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Edge-based finite element method-boundary element method (FEM-BEM) for the computation of three-dimensional (3-D) electro-
magnetic fields at high and low frequencies is presented. A novel H-A model that includes the differential and integral equations for
wide-band electromagnetic problems is described. An edge element method is implemented to discretize the proposed formulation. A
surface edge element method (SEEM) for surface of arbitrary shape targets is derived according to the geometrical properties of the
basis functions. Unlike traditional electromagnetic formulations, the major coefficients of the proposed formulation in this model are
frequency independent and hence the model can be used to solve electromagnetic problems over a wide range of frequencies. The pro-
posed method is implemented to compute: 1) the electromagnetic induction problems at low frequencies and 2) the scattering fields at
high frequency. Results from established methods are used to validate the proposed method.

Index Terms—Edge-based FEM-BEM, electromagnetic induction, scattering field, surface edge element method.

1. INTRODUCTION

HE edge element method (EEM) [1] was proposed by

Nedelec in 1980. Only local elements are involved in
such formulations and the tangential components of the vectors
are continuous. Compared with the nodal-based finite element
method (NBFEM), EEM needs fewer unknowns and hence is
intrinsically more accurate. With EEM, the field vectors are
used directly as variables. In NBFEM, one needs to compute,
firstly, the potential which is an intermediate variable. Bossavit
et al. [2], [7] have also implemented EEM to discretize FEM
formulations for solving eddy-current problems at low fre-
quency and scattering field at high frequency.

In addition to having the merits of edge elements, edge-based
finite element method-boundary element method (FEM-BEM)
can be used to solve electromagnetic (EM) problems in open
areas and is more convenient to use when dealing with boundary
conditions than in edge-based FEM with nodal-based BEM.
Wakao et al. [3] also solve eddy-current problems of rectan-
gular targets using edge-based FEM-BEM using hexahedron as
the local element. Ahn solves high-frequency problems with
a local tetrahedron element but the parameters in the expres-
sion of the surface basis function are not presented [4]. More-
over, the FEM-BEM formulation in [3] may not solve high-fre-
quency EM problems because the effect of displacement current
has been excluded. The coefficients in the electric field integral
equation (EFIF) in [4] and (15) in [6] are frequency dependent.
Such a coefficient in one field may become very dominant when
the displacement current becomes negligible and the contribu-
tion of the other EM fields in the same formula could then be
overshadowed. Daveau et al. [6] also mention that such formu-
lations are not applicable readily at low frequency.

A novel edge-based FEM-BEM to study wide-band EM prob-
lems is proposed. H-A formulation based on the differential
and integral equations is derived. A three-dimensional (3-D)
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edge element method is used to discretize the differentiation for-
mulation. SEEM is derived and implemented to discretize the
integral equation to facilitate the proposed FEM-BEM which is
being used to solve arbitrarily shaped targets. The characteris-
tics of the proposed formulation are that the coefficients of the
discretized formulation are insensitive to frequencies and there-
fore it can be used to solve EM problems at high and low fre-
quencies. Finally, the proposed FEM-BEM is used to solve EM
induction (EM-I) problems and to compute the scattering fields.
The computational results are validated by either experiments
or other numerical methods.

II. SURFACE EDGE ELEMENT METHOD

The 3-D edge element method has been widely used in FEM
computation and its basis function for any order is well known.
Hence, the following discussion will focus on SEEM for tar-
gets of arbitrate shapes. The surface basis functions of EEM
for the FEM-BEM computations in [4] have been presented but
the corresponding nodal basis function for surfaces of arbitrary
shapes have not been presented. In this paper, the development
of SEEM for arbitrary targets are discussed.

Assume an arbitrary point P(z,y, z) in Fig. 1 is located in-
side a triangular patch AP; P> P3 on the surfaces of a general
object without any of its sides parallel to the X, Y, or Z axis.
The nodal basis function in this case is a linear function of co-
ordinates and

Asi = a; + bjx + iy + diz (D

where a;, b;, ¢;, d; are coefficients related to the size and shape
of the triangle.
From the property of nodal basis function, one obtains
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Fig. 2. Electromagnetic problem configuration.

where n,,n,,n. are the three normalized components of a
normal vector n of the plane AP, P, P, K;; = 0if ¢ # j, and
K;; = 1if 7 = j. The first three equations are obtained based
on the property of the nodal basis functions. The fourth row
of (2) is obtained from the geometrical property of nodal basis
function, and it is equivalent to the normalized plane equation
enclosing the corresponding edge on a triangular patch. How-
ever, there are many such planes and hence the fourth row in
(2) is imposed in order to select the plane, which is vertical to
the local triangle patch, as the basis plane for which (1) has a
unique solution.

Therefore, one of the edge based basis functions related to
edge e = {4, j} is obtained as follows:

Nse = )\siV/\sj - /\sjV/\si~ (3)
As in volume edge elements, the following identity is always
held:

N, -ij = £1 4)
which ensures that the tangential components of the vectors are
always continuous between two adjacent elements.

The equivalent electrical and magnetic currents are related to
the corresponding tangential magnetic and electric fields on the
surface integration as follows:

3 3 3
JS:ZJSS:anHe:anNSSHE 5)
e=1 e=1 e=1

3 3 3
M,=» Me=-Y nxE.=-> nxN.E, (6
e=1 e=1 e=1

where H. is an edge variable corresponding to the magnetic
density, E. is the equivalent electric field. n X N, is a constant
in a direction normal to the edge 77 such that the equivalent
currents are continuous in the normal direction of the adjacent
elements to satisfy the surface current properties.
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III. FORMULATIONS

Fig. 2 shows the EM problem investigated in this paper. (25 is
a 3-D general target enclosed by the surface I', in which the pa-
rameters are: conductivity o, permeability p, permittivity €. (o
is the nonconducting region, where the parameters are: perme-
ability p, permittivity €g, and the current density in this region
isJ 0-

A. Inside Targets

FEM is implemented inside the object and the magnetic field
density vector H and magnetic potential vector A are set as
physical variables. From Maxwell’s equations, the following
expressions are derived:

V xH=(0+ jwe)E @)
V xE = —jwB. ®)
Equations (7) and (8) can be rewritten as
Vx —VxH=—jwuH. &)
o+ Jwe

Using vector identities, one obtains
W, VxVxH=VxW,;-VxH-V-(W,;xVxH). (10
Setting

E = —jwuoAy (11)

where A; = A*/ug, A* is the conventional reduced magnetic
vector potential.
By adding (11), (9) can be changed into

W, - VxVxH=VxW,;-VxH

+jwpo(o + jwe)V - (W; x Aq). (12)

Integrating both sides of (12) gives the following governing
equation:

/V x W, - VxHIV + jwu(o + jwe) / W, -HdV
Ql Q1
+jwpo(o +jw6)?{ (hxA;) - WdS=0 (13)
r
where W, is the weighting function for the vector basis function
N,, 1 is the outward unit vector normal to the surface of the
target.

By implementing 3-D EEM, the vector H is interpolated
within a tetrahedron as follows:

(14)

where the vector basis function N, for the volume edge element
method is expressed as
Ne = MV = AV (15)

where )\; is the 3-D nodal basis function.
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As the third term in (13) exists only on the surface of targets,
the surface basis function is used to interpolate A

3
nxA; =nx ZNseAle (16)

e=1

where A;. is an unknown, N . stands for the surface basis func-
tion as shown in (3).

B. On the Surface of Targets

On the surface of targets, edge-based BEM is incorporated
into the integral equation. The integral formulation for general
targets in this region is derived from the Green’s theorem

C,H; = / Jo X VGAQ, + jweg jq{ (A x E)GdS’
Qs T

—7{ (A x H) x VGdS — jq{ (A-H)VGIS. (17)
r r

By settingn - H = n- V x A; and, together with (11), the
governing function in this region can be rewritten as

C,H; = / Jo x VGAQ, + k[%]{ (A x Ay)GdS
Qs T

—7{ (A x H) x VGdS — }'{ (- V x A])VGdS (18)
r r

where the constant C,, is dependent on the position of the field
point, and kg = w,/f1o€q is the propagation constant in free
space. GG in (17) and (18) is the Green’s function.

The first term on the right-hand side in (18) represents the
driving source excited by the sensor and the second term stands
for the contribution of displacement current, which can be ne-
glected at low frequencies because kg is very small in this sit-
uation. Another feature of (18) is that the coefficients of the
other two terms are fairly constant and are practically frequency
independent.

Applying Galerkin method to (18) and setting the weighting
function W, = n x Ny, one can obtain the linear equations
for the surface of targets.

The application of A; in (13) and (18) makes the values of
coefficients corresponding to the A ; terms in (13) and (18) com-
parable to those of other terms, hence the characteristics of the
discretized equations are significantly improved.

IV. EXAMPLES
A. EMI Response From a Cube

The first example used to test the proposed FEM-BEM
method is to simulate the electromagnetic response from a
conducting target. EM induction (EM-I) is widely used for
the detection and discrimination of conducting and permeable
targets using specific sensors. In the context of subsurface
sensing, EM-I is used to simulate the signature of buried metal
in land-mines and unexploded ordnance (UXO) [8]. As the
conductivity of such targets is typically many orders of mag-
nitude larger than that of the soil, the target can be analyzed
with the assumption that it is located, approximately, in free
space. The frequency-domain EM-I response of a conducting or
ferrous target is characterized by the lowest resonant frequency
at which the EM-I response is much stronger than that of other
modes.
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Fig. 4. Electromagnetic Induction responses along the Y -direction.

A numerical computation to investigate the EM-I response
from a simple model in the form of a cube, 0.07 m on each side
with a conductivity of 1.3 x 10° S/m is reported below. The
distance between the cube and the sensor center is 0.2 m. The
EM-I responses in the form of the terminal voltage at the end of
the receiver over the frequency range of 10 Hz to over 10 kHz
and with different distances between the sensor and the target
are simulated by the proposed FEM-BEM method. Meanwhile,
an experiment is carried out to validate the numerical results. In
the experiment, the conducting cube is put on a plastic frame in
order to reduce the environmental effects. The sensor includes
the source and receiving coils. Due to the weakness of the re-
sponse signal and as the source is very close to the receiver, one
needs to detect the signal from the actual target and then the ex-
periment is repeated again with the target removed in order to
assess the environmental effects.

The results shown in Fig. 3 are divided into real and imaginary
parts, and the imaginary part of the EM-I response is observed
to reach its maximum when the frequency is close to the lowest
resonant frequency. The real part of the EM-I response becomes
larger as frequency increases but its incremental change will
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Fig. 6. Scattering field with different meshes.

become increasingly small and it will eventually be close to zero
if the frequency is high enough. The frequency at the cross-
point between the real and imaginary parts is taken as the lowest
resonant frequency.

Fig. 3 shows the comparison between the numerical result and
the experimental one. The maximum error between the compu-
tational and experimental results is 5.02%.

The results shown in Fig. 4 are obtained with the sensor
moving along the Y axis from —0.5 to 0.5 m at 1 kHz and the
peak of the waveform is observed to appear above the target.
From Figs. 3 and 4, one can see that the computational results
match the experimental ones very well.

B. Scattering Field at High Frequency

The following example of FEM-BEM application is to com-
pute the scattering field from a cylinder with its diameter and
length both equal to 0.254 m. Its relative permittivity ise,, = 4.0
and the conductivity is 0.02 S/m.

The incident electric field at 300 MHz is 1 V/m and it comes
directly from the Z direction. The cylinder is subdivided into
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72 tetrahedrons. The number of unknowns is 197 with the edge-
based FEM-BEM algorithm. The number of unknowns is 144
with the method of moment (MoM). The scattering electric field
shown in Fig. 5 is computed using the proposed FEM-BEM
and MoM algorithms. In the case of homogenous targets, MoM
requires less computational time if both methods use the same
algorithm in solving linear equations. However, the coefficient
matrix of the discretized linear equation of MoM is full and this
offsets the advantages of MoM.

On the other hand, one can investigate the accuracy of the so-
lution by computing the relative errors. Unlike [6], H and A,
inside the target cannot be calculated together, and therefore the
quadratic relative errors [6] cannot be computed. However, we
can calculate the scattering electric field with different meshes
as shown in Fig. 6. From this figure, one can see that the compu-
tational results are closer when the meshes increase. The mean
relative error between 180 and 216 meshes is 2.63%.

V. CONCLUSION

A generalized hybrid method has been proposed and imple-
mented successfully for the 3-D EM computation of EM-I from
10 Hz and the scattering fields at radio frequency. The H-A
model overcomes the shortcomings of traditional mathematical
formulations for EM computations. SEEM for general targets
has also been derived and applied to interpolate the integral
equation while the 3-D EEM is used in differential equations.
Finally, the proposed method is applied in several case studies
and the errors of the numerical solutions have been investigated.
Those results show that the proposed FEM-BEM is valid for
wide-band frequency.
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