronounced nonreciprocal behaviors
for incident waves: one-way complete optical tunneling for
oblique incident waves and unidirectional beam shift for
normal incidence. Our theoretical results may provide a new
way for designing compact isolators.
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APPENDIX A: TIME-REVERSAL SYMMETRY

The PT -symmetry condition μ̄(x>0) = μ̄∗
(x<0) for our sys-

tem has a complex conjugate on permeability tensor, which is
associated with T operation. We note that our arguments on
time-reversal symmetry are based on the following assump-
tions:

I. The Maxwell’s equations themselves are maintained
under time reversal of vector fields. The pseudovectors must
be modified accordingly (i.e., a change in sign) in order to
keep the Maxwell’s equation unchanged under time reversal.

II. The constitutive relations among the fields (satisfying
the Maxwell’s equations) in frequency domain may not be
the same after time reversal. Therefore, some systems are not
time-reversal symmetric.

1. Part I: Change in signs of pseudovectors

This part is only about the change in sign related to the
Maxwell’s equation (not the constitutive relations). Assume
that we have the four fields (E, D, B, H) satisfying the
Maxwell’s equations:

∇ × E = −∂B
∂t

, (A1)

∇ × H = ∂D
∂t

. (A2)

Here, we consider the solutions in source-free regions and
check the conditions on the pseudovectors B and H to ensure
that the equations are maintained under time reversal of vector
fields E and D.

We denote all the fields after this time-reversal operation as
E′, D′, B′, H′, where we already know that E′(t) = E(−t) and
D′(t) = D(−t) and require that the Maxwell’s equations must
be maintained:

∇ × E′ = −∂B′

∂t
, (A3)

∇ × H′ = ∂D′

∂t
. (A4)

One can check that the above equations can be satisfied by
the substitutions of B′(t) = −B(−t) and H′(t) = −H(−t) (as
shown following):

∇ × E′(t) = ∇ × E(−t) = −∂B(−t)

∂(−t)
= −∂B′(t)

∂t
,

∇ × H′(t) = −∇ × H(−t) = −∂D(−t)

∂(−t)
= ∂D′(t)

∂t
.

This means that the change in sign of pseudovectors is
associated with the Maxwell’s equations. The above results
are not new and well documented in the literature [35].

2. Part II. Complex conjugate in frequency domain

We now consider the constitutive relations in frequency
domain using the conclusion in Part I. We have the original
four fields satisfying the following equations:

D(ω) = ε̄(ω) · E(ω), (A5)

B(ω) = μ̄(ω) · H(ω). (A6)

It is well known that an additional complex conjugate must be
applied to the frequency-domain fields when time is reversed.
Substituting t ′ = −t into D(t ′) = Re(

∫ ∞
−∞ D(ω)e−iωt ′dω) will

give

D(t ′) = D(−t) = Re

(∫ ∞

−∞
D(ω)eiωtdω

)

= Re

(∫ ∞

−∞
[D(ω)eiωt ]∗dω

)

= Re

(∫ ∞

−∞
D∗(ω)e−iωtdω

)
,

which gives D′(ω) = D∗(ω). Together with the conclusion in
Part I, the fields in frequency domain are

E′(ω) = E∗(ω), D′(ω) = D∗(ω), (A7)

B′(ω) = −B∗(ω), H′(ω) = −H∗(ω). (A8)

If the system is the same under time reversal, one must have

D′(ω) = ε̄(ω) · E′(ω), (A9)

B′(ω) = μ̄(ω) · H′(ω). (A10)

The above equations are satisfied by all time-reversed fields in
Eqs. (A7) and (A8) if ε̄∗(ω) = ε̄(ω) and μ̄∗(ω) = μ̄(ω).

Finally, we conclude that if we consider the change in sign
for pseudovectors, the way to break time-reversal symmetry is
to make either ε̄∗(ω) �= ε̄(ω) or μ̄∗(ω) �= μ̄(ω).

APPENDIX B: DERIVATION OF EQUATIONS (5) AND (6)

We start with the one-dimensional (1D) transfer matrix T̂

from region 0 to 3 [shown in Fig. 1(b)], defined by(
E+

3
E−

3

)
= T̂

(
E+

0
E−

0

)
=

(
T11 T12

T21 T22

)(
E+

0
E−

0

)
. (B1)

Here, T̂ = M̂23P̂2M̂12P̂1M̂01 is the total transfer matrix of
the bilayer MDs structure, and M̂ij denotes the boundary-
condition matrix relating the electric-field amplitudes of the
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forward (E+) and backward (E−) waves at the interface
between the layers i and j :(

E+
j

E−
j

)
= M̂ij

(
E+

i

E−
i

)
(B2)

and

M̂ij = μ2
j − �2

j

2μjkxj

(
f ∗

j + fi f ∗
j − f ∗

i

fj − fi fj + f ∗
i

)
, (B3)

where fm = (μmkxm + i�mkym)/(μ2
m − �2

m) (m = i,j ) and
P̂m represents the usual propagation matrix

P̂m =
(

eikxmam 0
0 e−ikxmam

)
. (B4)

We then obtain the reflection coefficients rL and rR for the
light incident from left and right:

rL = E−
0

E+
0

∣∣∣∣
E−

3 =0

= −T21

T22
, (B5)

rR = E+
3

E−
3

∣∣∣∣
E+

0 =0

= T12

T22
. (B6)

By finding the zeros of the reflectance RL,R(≡|rL,R|2), we
finally obtain the mode solutions for the bilayer MDs structure:

sin(kxa)

kxkx0

{
cos(kxa)

[
k2
y

(
μ0

μ1
− μeff

μ0

)

− ω2

c2
(εmμ0 − ε0μeff)

]

+ ky�1

kxμ1
sin(kxa)

[
k2
y

(
μ0

μ1
+ μeff

μ0

)

− ω2

c2
(εmμ0 + ε0μeff)

]}
= 0, (B7)

where ε0 and μ0 are, respectively, the permittivity and perme-
ability for surrounding medium, kx0 =

√
ε0μ0ω

2/c2 − k2
y and

kx = kx1 = kx2 =
√

εmμeffω
2/c2 − k2

y are the wave-vector
components normal to the interface in background and
magnetic materials, respectively. The solutions are then ana-
lytically separated as reciprocal (symmetrical) modes [Eq. (5)]
and nonreciprocal (asymmetrical) ones [Eq. (6)].

APPENDIX C: PROPERTIES OF SCATTERING MATRICES
IN TWO- (AND MULTI) PORT SYSTEMS

We start with the scattering case in a two-port system shown
in Fig. 6(a), which usually considered in the literature. It can
also represent the plane-wave normal-incidence case in our
paper. In this simple case, the scattering matrix equation will
be in the form of(

E+
a

E−
b

)
=

(
rR t

t rL

) (
E−

a

E+
b

)
, (C1)

and the determinant of the transfer matrix and PT symmetry
in a one-dimensional system lead to the conservation relation
|1 − T | = √

RLRR [33], where T is the transmittance for
both sides, and RL(R) ≡ |rL(R)|2 is the reflectance for wave

FIG. 6. (Color online) (a) The usual scattering case in a two-port
system. (b) “Incomplete” off-axis scattering problem in a four-port
system. (c) “Complete” off-axis scattering problem in (b).

at port a (b). We further note that we have RL = RR(= R) and
1 − T = R in our plane-wave normal-incidence case since our
system is “Hermitian” and there are spatial symmetries such
as π rotation about y axis. In this case, there is no asym-
metry in transmission although the system itself has broken
reciprocity.

Figure 6(b) shows the case of “incomplete” off-axis
scattering problem in a four-port system. It can represent
the “incomplete” scattering problem in the calculation of
transmittance and reflectance for a given parallel component of
the wave vector. The parallel component is directed “upward”
in Fig. 6(b). The “complete” scattering problem will be
described in Fig. 6(c) later. We now consider Fig. 6(b) first.
The scattering matrix equation for Fig. 6(b) is in the form
of (

E+
c

E−
d

)
=

(
rca tcb
tda rdb

) (
E−

a

E+
b

)
, (C2)

where rij and tij denote the reflection and transmission
coefficients from port j to i (i,j could be taken as port a,b,c, or
d), respectively. Here, rdb = rca and tda = tcb could be found
due to the π rotation symmetry about y-axis in our system.
Mathematically, this scattering matrix equation is similar to the
previous case in Fig. 6(a) except that the “in” ports are totally
different from the “out” ports. The conservation equation will
be the same as in case Fig. 6(a).

Figure 6(c) shows the case of “complete” off-axis scattering
in Fig. 6(b). Here, “complete” means that it takes into account
all possible incoming and outgoing waves in all coupled
ports. The scattering matrix equation for this case is in the
form of ⎛

⎜⎝
E+

a

E−
b

E+
c

E−
d

⎞
⎟⎠ =

⎛
⎜⎝

0 0 r↓ t↓
0 0 t↓ r↓
r↑ t↑ 0 0
t↑ r↑ 0 0

⎞
⎟⎠

⎛
⎜⎝

E−
a

E+
b

E−
c

E+
d

⎞
⎟⎠ . (C3)
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Here, we use the subscripts “↑” and “↓” to denote the quan-
tities for the “upward” and “downward” rays, respectively.
It is also denoted by different colors in Fig. 6(c). Since
the “upward” and “downward” modes are independent,
the conservation equation can be satisfied independently,

1 − T↑ = R↑ and 1 − T↓ = R↓, while the scattering ma-
trix is of the standard nonreciprocal property ST

4×4 �=
S4×4 and thus Tda(orcb) ≡ T↑ �= T↓ ≡ Tad(orbc) gives rise
to one-way optical tunneling for oblique incidence (see
Fig. 3).
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