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A B S T R A C T

This paper proposes an automated approach for construction worker activity recognition by integrating video
and acceleration data, employing a decision-level fusion method that combines classification results from each
data modality using the Dempster-Shafer Theory (DS). To address uneven sensor reliability, the Category-wise
Weighted Dempster-Shafer (CWDS) approach is further proposed, estimating category-wise weights during
training and embedding them into the fusion process. An experimental study with ten participants performing
eight construction activities showed that models trained using DS and CWDS outperformed single-modal ap-
proaches, achieving accuracies of 91.8% and 95.6%, about 7% and 10% higher than those of vision-based and
acceleration-based models, respectively. Category-wise improvements were also observed, indicating that the
proposed multimodal fusion approaches result in a more robust and balanced model. These results highlight the
effectiveness of integrating vision and accelerometer data through decision-level fusion to reduce uncertainty in
multimodal data and leverage the strengths of single sensor-based approaches.

1. Introduction

The productivity of the construction industry is reported as one of the
lowest across all industry sectors due to its heavy reliance on manual on-
site operations [59]. To enhance labor productivity during on-site op-
erations, practitioners have emphasized the need for field data collec-
tion not only to evaluate the productivity based on output per labor hour
but also to measure the process of operations, aiming to understand the
current status of site operations and identify causes of low productivity
[28]. Traditionally, observation-based data collection has been adopted
to systematically record both spatial (e.g., work zones) and temporal (e.
g., task types, sequences, timings) information of on-site operations
[25]. However, these methods have been criticized for being labor-
intensive and time-consuming, leading to the urgent need for an auto-
mated means of field data collection [51].
Advancements in sensing technologies powered by data analytics

techniques, such as machine learning, have facilitated the automated
collection of field data to analyze the productivity of construction
workers [34]. In particular, activity recognition using computer vision
or wearable sensing technologies has been widely adopted in the con-
struction domain as an effective means of measuring the temporal

aspects of individual workers’ tasks at a detailed level [37,75]. For
example, construction tasks, such as concrete work, typically consist of a
series of subtasks, including formwork, rebar placing, and concreting,
which are further divided into specific activities such as transferring,
positioning, or installing forms according to the work taxonomy [26].
Recognizing these activities from time series data, such as videos and
acceleration data, enables the recording of sequences and durations for
each activity, which can help identify productivity issues during manual
operations. Vision-based activity recognition classifies predefined ac-
tivities from image sequences, as different activities create distinguish-
able spatial and temporal features in images. Thus, machine learning
algorithms can learn these features from training images to classify new
images [9]. Similarly, wearable sensor-based approaches capture mo-
tion data, such as accelerations, from wearable sensors and classify ac-
tivities by learning unique patterns of motion data associated with
specific activities [50]. Both vision- and acceleration-based approaches
have been validated in numerous studies within the construction field,
demonstrating their reliability and applicability for evaluating worker-
driven construction operations [7,36,46,74].
However, previous research efforts have pointed out the existing

limitations of each approach, leading to the need for multimodal fusion
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approaches [29]. Vision-based activity recognition has shown excellent
performance in recognizing diverse construction activities even in harsh
conditions such as dark or rainy construction sites, but its limited
coverage due to camera positions and frequent occlusion issues has been
widely criticized [11,65]. Additionally, distinguishing individual
workers from images becomes problematic when multiple workers are
present. In contrast, acceleration-based activity recognition is free of
data loss and individual identification issues, as data is continuously
collected from body-attached sensors. However, field tests in previous
studies indicate that it tends to underperform compared with vision-
based approaches, particularly due to confusion between activities
with similar motions [26]. Recognizing this issue, previous studies in
human activity recognition have introduced the fusion of images (pri-
marily depth images) with inertial data, demonstrating more robust
performance compared to single-modality approaches [69]. However,
most algorithms only function when both image and acceleration data
are available. This dependency may not be suitable for construction
sites, where cameras often fail to capture workers who move out of the
frame. Additionally, existing algorithms that attempt to address the
limitations of single-modality approaches usually do not fully leverage
the unique strengths of each modality in recognizing specific activities.
For example, vision-based action recognition has demonstrated high
accuracy for activities involving whole-body movements, such as laying
bricks and tying rebars, but tends to struggle to recognize activities that
involve fine hand movements like welding, sawing, and drilling [74].
Conversely, acceleration-based approaches can more accurately recog-
nize hand-dominant activities when acceleration signals are captured
from a wristband [26]. Therefore, fusing vision and acceleration data is
expected to improve overall performance by compensating for the lim-
itations of each modality’s data.
This paper proposes an automatic approach for recognizing con-

struction workers’ activities by integrating video and acceleration data.
The proposed method employs a multimodal decision-level fusion
approach that combines local classification results from each modality

using Dempster-Shafer Theory [78]. The originality of this research lies
in the use of a decision-level fusion method and the adoption of
category-wise weights for each modality’s classification results in the
fusion algorithm. The decision-level fusion allows classification results
to be generated even in the absence of video data due to the limited
range of cameras or occlusions, without any preprocessing or additional
computational burden. Furthermore, the study leverages the comple-
mentary strengths of vision-based and acceleration-based recognition
algorithms by introducing weighting strategies for fusion, informed by
prior knowledge from model training. The decision-level fusion method
is validated through experimental tests, comparing its activity recogni-
tion performance with those of single-modality approaches. The results
provide insights into both the performance and the remaining chal-
lenges of the proposed method.

2. Literature review

2.1. Construction worker activity recognition using vision- and sensor-
based approaches

Numerous studies have developed and validated vision- and sensor-
based approaches for automated and efficient recognition of worker
activities, as shown in Table 1. Vision-based methods show significant
promise for recognizing construction worker activities due to the non-
invasiveness of data collection and high recognition accuracy [43].
Multiple studies have validated the effectiveness of vision-based ap-
proaches for different trade workers, using various computer vision
techniques and video datasets. For example, Liu et al. [45] proposed a
silhouette-based human action recognition method using a single video
camera to monitor worker activities on construction sites, achieving
90.7% accuracy in identifying predefined activity classes such as
walking, lifting, and crawling in lab experiments. Also, Luo et al. [48]
introduced a method for recognizing diverse construction activities in
site images by leveraging convolutional neural networks (CNNs) to

Table 1
Vision- and acceleration-based method applications in construction worker activity recognition.

Activity recognition
method

Activity category Classification accuracy Research

Vision
Walking,

tying rebar guiding crane, between activities – [12]

Vision Fire caulking, hammering, idle, painting, walking 85.3% [24]
Vision Breaking, cutting & measuring, holding, idling, picking up, putting down, walking 76% [37]

Vision LayBrick, Transporting, CutPlate, Drilling, TieRebar, Nailing, Plastering, Shoveling, Bolting,
Welding, Sawing

61% [74];
[73].

Vision Walking, lifting, crawling 90.7% [45]

Vision

Leveling land, Excavating for foundation, Placing concrete, Shipping materials, Finishing concrete,
Installing foundation components, Transporting goods, Transporting people, Machining or

transferring formwork, Building formwork of slabs and beams, Building formwork of walls and
columns, Building formwork of stairs, Machining or transferring rebar, Fixing rebar of slabs and
beams, Erecting rebar of walls and columns, Building scaffolding systems, Building scaffolding for

slab formwork.

62.4% precision and 87.3% [48]

Vision Collect plaster, Transfer plaster, Apply plaster, Prepare material, Place material, Consolidate
placement

78.5% [53]

Vision

Driving truck,
Transporting cement,

Checking the power socket,
Cleaning up the plank,

Lashing rebar,
Paving concrete,

Installing scaffolding,
Smearing plaster

93.9% (non-occlusion) and 86.6%
(under occlusion)

[44]

Acceleration Work, material, travel, and idle – [17]

Acceleration Effective work, essential contributory work, ineffective work
90.1% (ironwork) and 77.7%

(carpentry) [36]

Acceleration Loading, pushing, unloading, returning, idling 87% to 97% (user-dependent) and 62%
to 96% (user-independent)

[2]

Acceleration Spreading mortar, laying blocks, adjusting blocks, removing mortar 88.1% [54]

Acceleration Standing, bending-up, bending, bending-down, squatting-up, squatting, squatting-down, walking,
twisting, working overhead, kneeling-up, kneeling, kneeling-down, and using stairs

94.7% [39]
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detect 22 classes of construction-related objects. This approach em-
phasizes the use of semantic relevance, representing the likelihood of
cooperation or coexistence between objects, and spatial relevance,
indicating pixel proximity, to recognize 17 types of construction activ-
ities. Similarly, Roberts et al. [53] developed a deep learning- and
vision-based framework for activity analysis, specifically targeting
construction resources through the analysis of 2D worker poses in RGB
video footage. This paper demonstrated a high level of accuracy with
82.6% mean average precision for pose estimation and 78.5% cross-
validation accuracy for activity analysis. Despite numerous previous
studies showing the potential of vision-based approaches for the activity
recognition of construction workers, challenges in capturing site images
or videos with clear views have been frequently reported. These chal-
lenges are particularly prevalent in dynamic construction environments,
where occlusions and poor lighting conditions often occur. For instance,
Li and Li [44] evaluated the performance of a GAN-based model inte-
grated with an attention mechanism for activity recognition from im-
ages with and without occlusions and found that occluded images could
lead to almost a 10% drop in accuracy. Also, Hussain et al. [33] found
that poor lighting conditions could result in a significant decrease in the
performance of vision-based activity recognition systems, as traditional
cameras are unable to function effectively in low-light or dark
environments.
In the application of sensor-based activity recognition in the con-

struction domain, accelerometers are among the most widely used
sensors for automatically monitoring worker activity [26]. Compared
with vision-based activity recognition approaches, acceleration-based
methods typically utilize accelerometers or inertial measurement units
(IMUs) embedded in wearable devices to capture acceleration signals
from body movements. Thus, they are not affected by environmental
conditions such as occlusions and varying lighting conditions [2].
Consequently, acceleration-based activity recognition has garnered
significant attention for its potential to facilitate continuous and auto-
mated activity analysis in dynamic environments such as construction
sites. A typical pipeline for acceleration-based methods involves
recording acceleration data from construction activities, segmenting and
labeling the signals through sliding window techniques, and training
machine learning-based classification algorithms [72]. In the construc-
tion domain, the use of acceleration signals from wearable sensors or
mobile phones with IMUs has been extensively investigated for various
types of construction activities. For example, Joshua and Varghese [35]
demonstrated that acceleration-based activity recognition could achieve
about 80% classification accuracy for various masonry tasks, proving
substantial promise for this approach for activity analysis. Akhavian and
Behzadan [2] validated the effectiveness of using smartphone-collected
acceleration signals to distinguish idling and sawing activities. Gong
et al. [26] developed a hierarchical work taxonomy for acceleration-
based activity recognition in construction, categorizing activities by
body movements and work contexts to enhance classification accuracy.
When tested with data from 18 workers, the approach achieved over
90% accuracy for Level 1 activities, 80–90% for Level 2, and around
75% for Level 3 by employing machine learning algorithms. Despite
promising results, significant challenges remain in achieving better ac-
curacy in worker activity recognition. For example, similar postures and
movements involved in different activities (e.g., tying, screwing) tend to
lead to confusion between them as they would create relatively similar
acceleration patterns [1]. Another limitation of using acceleration data
alone is the lack of sufficient semantic information to recognize complex
activities accurately [52]. For instance, activities like walking without
carrying any objects and transferring materials are distinct in their work
context, yet they may generate similar acceleration signals. This simi-
larity makes it challenging to differentiate between these activities
based solely on acceleration data.
In summary, both vision- and acceleration-based activity recognition

have shown their potential for capturing temporal (e.g., task types, se-
quences, timings) information of on-site operations that can be used for

productivity analysis, especially for worker-oriented manual operations.
However, there are several remaining challenges for practical applica-
tions of these approaches. Even though recent studies have tried to
address these challenges by proposing new methodologies or algo-
rithms, some of the challenges (e.g., occlusions, limited coverage range
of vision-based approaches, confusions between activities, or lack of
contextual information of acceleration-based approaches) are inherent,
which are not easy to address by a single modality approach. This
problem has led to the need for a sensor-fusion approach for activity
recognition that combines data from different sources not only to ach-
ieve better accuracy but also to reduce uncertainty. In particular, the
fusion of vision and acceleration data has demonstrated advantages in
improving classification accuracy across various domains, including
gesture recognition, activity recognition [16], and infrastructure health
monitoring [60,71]. Within the construction domain, Kim et al. [38]
proposed a hybrid kinematic (i.e., acceleration signals) and visual
sensing framework that integrates features from both sources to conduct
activity recognition of construction equipment. However, the feasibility
of applying this approach to worker activity analysis remains to be
validated.

2.2. Multimodal fusion techniques and applications

Multimodal fusion, a technique that merges information from mul-
tiple sources, enhances tasks’ accuracy, stability, and efficiency
compared to single-modality data [23,49]. The advent of advanced
sensor technologies has enabled efficient, precise, and automated data
acquisition, resulting in the development of various fusion types
[55,66]. Each form of fusion possesses strengths suited to specific tasks,
and thus, selecting the appropriate fusion strategy is crucial. Researchers
have devised multiple fusion architectures tailored to the unique attri-
butes and practicality of these methods, thereby aiding in the effective
identification of appropriate fusion techniques [4]. Luo and Kay [47]
proposed a framework of fusion approaches that can be classified into
three categories: data-level, feature-level, and decision-level fusions,
according to the steps of data processing, as shown in Fig. 1. Data-level
fusion necessitates that raw data from multiple sensor sources be com-
bined, after which the integrated data serve as input for the single model
(Fig. 1 (a)). For effective data fusion at this level, the raw data must be
both commensurate and appropriately associated prior to the fusion
process [14]. Meanwhile, as reported by [42], the computational cost
associated with data-level fusion exceeds that of feature- and decision-
level fusion methods because of its extensive data preprocessing.
Feature-level fusion focuses on extracting and amalgamating feature
vectors derived from each sensor’s observations as a part of data pro-
cessing in the model. The vectors are then coalesced into a singular and
comprehensive feature vector that is processed by the model, such as

Fig. 1. Hierarchical data processing framework for fusion: (a) Data-level
fusion, (b) Feature-level fusion, (c) Decision-level fusion.
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neural networks, culminating in a unified output based on the amal-
gamated feature vectors from all sensors (Fig. 1 (b)) [31]. By employing
feature engineering strategies such as dimensionality reduction, the
complexity and computational cost of the feature-level approach can
potentially be reduced. Nonetheless, the feature-level approach has
limitations, as it might involve data loss during the feature selection or
filtering processes. This limitation could lead to a potential issue related
to data integrity [6,68]. Decision-level fusion architecture requires each
sensor to independently generate a preliminary result based on its spe-
cific data set and an independent model (Fig. 1 (c)). After that, the final
decision is made by integrating these preliminary results using methods
like classical inference, Bayesian inference, or Dempster-Shafer’s theory
[31]. The comparative merits and limitations of data-, feature-, and
decision-level fusion are summarized in Table 2. Among the three types
of fusion approaches, the decision-level fusion would be the most
appropriate for recognizing construction workers’ activities due to its
robustness against data incompleteness and minimal requirement for
complex data preprocessing. Also, considering that activity recognition
algorithms using vision or acceleration data are rapidly advancing, the
decision-level fusion approach would allow quick updates of new clas-
sification models without disrupting the existing sensor network. These
advantages can enhance flexibility and practical applicability
[13,16,30,67].
The performance of decision-level fusion heavily relies on the

methods used to make final decisions based on the outputs from
different sensor sources. In general, the majority voting method is
widely used to consolidate outputs from various predictions, estimates,
or classifications and to decide the final output based on the most
frequently occurring result [58]. Majority voting is most suitable for
binary or discrete decision problems (e.g., yes/no, true/false). It is not
well-suited for continuous or nuanced decision-making where there may
be a spectrum of possible outcomes or where the decision needs to
reflect degrees of confidence [20]. To address this issue, multimodal
fusion with Bayesian inference integrates multiple pieces of evidence
using Bayesian probability theory. This approach represents the uncer-
tainty of an event through conditional probabilities ranging from zero to
one. The core principle of Bayesian fusion is the use of posterior prob-
abilities to represent beliefs about the fusion results. In multisensory
data fusion, decisions made by each sensor serve as prior probabilities
for specific conditions. By integrating these probabilities, Bayesian
fusion combines data from multiple sources to create an overall likeli-
hood that supports a particular hypothesis. The final decision is made by
identifying the outcome with the highest combined likelihood [61].
Zappi et al. [76] investigated activity recognition using on-body sensors
during automotive manufacturing processes was investigated. Two
methods were proposed to address challenges such as sensor degrada-
tion, interconnection failures, and variations in sensor placement and
orientation: a naive Bayesian fusion technique and a majority voting
scheme. The results showed that the naive Bayesian fusion method
significantly enhanced classification accuracy, increasing it from 50%
with a single sensor to 98% with 57 sensors. Furthermore, the com-
parison between the two methods demonstrated that the Bayesian
approach outperformed the majority voting scheme in this paper.
Recently, many studies on decision-level fusion have been applying

the Dempster-Shafer Theory (DST) as a final decision model. It is a
mathematical theory in statistics that was first proposed by Dempster
[19] and further developed by Shafer [57]. The method, also known as
evidence theory or belief theory, introduces the belief function to

quantify the degree of belief for a particular hypothesis based on the
available evidence, allowing for uncertainty representation without
necessitating the summation of probabilities to one across the sample
space [27]. Unlike Bayesian inference, which requires predefined prior
probabilities, DST does not rely on such information for decision fusion,
thereby thereby eliminating biases from hand-crafted priors [18]. Its
flexibility makes it a better choice for fusing results from various sensors
in multimodal systems [13]. For instance, Chen et al. [15] applied a
DST-based decision-level fusion method for human activity recognition
using both a depth camera and an inertial sensor. Tests conducted on a
public human action dataset showed that the decision-level fusion
method outperformed each sensor used individually (e.g., Kinect,
accelerometer).
When applying the Dempster-Shafer (DS) theory for decision-level

fusion, a common assumption is that all sensors have equal credibility
[22]. However, due to the relative strengths and weaknesses of vision
and acceleration data in recognizing specific activities, one type of
sensor may outperform the other depending on the activity. For
example, acceleration signals from wristbands are likely to more accu-
rately capture hand-dominant activities, such as tying rebar, while im-
ages may be less effective in detecting small hand movements, such as
those involved in assembling small parts. To address this issue, previous
studies have adopted a weighted method that applies a discounting
variable to each fusion input, thereby adjusting for differing trust levels
among sensor sources [57]. In general, the weighting factors would be
determined based on expert knowledge [10,63] or historical data Wu
et al. [70]. However, it would be necessary to identify the most suitable
way to determine the weighting factors for vision- or acceleration-based
activity recognition results, considering the nature of construction tasks
and strengths of each activity recognition method.

3. Methodology

This paper proposes a multimodal fusion approach for automated
activity recognition by combining RGB images from site videos with
acceleration signals from a wristband. The objective is to measure key
temporal information, such as the types, sequences, and durations of
manual handling tasks in construction. The proposed approach employs
a decision-level fusion method based on the Dempster-Shafer theory to
determine activity classes from two independent deep learning models
trained with vision and acceleration data, respectively. Category-wise
weights, calculated during the training process to account for the un-
equal trust levels of each sensor, are applied in the final decision model.
These features, combining decision-level fusion with category-specific
weights, ensure predictions despite data loss and improve classifica-
tion performance by maximizing the strengths of each modality. Fig. 2
shows an overview of the proposed methodological framework, with its
details described in the following sections. This framework consists of
four key components: 1) data pre-processing, 2) deep learning-based
activity recognition, 3) category-wise weight extraction, and 4)
decision-level fusion. The framework begins with the collection of
construction activity data, including RGB video images from cameras
positioned at sites and acceleration signals from wrist-worn activity
trackers. The data are then pre-processed for segmentation and syn-
chronization. Deep learning algorithms use these two data modalities to
independently generate preliminary activity predictions. These initial
predictions, which are the local decisions, are adjusted using the esti-
mated category-specific weights and are subsequently integrated using

Table 2
Comparison of data-, feature-, and decision-level fusion.

Fusion type Advantages Disadvantages

Data-level fusion Comprehensive data preservation High computational power and data compatibility
Feature-level fusion Dimensionality reduction and incompatible data tolerance Critical feature choice and potential data loss
Decision-level fusion Computational efficiency and high system flexibility Lack of data detail
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the Dempster-Shafer method. The effectiveness of this framework has
been validated through experiments.

3.1. Data preprocessing

Data preprocessing involves three main steps: synchronization, seg-
mentation, and labeling. First, video and acceleration data are syn-
chronized to ensure temporal alignment and mitigate discrepancies
[41]. Proper synchronization is essential to maintain temporal coher-
ence, ensuring that data points from different sources represent the same
moment, which is vital for accurate labeling and analysis [3]. Next,
segmentation is applied, which is critical for Human Activity Recogni-
tion (HAR) tasks that use time-series data such as acceleration mea-
surements [8,77]. This paper employed a sliding window technique to
divide continuous acceleration data into smaller, fixed-size sequences
[21]. Based on previous research, window sizes ranging from 0.5 to 4.0
s, in 0.5-s increments, were tested to identify the optimal size for
maximizing classification performance, with a 50% overlap applied to
minimize transition noise [54,62]. Although the vision-based activity
recognition algorithm does not require segmentation, the video data
were slid into sequences matching the acceleration segments to ensure
consistency. Preliminary testing for different window sizes indicates that
the optimal window size for the acceleration approach is 1.0 s, while the
optimal window size for the vision approach is 0.5 s according to the
average testing accuracy. The results indicate that the acceleration
model is more sensitive to window size. Therefore, the video and ac-
celeration data are both segmented using a 1.0-s window.
For labeling, this paper adopted a hierarchical activity taxonomy

from a previous study [26]. The taxonomy consists of three levels: Level
1 distinguishes between “Idling” and “Work”; Level 2 further divides
“Work” into “Traveling” and “Material Installation” (e.g., preparing,
connecting, placing materials); and Level 3 provides more detailed
subcategories such as “Material preparation” (e.g., cutting, bending),
“Material connecting” (e.g., tying, screwing), and “Material placing” (e.
g., lifting, adjusting). This hierarchical taxonomy facilitates compre-
hensive productivity analysis by identifying different activity types and
specific areas of inefficiency. The entire preprocessing procedure is
illustrated in Fig. 3, where the preprocessed data are prepared for input
into single-modal deep learning models to recognize worker activity.

3.2. Single-modal deep learning models for construction worker activity
recognition

The segmented datasets, labeled with predefined activities, were
used to train two independent single-modal deep learning models,
which form the basis for a multimodal fusion approach to activity
recognition. For the vision-based model, the core architecture is ResNet
(Residual Networks), a deep neural network design that effectively ad-
dresses degradation problems through residual mapping and shortcut
connections [32]. Among the various ResNet variants, this paper utilizes
ResNet-50, a 50-layer deep neural network architecture designed to
efficiently learn and infer complex patterns in video data, which has
been validated in prior research for activity recognition tasks [64]. In
contrast, the acceleration-based model is trained using a Bidirectional
Long Short-Term Memory (BiLSTM) network, an architecture well-
validated for classifying diverse construction tasks using acceleration

Fig. 2. Weighted decision-level fusion framework for worker activity recognition.

Fig. 3. Data preprocessing illustration.
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signals [26].
The trained single-modal models produce a predicted activity label

during inference, typically the one with the highest probability, which
serves as a key metric for evaluating model performance. However,
when combining predictions from multiple single-modal models, con-
flicts may arise due to differing predictions. To resolve these conflicts,
the models fuse their confidence scores rather than their predicted la-
bels. These confidence scores, generated by the softmax function in the
final layer of neural networks, represent a probability distribution across
all classes and quantify the network’s confidence in its predictions
[5,40]. Fig. 4 illustrates this process. The confidence scores are then used
as input to the fusion module, enabling decision-level fusion by inte-
grating local predictions from multiple models.

3.3. Decision-level fusion model for construction worker activity
recognition

The decision-level fusion model makes a final determination based
on the classification results from the vision- and acceleration-based ac-
tivity recognition models developed in the previous step. The fusion
model utilizes the Dempster–Shafer Theory (DST) to combine evidence.
However, to address the issue of varying credibility between the sensor
systems, the current study applies category-wise weights to the predic-
tion scores to balance their respective influences. Fig. 5 illustrates the
overall framework for the decision-level fusion.
Employing Dempster-Shafer Theory (DST) to fuse activity recogni-

tion results in decision-level fusion, which involves two steps. The first
step converts the possibility of predicted labels to the degree of belief in
the label. The second step combines the beliefs for the same class label
obtained from the two activity recognition models using Dempster’s rule
of combination [13,56]. The belief degree is measured by the mass
function, which has the following properties:

m(∅) = 0 (1)

m : 2Θ→[0,1] (2)

∑

{H∈Θ}
m(H) = 1 (3)

where spaceΘ denotes all possible predicted classes,H represents the
predicted class by the model, and m is the mass function. Additionally,
the combination rule for DST is expressed by the following equations:

mv,a(H) = mv ⊕ma =
1

1 − K
∑

{B∩C=H}
mv(B)ma(C) (4)

K =
∑

{B∩C=∅}
mv(B)ma(C) (5)

mv,a(∅) = 0 and H ∕= ∅ (6)

Hypotheses B and C refer to the classification results of the vision-
based model and the acceleration-based model, respectively. In this
paper, the outcome of classification is a set of probability scores for

potential activity categories rather than a single definitive outcome. For
example, hypotheses B = [“Drill”: 0.26, “Hammer”: 0.01, “Idle”: 0.00,
“LiftBrick”: 0.05, “LiftRebar”: 0.10, “MeasureRebar”: 0.47, “TieRebar”:
0.09, “Travel”: 0.02], and corresponding hypotheses C could be repre-
sented as [“Drill”: 0.61, “Hammer”: 0.00, “Idle”: 0.00, “LiftBrick”: 0.00,
“LiftRebar”: 0.03, “MeasureRebar”: 0.33, “TieRebar”: 0.02, “Travel”:
0.00]. The mass functions mv(B) and ma(C) are constructed based on the
hypotheses B and C, respectively. The combined belief degree mv, a (H)
represents the confidence that both models recognize the activity as
category H. Additionally, the conflict measure K quantifies the
disagreement between the mass functions from the two different sour-
ces. In situations where one modality is missing, the method addresses
this by treating the mass function of the missing modality as vacuous,
which assigns all belief to the entire frame of discernment Θ, in the
Dempster-Shafer theory. In particular, a vacuous mass function meets
the following principles:

m(B) = 0 for all B⊂Θ and B ∕= ∅ (7)

By introducing the above assumptions, the B ∩ C in Eq. (5) equals C
(the available modality’s hypothesis) rather than the empty set, allow-
ing the combination to proceed correctly. To achieve this, the output
probabilities of the missing modality are set to zero for all categories,
effectively constructing the vacuous mass function in the combination
process.
While the Dempster-Shafer approach serves as a baseline, an addi-

tional weighting strategy is applied to assign category-specific weights
to each model’s predictions, ensuring balanced trust levels for different
sensor sources. This modified method, called the Weighted Dempster-
Shafer Theory (WDST), integrates the decision using the following
updated combination rule:

mv,a(H) = mv ⊕ma =
1
1 − K

wvmv(B)×wamv(C) (8)

In the equation, wv and wa are the category-specific weight vectors
for the vision- and acceleration-based activity recognition models,
respectively. Selecting these weights is essential for ensuring the credi-
bility and accuracy of the sensor systems. Traditionally, weights are
determined using historical data or expert knowledge. However, this
paper uses category-wise accuracy metrics obtained from model vali-
dation as weights for each activity prediction. This approach is a specific
implementation of WDST and is denoted as Category-wise Weighted
Dempster-Shafer (CWDS) in this paper. The proposed weight estimation
method is an adaptive approach that reflects the model’s category-wise
potential. Whenever the dataset or algorithm changes, the estimated
weights are updated accordingly, indicating a more reliable confidence
level for the model’s predictions in each category. Additionally, metrics
such as precision, recall, and F1 score, which are used to evaluate the
performance of classifiers, can be applied as weights. These metrics
indicate each model’s strength in predicting specific activities. By using
these metrics as category-specific weights for each model’s predictions,
the fusion model can rely more on the model that demonstrates higher
reliability in detecting a given activity class.

Fig. 4. Class probability distribution for multiclass activity recognition using softmax activation in deep learning.
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In the practice of activity recognition model inference, many scores
of categories towards extremely low values. For example, in one output
possibility distribution, one category has 0.9 possibilities while the
remaining categories have extremely small values, such as 10− 6. These
minimal values indicate a small likelihood of classification for those
categories and have little impact on results when considering the con-
flict. However, when introducing the weight during the DS combination
process, these extreme values introduce considerable errors to the
combination results. The current study, therefore, proposed a strategy to
filter out extreme predictions. The filtering approach involves sorting
the prediction scores in descending order and filtering out weights
below a specified threshold, such as 0.001. The remaining probabilities
and their corresponding prediction categories are then re-normalized
and constructed to the mass function. The subsequent fusion process
adheres to the Dempster-Shafer rule of combination.

3.4. Experimental conditions and data processing

Experimental tests were conducted to validate the proposed method
by simulating construction tasks and evaluating activity recognition
performance using video and acceleration data. Acceleration data were
collected from an Apple Watch (Series 4, 40 mm, 30.1 g) worn on the
dominant arm. Simultaneously, videos were recorded from three
different angles (i.e., front, side, and diagonal) using embedded

smartphone cameras (iPhone X, iPhone 7, and iPhone 12). The sampling
frequencies were 100 Hz for acceleration data and 30 fps for video data.
Ten postgraduate students from the Hong Kong Polytechnic University,
majoring in Building Engineering and Management, participated in the
experiment. Each participant wore full safety gear, including hard hats
and safety vests, to simulate real-world conditions. All participants gave
their informed consent following the procedures approved by the
Human Subject Ethics Subcommittee of the Hong Kong Polytechnic
University (Reference Number: HSEARS20161102003). The experi-
ments were conducted in laboratory settings designed to simulate con-
struction environments without intentional occlusions.
The participants simulated eight typical construction activities in the

laboratory (Fig. 6): “Traveling” (TL), “Lifting Brick” (LB), “Lifting
Rebar” (LR), “Measuring Rebar” (MR), “Tying Rebar” (TR),
“Hammering” (HR), “Drilling” (DR), and “Idling” (ID). These activities
were selected to cover a range of body and hand movements. For
example, “Traveling” and “Idling” involve whole-body horizontal
movements, while the lifting tasks engage both whole-body and arm
movements. The use of different materials, such as brick and rebar, in-
troduces slight variations in arm motions due to the distinct handling
requirements of each material. The remaining activities, such as
“Measuring Rebar,” “Tying Rebar,” “Hammering,” and “Drilling,”
represent material assembly tasks that require minimal whole-body
movement and more precise hand and arm actions. To enhance data

Fig. 5. Weighted Dempster-Shafer decision-level fusion framework.

Fig. 6. Images of instructed activities: (a) Traveling, (b) Lifting Brick, (c) Lifting Rebar, (d) Measuring Rebar, (e) Tying Rebar, (f) Hammering, (g) Drilling, and
(h) Idling.
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reliability, minimize variability, and ensure comprehensive data
collection, the researchers asked participants to repeat each activity five
times, resulting in a dataset of 240 well-labeled trials. This experimental
setup provides a robust foundation for developing and validating deep
learning models for activity recognition. The controlled experimental
conditions, characterized by limited inter-subject variability, aimed to
validate the methodological framework for vision and sensor data fusion
at the decision level.
Before starting the activities, participants were asked to perform a

warm-up action by continuously waving their dominant hand while
wearing the Apple Watch. This generated distinct acceleration signals
that were accurately recorded and easily identifiable in both the accel-
eration data and the video footage. The moment the hand stopped
waving served as a synchronization reference point, enabling precise
alignment of timestamps between the videos from multiple camera an-
gles and the acceleration data. After the warm-up concluded, the actual
activity began and continued until the participant returned to a desig-
nated spot, as observed in the video recordings. The endpoint of the
acceleration data was determined by matching the duration of the cor-
responding video event from the aligned start time. Following this
synchronization, both video and acceleration data were segmented with
a window size of 1.0 s, which demonstrated the best performance in
classifying activities using each activity recognition algorithm. The
segmented data were then labeled with the corresponding activity. The
proposed decision-level fusion method was evaluated using five-fold
cross-validation, with the data randomly split into training, validation,
and testing datasets in a 3:1:1 ratio.

4. Results

4.1. Single-modal activity recognition results

The average testing accuracies from the five-fold cross-validation
results are 85.6% and 85.4% for the activity recognition models trained
from vision-based and acceleration-based algorithms, respectively.
Table 3 and Table 4 present the confusion matrices with recall, preci-
sion, and F1 scores for each activity. For the vision-based model, ac-
tivities such as “Hammering” (HR), “Idling” (ID), and “Drilling” (DR)
achieved high performance, with precision, recall, and F1 scores
exceeding 98%. However, activities like “Traveling” (TL), “Lifting Brick”
(LB), and “Measuring Rebar” (MR) exhibited low performance, with F1
scores of 58.9%, 71.2%, and 84.2%, respectively. For the acceleration-
based model, activities such as “Idling” (ID) and “Hammering” (HR)
achieved high performance, with precision, recall, and F1 scores
exceeding 89%. However, while “Measuring Rebar” (MR) exhibited
lower performance (with all metrics below 80%), “Lifting Rebar” (LR)
and “Tying Rebar” (TR) demonstrated relatively lower performance
compared to other activities, with some metrics hovering around
80–83%.

4.2. Multi-modal activity recognition results

The current research employed and evaluated two proposed fusion
approaches: the Dempster-Shafer (DS) method and the Category-wise
Weighted Dempster-Shafer (CWDS). The fusion models were trained
and evaluated using the same methods and data as used for the vision
and acceleration models. The testing results of the two fusion models are
presented in Table 5. As reported, the DS method significantly improved
accuracy to 91.9%. Applying category-wise weighting and filtering out
extreme predictions further enhanced accuracy, with results reaching up
to 96.0%. The thresholds for filtering were determined by testing typical
values, such as 0.1%, 1%, and 5%, and selecting the one that provided
the best performance. Additionally, distinct types of weights based on
accuracy-related metrics obtained from single-model training were
tested to identify the most appropriate metric. In this test, the precision,
recall, and F1 scores showed similar levels of improvement during the
fusion procedure.
Table 6 presents the confusion matrix for the Category-wise

Weighted Dempster-Shafer (CWDS) method, allowing for a detailed
analysis of category-wise performance. The performance of all activity
classifications reaches a high level. In particular, the activities DR, HR,
ID, LB, LR, and TL have F1 scores exceeding 95%. The remaining ac-
tivities did not reach F1 scores of 95% but are all over 90%, demon-
strating balanced and robust classification capability. A comparison
between multi-modal and single-modal approaches, along with a
detailed analysis, will be included in the discussion.

5. Discussion

Experimental testing results, as indicated in Table 5, demonstrate
that the proposed decision-level fusion method significantly increases
activity recognition accuracy. Specifically, the CWDS method achieved
96.0% accuracy, which is up to 10% higher than single-modality
models. This improvement validates the effectiveness of combining
probabilistic outputs from single-modality models using the Dempster-
Shafer approach, thereby enhancing overall classification capability.
Additionally, applying weighting factors based on accuracy-related
metrics of each model, such as the F1 score from the training process,
effectively addressed the unequal credibility of the sensor modalities by
reflecting each model’s category-specific strengths. This adjustment
improved the overall accuracy to approximately 96.0%, representing
about a 4% increase over the pure DST fusion method.
The main reason the fusion approach works is that different data

modalities provide various features of the activity, exhibiting varying
strengths and weaknesses. Moreover, in multi-class classification tasks
such as those in this study, such strengths and weaknesses are category-
specific. To better illustrate the comparison of the category-wise per-
formance among vision-based, acceleration-based, and fusion models,
the precision, recall, and F1 scores are presented in radar plots, as shown
in Fig. 7. For instance, the acceleration-based model achieves higher
performance in terms of precision, recall, and F1 score for the activity
“Lifting Brick” (LB) than the vision-based model. In contrast, the vision-

Table 3
Confusion matrix of vision-based activity recognition result (1.0-s. window).

True \ Predicted DR HR ID LB LR MR TR TL Recall (%)

DR 298 0 0 0 0 0 0 0 100.0
HR 1 301 0 0 0 0 0 0 99.7
ID 3 0 299 0 0 0 0 0 99.0
LB 0 1 0 236 18 4 4 39 78.1
LR 0 0 0 13 271 10 2 6 89.7
MR 0 0 0 1 0 255 46 0 84.4
TR 0 0 0 1 0 31 270 0 89.4
TL 0 0 0 110 16 4 4 128 48.9

Precision (%) 98.7 99.7 100.0 65.4 88.9 83.9 82.8 74.0
F1 Score (%) 99.3 99.7 99.5 71.2 89.3 84.2 86.0 58.9
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based approach outperforms the acceleration-based method for the ac-
tivity DR, with precision, recall, and F1 scores of 98.7%, 100.0%, and
99.3%, respectively, compared to 86.9%, 90.9%, and 88.9% for the
acceleration-based model. The plots clearly show the improvement in
classification performance from the CWDS method in most categories,

such as TL, LB, and MR, but it does not always guarantee category-wise
improvements. For example, the vision-based model achieves slightly
higher precision for DR than both the acceleration-based and fusion
models. This implies that the proposed fusion method not only com-
pensates for the limitations of single-modal sources but may also

Table 4
Confusion matrix of acceleration-based action recognition result (1.0-s window).

True \ Predicted DR HR ID LB LR MR TR TL Recall (%)

DR 271 4 9 0 0 12 2 0 90.9
HR 12 273 0 0 1 14 2 0 90.4
ID 15 0 278 1 1 1 2 4 92.1
LB 0 0 0 251 25 7 1 18 83.1
LR 0 0 2 12 251 23 7 7 83.1
MR 10 6 5 10 28 213 26 4 70.5
TR 4 5 2 7 10 17 251 6 83.1
TL 0 0 0 8 6 1 5 242 92.4

Precision (%) 86.9 94.8 93.9 86.9 78.0 74.0 84.8 86.1
F1 Score (%) 88.9 92.5 93.0 84.9 80.4 72.2 83.9 89.1

Table 5
Overall performance of construction activity recognition models utilizing various methodologies.

Methodology Average Testing Accuracy (%)

Single-modal Approaches
Vision-based 85.6

Acceleration-based 85.4

Multi-modal Approaches (Decision-level Fusion)

Dempster-Shafer Theory (DS) 91.9

Category-wise Weighted Dempster-Shafer (CWDS)
Precision-based Weighting 96.0
Recall-based Weighting 95.7
F1 score-based Weighting 95.1

Table 6
Confusion matrix of decision-level fusion activity recognition using Category-wise Weighted Dempster-Shafer method.

True \ Predicted DR HR ID LB LR MR TR TL Recall (%)

DR 298 0 0 0 0 0 0 0 100.0
HR 1 299 0 0 0 1 1 0 99.0
ID 2 0 297 0 0 0 0 3 98.3
LB 0 0 0 285 8 0 0 9 94.4
LR 0 0 0 4 292 4 1 1 96.7
MR 3 0 0 0 0 282 17 0 93.4
TR 1 3 0 0 0 14 284 0 94.0
TL 0 0 0 8 3 0 0 251 95.8

Precision (%) 97.7 99.0 100.0 96.0 96.4 93.7 93.7 95.1
F1 Score (%) 98.8 99.0 99.2 95.2 96.5 93.5 93.9 95.4

Fig. 7. Evaluation of single-modal and multi-modal (decision-level fusion) methods across activity categories.
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introduce biases from other sources.
While the weighted method based on accuracy-related metrics ob-

tained from each model’s training has shown effectiveness in improving
overall accuracy, different types of weighting factors (e.g., precision,
recall, F1 scores) did not lead to significant differences. According to the
CWDS equation, the probabilistic confidences of classes (mi) from each
model are combined with the weighting factors (wi) that represent the
category-wise strengths of each model by simply multiplying them. In
general, the variability of mi (0.0–1.0) was much higher than that of wi
(0.6–1.0). This may lead to less improvement when adopting weighting
factors compared to applying probabilistic confidence.
Despite the advantages of the proposed decision-level fusion method

for measuring the temporal aspects of manual handling activities,
several limitations need to be addressed from both theoretical and
practical perspectives. Although the proposed method improved accu-
racy, the roles and interaction effects of the two variables, mi and wi,
remain unclear. Further investigation is needed to identify how to
optimize the combination of these two variables, incorporating
advanced filtering and weighting techniques to mitigate biases and
enhance accuracy. Additionally, as the experimental data were collected
by repeating specific tasks independently, they may not fully reflect the
potential data noise present in real-world conditions. For example, ac-
cording to our previous study [26], most errors in acceleration-based
activity recognition stem from activities that cannot be clearly defined
due to the continuous nature of construction activities. Moreover, videos
from construction sites are frequently occluded by other objects, leading
to diminished performance in vision-based activity recognition. To
address this issue, the proposed method will be further tested by col-
lecting data on real construction sites.

6. Conclusion

This paper presents a methodology for automatically recognizing
construction workers’ activities by integrating video and acceleration
data through a decision-level fusion approach. The proposed method
leverages the complementary strengths of each modality, enabling more
accurate activity recognition in construction settings. To develop and
evaluate the model, training, validation, and test datasets comprising
eight classes of construction-related activities were created in controlled
lab environments. RGB videos were captured using smartphone cam-
eras, and acceleration signals were recorded from wrist-worn sensors.
Two independent deep-learning models were then used to perform
preliminary activity recognition on each data modality. Category-
specific weights were applied to the predictions to address differences
in the reliability of each modality. These weights were estimated during
the model training process and adjusted by filtering out extreme values.
The weighted predictions were then combined using the Dempster-
Shafer theory to determine the final activity classes.
The testing results demonstrated that the proposed method achieved

up to 10% higher accuracy compared to single-modality approaches, as
the Dempster-Shafer-based approach increased recognition accuracy
from 85.6% and 85.4% to 91. %. The application of the weighted
method further enhanced the overall performance to 96.0% by reflect-
ing the category-specific strengths of each model. The proposed
approach has also proven to improve performance in certain activity
categories, such as lifting tasks. This improvement results from the
ability to compensate for the weaknesses of each modality while pre-
serving its unique strengths. Vision data provide detailed information
about the lifting object. In contrast, acceleration data detect subtle
motion responses caused by different types of lifting, whether involving
the whole body or just the arm.
The proposed method offers several practical advantages for auto-

matically measuring activities in productivity analysis. Single-modality
approaches for activity recognition often fail due to the inherent limi-
tations of individual sensor systems. In contrast, the proposed multi-
modal fusion approach enables activity recognition even when data

from one sensor is missing, as the models using vision and acceleration
data independently contribute to the final decision during the decision-
level fusion stage. The independent structure also facilitates the updat-
ing of each single-modality model as needed. Furthermore, combining
the outputs from vision- and acceleration-based recognition improves
accuracy, allowing for more reliable activity analysis and better iden-
tification of potential issues related to low labor productivity. Although
further improvements are necessary, such as parameter optimization,
validation in field conditions, and testing on a larger and more diverse
participant group, the proposed method is expected to serve as an
effective tool for automatically collecting accurate field data during
construction tasks using sensing technologies.
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