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A B S T R A C T

This study determines the exact optimal fleet size, ride-matching patterns, and vehicle routes for shared mobility
services (SMS) that maximize the profit of service operators considering ride-pooling and customer satisfaction.
We make the first attempt to consider a nonlinear multivariate customer satisfaction function with respect to the
features of the riders and the system under a ‘two riders-single vehicle’ ride-pooling scenario in a special case of
dial-a-ride problem (DARP). A set packing model and a tailored branch-and-cut-and-price (BCP) approach are
proposed to find the exact optimal solution of the problem. Unlike existing exact solution methods for DARP, we
exploit the characteristic of the ride-pooling scenario and decompose the ride matching and vehicle routing in an
effective two-phase method to solve the pricing problem of the BCP approach. Particularly, in Phase 1, feasible
matching patterns subject to practical constraints are identified. In Phase 2, a heuristic and an exact label-
correcting method with a bounded bi-directional search are sequentially employed to solve a new variant of
elementary shortest path problem with time window (ESPPTW) in a network constructed upon rides and feasible
ride matching patterns identified in Phase 1. The labeling methods are further accelerated by a strengthened
dominance test, the aggregate extension to other depots, and the decremental search space. Valid inequalities are
also incorporated to further improve the upper bound. The proposed solution method is evaluated in randomly
generated instances and the instances created from the real mobility data of Didi. Managerial insights are
generated through impact analysis.

1. Introduction

The rise of shared mobility is reshaping the future of urban mobility
(Shaheen and Cohen, 2019). It comes in many forms, including ride-
sourcing, ride-sharing, and car-sharing. Distinctive as they are from
one another today, these shared mobility business models are expected
to be consolidated into two major types of door-to-door mobility service
in the foreseeable future due to the advent of autonomous vehicle
technology, i.e., shared mobility service without ride-pooling option
(SMSw/oP) and the shared mobility service with ride-pooling option
(SMSw/P) (Stocker and Shaheen, 2017). The high upfront purchase
price of autonomous vehicles would make them more likely to be
accessible to the broader public as part of a shared-fleet service model,
instead of being privately owned. The service providers will thus be
faced with fleet management decisions.

This study considers a profit-driven operator of a reservation-based
multi-depot SMSw/P targeting at ordinary travelers, e.g., morning
commuters, who are on average more time sensitive and have a narrow
time window. For simplicity, we focus on the most-common ride-pooling

scenario, i.e., ‘two riders-single vehicle’, in which a maximum of two
riders can be paired to be simultaneously served by a single vehicle and a
rider may share part of his/her journey with multiple different strangers
sequentially. In addition, the future SMS are expected to be customer-
oriented and have to emphasize the service quality and ride experi-
ence to achieve wide acceptance. We impose the threshold in ride
matching for a nonlinear customer satisfaction jointly determined by
many features of the riders and ride-pooling system. Moreover, the
operator allows the rejection of customers (subject to penalty) given the
limited vehicle resources. Our objective is to determine the optimal fleet
size, ride-matching patterns, and vehicle routes for SMSw/P by maxi-
mizing the profit of a service operator while taking the ride-pooling and
customer satisfaction into consideration using an exact solution method.
The considered problem is referred to as SMSP for short.

At its core, the SMSP of our interest is a variant of dial-a-ride problem
(DARP) where a fleet of vehicles is dispatched to serve customer requests
from pickup locations to drop-off locations within specific time windows
(Cordeau, 2006; Cordeau and Laporte, 2007). Traditional application of
DARP is non-profit public transit services for the elderly and disabled
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with the objective to minimize the cost while satisfying all the requests.
Another major application is the patient and intra-hospital trans-
portations in ambulatory health care, which often involves complex
constraints considering time urgency, equipment/staff compatibilities,
etc. Recently, there has been a resurgence of interest in DARP due to the
rise of shared mobility services for the general public (Ho et al., 2018).
In what follows, we will mainly review the literature on DARP.

1.1. Literature review

Over the past decades, various solution approaches have been devel-
oped for DARP and these methods can be mainly classified into two cat-
egories: the exact methods and the heuristics/metaheuristics. Majority of
research for DARP and its variants focused on developing fast heuristics/
metaheuristics (Hoet al., 2018). For example, CordeauandLaporte (2003)
were among the first ones to develop a tabu search heuristic that incor-
porated several diversification strategies for the staticmulti-vehicleDARP.
Ropke and Pisinger (2006) proposed an adaptive large neighborhood
search (ALNS) heuristic for the pickup and delivery problem with time
windows, which have inspiredmany studies of large neighborhood search
heuristic for DARP and its variants. For example, Masson et al. (2014)
allowed user transfer to different vehicles at specific locations during the
trips inDARPanddeveloped a solutionmethodbased onALNS.Masmoudi
et al. (2018) investigated a DARP with electric vehicles and battery
swapping stations and proposed three efficient evolutionary variable
neighborhood search algorithms. Zhao et al. (2022) investigated an
interesting profitable DARP under time-dependent travel time with a
single-vehicle. They proposed a hybrid meta-heuristic algorithm inte-
grating ALNS and local search. Formore information about different types
of heuristics for DARP and its variants with various constraints, readers
may refer to the survey paper by Ho et al. (2018).

Comparatively speaking, only a limited number of studies have
focused on developing complex exact methods for DARP (Cordeau and
Laporte, 2007; Ho et al., 2018). These exact methods are used to address
a static DARP with all demand information known a priori. Though
difficult to scale to large instances, exact methods can guarantee the
highest solution quality and measure the optimality gap. The first exact
branch-and-cut (B&C) method for multi-vehicle DARP was pioneered by
Cordeau (2006) based on a three-index mixed integer programming
(MIP) model. Ropke et al. (2007) proposed another B&C method for a
two-index MIP model. The B&C algorithm has also been developed to
address different DARP variants such as Parragh (2011) and Braekers
and Kovacs (2016). Other than the B&C algorithm, the development of
branch-and-price (B&P) as well as branch-and-cut-and-price (BCP) ap-
proaches that combine the advantages of B&P and B&C algorithms for
DARP and its variants can be found in studies such as Parragh et al.
(2015) and Luo et al. (2019). Those exact algorithms have also been
proposed for many other problems, such as network design and oper-
ating room scheduling, and electric vehicle routing problems (Bargetto
et al., 2023; Diao et al., 2024; Lam et al., 2022).

1.2. Research objective

In this study, in light of customers’ concerns for sharing a ride with
strangers in the context of SMS, we consider a special setting of DARP that
allows the riders of at most two requests sharing their rides at a time, i.e.,
‘two riders-single vehicle’ operation mode, with more emphasis on
customer satisfaction. All the previous studies of exact methods for DARP
and its variants considered the service quality by linear constraints such as
imposing time windows and limiting the maximum ride time of each
customer/client. Lavieri and Bhat (2019) have found that individuals’
approval of strangers sharing the same vehicle is one of essential elements
to the adoption of shared rides. Few studies, however, considered other
influential factors for travel experience and incorporated nonlinear service
quality metric such as the customer satisfaction to characterize the
compatibility between pooled riders, which are highly relevant for shared

mobility services. To bridge the gap, we introduce a nonlinearmultivariate
customer satisfaction function with respect to the benefits and impedances
of ride-pooling and the attributes of the concerned rider to ensure cus-
tomers’ ride experience when sharing a ride with a stranger. The proposed
customer satisfaction function could be amore realistic and comprehensive
characterization of customers’ satisfaction to the shared mobility services.
It serves as a nonlinear service qualitymetric (SQM),which ismore general
than linearSQMssuchas themost frequentlyused ‘maximumrideduration’
in the studies for DARP.Moreover,many previous studies of exactmethods
for DARP and its variants often considered a single depot and/or required
all customers to be served. We consider multiple depots and allow the
rejection of customers in pursuit of profit maximization, which are practi-
cally relevant for future urbanmobility services. Our objective is to develop
an exact method to determine the fleet size, ride-matching patterns, and
vehicle routes for SMS that maximize the profit of service operators.

To achieve the above objective, a set packingmodelwill be built and a
tailored BCP approach is subsequently developed to solve the model
exactly. The pricing problem embedded in the BCP approach to deter-
mine the ride matching and vehicle routing strategy is a variant of NP-
hard elementary shortest path problem with time windows, capacity,
and pickup and delivery (ESPPTWCPD). Rather than employing a con-
ventional approach for solving the ESPPTWCPD, we exploit the charac-
teristic of ‘two riders-single vehicle’ ride-pooling scenario and propose an
effective two-phase method that decomposes ride matching and vehicle
routing to reduce the complexity of the pricing problem within BCP
framework. We also propose tailored strategies such as the label exten-
sion rule, the dominance test, and the adaptiveM value based on problem
features to enhance the performance of BCP. Three speedup techniques,
including a strengthened dominance test, the aggregate extension to
other depots, and the decremental search space, are used to accelerate the
algorithm. Valid inequalities are added to further strengthen the model
and improve the upper bound. If the column generation method for
solving the pricing problem produces a non-integer optimal solution, a
branch-and-bound method is used to repeatedly solve the pricing prob-
lem until an integer solution is found. The proposed BCP approach can
yield theoptimalfleet sizing, ridematching, andvehicle routingdecisions
for SMSw/P. Numerical experiments on randomly generated instances
and the instances created from the data fromDidi are carried out to assess
the efficacy of the proposed approach.

The remainder of this study is organized as follows. Section 2 elab-
orates on the assumptions, notations, and the description of the SMSP. A
set packing model for the SMSP is formulated in Section 3. The BCP
approach for solving the model is developed in Section 4. Through the
numerical experiments of randomly generated instances and the in-
stances created from the mobility data of Didi, the efficiency of the
proposed solution methods and the impacts of ride-pooling and
nonlinear SQM on system performance are evaluated in Section 5.
Conclusions and future research directions are presented in Section 6.

2. Assumptions, notations, and problem description

This study considers a SMS provider who offers the reservation-based
door-to-door mobility services with the option of ride-pooling using a
fleet of homogeneous shared vehicles (SVs) within a service area. There
are several depots clustered in the service area for SV parking in the low-
demand period. These depots are grouped into a set denoted by W and
we assume that SVs will return to their respective home depots after the
operation period. Each depot w ∈ W has a limited parking capacity
denoted by Nw and the location of depot w ∈ W is represented by sw.
Over a typical operation day, the service provider will receive a bunch of
spatially and temporally distributed ride requests from customers. These
orders are grouped into a set denoted by I. Each ride i ∈ I is character-
ized by a quadrupleUi =

{
so
i , sd

i , toi , tdi
}
, where so

i ∈ S represents the pick-
up location, sd

i ∈ S stands for the drop-off location, toi denotes the earliest
departure time, tdi indicates the latest arrival time. The fixed cost of SV
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per vehicle-day is denoted by AC and the operating cost per unit driving
distance is represented by UC. To fully present the SMSP, the following
subsections will elaborate on customer satisfaction, ride-matching
pattern characterization, and vehicle route in Subsections 2.1–2.3,
respectively. Kindly note that Subsections 2.1 and 2.2 describe how
riders are pooled together, while Subsection 2.3 further discusses how to
connect these solo rides and shared rides to form complete vehicle routes
in order to facilitate the model building in Section 3. The notations used
throughout this study are provided in the appendix.

2.1. Customer satisfaction

With the increasing penetration of sharedmobility services, more and
more customerswill care about the level of service. To capture customers’
satisfaction to the SMSw/P, each rider is assumed to be associated with a
value of time (VOT) denoted by qi1. We also quantify the travelers’
acceptance and adoption of shared rides by associating each rider i ∈ I
with willingness-to-pool (WTP) denoted by qi2 (Lavieri and Bhat, 2019).
For profit maximization, we assume that the service operator allows the
rejection of some orders as long as it can boost the overall profit. The
penalty incurred by rejecting rider i is denoted by Pi. In the same vein,
riders for whom no feasible ride-matching patterns are found will be
assigned to travel individually. A service charge denoted by Gi will be
placed on rider i ∈ I without ride-pooling, while a discount rate denoted
by υ applies for ride-pooling to compensate for the impedance of sharing
rides with strangers. Therefore, the rider i ∈ I will enjoy a discounted
service charge Ĝi = υ⋅Gi if he/she shares the ride with another rider.

We assume that the satisfaction of customers in SMSw/P is jointly
determined by the attributes of the concerned rider (e.g., the VOT and
WTP) and the benefits and impedances of ride-pooling, including a dis-
counted service charge, the duration of ride-pooling, and the additional
ride time due to ride-pooling. In line with the customers’ satisfaction
function against service quality in the field of management and market-
ing, the satisfaction function of a rider i is assumed to be a nonlinear
multivariate functionwith respect to the attributes of the concerned rider
i and thebenefits and impedances of ride-poolingwith another rider j, i.e.,
Fij
(
υ,qi, stij, etij

)
, where qi is the vector of attributes of concerned rider i, e.

g., the VOT qi1 and WTP qi2, stij is the duration of ride-pooling, and etij is
the additional ride time compared to the time of traveling alone.

2.2. Ride-matching pattern characterization

As for the ride-pooling option in the SMSw/P, we first consider the

simplest ride-pooling scenario, i.e., ’two riders-single vehicle,’ and assume
that the vehicle will not initiate any new pickups before a shared ride is
completed. In other words, a maximum of two riders are paired to be
simultaneously served by a single vehicle. If a vehicle is in the process of
serving two shared riders, it cannot pick up any other riders until both
riders are dropped off. Given the itineraries and schedules of any two
riders, denotedbyRider i andRider j, a vehiclemaypickup i and j, anddrop
i and j in sequence as shown in Fig. 1 (a), or do so in any of the other ways
shown inFig. 1 (b)-(d). Eachway corresponds to a ride-matchingpatternof
rider i and j. We can see that there are at most four possible ride-matching
patterns for the two riders. A ride-matching pattern denoted by (i − j − j − i)
shown inFig. 1 (a), is deemed feasible if thedetour leads to a reduced travel
distance compared with serving two riders individually while respecting
the time window and satisfaction threshold of each rider, i.e.,

lsoi soj + lsdj sdi
< lsoi sdi

(1)

max
{

toi , t
o
j − τsoi soj

}
≤ min

{
tdj − τsoj sdj

− τsoi soj , t
d
i − τsoj sdj

− τsoi soj − τsdj sdi

}
(2)

Fij

(
υ,qi, τsoj sdj

, τsoj sdj
+ τsoi soj + τsdj sdi

− τsoi sdi

)
≥ Fi (3)

Fji

(
υ,qj, τsoj sdj

,0
)
≥ Fj (4)

where the distance and travel time between two locations, e.g., from so
i

to sd
i , are represented by lso

i sd
i
and τso

i sd
i
respectively; Fi and Fj are the

minimal customer satisfaction of riders i and j that are assured by the
service provider. Kindly note that the left-hand and right-hand sides of
constraint (1) represent the travel distance of the matched ride for the
two riders and the sum of travel distance of the two independent rides,
respectively. Constraint (2) indicates that the matched ride should
respect the time window of each rider. Constraints (3) and (4) enforce
that the satisfactions of riders i and j are not less than the thresholds Fi
and Fj , respectively. It can be seen that the forth and the fifth variables
in the satisfaction functions of constraints (3) and (4) represent the
duration of ride-pooling and the additional ride time with respect to the
original ride time of riders i and j, respectively. In addition to cost
saving, time window and customer satisfaction constraint, other feasi-
bility conditions or matching criteria related to level-of-service such as
the threshold for waiting time and customers’ particular preferences in
matching can also be considered.

Following the above analysis, we continue to derive the feasibility
conditions for the other three ride-matching patterns in Fig. 1 (b)-(d) as

Fig. 1. Illustration for ride-matching patterns of two riders.
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follows:
Ride-matching pattern (i − j − i − j) in Fig. 1 (b):

lsoi soj + lsoj sdi
+ lsdi sdj

< lsoi sdi
+ lsoj sdj

(5)

max
{

toi , t
o
j − τsoi soj

}
≤ min

{
tdj − τsoi soj − τsoj sdi

− τsdi sdj
, tdi − τsoi soj − τsoj sdi

}
(6)

Fij

(
υ,qi, pj, τsoj sdi

, τsoi soj + τsoj sdi
− τsoi sdi

)
≥ F (7)

Fji

(
υ,qj, pi, τsoj sdi

, τsoj sdi
+ τsdi sdj

− τsoj sdj

)
≥ F (8)

Ride-matching pattern (j − i − i − j) in Fig. 1 (c):

lsoj soi + lsoi sdi
+ lsdi sdj

< lsoi sdi
+ lsoj sdj

(9)

max
{

toj , t
o
i − τsoj soi

}
≤ min

{
tdj − τsoj soi − τsoi sdi

− τsdi sdj
, tdi − τsoj soi − τsoi sdi

}
(10)

Fij

(
υ,qi, pj, τsoi sdi

,0
)
≥ F (11)

Fji

(
υ,qj, pi, τsoj sdi

, τsoj soi + τsoi sdi
+ τsdi sdj

− τsoj sdj

)
≥ F (12)

Ride-matching pattern (j − i − j − i) in Fig. 1 (d):

lsoj soi + lsoi sdj
+ lsdj sdi

< lsoi sdi
+ lsoj sdj

(13)

max
{

toj , t
o
i − τsoj soi

}
≤ min

{
tdj − τsoj soi − τsoi sdj

, tdi − τsoj soi − τsoi sdj
− τsdj sdi

}
(14)

Fij

(
υ,qi, pj, τsoi sdj

, τsoi sdj
+ τsdj sdi

− τsoi sdi

)
≥ F (15)

Fji

(
υ,qj, pi, τsoi sdj

, τsoj soi + τsoi sdj
− τsoj sdj

)
≥ F (16)

In real-world shared mobility services, there are also cases when
three or more riders are served sequentially while still respecting the
vehicle capacity constraint. In these cases, customer satisfaction func-
tion of rider i will become Fi*(υ,qi, sti*,eti*), where sti* is the duration of
ride-pooling with all the riders that are pooled with rider i during rider
i’s trip, and eti* is the additional ride time of rider i compared to the time
of traveling alone. The ride-matching pattern is feasible if the detour
leads to a reduced travel distance compared with serving each rider
individually while respecting the time window and satisfaction
threshold of each rider.

2.3. Vehicle route

For ease of presentation, we refer to each ride-matching pattern as a
shared ride. Vehicle route delineates the sequence of solo rides and the
shared rides assigned to an SV as well as the relocation of an idle SV. An
SV may serve several customers during the daily operation period, and
vehicle relocation may be implemented between any two adjacent solo
rides or shared rides to ensure that they are connected seamlessly. For
ease of elaboration, we refer to the series of solo or shared rides and
relocations underwent by an SV as the route of that vehicle. A vehicle
route is feasible if the feasibility conditions of all covered rides,
including solo rides and shared rides, are satisfied. An SV route r, which
consists of a depot w and a series of solo rides and feasible shared rides
sorted in an ascending order in terms of their departure times, i.e., i1, i2,
...,inr , and several relocations linking these orders, can be represented by

r = w↦so
i1→sd

i1⇒so
i2→so

i3→sd
i3→sd

i2⇒⋅⋅⋅⇒so
inr

→sd
inr

↦w (17)

where the single and double lined arrows denote the route segment
serving solo/shared rides and the vehicle relocation, respectively. Sup-
pose we have a total of 6 rides in a shared mobility system. These rides
are represented by R1-R6 in an ascending order of their departure times.

Fig. 2 illustrates an SV route originating from Depot 1 and returning
back to the same location after going through 2 solo rides (i.e., R1 and
R6) and 1 shared ride (i.e., R2 paired with R3) and 2 relocations (i.e.,
Location 2 → 3, 6 → 4). The feasible route is “Depot 1 → Location 1 →
Location 2 → Location 3 → Location 6 → Location 4 → Location 5 →
Depot 1”.

The diverse ride-matching patterns and the nonlinearity of cus-
tomers’ satisfaction function motivate us to formulate the SMSP based
on SV route. As the vehicle dispatching strategy has already been re-
flected in SV route, the objective of the SMSP is to maximize the daily
profit of the SMS providers by finding the optimal set of feasible routes
in which riders are paired satisfactorily, SVs are assigned and relocated
appropriately, and the selected solo/shared rides are served success-
fully. There is no doubt that the proposed SMSP is NP-hard because the
simplest form of vehicle routing problem (VRP) with vehicle capacity of
1 as the special case of SMSP is a well-known NP-hard problem.

3. Set packing model

Let R denote the set of all the feasible routes; then the proposed SMSP
is formulated by the following set packing model:

[SMSP]

max
xr

∑

r∈R

(

Rr +
∑

i∈I
δi

rPi

)

xr (18)

subject to
∑

r∈R
δi

rxr ≤ 1, ∀i ∈ I (19)

∑

r∈R
θw

r xr ≤ Nw, ∀w ∈ W (20)

xr ∈ {0,1}, ∀r ∈ R (21)

where Rr is the amortized net profit of vehicle route r calcuated by Rr =

Gr − UC • Lr − AC, in which Gr and Lr denote the total service charge of
all covered rides served by route r and the total traveling distance of
route r, respectively; xr is the binary decision variable that equals 1 if the
optimal route of a SV in the fleet is r and 0 otherwise; δi

r is the coefficient
that equals 1 if ride i is served by a SV through route r, and 0 otherwise;
and θw

r is the coefficient that equals 1 if the vehicle route r starts and ends
at depot w, and 0 otherwise.

Note that the amortized daily profit of service operator is
∑

r∈R
(
Rr +

∑
i∈Iδ

i
rPi
)
xr −

∑
i∈IPi. The objective of SMSP is to maximize the daily

profit of service operator which is equivalent to Eq. (18). We consider
the penalty incurred by rejecting riders in the objective function to
incorporate the long-term negative impact of customer denial on service
profitability. This will lead to a general model because by setting the
penalty to 0, the model will reduce to the case where the penalty is not
considered. Constraint (19) ensures that each ride is served at most once.
Constraint (20) limits that the number of vehicles for each depot does
not exceed the depot parking capacity.

Note that the above set packing model is formulated upon a given set
of feasible routes. Subsection 2.2 has outlined the feasibility conditions
of the shared rides along these routes. By the above approach, the
optimization of the fleet size, ride-matching patterns, and vehicle routes
considering ride-pooling and customer satisfaction is equivalent to
seeking, among all the feasible routes, the most ‘profitable’ one for each
SV in the fleet and accordingly the total number of them, such that every
ride is ‘covered’ either individually or as a shared ride by the selected
routes at most once. However, since the model [SMSP] has a great
number of columns, which are difficult to be formulated explicitly, it
cannot be solved by MIP solver. Therefore, in the next section, we will
design a BCP approach, a leading exact algorithm for solving many
classes of VRP (Barnhart et al., 1998; Costa et al., 2019).
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4. Branch-and-cut-and-price approach

Branch-and-cut-and-price (BCP) approach is essentially a branch-
and-bound (B&B) framework in which the linear relaxation problem
at each B&B node is iteratively solved by column generation (i.e.,
pricing problem) and strengthened by cutting planes. To apply the BCP
approach for SMSP, we will first create initial columns for the linear
relaxation of model [SMSP], referred to as master problem (MP) and
formulate the restricted master problem (RMP) with a subset of routes in
R⊂R at the root node. The optimal dual values of RMP will be used to
formulate the pricing problem to generate feasible columns. We propose
a customized two-phase method to address the pricing problem and a
primal–dual stabilization strategy to mitigate the tailing-off effect suf-
fered by column generation, detailed in Subsections 4.1 and 4.2,
respectively. If some columns are found by the pricing problem, we add
these columns into RMP and solve it again. The iterative process stops
when no column with positive reduced cost can be found, which implies
that we have obtained the optimal solution to the MP. The MP will be
further iteratively strengthened by valid inequalities identified from the
fractional solution to the incumbent MP in Subsection 4.3 until there is
no valid inequality. If the optimal solution to the reinforced MP is still
fractional and is larger than the incumbent global lower bound of the
problem, a branching strategy proposed in Subsection 4.4 will be used to
branch this node into two child nodes; and otherwise, the corresponding
branch will be pruned and the global lower bound may be updated.
Again, a new node in the B&B will be explored in the same way
described above until all nodes in the B&B tree have been examined.

4.1. Pricing problem

Let πi,∀i ∈ I and ρw,∀w ∈ W denote the dual variables corresponding
to Constraint (19) and (20), respectively. The pricing problem for theMP
of model [SMSP], named by [SMSP-PP], is presented as follows:

[SMSP-PP]

p∗ = max
r∈R\R

Rr +
∑

i∈I
δi

rPi −
∑

i∈I
δi

rπi −
∑

w∈W
θw

r ρw (22)

The objective of the pricing problem is to find the route with the
maximum profit in the network with an additional revenue Pi − πi from
each covered ride and an additional revenue − ρw for originating from
depot w ∈ W among the rest routes. The existence of time window may
induce cycles. This is particularly true for problem with wide time
window, although it is less likely to happen for level-of-service-
emphasized transportation systems where customers often have very
narrow time windows. According to the definition of vehicle route in
Subsection 2.3, the pricing problem by nature is a variant of
ESPPTWCPD, which is NP-hard in the strong sense (Dror, 1994). Instead
of using a general approach for solving the ESPPTWCPD (as often done
in studies for DARP), we propose a customized two-phase method that
decomposes the ride matching and vehicle routing. Specifically, in Phase

1, feasibility matching patterns between any two or more rides are
identified. After the feasibility check for each ride matching pattern, we
obtain the attributes of feasible ride-matching patterns for processing in
the next phase. For example, the ride-matching pattern in Fig. 1 (a) can
be equivalently viewed as a ride associated with the origin so

i , destina-
tion sd

i , a revenue Ĝi + Ĝj, a distance lsoi soj + lsoj sdj
+ lsdj sdi

, and a time

window
[
max

{
toi ,toj − τsoi soj

}
,min

{
tdj − τsoj sdj

− τsoi soj ,t
d
i − τsoj sdj

− τsoi soj − τsdj sdi
}]. In

Phase 2, a labeling method is iteratively employed to solve a new variant
of elementary shortest path problem with time window (ESPPTW) in a
network constructed upon feasible ride matching patterns identified in
Phase 1. The decomposition of ride matching and vehicle routing is
motivated by several considerations:

(i) The operation mode and complex feasibility check of ride
matching patterns, e.g., Eqs. (1)-(4), entails an additional attri-
bute of the label to track the rider that has been pooled with other
riders, probably making the available labeling method for con-
ventional ESPPTWCPD more computationally intensive if solved
directly;

(ii) The pre-generation of ride-matching pattern in Phase 1 can
further relax the vehicle capacity constraint and reduce the
dimension of resources to be considered in the labeling algorithm
for ESPPTW;

(iii) Since at most two riders are simultaneously pooled together, and
the time windows are averagely narrow, the pre-generation of
ride matching patterns is plausible. The restrictions imposed on
these patterns further eliminate the number of feasible patterns
and accordingly the size of network for solving the ESPPTW in
Phase 2;

(iv) The BCP method requires the pricing problem to be solved many
times. It is desirable that few modifications are needed in the
subsequent and repetitive labeling method in Phase 2 once all
feasible matching patterns are identified in Phase 1.

4.1.1. Ride-matching pattern pre-generation (Phase 1)
We will first discuss the ride-matching pattern with two riders. In

theory, if we have |I| rides, then there will be 2⋅|I|⋅(|I| − 1) ride pairs at
most to be generated. Nevertheless, in practice, the number of feasible
ride pairs can be far smaller than this value. Note that the feasibility of a
ride-matching pattern depends on both the spatial and temporal con-
sistency between two rides. This means that a ride can only be paired
with another ride that has a common period of travel at least. Given the
narrow time window of travelers who generally prefer ad-hoc instant
services in the context of urban mobility, the chance of pairing may not
be that high. To generate these feasible ride pairs more efficiently, we
will first sort all rides in ascending order in terms of the earliest de-
parture time and check them in sequence. For example, suppose we aim
to generate all ride pairs that include the first ride and the other rides.

Fig. 2. An example of SV route.
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We will check the second ride till the last ride in the sequence. For each
ride, before we perform the feasibility check in Eqs. (1)-(16), we will
examine whether this ride potentially has a same travel period with the
first ride. If not, the generation process can be stopped because all the
subsequent rides will definitely have no common travel time with the
first ride.

After obtaining the set of feasible ride-matching patterns with two
riders, referred to as RM-2, we can further generate the ride-matching
pattern with three or more riders by using efficient insertion heuristics
(Campbell and Savelsbergh, 2004; Gendreau et al., 1998) in an iterative
way. Our proposed insertion heuristic will mainly check the feasibility of
the ride-matching arrangement. Specifically, we will start by generating
the ride-matching patterns with three riders, named RM-3, and group all
those feasible RM-3 in a set. Given the set of RM-3, we will further
implement the insertion heuristic to generate the ride-matching patterns
with four riders, and so on. For example, let us consider the generation of
RM-3 by the insertion of a ride into a RM-2. Intuitively, we will check all
the possible insertion positions for both pick-up and drop-off operations
of the rider, iterating from the first position to the last one in the possible
insertion position sequence. For a specific pick-up operation insertion
position, we will first examine whether inserting the drop-off operation
of this rider would exceed the vehicle capacity. If it is violated, the
checking process for the following drop-off operation insertion positions
can be terminated, as all the subsequent drop-off operation insertion
positions will definitely lead to violations. If no violations occur, we will
proceed to assess the feasibility of travel distance and time windows and
check the customers’ satisfaction with the proposed insertion.

Let β denote the ride-matching pattern. For each generated feasible
ride-matching pattern β, we will obtain its attributes, including the set of
covered rides Iβ, the first boarding ride iβ, the last alighting ride iβ, travel
duration τβ, net profit Gβ :=

∑
i∈Iβ

Ĝi − UC • lβ, where lβ denotes the
travel distance, the earliest departure time tβ :=maxi∈Iβ

{
toi − τi

}
, where

τi is the travel duration of the ride-matching pattern till the pick-up of
ride i , the latest arrival time tβ :=mini∈Iβ

{
tdi − τi

}
, where τi is the travel

duration of the ride-matching pattern till the drop-off of ride i.

4.1.2. Labeling methods for solving the ESPPTW variant (Phase 2)
Even if we have reduced the ESPPTWCPD to an ESPPTW variant by

ride-matching pattern pre-generation, the ESPPTW itself is still NP-hard
(Dror, 1994). Following the hierarchical procedure proposed by
Desaulnier et al. (2008), we will call two pricing algorithms, i.e., a
heuristic labeling method and an exact labeling method in sequence, to
solve the ESPPTW problem. For ease of exposition, in the following
subsections, we will elaborate them in the reverse order with respect to
their execution. Usually, at each column generation iteration, we iden-
tify a number of columns with positive reduced cost (for maximization
problem) and then add them into the current RMP. A pricing algorithm
is called only if the previous pricing algorithm cannot find a pre-
specified target number of columns.

4.1.2.1. Exact labeling method. We propose a tailored label-correcting
algorithm with a bounded bi-directional search to solve the ESPPTW
variant. Label-correcting algorithm is a widely used method for solving
the elementary shortest path problem (Feillet et al., 2004; Irnich and
Desaulniers, 2005). The bounded bi-directional search was proposed by
Righini and Salani (2006), in which forward and backward partial paths
are first generated respectively from the depot and then join together to
form complete paths. Different from conventional approaches for
ESPPTW problem where each node in the network represents only one
ride, we derive a customized labeling method for a generic variant of
ESPPTW where each node may represent two or more rides as a shared
ride. Details are elaborated as follows.

(1) Network construction
To apply the label-correcting algorithm, we will first create a copy of

the depots grouped in setWʹ and construct a pseudo-network denoted by

G = (N, A), where N := I ∪ Θ ∪ W ∪ Wʹ in which Θ denotes the set of
ride-matching patterns generated in Subsection 4.1.1, and A is the set of
time-feasible links connecting these nodes in N. Any node n ∈ N is
associated with a node cost cn, a node service duration τn, the index of
the ride in, referred to as ‘start-ride’, of which the service at node n starts
at the pick-up location, the index of the ride in, referred to as ‘end-ride’,
of which the service at node n ends at the drop-off location, the set of
rides included in the node Δn , and a time window [tn, tn] within which
the service of node n must start.

Particularly, any individual ride i ∈ I represented by a node in the

network is associated with the node cost −
(
Gi − UC⋅lso

i s
d
i
+ Pi − πi

)
, the

service duration τso
i sd

i
, the start-ride i, the end-ride i, the set of served

rides {i}, and the time window [toi , tdi − τso
i s

d
i
]. Any feasible ride matching

pattern β is represented by a node in the network associated with the
node cost − (Gβ+Pi + Pj − πi − πj), the service duration τβ, the start-ride
iβ, the end-ride iβ, the set of served rides Iβ, and the time window {tβ,

tβ}. Kindly note that because we address the pricing problem by solving
a variant of ESPPTW in the pseudo-network, we need to define the cost

of solo-ride node as −
(
Gi − UC • lso

i sd
i
+ Pi − πi

)
, which is calculated by

the negative profit −
(
Gi − UC • lso

i s
d
i

)
minus the additional revenue

Pi − πi as required by Eq. (22). Likewise, the cost of ride-matching
pattern node in the pseudo-network will be − (Gβ+Pi + Pj − πi − πj),
which is calculated by the negative net profit of the ride-matching
pattern − Gβ minus the additional revenue − (Pi + Pj − πi − πj). Any link
(n,m) ∈ A denoting the relocation operation from the drop-off location
of ride/ride pair n to the pick-up location of another ride/ride pair m is
associated with link cost cnm = UC⋅lsd

in
so
im
and travel time τnm = τsd

in
so
im
.

Each path originating from a depot w ∈ W and returning to physi-
cally the same depot wʹ ∈ Wʹ , i.e., a copy of depot w in the constructed
network, is a vehicle route, and the ride matching and vehicle routing
strategy has been implicitly implied in the nodes and links of the optimal
paths. The objective to find the routes with the largest profit is thus
equivalent to solving the ESPPTW in the constructed network G.

(2) Label extension
The label-correcting algorithm with a bounded bi-directional search

works by associating both forward labels grouped in the set Lforward
n and

backward labels grouped in the set Lbackward
n with each node n ∈ N of the

network. Each forward and backward label represent the partial path
originating from a depot and ending at the correspondent copy of the
same depot, respectively.

We code any forward label k at the node n as lforward
k := [Sk, ĉk, τ̂k,γk,

κk], where Sk is the set of served rides, often referred to as customer
resources in the literature; ĉk is the cost of the corresponding partial path
originating from a depot; τ̂k is the earliest service ending time at node n;
γk is the node index of label k, i.e., γk := n; and κk is the index of the end-
ride, i.e., κk := in. Likewise, any backward label g at the node n will be

coded as lbackward
g :=

[
Sg, ĉg, τ̂g,γg,κg

]
, where Sg is again the set of covered

rides; ĉg is the cost of the corresponding partial path ending at a depot;
τ̂g is the minimum time that must be consumed since the start of the
service at node n up to the arrival at the depot w not later than at time

T = maxi∈I

{
tdi + τsd

i sw

}
; γg is the node index of label g, i.e., γg := n; and κg

is the index of the start-ride, i.e., κg := in.
For conventional ESPPTW, labels are explored according to the nodes

they are associatedwith (Feillet et al., 2004; Costa et al., 2019).However,
since the labels of different nodes in our network may represent the
partial paths ending at the samephysical location, i.e., the labels of node n
and node m with in = im, we will explore the labels by the end-rides (for
forward label) or the start-rides (for backward label). This means once a
ride is selected, the labels, probably at multiple nodes in the network,
should be extended simultaneously, and both the forward and backward
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labels will be extended. Specifically, the forward extension starts from an
initial forward label at a depot with the set of served rides initialized as∅
and the earliest service ending time initialized as a sufficiently large
negativenumber to ensure that the vehicle candepart earlier than thefirst
ride. We use the example in Fig. 3 to illustrate the label extension rule.
Supposewe have a forward label k at node n represented by lforward

k := [Sk,

ĉk, τ̂k, n, in]; then a forward label u denoted by lforward
u := [Sk ∪ Δm,

ĉk +cm +cnm,max{τ̂k + τnm + τm, tm + τm},m, im] at node m will be gener-
ated if there exists a link (n,m) ∈ A. The new label is feasible if and only if
we have Sk ∩ Δm = ∅ and max{τ̂k + τnm, tm} ≤ tm, otherwise it is
fathomed. As for the backward extension, we will start from an initial
backward label at the copy of the correspondent depot with the set of
served rides initialized as∅ and the other items initialized at 0. Again, for
the example in Fig. 3, if we have a backward label g at nodem represented
by lbackward

g :=
[
Sg, ĉg, τ̂g, m, im

]
; then a backward label v denoted by

lbackward
v := [Sg ∪ Δn, ĉg +cn +cnm,max

{
τ̂g + τnm + τn,T − tn

}
, n, in] at node

nwill be generated if there exists a link (n,m) ∈ A. Thenew label is feasible
if andonly ifwehaveSg ∩ Δn = ∅andmax

{
τ̂g + τnm + τn,T − tn

}
≤ T − tn,

otherwise it is fathomed.
(3) Dominance test
To avoid creating a huge number of labels, during the extension of

labels, a dominance test is done to eliminate labels that cannot lead to an
optimal solution. Unlike the dominance test for conventional ESPPTW
that is performed rightly after a new label at a node is generated (Irnich
and Desaulniers, 2005), we will conduct the dominance test for gener-
ated but not yet extended labels associated with the same end-ride index
κ, after all labels generated from all nodes with the same end-ride (for
forward labels) and start-ride (for backward labels) have been extended.
Suppose we have two labels lk := [Sk, ĉk, τ̂k, γk, κk] and lu := [Su, ĉu, τ̂u, γu,

κu] such that κk = κu; Then the former dominates the latter if the
following conditions are satisfied:

Sk ⊆ Su (23)

ĉk ≤ ĉu (24)

τ̂k ≤ τ̂u (25)

and at least one of the inequalities is strict.
(4) Label joining
To reduce the unnecessary labels and avoid the duplication of the

paths, we consider the time as the critical resource and extend only
forward labels and backward labels whose consumed time resources are
less than half of the maximal time resource, i.e., T/2 (Righini and Salani,
2006). A forward label k at the node n, i.e., lforward

k := [Sk, ĉk, τ̂k, n, in] and
a backward label g at node m, i.e., lbackward

g :=
[
Sg, ĉg, τ̂g,m, im

]
can join

together to form a complete feasible path if we have Sk ∩ Sg = ∅ and
τ̂k + τ̂k + τnm ≤ T. The cost of the resulting path is ĉk + ĉg + cnm. The
minimum cost among all complete paths is the optimal solution to the
pricing problem.

Let Lforward
n and Lbackward

n denote the set of un-extended forward and
backward labels of node n , and E denote the set of rides to be explored.
The end-rides/start-rides of nodes with newly generated forward/

backward labels after an iteration are grouped in the set Pf and Pb,
respectively. The above procedure of exact label correcting method for
ESPPTW in the network G = (N,A) is summarized in Algorithm 1.

Fig. 3. Two nodes with a link.
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4.1.2.2. Accelerating strategies. Three accelerating strategies will be
employed to speed up the labeling method, which are described as
follows:

(1) Strengthened dominance tes
According to Feillet et al. (2004), if the traveling times satisfy the

triangle inequality, the dominance conditions can be further relaxed and
thus made more efficient in eliminating un-optimal labels by including
in the set of served rides Sk the unreachable rides that cannot be served
in any feasible extension of a given label due to the limitation of time
resource.

(2) Aggregate extension to other depots.
Instead of solving the pricing problem for each depot individually,

we solve the pricing problems for all depots at once using a single
bounded directional labeling algorithm because two paths associated
with different depots and covering the same rides and ride pairs in the
same order only differ by their initial and final links connecting the
depot with the first and the last respectively. This means that the labels
for different depots only differ in cost by a constant value and thus the
label extension, feasibility and dominance checks within the labeling
algorithm have nothing to do with the depot. Suppose we have obtained
a feasible complete path from depot w to its counterpart depot wʹ with
the cost denoted by Cw. Then for any other depot w ∈ W\w, we will also
have a feasible path covering the same rides and ride pairs in the same

order with the cost Cw = Cw + UC⋅
(

lswso
ifirst

+ lsd
ilast

s
wʹ
− lswso

ifirst
− lsd

ilast
swʹ

)

,

where ifirst and ilast denote the first and last rides covered by the obtained
path for depot w.

(3) Decremental search space
The third technique is called decremental search space (Boland et al.,

2006). It is an iterative procedure that works on an iteratively enlarged
set of served rides Sk in the configuration of labels. Basically, it starts by
solving the pricing problem without considering any elementarity re-
quirements, that is, without the component Sk in label. If the computed
most profitable route is nonelementary, a subset Ŝk ⊆ Sk that can only
include the rides that are served more than once in the obtained path of
the previous iteration is considered to forbid this path and the pricing
problem is solved again. This iterative process is repeated until an
elementary shortest path is found. In a column generation context, it
can, however, be stopped before optimality when either positive
reduced cost elementary paths are found or the length of the optimal
path computed at an iteration is nonpositive (for maximization prob-
lem). Our implementation of the decremental search space technique is
similar to the one described in Desaulniers et al. (2008). Instead of
starting decremental search with an empty set of Sk at each column
generation iteration, we start it using the Ŝk of the preceding iteration.

4.1.2.3. Heuristic labeling method. Although aforementioned speedup
techniques have been used, the exact labeling method is still time
consuming. In theory, there is no need to solve the pricing problem
exactly except the last iteration of column generation and heuristics can
help identify suitable columns in most iterations. This can greatly reduce
the number of calls to the exact labeling algorithm, which often leads to
a substantial reduction of the total computation time. Therefore, for the
implementation of column generation in previous literature, heuristic
algorithms are often used first to solve the subproblem (Costa et al.,
2019; Desaulniers et al., 2008). If the heuristics succeed to identify
negative reduced cost columns, these columns are added to the RMP and
another iteration is started. Otherwise, we invoke the exact algorithm
for solving the subproblem to optimality, ensuring the exactness of the
overall method. In this study, we will implement a heuristic version of
the proposed exact labeling algorithm that relies on an aggressive
dominance rule. It stipulates that a label dominates a label if conditions
(24) and (25) hold. Hence, condition (23) on the customer resources is
not tested. This strongly increases the chances of dominance, thus
yielding much more dominated labels to be discarded, and accordingly

much fewer generated labels overall. Note that the label extension and
feasibility check remain unchanged.

To sum up, the main novelty of the proposed method for the pricing
problem in Subsection 4.1 lies in the way to construct a vehicle route
that reduces the computational complexity of the original pricing
problem. Traditional labeling method builds routes by connecting in-
dividual rides. Our method innovatively decomposes the ride matching
and vehicle routing. It first builds many ride-matching patterns and then
connects these ride-matching patterns to construct a route. The idea that
works on ride-matching patterns and the labeling method for ride-
matching patterns rather than a labeling method that works on each
individual ride one by one is new. This can efficiently handle complex
constraints related to ride pooling such as time windows, capacity,
and pickup and delivery, and especially the nonlinear customer satis-
faction considered in this study. Particularly, once we have generated
the ride-matching patterns, the pricing problem will reduce from
ESPPTWCPD to ESPPTW. Kindly note that ESPPTWCPD is more complex
than ESPPTW due to the additional constraints, leading to a larger state
space and more intricate feasibility checks. The efficiency gain from
problem complexity reduction from ESPPTWCPD to ESPPTW will be
significantly magnified when applied in the BCP approach, where the
pricing problem needs to be solved repeatedly. Detailed discussions can
be found in Subsection 4.1.

In addition to the above innovative idea, we also consider problem
features to enhance the computational performance of the proposed
two-phase method for the pricing problem. For example, In Phase 1
concerning the generation of ride-matching patterns with two riders, we
will check the riders in ascending order of their departure times and see
if any two rides have same travel period, and we will terminate the
checking of subsequent riders if the current rider is infeasible to be
pooled. Besides, when applying the labeling method in Phase 2, we need
to pay attention to label extension and dominance test, since we now
work on a network consisting of solo rides and shared rides. For
example, for conventional ESPPTW, labels are explored according to the
nodes they are associated with. However, since the labels of different
nodes in our network may represent the partial paths ending at the same
physical location, we will explore the labels by the end-rides (for for-
ward label) or the start-rides (for backward label). We also propose
adaptive M values to address the tailing-off effect in column generation
(see Subsections 4.2 and 4.4).

4.2. Tailing-off effect

The column generation method will find an upper bound for SMSP.
Nevertheless, this method was found slow convergence when
approaching the optimal solution to the MP, often known as ‘tailing-off
effect’. To mitigate this unfavorable effect, Ben Amor et al. (2006)
proposed the use of dual-optimal inequalities in the context of cutting
stock and bin packing problems. We extend this to the shared mobility
service problem. Specifically, the column generation procedure will be
pre-terminated based on the following proposition:

Proposition 1. The column generation procedure can be terminated with
the MP upper bounded by LpObj × (1+ε1) if the optimal solution to the
pricing problem satisfies p∗ ≤ LpObj×ε1

M where M ≥ |I|,where LpObj denotes the
optimal objective value of the RMP in the current iteration.

Proof. The MP can be augmented by a null constraint
∑

r∈Rxr ≤ M as
follows:

[SMSP-R]

max
xr

∑

r∈R

(

Rr +
∑

i∈I
δi

rPi

)

xr (26)

subject to
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∑

r∈R
δi

rxr ≤ 1, ∀i ∈ I (27)

∑

r∈R
θw

r xr ≤ Nw, ∀w ∈ W (28)

∑

r∈R
xr ≤ M (29)

xr ≥ 0, ∀r ∈ R (30)

The dual problem of model [SMSP-R] is formulated as follows:
[SMSP-R dual]

min
(πi ,ρw ,p)i∈I,w∈W

∑

i∈I
πi +

∑

w∈W
Nwρw +M × p (31)

subject to
∑

i∈I
δi

rπi +
∑

w∈W
θw

r ρw + p ≥ Rr +
∑

i∈I
δi

rPi, ∀r ∈ R (32)

πi ≥ 0, ρw ≥ 0, λ ≥ 0, ∀i ∈ I,w ∈ W (33)

Let π∗
i ,∀i ∈ I and ρ*w, ∀w ∈ W be the optimal dual solutions corre-

sponding to constraints (19) and (20) of the current RMP, respectively.
Then

(
π∗

i , ρ*w, p∗
)

i∈I,w∈W will be a feasible solution to the model [SMSP-R
dual]. By substituting this feasible solution to the objective function
(31), we have LpObj + M× p∗ ≥ ObjR*, where ObjR* is the optimal
objective value of the model [SMSP-R dual]. Let Obj* be the optimal
objective value of the model [SMSP-R]. Then it follows from the strong
duality theorem thatObj* =ObjR* ≤ LpObj +M× p∗ ≤ LpObj× (1+ ε1).
Hence, we can terminate the column generation earlier while respecting
the relative optimality ε1. In the implementation of the pre-termination,
an adaptive value of M can be adopted to improve the overall compu-
tational efficiency (see Subsection 4.4).□

4.3. Valid inequalities

In order to provide a better upper bound, we further strengthen the
MP with valid inequalities. The combination of valid inequalities and
column generation in B&B framework is referred to as BCP method.
Over the past years, many studies have been conducted to propose and
incorporate the many families of valid inequalities into B&P algorithm,
i.e., the combination of column generation and B&B scheme, in the
context of VRP (Costa et al., 2019). Among these cuts, the well-known
subset row inequalities (SRIs) proposed by Jepsen et al. (2008) are
promising to improve the computed upper bound in the B&P algorithm
for the considered problem. We thus consider a special and the most
popular case of SRIs, i.e., SRIs of size 3 (3-SRIs), which defines for
subsets of three riders as follows:
∑

r∈R
φU

r xr ≤ 1, ∀U ⊆ I, |U| = 3 (34)

where U is the subset of riders with a cardinality of 3, and φU
r is a co-

efficient that equals 1 if route r serves at least two riders in set U, and
0 otherwise.

It can be seen that 3-SRIs suggest that in any feasible integer solution,
at most one route that serves two or more riders in a subset of riders with
the cardinality of 3, can be selected; otherwise there will be a ride served
twice, thus violating constraint (19). To illustrate this, suppose we have
two routes, i.e., P1 and P2, and both routes serve two riders in a set
consisting of three riders, i.e., R1, R2, R3. Let R1 and R2 be the arbitrary
two riders served by P1. No matter what rides are served by P2 (for
example, R1 and R2, R1 and R3, or R2 and R3), P1 and P2 cannot be
included in the optimal solution; otherwise, there will be rider(s) that
are served twice, which violates the condition that each rider will be
served at most once. Therefore, if the fractional solution to the MP

obtained by column generation violates some of the inequalities (34), we
will add these violated 3-SRIs into the MP and restart the column gen-
eration process to further improve the upper bound.

Although it has been found that the SRIs can significantly improve
the upper bound and thus result in a smaller branch tree, it increases the
complexity of the labeling algorithm for solving the pricing problem.
Specifically, let ΩC denote the set of all identified violated inequalities
(34), Cb ∈ ΩC be any one identified violated inequality, and ηCb

be the
corresponding dual variable, respectively. Then the pricing problem for
the augmented MP of the model [SMSP], named by [SMSP-PP-SRIs], is
presented as follows:

[SMSP-PP-SRIs]

p∗ = max
r∈R\R

Rr +
∑

i∈I
δi

rPi −
∑

i∈I
δi

rπi −
∑

w∈W
θw

r ρw −
∑

Cb∈ΩC

φCb
r ηCb

(35)

For each identified violated inequality Cb, an additional resource
should be added to the definition of label to count the number of riders
in Cb that have been served in the associated path. For example, the
forward label k at the node n is now coded as lforward

k := [Sk, ĉk, τ̂k, γk, κk,

Dk], where Dk :=
{
Db

k
}

Cb∈ΩC
is the vector representing the number of

riders (mod 2) in all violated inequities that have been served. As for the
label extension rule, suppose we have a forward label k at node n with
Dk; then Du of a forward label u at the subsequent nodem in the network
will be given by

Db
u= (Db

k+|Δm ∩ Cb|) mod 2, ∀Cb ∈ ΩC (36)

According to the definition of the augmented label and the revised
pricing problem, the cost of the forward label u at node m will be
updated to ĉk + cm + cnm +

∑
Cb∈ΩC :Db

k+|Δm∩Cb |≥2ηCb
. Condition (24) in the

dominance test will be revised to be ĉk +
∑

Cb∈ΩC
ηCb

≤ ĉu, whereΩCΩC =
{
Cb : ηCb

> 0 ∧ Db
k > Db

u
}
. Similar treatments also apply to backward

label extension and dominance test. When joining a forward label
lforward
k := [Sk, ĉk, τ̂k, n, in,Dk] and a backward label lbackward

g :=
[
Sg, ĉg, τ̂g,m,

im,Dg
]
, the cost of the resulting path is modified to be ĉk + ĉg + cnm +

∑
Cb∈ΩC :Db

k=1,D
b
g=1

ηCb
.

We use the simplest enumerationmethod to separate all 3-SRIs. Since
the SRIs make the pricing problem even harder to solve and thus may
negatively affect the overall efficiency of BP algorithm if the number of
3-SRIs are too large. Therefore, we limit the generation of 3-SRIs using
the following rules: (i) Cuts are generated only when the number of total
labels in the previous column generation is less than a threshold Qthreshold

and the most violated cuts are violated by at least Vmin ; (ii) a maximum
of Cmax the most violated 3-SRIs are added; and (iii) a cut can be added
only if it is violated by at least Vmin. Last, to accelerate the re-
optimization, we prematurely halt the column generation for 3-SRIs
augmented linear programming relaxation if the current objective
value is larger than the value of the best lower bound found so far.
Kindly note that Proposition 1 still holds for the MP augmented by 3-
SRIs.

4.4. Tailored hybrid branching scheme

Previous studies have proposed different branching strategies in the
context of different problems (Costa et al., 2019). In this study, we
propose to use a combination of three branching strategies, i.e.,
branching on the number of vehicles originating from a depot, branch-
ing on the flow through a ride, and branching on the flow of two rides, in
the order of implementation. In particular, the strategy of branching on
the flow of two rides was proposed by Ryan and Foster (1981). Specif-
ically, if the solution to the MP is fractional, then we can identify a depot
such that

∑
r∈Rθw

r xr is fractional, or a ride i ∈ I such that 0 <
∑

r∈Rδi
rxr <

1 , or a two rides i, j ∈ I such that 0 <
∑

r∈Q(i,j)xr < 1, where Q(i, j) de-
notes the set of routes covering the ride i (individually or in a ride-
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matching pattern with other rides) and ride j (individually or in a ride-
matching pattern with other rides) successively or serving ride i and ride
j in a ride-matching pattern. Therefore, we develop the following hybrid
branching scheme:

Case 1: The first branching rule concerns the values of Ñw =
∑

r∈Rθw
r xr. Specifically, if there exists a depot w ∈ W such that Ñw is

fractional, we will impose two branches: (i)
∑

r∈Rθw
r xr ≤ ⌊Ñw⌋ and (ii)

⌈Ñw⌉ ≤
∑

r∈Rθw
r xr ≤ Nw. For the former branch, the number of vehicles

departing from this depot is no more than ⌊Ñw⌋, whereas for the latter

branch, the number of vehicles departing from this depot is no less than
⌈Ñw⌉.

Case 2: The second branching rule concerns the values of
∑

r∈Rδi
rxr.

Specifically, we look for a ride i ∈ I such that 0 <
∑

r∈Rδi
rxr < 1 and

impose two branches on this ride: (i)
∑

r∈Rδi
rxr = 1 and (ii)

∑
r∈Rδi

rxr =

0. For the former branch, ride i must be served, while for the latter
branch, ride i is rejected.

Case 3: The third branching rule concerns the values of
∑

r∈Q(i,j)xr for
a pair of rides i, j. Specifically, we will search for a pair of rides i, j
satisfying 0 <

∑
r∈Q(i,j)xr < 1 and impose the following two branches: (i)

∑
r∈Q(i,j)xr = 1 and (ii)

∑
r∈Q(i,j)xr = 0. For the former branch, ride j will

be served immediately after ride i (i.e., ride j is picked up after the drop-
off of ride i), or ride i and ride j are served jointly in a ride-matching
pattern by the same set of routes, while for the latter branch, ride i
and ride j will not be served successively or jointly in a ride-matching
pattern by the same set of routes.

During the course of the BCP algorithm, the MP at a node would be
associated with upper Nw and/or lower bound Nw of capacity of each
depot, a long list of rides in the sets of satisfied rides SI and rejected rides
RI, as well as a long list of ride pairs in the sets of included pairs of rides
IP and excluded pairs of rides EP. Accordingly, Constraints (19) and (20)
will be updated to

Nw ≤
∑

r∈R
θw

r xr ≤ Nw, ∀w ∈ W (37)

∑

r∈R
δi

rxr = 1, ∀i ∈ SI (38)

∑

r∈R
δi

rxr = 0, ∀i ∈ RI (39)

∑

r∈R
δi

rxr ≤ 1, ∀i ∈ I\(SI ∪ RI) (40)

where the upper Nw and/or lower bound Nw of a node will the same with
the upper and/or lower bound of its parent node, except for the case that
this node is branched from the parent node based on Case 1 of the
branching scheme (In this case, the upper bound of one node will be
⌊Ñw⌋, and the lower bound of another node will be ⌈Ñw⌉). The updated

pricing problem incorporating the above changes can be handled by
network re-construction. Regarding the tailing-off effect, Proposition 1
holds with an updated valueM = |I| − |RI| − |IP| at a node with sets RI and
IP.

In summary, this study proposes an exact BCP approach, which is a
sophisticated method used to solve integer programming problems,
particularly those that are large and complex, such as vehicle routing
and network design problems. It combines column generation and cut-
ting planes within the B&B framework. The time complexity of the BCP
algorithm is not straightforward to define in a simple closed form. In
general, the number of nodes in the B&B tree can be exponential in the
worst case. However, for many practical problems, the BCP approach
can be very efficient, especially when the problem has a large number of
variables but a relatively small number of constraints, as is the case with

the shared mobility problem in this study (see model [SMSP]). We will
conduct numerical experiments to evaluate its performance in the next
section.

5. Numerical experiments

This section reports the results of computational experiments on
randomly generated instances and instances based on the mobility data
from Didi. First, we will elaborate the test instances used for our tests.
We will then evaluate the performance of the proposed approach and
examine the efficiency of the valid inequalities. Finally, impact analysis
is conducted to explore how the ride-pooling option and nonlinear SQM
affect the system performance of SMS. We code the algorithms in Matlab
calling CPLEX on a personal computer with Intel (R) Core (TM) Duo 3.4
GHz CPU.

5.1. Test instances

Two sets of instances will be tested in the experiments. The first set is
composed by randomly generated instances that mimic the travel
pattern of commuters. To create these random instances, we first uni-
formly choose |S| = 1000 location points from a 50 km by 50 km grid.
The pick-up and drop-off locations of |D| ride requests, i.e., so

i and sd
i , are

randomly chosen from the generated locations. Let dis
(
so
i , sd

i
)
be the

Euclidean distance between the pick-up location and the drop-off loca-
tion of ride i. Given an average travel speed v = 30 km/hr, the ride
duration of trip i would be dis

(
so
i , sd

i
)
/v hrs. Similarly, the locations of

|W| = 4 depots are uniformly distributed in the study area, i.e., (12.5,
12.5), (12.5, 37.5), (37.5, 12.5), and (37.5, 37.5) in the 50 km by 50 km
grid. The capacity of each depot is 20. We consider three study periods
with different demand patterns. One is the ordinary demand period of
12 h from 7 am to 7 pm with more riders required to depart in the first
and last two hours. Specifically, if 7 am is taken as the time benchmark
and the time duration is measured in minutes, the earliest departure
time of each trip i, i.e., toi , is an integer randomly chosen with a 25 %
probability of being from interval [0, 120), a 50 % probability of being
from interval [120, 600], and a 25 % probability of being from interval
(600, 720]. The second is the peak-hour demand period of 3 h from 7 am
to 10 am for the morning peak-hours, or 4 pm to 7 pm for the afternoon
peak-hours. The last is the transition period of 6 h from 10 am to 4 pm
between the morning and afternoon peak-hours. The numerical exper-
iments in the peak-hour and transition demand period can shed light on
the computational performance of the proposed algorithm when applied
in a rolling-time horizon under a dynamic and stochastic problem
setting, which is one of our future research directions. Specially, for the
morning peak-hour period, if 7 am is taken as the time benchmark, the
departure time of each trip i, i.e., toi , is an integer randomly chosen with a
20 % probability of being from interval [0, 60), a 60 % probability of
being from interval [60, 120], and a 20 % probability of being from
interval (120, 180]. For the transition period, the departure time of each
trip is randomly and uniformly generated from the interval [180, 540].
Let TW denote the slack time of all rides, i.e.,

(
tdi − toi − dis

(
so
i , sd

i
)
/v
)
, ∀i,

measured in minutes. The latest arrival time arrival tdi can finally be
inferred from the earliest departure time and the slack time.

The second set of instances is created by randomly sampling |D| ride
requests from the historical trip records retrieved from Didi Gaiya Open
data (https://outreach.didichuxing.com/research/opendata/en/) in
Haikou, China in June 2017. We randomly choose a typical working day
in June and the mobility dataset on that day contains about 60,000 trip
records. Each trip record contains the information of pick-up and drop-
off locations, the departure and arrival times. The area of Haikou is
around 70 km2 and its network structure extracted from OpenStreetMap
is illustrated in Fig. 4. Dijkstra’s shortest path algorithm is used to
calculate the travel distance between any two points in the network.
Data cleansing and pre-processing are conducted prior to the analysis.
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Specifically, we remove the abnormal trip records if the trip duration is
less than 1 min or larger than 2 h, or the travel distance is less than 0.2
km or larger than 50 km. Analogous to the aforementioned randomly
generated instances, we consider three periods including an ordinary
demand period (7 am-7 pm), a peak-hour demand period (7 am-10 am),
and a transition period (10 am-4 pm). Again the ride duration is
calculated by assuming an average travel speed v = 30 km/h. A total of
|W| = 4 depots, each with a capacity of 20, are assumed to be located at

4 major intersections in the network as highlighted in Fig. 4.
For both sets of instances, we assume for simplicity that the SMS is

charged by travel distance and the unit service charge is UG = $1/km.
Hence the service charge of ride i is calculated by Gi = UG⋅dis

(
so
i ,sd

i
)
. A

rider will enjoy 10 % discount upon the original service charge for a
shared ride, i.e., υ = 0.9 and Ĝi = 0.9⋅Gi. The penalty of rejecting the
ride i, i.e., Pi, is assumed to be 30% of the service charge of that trip. The
operating cost per unit driving distance of SV is set to be UC = 0.2$/km.
The fixed cost of SV is set to be AC = 25 per vehicle-day. We consider
the VOT and WTP as the attributes of the concerned rider in the

customer satisfaction function. The VOT is randomly and uniformly
chosen from the set of normalized values {0.1, 0.2, 0.3, ..., 1}, while the
WTP is chosen as a uniformly random integer from the set {1, 2, 3, 4,
5}. Only ride-matching patterns with two riders are considered.
Without loss of generality, the satisfaction function of a rider i is
assumed to be multivariate concave function given by

where υmax, qi1,max, and qi2,max are the maximal values of discount rate,
VOT, and WTP, and stmax and etmax are the maximal acceptable ride-
pooling duration and additional ride time of rider i . We can see that
the maximal customer satisfaction value is 1 and is achieved at an
idealized scenario of υ = 0, qi1 = 0, qi2 = 5, st = 0, and et = 0; and the
customer satisfaction will always be non-negative if both the ride-
pooling duration and additional ride time do not exceed the maximal
acceptable values, i.e., Fi ≥ 0 if stij ≤ stmax and etij ≤ etmax. Both the stmax
and etmax are set to be 30 min. Unless stated otherwise, the threshold of
customer satisfaction value F for ride-matching pattern generation is

Fig. 4. Road network of Haikou obtained from OpenStreetMap.

Fij
(
υ, qi1, qi2, stij, etij

)
= 1 −

(υ/υmax)2

5
−

(
qi1
/
qi1,max

)2

5
−

(
1 − qi2

/
qi2,max

)2

5
−

(
stij
/
stmax

)2

5
−

(
etij
/
etmax

)2

5
(41)
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assumed to be 0.5, and the slack time of all rides is assumed to be 10min.

5.2. Assessment of solution methods

We now evaluate the overall performance of the proposed BCP
method and the effectiveness of the valid inequalities, i.e., 3-SRIs, in
obtaining the optimal integer solution in the above two sets of instances.
Kindly note that without 3-SRIs, the proposed method becomes a B&P
approach. Since the number of rides and the slack time may influence
the computational efficiency of the solution methods, test instances
associated with various combinations of the number of rides |I| ∈ {10,
20,30,40,50} (for ordinary demand period)/|I| ∈ {30,60,90,120} (for
peak-hour and transition demand periods) and the slack time TWmax ∈

{5,10,15} are used to test the performance of the proposed method with
and without valid inequalities. The two variants of method are applied
independently for the same set of instances. For a particular combina-
tion or scenario of |I| and TWmax, five instances are randomly generated
and the average results are reported for the ordinary, peak-hour, and
transition demand periods, respectively. The relative optimality gap is
controlled by ε1 and ε2. By setting ε1 = ε2 = 0.0005, the overall relative
optimality gap is about 0.001. The thresholds for selecting the violated
3-SRIs are set as follows: Qthreshold = 50,000, Vmin = 0.1, Cmax = 30, and
Vmin = 0.01. A limit of 2 h is imposed for solving each of these instances.

Tables 1-3 show the results of the proposed approach with and
without 3-SRIs for these test instances corresponding to the ordinary,
peak-hour, and transition demand periods, respectively. Each row cor-
responds to the average results obtained for the five instances for a
particular scenario named as < r/d>-<o/p/t>-<|I|>-<TWmax>, where
‘r’ and ‘d’ are used for randomly generated instances and the instances
created from the mobility data of Didi, respectively, whereas ‘o’, ‘p’, and
‘t’ are used for the instances in ordinary, peak-hour, and transition de-
mand periods, respectively, in the first column of the tables. We report
several output parameters in the tables, including the number of solved
linear relaxation instances within the time limit (#LPSolved), the
number of solved instances within the time limit (#Solved), the number
of instances solved at the root node (#SolvedR), the total CPU time to
obtain the optimal integer solution on average (T_CPU Time), the
number of priced out columns (#Column), the number of generated cuts
(#Cut) [for ‘with 3-SRIs’ only], and the number of nodes traversed
(#Node) in the B&B search tree of instances that are solved to
optimality.

We can see from Table 1 that most instances in the ordinary demand
period can be solved to optimality within 2 h if the number of rides is no
larger than 40. The CPU time for obtaining the optimal integer solution
would increase rapidly as the number of rides increases. Sometimes
finding a valid bound within the time limit is a difficult task. In addition
to the ride number, the computational efficiency is also negatively
affected by the slack time, especially for instances with a relatively
larger number of rides, i.e., |I|=40 or 50. For example, from the right
below part of Table 1, we notice that it takes 62.81 s on average to solve
an instance with |I| = 40 and TWmax = 5 min, while the average
computation time dramatically increases to 1994.77 s for an instance
with the same number of rides but a larger slack time, i.e., TWmax=15
min. Moreover, the number of solved instances at the root node tends to
decrease with an increased number of rides. Similar findings can be
observed in the instances for the peak-hour and transition demand pe-
riods as well.

Among the three demand scenarios, the instances in the ordinary
demand period are the most computationally intensive ones, probably
because of the long time horizon. On the contrary, the instances in the
peak-hour demand period are the easiest to solve. In fact, all the
randomly generated instances in Table 2 are solved at the root node
except one instance ‘r-p-120-5′. The transition demand period lies in the
middle. The results in Table 3 show that the proposed approach can
solve some instances in the transition demand period with up to 120

rides. A further refined examination of the total CPU time in Tables 1-3
suggests that the computational efficiency of the proposed approach is
significantly influenced by the length of time horizon. For example, the
BCP approach takes 8.51 s and 26.91 s to solve an instance with |I| = 60
and TWmax = 5 min in the peak-hour and transition demand period
respectively, whereas the average CPU time increases greatly to
3721.45 s even for a smaller-sized instance with |I| = 50 and TWmax = 5
min in the ordinary demand period. Note that the time horizons of peak-
hour, transition, and ordinary demand period are 3 h, 6 h, and 12 h,
respectively. The results favorably demonstrate the efficacy and poten-
tial of the proposed approach when applied in a rolling-time horizon for
an online and dynamic setting.

Compared with the randomly generated instances, the instances of
Didi appear easy to solve when the number of rides is small. However,
this may not be true for large-sized instances. Take the ordinary demand
period for example, Table 1 shows that the BCP method averagely takes
24.86 s to solve randomly generated instances with 10 rides and slack
time of 5 min, whereas only 7.94 s are needed to address the same-sized
instances of Didi. However, when the number of rides rises to 50, we find
an obviously small number of instances of Didi solved to optimality
within the time limit and an averagely longer CPU time for these limited
number of solved instances. This phenomenon becomes more apparent
in the instances of peak-hour demand period as shown in Table 2. It can
be seen that the CPU time for randomly generated instances and the
instances of Didi is comparable when the number of rides is no more
than 60, while for larger instances, especially the instances with 120
rides, nearly 3 times of CPU time is required for solving the Didi in-
stances compared with randomly generated instances of the same size.
This may be attributed to the spatially clustered demand pattern of
morning commuters in the mobility data fromDidi, e.g., from residential
areas to CBD during the morning peak hour, which creates more ride-
pooling opportunities and thus more nodes in the network and accord-
ingly more time to solve the pricing problem.

As for the valid inequalities, since we set some restrictions for the 3-
SRIs generation, the 3-SRIs are generated only in a few instances. Those
instances can potentially benefit from the 3-SRIs in the implementation
of column generation. According to Tables 1-3, these instances include
‘r-o-30-5’, ‘r-o-30-10’, ‘d-o-20-15’, ‘d-o-30-5’, ‘r-p-120-5’, ‘d-p-60-15’,
‘d-p-90-10’, ‘d-p-90-15’, ‘r-t-60-10’, ‘r-t-60-15’, ‘r-t-90-10’, ‘r-t-120-5’,
‘d-t-30-15’, and ‘d-t-60-15’. By comparing the results of these instances
solved by the proposed approach with and without 3-SRIs, we can find
that the 3-SRIs increase the likelihood of an instance being solved at the
root node. For example, there are two additional instances of ‘r-t-60-15’
and one additional instance of ‘r-o-30-10’, ‘d-o-20-15’, ‘d-p-60-15’, ‘d-p-
90-15’, ‘r-t-120-5’, and ‘d-t-60-15’ solved to optimality at the root node
when we apply the 3-SRIs. The total number of columns and the
computation time may also decrease with the help of 3-SRIs. A
remarkable example is the instance ‘d-p-60-15’ where the CPU time has
reduced significantly from 326.87 s to 15.64 s after applying the valid
inequalities. Other than diminishing the nodes explored in the B&B tree
and increasing the likelihood of instances being solved at the root node
with less computation time, the valid inequalities can also help to solve
some instances to optimality which cannot be solved otherwise. For
example, more instances in ‘r-t-90-10’ and ‘r-t-120-5’ are solved thanks
to 3-SRIs.

5.3. Impact analysis

In this subsection, we will examine the impact of ride-pooling option
by comparing the results of SMSw/P and SMSw/oP. Given the high
probability of ride-matching between peer riders in peak-hour demand
period, instances created from Didi mobility dataset in that period will
be used in the analysis. In particular, we compare the optimal fleet size,
the profit, the number of satisfied rides, and the usage rate of SV of the
two systems. The differences of these parameters are reported both in
absolute value and in percentage in Table 4. It can be seen from the table
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Table 1
Comparison of the results for instances in ordinary demand period.

Without 3-SRIs With 3-SRIs

Instance #LPSolved #Solved #SolvedR T_CPU
Time (s)

#Column #Node #LPSolved #Solved #SolvedR T_CPU
Time (s)

#Column #Cut #Node

r-o-10–5 5 5 5 25.71 504 1.0 5 5 5 24.86 504 0 1.0
r-o-10–10 5 5 5 24.52 509 1.0 5 5 5 25.13 509 0 1.0
r-o-10–15 5 5 5 24.90 537 1.0 5 5 5 25.29 537 0 1.0
r-o-20–5 5 5 5 30.91 5,957 1.0 5 5 5 29.95 5,957 0 1.0
r-o-20–10 5 5 5 30.16 6,663 1.0 5 5 5 30.13 6,663 0 1.0
r-o-20–15 5 5 5 30.89 8,132 1.0 5 5 5 30.39 8,132 0 1.0
r-o-30–5 5 5 4 99.78 37,645 2.2 5 5 4 94.63 37,238 5.0 1.4
r-o-30–10 5 5 3 80.01 44,143 1.6 5 5 4 64.13 43,332 1.8 1.2
r-o-30–15 5 5 4 93.35 50,886 1.4 5 5 4 80.25 50,886 0 1.4
r-o-40–5 5 5 5 648.60 139,754 1.0 5 5 5 666.02 139,754 0 1.0
r-o-40–10 5 5 3 1382.89 157,888 1.8 5 5 3 1361.47 157,888 0 1.8
r-o-40–15 5 5 5 1691.85 187,641 1.0 5 5 5 1670.77 187,641 0 1.0
r-o-50–5 4 4 4 2772.61 229,654 1.0 4 4 4 2771.35 229,654 0 1.0
r-o-50–10 4 2 2 5073.44 286,334 1.0 4 2 2 5130.64 286,334 0 1.0
r-o-50–15 2 0 0 − − − 2 0 0 − − − −

d-o-10–5 5 5 5 8.32 442 1.0 5 5 5 7.94 442 0 1.0
d-o-10–10 5 5 5 7.96 525 1.0 5 5 5 8.01 525 0 1.0
d-o-10–15 5 5 5 8.10 557 1.0 5 5 5 7.98 557 0 1.0
d-o-20–5 5 5 5 11.76 7,320 1.0 5 5 5 11.81 7,320 0 1.0
d-o-20–10 5 5 5 11.95 8,790 1.0 5 5 5 11.94 8,790 0 1.0
d-o-20–15 5 5 3 47.63 10,599 4.6 5 5 4 37.13 10,093 5.2 4.2
d-o-30–5 5 5 4 25.31 39,392 1.4 5 5 4 25.87 39,392 2.0 1.4
d-o-30–10 5 5 4 50.89 49,409 1.4 5 5 4 45.03 49,409 0 1.4
d-o-30–15 5 5 5 62.97 57,656 1.0 5 5 5 62.81 57,656 0 1.0
d-o-40–5 5 5 4 1030.81 128,478 2.2 5 5 4 943.15 128,478 0 2.2
d-o-40–10 5 5 4 2084.63 158,971 1.4 5 5 4 1994.77 158,971 0 1.4
d-o-40–15 5 5 5 2963.15 215,338 1.0 5 5 5 2971.89 215,338 0 1.0
d-o-50–5 4 1 1 3726.90 291,064 1.0 4 1 1 3721.45 291,064 0 1.0
d-o-50–10 2 1 1 6831.15 354,626 1.0 2 1 1 6842.59 354,626 0 1.0
d-o-50–15 0 0 0 − − − 0 0 0 − − − −

Remarks: #LPSolved: the number of solved linear relaxation instances within the time limit. #Solved: the number of solved instances within the time limit. #SolvedR:
the number of instances solved at the root node. T_CPU Time: the total CPU time to obtain the optimal integer solution on average. #Column: the number of priced out
columns. #Node: the number of nodes traversed in the B&B search tree. #Cut: the number of generated cuts.

Table 2
Comparison of the results for instances in peak-hour demand period.

Without 3-SRIs With 3-SRIs

Instance #LPSolved #Solved #SolvedR T_CPU
Tim (s)

#Column #Node #LPSolved #Solved #SolvedR T_CPU
Time (s)

#Column #Cut #Node

r-p-30–5 5 5 5 2.79 294 1.0 5 5 5 2.57 294 0 1.0
r-p-30–10 5 5 5 2.63 489 1.0 5 5 5 2.62 489 0 1.0
r-p-30–15 5 5 5 2.73 680 1.0 5 5 5 2.69 680 0 1.0
r-p-60–5 5 5 5 5.62 1,466 1.0 5 5 5 5.63 1,466 0 1.0
r-p-60–10 5 5 5 6.04 2,323 1.0 5 5 5 6.00 2,323 0 1.0
r-p-60–15 5 5 5 6.68 3,848 1.0 5 5 5 6.72 3,848 0 1.0
r-p-90–5 5 5 5 11.51 3,328 1.0 5 5 5 11.24 3,328 0 1.0
r-p-90–10 5 5 5 13.31 6,320 1.0 5 5 5 13.32 6,320 0 1.0
r-p-90–15 5 5 5 17.69 11,187 1.0 5 5 5 17.98 11,187 0 1.0
r-p-120–5 5 5 4 67.78 7,363 21.8 5 5 4 56.02 6,735 7.6 11.8
r-p-120–10 5 5 5 118.31 15,045 1.0 5 5 5 117.93 15,045 0 1.0
r-p-120–15 5 5 5 359.40 29,132 1.0 5 5 5 360.13 29,132 0 1.0
d-p-30–5 5 5 5 3.60 210 1.0 5 5 5 3.44 210 0 1.0
d-p-30–10 5 5 5 3.48 301 1.0 5 5 5 3.51 301 0 1.0
d-p-30–15 5 5 5 3.60 467 1.0 5 5 5 3.62 467 0 1.0
d-p-60–5 5 5 5 8.47 2,019 1.0 5 5 5 8.51 2,019 0 1.0
d-p-60–10 5 5 5 7.41 3,259 1.0 5 5 5 7.45 3,259 0 1.0
d-p-60–15 5 5 4 326.87 6,325 17.4 5 5 5 15.64 6,251 1.4 1.0
d-p-90–5 5 5 5 13.79 6,915 1.0 5 5 5 13.60 6,915 0 1.0
d-p-90–10 5 5 4 119.11 11,518 10.6 5 5 4 102.43 11,132 7.0 7.0
d-p-90–15 5 5 4 180.51 19,955 4.2 5 5 5 131.67 15,473 1.0 1.0
d-p-120–5 5 5 5 127.29 14,169 1.0 5 5 5 126.23 14,169 0 1.0
d-p-120–10 5 5 5 319.10 27,795 1.0 5 5 5 323.03 27,795 0 1.0
d-p-120–15 5 5 3 994.25 58,922 12.6 5 5 3 984.19 58,922 0 12.6

Remarks: #LPSolved: the number of solved linear relaxation instances within the time limit. #Solved: the number of solved instances within the time limit. #SolvedR:
the number of instances solved at the root node. T_CPU Time: the total CPU time to obtain the optimal integer solution on average. #Column: the number of priced out
columns. #Node: the number of nodes traversed in the B&B search tree. #Cut: the number of generated cuts.
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Table 3
Comparison of the results for instances in transition demand period.

Without 3-SRIs With 3-SRIs

Instance #LPSolved #Solved #SolvedR T_CPU Tim (s) #Column #Node #LPSolved #Solved #SolvedR T_CPU Time (s) #Column #Cut #Node

r-t-30–5 5 5 5 12.31 2,116 1.0 5 5 5 12.17 2,116 0 1.0
r-t-30–10 5 5 4 13.98 2,636 2.2 5 5 4 12.45 2,636 0 2.2
r-t-30–15 5 5 5 12.46 3,353 1.0 5 5 5 12.37 3,353 0 1.0
r-t-60–5 5 5 5 24.56 18,213 1.0 5 5 5 24.22 18,213 0 1.0
r-t-60–10 5 5 3 844.09 25,766 23.4 5 5 3 886.87 25,766 1.4 23.4
r-t-60–15 5 5 2 634.55 35,484 19.4 5 5 4 307.69 32,942 15.0 5.8
r-t-90–5 5 5 4 1060.07 64,621 5.4 5 5 4 1004.92 64,621 0 5.4
r-t-90–10 5 3 2 2262.19 92,039 17.7 5 4 2 3181.02 95,789 3.0 3.0
r-t-90–15 5 2 2 2853.00 100,496 1.0 5 2 2 2628.99 100,496 0 1.0
r-t-120–5 3 2 1 3218.65 104,249 9.0 3 3 2 3536.62 142,401 1.0 6.3
r-t-120–10 1 0 0 − − − 1 0 0 − − − −

r-t-120–15 0 0 0 − − − 0 0 0 − − − −

d-t-30–5 5 5 5 19.52 2,114 1.0 5 5 5 18.46 2,114 0 1.0
d-t-30–10 5 5 5 19.06 2,810 1.0 5 5 5 18.53 2,810 0 1.0
d-t-30–15 5 5 4 168.96 3,597 9.4 5 5 4 92.97 3,014 7.2 2.6
d-t-60–5 5 5 5 27.60 19,915 1.0 5 5 5 26.91 19,915 0 1.0
d-t-60–10 5 5 3 148.44 27,538 13.8 5 5 3 130.01 27,538 0 13.8
d-t-60–15 5 4 3 161.84 37,756 2.5 5 4 4 150.01 37,087 0.5 1.0
d-t-90–5 5 5 4 384.39 70,407 1.4 5 5 4 370.99 70,407 0 1.4
d-t-90–10 5 4 4 1059.51 99,200 1.0 5 4 4 1080.86 99,200 0 1.0
d-t-90–15 5 1 1 2624.39 140,259 1.0 5 1 1 2522.69 140,259 0 1.0
d-t-120–5 2 1 1 4126.54 176,773 1.0 2 1 1 4183.35 176,773 0 1.0
d-t-120–10 1 0 0 − − − 1 0 0 − − − −

d-t-120–15 0 0 0 − − − 0 0 0 − − − −

Remarks: #LPSolved: the number of solved linear relaxation instances within the time limit. #Solved: the number of solved instances within the time limit. #SolvedR: the number of instances solved at the root node.
T_CPU Time: the total CPU time to obtain the optimal integer solution on average. #Column: the number of priced out columns. #Node: the number of nodes traversed in the B&B search tree. #Cut: the number of
generated cuts.
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that the incorporation of ride-pooling in SMS helps to reduce the fleet
size in most instances. In some instances, e.g., ‘d-p-90-15’, the reduction
of fleet size can be up to 10% on average. Fortunately, the cut in fleet
size in SMSw/P does not lead to the decrease of profit and satisfied rides.
Instead, the ride-pooling option gives a great boost to the profit with an
average increment ratio reaching more than 50% of all instances. This
can be explained by an increased revenue due to an increased number of
satisfied rides and a decreased cost because of the decrease of fleet size,
penalty for denying customers, and operating cost for pooled rides in the
SMSw/P. Moreover, the usage rate of SV in the SMSw/P is generally
higher than that in SMSw/oP.

This study makes a contribution by incorporating the nonlinear
customer satisfaction. Hence, it is important to evaluate the value of this
nonlinear SQM against the most commonly used linear SQM, i.e., the
maximum ride duration constraint, in DARP (Ho et al., 2018). The linear
SQM can be mathematically represented by etij + τso

i sd
i
≤ rdmax, where

rdmax denotes the maximal acceptable ride duration. For ease of illus-
tration, we compare the optimal fleet size, the profit, the number of
satisfied rides, and the number of satisfied pooled rides under the
nonlinear customer satisfaction constraint with the threshold being
0 and the results under the maximum ride duration constraint with the
threshold etmax being 30 min. Again, we report in Table 5 the differences
of these parameters both in absolute value and in percentage. According
to the results, if the nonlinear customer satisfaction is considered, more
rides will be satisfied by the fleet, resulting in a higher utilization of the

SV fleet. This is achieved by serving more riders in pair as the number of
satisfied pooled rides increases significantly in most instances. For
example, the increase of satisfied pooled rides can be up to 2 (29%) on
average in instances ‘d-p-60-15’. This result suggests that the nonlinear
customer satisfaction constraint allows more riders to be pooled
together than the maximum ride duration constraint. This is because the
proposed nonlinear SQM factors in many more customers’ concerns that
may also influence the adoption of shared rides other than the additional
ride time, such as the VOT, the WTP, the discounted service charge, etc.
Therefore, the adversity of one aspect like the additional ride time can
be offset by other factors. Take a ride-matching pattern with υ = 0.8,
qi1 = 0.8, qi2 = 1, stij = 30 min for example. Based on Eq. (41), we can
find that the customer satisfaction would always be positive as long as
the additional ride time etij is smaller than 40 min. Moreover, it is
worthwhile to mention that the feasible ride-matching patterns identi-
fied by the linear SQMmay not be satisfactory to the pooled riders, since
enforcing etij ≤ 30 min may not guarantee a positive customer satis-
faction. Last, as expected, the increased number of satisfied pooled rides
contribute to an obvious rise in profit, with an average increment ratio
reaching more than 8% of all instances.

The above results have shown the overwhelming advantages of
SMSw/P over the services without ride-pooling and the potential merits
of a nonlinear SQM as well as the significance of this study in consid-
ering the ride-pooling and customer satisfaction in the decision-making
problems of SMS. Although the results of the impact analysis will depend
on the parameter values and the specific forms of SQM, the nonlinear

Table 4
Result comparison of SMSw/P and SMSw/oP.

Instance SMSw/P SMSw/oP SMSw/P V.S. SMSw/oP

FS Profit #SR #SR/FS FS Profit #SR #SR/FS Diff_FS Diff_Profit Diff_#SR Diff_#SR/FS

d-p-30–5 8.6 − 20.90 20.4 2.37 8.6 − 21.7 20.4 2.37 0.0 0 % 0.8 4 % 0.0 0 % 0.00 0 %
d-p-30–10 8.8 3.56 22.0 2.50 8.8 2.1 21.6 2.45 0.0 0 % 1.5 72 % 0.4 2 % 0.05 2 %
d-p-30–15 9.2 21.20 25.2 2.74 9.6 14.5 24.2 2.52 − 0.4 − 4% 6.7 46 % 1.0 4 % 0.22 9 %
d-p-60–5 18.8 8.51 44.4 2.36 18.8 1.7 42.4 2.26 0.0 0 % 6.8 407 % 2.0 5 % 0.11 5 %
d-p-60–10 19.4 61.24 49.0 2.53 19.6 48.1 47.2 2.41 − 0.2 − 1% 13.2 27 % 1.8 4 % 0.12 5 %
d-p-60–15 18.8 108.26 52.6 2.80 19.6 91.8 50.2 2.56 − 0.8 − 4% 16.4 18 % 2.4 5 % 0.24 9 %
d-p-90–5 27.6 88.57 74.0 2.68 27.4 75.0 71.6 2.61 0.2 1 % 13.5 18 % 2.4 3 % 0.07 3 %
d-p-90–10 26.8 160.28 79.6 2.97 28.0 134.5 76.4 2.73 − 1.2 − 4% 25.8 19 % 3.2 4 % 0.24 9 %
d-p-90–15 25.0 226.03 81.0 3.24 27.8 196.2 81.2 2.92 − 2.8 − 10 % 29.9 15 % − 0.2 0 % 0.32 11 %
d-p-120–5 35.4 187.26 96.2 2.72 36.0 169.1 94.2 2.62 − 0.6 − 2% 18.2 11 % 2.0 2 % 0.10 4 %
d-p-120–10 34.2 289.32 106.0 3.10 35.8 244.0 99.6 2.78 − 1.6 − 4% 45.3 19 % 6.4 6 % 0.32 11 %
d-p-120–15 32.8 381.52 111.0 3.38 35.8 330.0 105.4 2.94 − 3.0 − 8% 51.6 16 % 5.6 5 % 0.44 15 %

Remarks: FS: the optimal fleet size. #SR: the number of satisfied rides. #SR/FS: the usage rate of SV calculated by #SR/FS. Diff_FS: the difference of the optimal fleet
size obtained under a nonlinear SQM and linear SQM in absolute value and in percentage. Diff_Profit: the difference of the profit obtained under a nonlinear SQM and
linear SQM in absolute value and in percentage. Diff_#SR: the difference of the number of satisfied rides obtained under a nonlinear SQM and linear SQM in absolute
value and in percentage. Diff_#SR/FS: the difference of the usage rate of SV obtained under a nonlinear SQM and linear SQM in absolute value and in percentage.

Table 5
Result comparison of nonlinear and linear SQMs.

Instance Nonlinear SQM Linear SQM Nonlinear SQM V.S. Linear SQM

FS Profit #SR #SP FS Profit #SR #SP Diff_FS Diff_Profit Diff_#SR Diff_#SP

d-p-30–5 10.0 − 7.25 19.4 0.6 10.2 − 9.13 19.4 0.2 − 0.2 − 2% 1.9 26 % 0.0 0 % 0.4 67 %
d-p-30–10 9.6 6.70 19.6 1.2 9.6 3.19 19.2 0.8 0.0 0 % 1.5 22 % 0.4 2 % 0.4 33 %
d-p-30–15 11.0 33.87 24.0 1.8 11.0 32.45 23.6 1.4 0.0 0 % 6.7 20 % 0.4 2 % 0.4 22 %
d-p-60–5 23.2 52.18 45.8 2.0 23.6 43.79 45.0 0.4 − 0.4 − 2% 6.8 13 % 0.8 2 % 1.6 80 %
d-p-60–10 23.4 95.94 49.0 3.0 23.2 94.05 48.0 2.0 0.2 1 % 13.2 14 % 1.0 2 % 1.0 33 %
d-p-60–15 21.6 153.93 51.8 6.8 21.6 153.45 50.8 4.8 0.0 0 % 16.4 11 % 1.0 2 % 2.0 29 %
d-p-90–5 34.4 155.86 72.4 3.0 34.4 149.88 71.2 2.0 0.0 0 % 13.5 9 % 1.2 2 % 1.0 33 %
d-p-90–10 33.2 232.46 77.4 6.4 32.8 226.69 75.4 4.6 0.4 1 % 25.8 11 % 2.0 3 % 1.8 28 %
d-p-90–15 31.8 302.05 81.2 8.4 31.6 301.71 80.2 6.8 0.2 1 % 29.9 10 % 1.0 1 % 1.6 19 %
d-p-120–5 43.8 227.61 94.2 3.8 43.8 222.95 93.4 3.0 0.0 0 % 18.2 8 % 0.8 1 % 0.8 21 %
d-p-120–10 42.8 351.25 103.0 8.6 43.4 333.74 101.6 6.6 − 0.6 − 1% 45.3 13 % 1.4 1 % 2.0 23 %
d-p-120–15 41.8 455.55 107.6 11.2 41.2 451.81 107.2 12.0 0.6 1 % 51.6 11 % 0.4 0 % − 0.8 − 7%

Remarks: FS: the optimal fleet size. #SR: the number of satisfied rides. #SP: the number of satisfied pooled rides. Diff_FS: the difference of the optimal fleet size
obtained under a nonlinear SQM and linear SQM in absolute value and in percentage. Diff_Profit: the difference of the profit obtained under a nonlinear SQM and linear
SQM in absolute value and in percentage. Diff_#SR: the difference of the number of satisfied rides obtained under a nonlinear SQM and linear SQM in absolute value
and in percentage. Diff_#SP: the difference of the number of satisfied pooled rides obtained under a nonlinear SQM and linear SQM in absolute value and in percentage.
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SQM is likely to be a more realistic characterization of customer satis-
faction than the linear SQM.

6. Conclusions

This study optimized the fleet size, ride-matching patterns, and
vehicle routes for SMS considering ride-pooling and customer satisfac-
tion. A set packing model and customized BCP approach were developed
to obtain an exact optimal solution to the problem. The pricing problem
within the BCP approach is NP-hard in the strong sense and we proposed
a customized two-phase method to effectively address it. In the first
phase, we identified all the feasible matching patterns between any two
rides. A labelingmethod was iteratively employed in the second phase to
solve ESPPTW in a network constructed upon these feasible ride
matching patterns. Both heuristic and exact version of the labeling al-
gorithm were implemented and three speedup techniques were used to
accelerate the algorithm. We further strengthened the model by adding
the valid inequalities. A primal–dual stabilization strategy was adopted
to mitigate the tailing-off effect in column generation. A compatible
hybrid branching scheme was devised to guarantee the integrality of the
optimal solution. We evaluated the solution method in numerical ex-
periments. The impacts of ride-pooling option and nonlinear customer
satisfaction constraint on the performance of SMS were also examined.

This study considered a special case of DARP that allows at most two
requests sharing their rides in static and deterministic setting in which
the information of rides is known a priori. Further research work can be
undertaken in several aspects, among which the first and most important

future work is to develop efficient heuristic methods for solving large-
scale and dynamic problems. In addition, motivated by the growing
trend of vehicle electrification, it would be interesting to extend the
proposed model and methods to SMS with EVs, by incorporating the
limited driving ranges and charging requirements of these vehicles.
Moreover, the future SMS may be subject to significant stochasticity and
uncertainties in both the demand and the operating parameters (e.g.,
ride duration, electricity consumption, driving range of EVs, etc.). How
to consider the uncertainties of those factors in the context of SMS is also
an important avenue for future research.
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Appendix: Notations

i Index for ride
I Set of rides
w Index for depot
W Set of depots
r Index for vehicle route
R Set of feasible routes
S Set of pick-up and drop-off locations
Nw Capacity of depot w ∈ W
sw Location of depot w ∈ W
so
i Pick-up location of ride i ∈ I

sd
i Drop-off location of ride i ∈ I

toi Earliest departure time of ride i ∈ I
tdi Latest arrival time of ride i ∈ I
AC Fixed cost of SV per vehicle-day
UC Operating cost per unit driving distance
Pi Penalty incurred by unserved rider i ∈ I
Gi A service charge of ride i ∈ I
υ A discount rate for ride-pooling service
Ĝi A discounted service charge of ride i ∈ Ifor ride-pooling service
Fij( • ) Satisfaction function of rider i ∈ I when sharing a ride with rider j ∈ I\{i}
Fi*( • ) Satisfaction function of rider i ∈ I when three or more riders are pooled with him/her sequentially
qi Vector of attributes of concerned rider i
qi1 Value of time of concerned rider i
qi2 willingness-to-pool of concerned rider i
stij Duration of ride-pooling of rider i and rider j
etij Additional ride time due to ride-pooling of rider i and rider j
lso

i sd
i

Distance between two locations, e.g., from so
i to sd

i

τso
i sd

i
Travel time between two locations, e.g., from so

i to sd
i

Fi Minimal customer satisfaction of rider i that is assured by the service provider
Rr Amortized net profit of vehicle route r
Gr Total service charge of all covered rides served by route r
Lr Total traveling distance of route r
xr Binary decision variable that equals 1 if the optimal vehicle route of a SV in the fleet is rand 0 otherwise
δi

r Coefficient that equals 1 if ride i is served by a SV through route r, and 0 otherwise
θw

r Coefficient that equals 1 if the route rstarts and ends at depot w, and 0 otherwise
R A subset of routes
πi Dual variables corresponding to constraint
ρw Dual variables corresponding to constraint
β Index for ride-matching pattern

(continued on next page)
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(continued )

Iβ Set of covered rides of ride-matching pattern β
iβ The first boarding ride of ride-matching pattern β
iβ The last alighting ride of ride-matching pattern β
τβ Travel duration of ride-matching pattern β
Gβ Net profit of ride-matching pattern β
lβ Travel distance of ride-matching pattern β
tβ Earliest departure time of ride-matching pattern β
τi Travel duration of the ride-matching pattern till the pick-up of ride i
tβ Latest arrival time of ride-matching pattern β
τi Travel duration of the ride-matching pattern till the drop-off of ride i.
G = (N,A) Constructed pseudo-network for pricing problem
Θ Set of ride-matching patterns
cn Cost of node n ∈ N in the pseudo-network G
τn Service duration of node n ∈ N in the pseudo-network G
in Index of start-ride, of which the service at node n starts at the pick-up location
in Index of end-ride, of which the service at node n ends at the drop-off location
Δn Set of rides included in the node n ∈ N in the pseudo-network G
[tn , tn] A time window within which the service of node n ∈ N in the pseudo-network Gmust start
cnm Cost of link (n,m) ∈ A in the pseudo-network G
τnm Travel time of link (n,m) ∈ A in the pseudo-network G
Lforward

n Set of forward labels at node n ∈ N

Lbackward
n Set of backward labels at node n ∈ N

lforward
k

A forward label k at the node n ∈ N

lbackward
g A backward label g at the node n
Sk Set of served rides of label k
ĉk Cost of label k
τ̂k Earliest service ending time of label k
γk Node index of label k
κk Index of the end-ride of label k
T Maximal time resource

Lforward
n

Set of unextended forward labels of node n ∈ N

Lbackward
n

Set of unextended backward labels of node n ∈ N

E Set of rides to be explored in the labeling algorithm

Pf End-rides of nodes with newly generated forward labels after an iteration in the labeling algorithm

Pb Start-rides of nodes with newly generated backward labels after an iteration in the labeling algorithm

Cw Cost of a feasible complete path from depot w to its counterpart depot wʹ

Ŝk A subset of set Sk used in decremental search space method
ε1 Pre-specified tolerance for column generation
LpObj Optimal objective value of the RMP
M Pre-specified parameter to help fix the long tail effect of column generation
p∗ The largest reduced cost, i.e., the optimal objective value of the pricing problem
ΩC Set of all identified violated inequalities
Cb Any one identified violated inequality in set ΩC

ηCb
Dual variable corresponding to the violated inequality Cb

Dk :=
{
Db

k
}

Cb∈ΩC
Vector representing the number of riders (mod 2) in all violated inequities that have been served by label k

Qthreshold Threshold for the number of total labels that triggers the cut generation
Vmin Requested minimal violated value for most violated cut to trigger the cut generation
Cmax Maximal number of most violated 3-SRIs that can be added in the linear relaxation
Vmin Requested minimal violated value for a cut to be added in the linear relaxation
Nw Upper bound of parking capacity of depot w ∈ W
Nw Lower bound of parking capacity of depot w ∈ W
SI Set of satisfied rentals
RI Set of rejected rentals
Q(i, j) Set of routes covering the ride i and ridej successively or serving ride i and ridej jointly in a ride-matching pattern
IP Set of included pairs of rides
EP Set of excluded pairs of rides
ε2 Pre-specified tolerance for branch and bound

Data availability

Data will be made available on request.
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