
Engineering 44 (2025) 87–100 
Contents lists available at ScienceDirect 

Engineering 

journal  homepage:  www.elsevier .com/ locate/eng  
Research 
Next Ten Years: Create a Better Future—Review 
Knowledge-Empowered, Collaborative, a
nd Co-Evolving AI Models: The 
Post-LLM Roadmap 
⇑ Corresponding authors. 
E-mail addresses: wufei@zju.edu.cn (F. Wu), panyh@zju.edu.cn (Y. Pan). 

https://doi.org/10.1016/j.eng.2024.12.008 
2095-8099/© 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
MFei Wu a,⇑, 

a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China 

Tao Shen a , Thomas Bäck g , J 

g Leiden Institute of Advanced Computer Science, Leiden University, Leiden 2333 CC, Netherlands 

ingyuan Chen a , Gang Huang h , Y 

h College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China 

aochu Jin c , K 

c School of Engineering, Westlake University, Hangzhou 310024, China 

un Kuang a , engze Li f , 

f Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China 

Cewu Lu b , 

b Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 

Jiaxu Miao e , 

e School of Cyber Science and Technology, Sun Yat-Sen University, Shenzhen 518107, China 

Yongwei Wang a , Ying Wei a , Fan Wu b , Junchi Yan b , Hongxia Yang d , 

d Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China 

Yi Yang a , 
Shengyu Zhang a , Zhou Zhao a , Yueting Zhuang a , Yunhe Pan a,⇑ 

a  r  t  i  c  l  e  i n f o a  b  s  t  r  a  c  t  
Article history: 
Received 6 October 2024 
Revised 9 November 2024 
Accepted 8 December 2024 
Available online 19 December 2024 

Keywords: 
Artificial intelligence 
Large language models 
Knowledge empowerment 
Model collaboration 
Model co-evolution 
Large language models (LLMs) have significantly advanced artificial intelligence (AI) by excelling in tasks 
such as understanding, generation, and reasoning across multiple modalities. Despite these achieve-
ments, LLMs have inherent limitations including outdated information, hallucinations, inefficiency, lack 
of interpretability, and challenges in domain-specific accuracy. To address these issues, this survey 
explores three promising directions in the post-LLM era: knowledge empowerment, model collaboration, 
and model co-evolution. First, we examine methods of integrating external knowledge into LLMs to 
enhance factual accuracy, reasoning capabilities, and interpretability, including incorporating knowledge 
into training objectives, instruction tuning, retrieval-augmented inference, and knowledge prompting. 
Second, we discuss model collaboration strategies that leverage the complementary strengths of LLMs 
and smaller models to improve efficiency and domain-specific performance through techniques such 
as model merging, functional model collaboration, and knowledge injection. Third, we delve into model 
co-evolution, in which multiple models collaboratively evolve by sharing knowledge, parameters, and 
learning strategies to adapt to dynamic environments and tasks, thereby enhancing their adaptability 
and continual learning. We illustrate how the integration of these techniques advances AI capabilities 
in science, engineering, and society—particularly in hypothesis development, problem formulation, 
problem-solving, and interpretability across various domains. We conclude by outlining future pathways 
for further advancement and applications. 

© 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and 
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/). 
1. Introduction 

In the field of artificial intelligence (AI) [1–4], large language 
models (LLMs) have revolutionized progress by achieving success 
across multimodal tasks. Models such as OpenAI o1 have demon-
strated high capabilities in natural language understanding, gener-
ation, and reasoning. They have been instrumental in advancing 
applications ranging from conversational agents to complex 
problem-solving systems. Despite these achievements, LLMs have 
significant challenges that limit their effectiveness and applicabil-
ity in certain domains:

LLMs suffer from inherent limitations that necessitate 
knowledge empowerment. Their training on large-scale, 
unsupervised text corpora primarily results in models that 
encode knowledge implicitly within a vast number of param-
eters, leading to several issues including stale or outdated
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information, hallucinations and inaccuracies, inability to rea-
son over structured data, and lack of interpretability. These 
shortcomings highlight the need to integrate explicit knowl-
edge sources to empower LLMs’ factual accuracy, reasoning 
capabilities, and interpretability.
LLMs often struggle with efficiency and domain-specific 
accuracy. LLMs require significant resources, making them 
impractical for certain applications and environments. More-
over, their decision-making processes can be opaque, limiting 
their interpretability. Model collaboration leverages the com-
plementary strengths of various models, integrating the capa-
bilities of large models with the efficiency and specialization 
of smaller or different functional models. This approach 
enhances performance, usability, and transparency, address-
ing the inherent limitations of LLMs. 
LLMs exhibit limitations in adaptability and continual 
learning. They are generally trained on static datasets and 
may not effectively incorporate new information or adapt 
to evolving tasks without extensive retraining. To overcome 
these issues, models need to mutually promote each other’s 
learning processes in order to achieve co-evolution, which 
will enable them to stay current and effective in dynamic 
environments. 
Fig. 1. Post-LLM roadmap.
To address these challenges, integrating external knowledge— 
which provides semantically rich representations of entities and 
relationships—into LLMs has emerged as a promising direction [5– 
7]. This integration occurs through several technical approaches: 

(1) Integrating external knowledge into training objectives. 
These methods design knowledge-aware loss functions by assign-
ing higher masking probabilities to important entities or balancing 
token-level and entity-level losses. 

(2) Incorporating knowledge into LLM inputs. These methods 
inject relevant subgraphs into input sequences using mechanisms 
such as visible matrices to mitigate knowledge noise. 

(3) Knowledge-empowered instruction tuning. In this 
approach, models can fine-tune LLMs to comprehend external 
knowledge by converting them into natural language prompts 
and employing self-supervised tasks. 

(4) Retrieval-augmented knowledge fusion during inference. 
These methods combine non-parametric retrieval modules with 
LLMs to dynamically fetch and incorporate pertinent knowledge 
information. 

(5) Knowledge prompting. This approach transforms external 
knowledge into textual prompts for LLMs without retraining, 
although it often requires manual prompt engineering. 

To improve efficiency and domain-specific accuracy, some 
works [8–10] have explored the collaborative interplay between 
LLMs and smaller models (SMs). In the context of this survey, we 
use the term ‘‘SMs” to refer to models that have significantly fewer 
parameters than LLMs and lack the latter’s emerging properties. 
Model collaboration involves the interaction of AI models with 
varying architectures, sizes, and functionalities to enhance their 
overall performance. This approach allows models to combine 
their strengths—such as the efficiency of SMs with the powerful 
capabilities of larger models—to improve their accuracy, inter-
pretability, and computational efficiency. Model collaboration can 
be categorized into strategies such as model merging and func-
tional model collaboration. These methods enable the integration 
of diverse AI techniques, leading to better performance and adapt-
ability across tasks. 

To advance adaptability and continual learning, model co-
evolution harnesses the mutual evolutionary processes between 
LLMs and SMs to enhance performance and computational effi-
ciency in multimodal tasks. Model co-evolution refers to the simul-
taneous evolution of multiple models that influence each other’s 
development over time while working together to solve complex 
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and diverse tasks in various environments. In this dynamic process, 
models influence one another by sharing knowledge, parameters, 
and learning strategies, which helps them adapt to heterogeneous 
conditions such as different architectures, tasks, and data distribu-
tions. Through co-evolution, models can balance the need for spe-
cialization and generalization, making them more robust and 
efficient—particularly in decentralized and federated learning set-
tings where privacy and resource constraints are critical. 

Together, knowledge empowerment, collaboration, and co-
evolution form an interconnected framework to enhance AI capa-
bilities beyond individual models by achieving levels of reasoning, 
accuracy, and adaptability unattainable by isolated models. The 
functionality of each component may depend on the functionality 
of the others. Knowledge empowerment sometimes relies on col-
laboration to effectively integrate and utilize external knowledge 
sources. Collaboration acts as a catalyst for co-evolution, as inter-
acting models influence each other’s development. In turn, co-
evolution enhances both knowledge empowerment and collabora-
tion by fostering continuous adaptation and learning. 

Furthermore, the ternary space made up of the cyberspace, 
physical world, and human society (CPH) has expanded the inter-
play among science, engineering, and society, leading to new 
dimensions of interaction and development. All these advance-
ments are inseparable from the technologies of the post-LLM 
era—specifically, knowledge-empowered, collaborative, and co-
evolving AI models—which further improve and facilitate these 
complex interactions. As depicted in Fig. 1, in the post-LLM era, 
the integration of such techniques has the potential to tackle com-
plex challenges in hypothesis development, problem formulation, 
problem-solving, and interpretability. Hypothesis development 
now leverages domain-specific knowledge within AI models to 
improve accuracy and reliability. Problem formulation has 
advanced through the modeling of entities, environments, and 
laws using multi-agent systems, such as simulating personalized 
roles in educational settings to uncover pedagogical principles 
and employing physics-informed neural networks (PINNs) to 
incorporate physical laws for improved predictive accuracy in, for 
example, fluid mechanics and heat conduction [11,12].  I  
problem-solving, the shift from symbolic logic reasoners to large-
scale neural networks has enabled models to either retrieve knowl-
edge from databases or memorize and generate complete solu-
tions, with collaborative agent systems enhancing mathematical 
problem-solving through the separation of computation and verifi-
cation tasks. Interpretability has been improved by integrating 
standardized operating procedures (SOPs) into multi-agent work-
flows for better task decomposition and coordination, and through 
enhanced human–computer interaction, with multiple LLM-based 
agents collaborating via natural language and programming 
exchanges to refine software development processes.
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In this light, this review aims to examine post-LLM techniques, 
addressing ongoing challenges in science, engineering, and society, 
and illuminate future pathways to further advance AI applications. 
Fig. 2 depicts the overall outline of this survey. In Section 2,  we
introduce the current challenges presented by AI in the areas of 
knowledge empowerment, collaboration, and co-evolution. Sec-
tion 3 gives an overview of knowledge-empowered LLMs. In Sec-
tion 4, we present cutting-edge methods in model collaboration. 
Section 5 delves into recent techniques for model co-evolution. 
In Section 6, we explore how knowledge-empowered, collabora-
tive, and co-evolved AI advances science, engineering, and society. 
Section 7 showcases potential future advancements and applica-
tions of knowledge-empowered, collaborative, and co-evolved AI. 
Finally, in Section 8, we summarize the key insights from this 
survey. 

2. Challenges 

In this section, we identify four major types of challenges for 
current AI models: task heterogeneity, model heterogeneity, data 
heterogeneity, and security and privacy concerns. 

2.1. Task heterogeneity 

Existing AI models are primarily developed for distinct tasks, 
scenarios, and applications with differing or even conflicting opti-
mization objectives and evaluation metrics, which results in theo-
retical and practical challenges regarding collaboration and co-
evolution among these task-specific models. We identify three 
types of research challenges in task heterogeneity. First, the dispar-
ities in training objectives may hinder the model’s evolutionary 
process, which particularly occurs in the model training phase. A 
notable example is optimizing generative adversarial networks, 
in which a generator and a discriminator are jointly optimized in 
an adversarial manner, making it extremely difficult to reach an 
equilibrium. Thus, it is a challenging problem to balance the diver-
gent objectives and stabilize the training dynamics. Second, the 
lack of shared knowledge can prevent collaboration and co-
Fig. 2. Outline of the survey. OOD: out-of-d
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evolution. This is because, while models made for completely dif-
ferent tasks may develop unique expertise, such knowledge cannot 
be easily leveraged across tasks without a common framework. 
Third, it is difficult for models to reach consensus due to commu-
nication barriers between different models; thus, interpreting 
and acting on outputs from other models becomes challenging. 

2.2. Model heterogeneity 

Model heterogeneity mainly refers to drastic architecture dis-
crepancies between different AI models that lead to crucial chal-
lenges hindering model synergism. Typical examples range from 
collaboration between models with different architectures and 
levels of complexity to models with divergent learning paradigms. 
First, differing input and output representations may make it diffi-
cult to align the features well. For example, two convolutional 
backbones may differ significantly in model depth and width 
(e.g., hybrid model collaboration), resulting in a varying number 
of neurons and feature maps and eventually leading to inflexibility 
for model collaboration. Besides, due to incompatibility in interme-
diate representations, two fundamentally different learning para-
digms may pose a major challenge to model collaboration. An 
example is the question of how to enable collaboration between 
symbolic AI and connectionistic AI, which requires the translation 
of logical rules into numerical formats or vice versa. Therefore, 
effectively extracting, transferring, and aligning shared knowledge 
between heterogeneous models will promote model utilization. 

2.3. Data heterogeneity 

In real-world scenarios, data from different devices or sources are 
often not independent and identically distributed (non-IID), result-
ing in significant variations in data distributions. For example, data 
collected from different end users, functionally different sensors in 
embodied AI, different patients, or different enterprises may differ 
in features, labels, and domains, leading to phenomena including 
class imbalance, covariate shift, and concept drift that remarkably 
affect the generalization performance of model coordination.
istribution; KD: knowledge distillation.

move_f0010
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Moreover, data from multiple sources may be inconsistently labeled 
or may exhibit varying levels of annotation quality. For example, 
some data might have been mislabeled or contain noise, which is 
likely to introduce performance degradation during model collabo-
ration or co-evolution. Data modality differences introduce addi-
tional challenges, such as inconsistent data representations (e.g., 
spatial images versus temporal audio) and imbalanced data modal-
ities (e.g., missing or sparse modality). Data heterogeneity intro-
duces particular challenges due to varying data distributions, 
modality-specific challenges, fusion difficulties, and training com-
plexities. It is essential to effectively address these challenges in 
order to build collaborative and robust systems that can handle 
complex, real-world tasks involving diverse data sources. 

2.4. Security and privacy 

As protected by laws and regulations (e.g., General Data Protec-
tion Regulation (GDPR)), data security and privacy are critical con-
cerns in model collaboration, especially in distributed and 
decentralized machine learning systems, where multiple entities 
(e.g., devices and organizations) contribute to training a global model 
without sharing raw data. Even though raw data is not directly 
shared, model updates through gradients or features can still inad-
vertently expose sensitive information about the underlying data. 
For example, certain patterns in gradients can be reverse-
engineered to reconstruct the original data. Also, collaborated models 
are vulnerable to inference attacks that exploit the learned model or 
its outputs to deduce information about the training data, with 
typical threats such as model inversion attacks and membership 
inference attacks. Although mechanisms such as differential privacy 
offer a potential solution to guarantee privacy, the excessive noise 
injected by the framework can reduce the overall model perfor-
mance. Thus, protecting against such privacy attacks while maintain-
ing the utility of the model is a significant challenge in collaborative 
environments. Moreover, models are  vulnerable  to  poisoning  attacks,  
in which adversaries attempt to corrupt the global model by injecting 
malicious updates. For example, adversaries can send malicious 
model updates that deliberately degrade the performance of the glo-
bal model, often targeting specific sub-tasks or objectives. While 
robust aggregation mechanisms (e.g., Byzantine-resilient algorithms) 
can detect malicious clients, designing such a mechanism is complex, 
especially in environments where clients’ contributions are diverse 
and their trustworthiness cannot be assumed. As collaborative AI sys-
tems continue to grow, security and privacy concerns will remain 
central to the development of secure and privacy-preserving 
model-collaboration paradigms.
3. Knowledge-empowered LLMs 

Their reliance on unsupervised training on large-scale corpora 
often leaves LLMs devoid of practical, real-world knowledge, limit-
ing their current applicability in knowledge-intensive tasks. To 
bridge this gap, researchers have explored various strategies to 
empower LLMs with external knowledge sources. These 
approaches involve integrating knowledge during pre-training 
through specialized training objectives, augmenting model inputs 
with relevant information, and leveraging knowledge during 
instruction-tuning and inference. This section delves into these 
methodologies, outlining how they enhance LLMs’ capabilities by 
making them more knowledgeable and effective. 

3.1. Knowledge-empowered LLM pre-training 

Existing LLMs mostly rely on unsupervised training on a large-
scale corpus and thus lack practical real-world knowledge. Previ-
90
ous works that integrate knowledge into LLMs can be categorized 
into two parts: ① integrating knowledge into training objectives, 
and ② knowledge-empowered instruction tuning.

3.1.1. Integrating knowledge into training objectives 
Zhou et al. [13] constructed a minimal, high-quality dataset and 

fine-tuning protocol to align pre-trained models with user interac-
tion style, leveraging stylistically coherent yet topically diverse 
prompts and responses. Akyürek et al. [14] employed the tech-
nique of integrating domain knowledge into training objectives 
by comparing and contextualizing two types of training data attri-
bution (TDA) methods (gradient-based and embedding-based 
methods), which analyze model behavior at different stages of 
the training process to assess influence on predictions, alongside 
a baseline information retrieval method (BM25) that uses lexical 
similarity for fact tracing without model dependency. The research 
efforts in this category focus on designing knowledge-aware train-
ing objectives. For example, Shen et al. [15] leveraged a knowledge 
graph (KG) structure to assign a masking probability. Entities that 
can be reached within a certain number of hops are considered 
important and are given a higher masking probability during pre-
training. Zhang et al. [16] further controlled the balance between 
token-level and entity-level training losses. Tian et al. [17] fol-
lowed a similar fusion approach to inject sentiment knowledge 
during LLM pre-training by determining words with positive and 
negative sentiment and assigning a higher masking probability to 
those identified as sentiment words. It feeds both sentences and 
corresponding entities into LLMs and trains them to predict align-
ment links between textual tokens and entities in KGs. Gao [18] 
enhanced input tokens by incorporating entity embeddings and 
includes an entity prediction pre-training task. Wang et al. [19] 
directly employed both a KG embedding training objective and a 
masked token pre-training objective into a shared transformer-
based encoder. The deterministic LLM [20] focused on pre-
training language models to capture deterministic factual knowl-
edge. It only masks the span that has a deterministic entity as 
the question and introduces additional clue contrast learning and 
clue classification objective. Xiong et al. [21] first replaced entities 
in the text with other same-type entities and then feeds them into 
LLMs and pre-trains the model to distinguish whether the entities 
have been replaced or not. 

3.1.2. Knowledge-empowered instruction tuning 
Ji et al. [22] demonstrated elasticity within LLMs, where the 

model’s alignment can be inversely adjusted through a 
compression-based protocol, revealing a resistance to alignment 
that favors the retention of broader pre-training distributions over 
fine-tuning adjustments. Zhang et al. [23] shed some light on var-
ious kinds of instruction-tuning techniques. Gekhman et al. [24] 
examined how the inclusion of ‘‘Unknown” examples within the 
fine-tuning dataset affects a model’s performance; the researchers 
find that an increased proportion of these examples not only risks 
overfitting but also hampers the model’s generalization, while 
‘‘MaybeKnown” examples prove most beneficial for balanced per-
formance across knowledge types. KG instruction tuning utilizes 
facts and the structure of KGs to create instruction-tuning datasets. 
LLMs finetuned on these datasets can extract both factual and 
structural knowledge from KGs, enhancing their reasoning ability. 
Wang et al. [25] first designed several prompt templates to transfer 
structural graphs into natural language text and then proposes two 
self-supervised tasks to finetune LLMs. OntoPrompt [26] proposed 
an ontology-enhanced prompt tuning that can place knowledge of 
entities into the context of LLMs and fine-tune them on several 
downstream tasks. Luo et al. [27] fine-tuned LLMs on a KG struc-
ture to generate logical queries. Luo et al. [28] presented a 
planning-retrieval-reasoning framework, fine-tunes on a KG



F. Wu, T. Shen, T. Bäck et al. Engineering 44 (2025) 87–100
structure to generate relation paths, and uses these paths to 
retrieve valid reasoning paths from the KGs for LLMs to conduct 
faithful reasoning and generate interpretable results. 

3.2. Knowledge-empowered LLM inference 

While the methods described in Section 3.1 could effectively 
fuse knowledge into LLMs, they are limited because real-world 
knowledge changes and they do not permit updates without 
retraining. Thus, recent research has focused on keeping knowl-
edge and text spaces separate during inference, particularly for 
question answering (QA) tasks. 

3.2.1. Retrieval-augmented knowledge fusion 
Ovadia et al. [29] evaluated the leveraging of an auxiliary 

knowledge base to retrieve relevant information for a given query, 
combining it with pre-existing model context to enhance a lan-
guage model’s responses to knowledge-intensive tasks. This 
approach outperforms traditional fine-tuning by offering dynamic, 
contextually enriched knowledge integration. Retrieval augmented 
generation (RAG) combines nonparametric and parametric mod-
ules. Yang et al. [30] involved an iterative multi-stage process, 
IM-RAG, in which a reasoner, retriever, refiner, and progress 
tracker collaborate through reinforcement learning and supervised 
fine-tuning; this combination enables an LLM to construct, refine, 
and finalize answers by progressively retrieving, refining, and syn-
thesizing relevant information in a structured, retrieval-
augmented reasoning loop. Given input text, we can retrieve rele-
vant documents via maximum inner product search [31], treat 
them as hidden variables, and feed them into the output generator 
as additional context. The model presented in Lewis et al. [32] out-
performs other baseline models in open-domain QA and can gener-
ate more specific and factual text. Story-fragments improves the 
architecture by adding a module to determine salient knowledge 
entities. Wu et al. [33] improved efficiency by encoding external 
knowledge into memory and using fast search. Guu et al. [34] pro-
posed a knowledge retriever for the pre-training stage to improve 
open-domain QA. Logan et al. [35] selected facts from a KG using 
the current context to generate sentences. Zhang et al. [36] lever-
aged multimodal large language models (MLLMs) in conjunction 
with a neural combinatorial optimization solver to address the 
combinatorial explosion challenge of ancient manuscript restora-
tion, implementing a two-stage pipeline in which MLLMs perform 
initial fragment matching while a neural solver optimizes candi-
date fragment selection, particularly in open-world settings with 
outliers. Sun et al. [37] represented a KG triple as a sequence of 
tokens and concatenates them with the sentences, randomly 
masking either the relation token in the triple or tokens in the sen-
tences. However, this approach may cause knowledge noise. Sun 
et al. [38] used unified word-knowledge graph to further reduce 
knowledge noise. Zhang et al. [39] intended to improve LLMs’ rep-
resentations toward those entities by determining long-tail enti-
ties and replacing them with pseudo token embedding. Yu et al. 
[40] leveraged external dictionaries to improve the representation 
quality of rare words by appending their definitions from the dic-
tionary at the end of input text and training the language model to 
align rare word representations and discriminate whether the 
input text and definition are correctly mapped. 

3.2.2. Knowledge-empowered prompting 
Knowledge-empowered prompting designs a prompt to convert 

structured knowledge into text sequences for LLMs during inference. 
Li et al. [41] used a predefined template to convert KG triples into 
short sentences. Luo et al. [42] sampled relation paths from KGs, ver-
balizes them, and feeds them into LLMs to generate logical rules. 
Chain-of-knowledge (CoK) [43] uses a sequence of triples for 
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prompting to elicit LLMs’ reasoning ability. KG prompting is a simple 
way to combine LLMs and KGs without retraining, but the prompt is 
usually manually designed and thus requires a great deal of effort. 
4. Model collaboration 

Research on collaboration between AI models is an increasingly 
prominent field, centered on the cooperation of models with differ-
ent sizes, structures, or functions. The goal is to leverage the mod-
els’ respective strengths to achieve performance or efficiency 
superior to that of a single model. This collaborative approach 
not only focuses on the complementarity between large and small 
models but also involves the integration of different types of mod-
els, such as deep learning models and traditional machine learning 
models, to harness the powerful capabilities of large models along-
side the efficiency and interpretability of small models. With the 
rapid advancement of deep learning technology, large models have 
gained significant attention due to their outstanding performance; 
however, they often require substantial computational resources, 
which limits their application in resource-constrained environ-
ments and increases their opacity, making their decision-making 
process difficult to understand. Therefore, exploring the collabora-
tive modes of models to enhance performance and usability has 
become a research hotspot. 

Model collaboration can be categorized into two types based on 
the collaboration strategy. The first type is model merging, exempli-
fied by the mixture of experts (MoEs) [44], which combines several 
relatively small expert models to achieve or even surpass the perfor-
mance of a large model. The second type involves the collaboration of 
different functional models, such as using a large model agent to 
coordinate specialized small models to complete specific tasks [45]. 

4.1. Collaboration based on model merging 

In the field of machine learning, a single model often struggles 
to achieve optimal performance. Model merging is an effective 
strategy to improve prediction accuracy and robustness; it 
enhances performance by combining the prediction results, struc-
tures, or parameters of multiple models to mitigate the shortcom-
ings of individual models. 

4.1.1. Model ensembling 
One type of model merging, known as model ensembling, is per-

formed by aggregating the predictions of individual models [46].  The  
most straightforward model ensemble approach is the simple aver-
aging method, where the final prediction is obtained by averaging 
the prediction results of all models. However, this method is only 
reasonable when the performance of each classifier is similar. If 
one classifier performs significantly worse than the others, the final 
prediction may not be as good as that of the best classifier in the 
group. A better approach to ensemble classifiers is to use weighted 
averaging, where the weights are learned from the validation set. 
For classification problems, votin g [47] is a commonly used model 
ensemble strategy. The final prediction is selected by having multi-
ple models vote on the predicted classes, with the class receiving 
the most votes being chosen. Voting can involve either running dif-
ferent models or running a single model multiple times. Stacking 
[48] is a more complex model ensemble method that uses the pre-
diction results of multiple different models as inputs to train a 
new model, which then produces the final prediction. This approach 
effectively leverages the predictive capabilities of different models. 

4.1.2. Model fusion 
MoE [49] is a sparsely gated deep learning model consisting of 

two key components: a gate network (GateNet) and expert
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networks (Experts). The gate network is responsible for dynami-
cally deciding which expert model should be activated based on 
the input data’s characteristics in order to generate the best predic-
tion. Experts are a group of independent models, each specialized 
in handling a specific sub-task. Through the gate network, the 
input data are allocated to the most suitable expert model for 
processing, and the outputs of different models are weighted and 
fused to obtain the final prediction result. For example, Mixtral 
8 7B [50], a modification of the Mistral 7B model, is a sparse 
MoE models that includes eight experts per layer. This results in 
a 47B parameter model that—against several benchmarks—can 
rival or outperform larger models such as Llama2 70B [51]. 

Model collaborative computing based on model merging can 
integrate the strengths and expertise of various models and reduce 
the bias and errors that may arise from a single model, thereby 
improving the accuracy and reliability of decisions. Moreover, 
model fusion can enhance models’ interpretability and trans-
parency. For example, in an MoE systems, each expert model’s role 
in and contribution to specific tasks can be clearly identified, pro-
viding clearer explanations for the final decision. 

4.2. Collaboration based on different functional models 

Another typical model collaboration approach is an intelligent 
agent system composed of multiple functional models. While large 
models provide broad knowledge and advanced reasoning capabili-
ties, such as mathematical reasoning, programming, and task plan-
ning [52], they may be less accurate in handling domain-specific 
tasks compared with smaller, specialized models. Thus, an effective 
mechanism is needed to integrate the general capabilities of large 
models with the specialized expertise of small models, ensuring that 
the agent system can flexibly handle different tasks and 
environments. 

Collaboration based on different functional models can be 
divided into two types. In one type of collaboration, LLMs act as 
intelligent agents, serving as task managers that call upon various 
specialized models to accomplish different tasks. In the other type, 
LLMs work together with other specialized models, such as diffu-
sion models, to complete a specific task. With the support of LLMs, 
the task can be executed more effectively. 

4.2.1. LLM agent as task manager 
Researchers have begun building intelligent agent systems 

based on the collaboration between LLMs and small specific mod-
els [53]. Specifically, they use LLMs as the brains or controllers of 
these agents, extending the perception and action space by 
scheduling SMs. Early works were aimed at enhancing the tool-
learning capabilities of LLMs. For example, both tool augmented 
language models (TALMs) [54] and Toolformer [55] fine-tune lan-
guage models to learn to use external tool application program-
ming interface (API). HuggingGPT [56] further utilizes LLMs as 
the brain and SMs as tools, solving complex problems through col-
laboration between LLMs and SMs. 

Chain of thought (CoT) [45], tree of thoughts (ToT) [57], and 
graph of thoughts (GoT) [58] techniques enable LLM-based agents 
to demonstrate reasoning and planning capabilities comparable to 
those of symbolic and reinforcement learning-based agents [59]. 
These systems can also learn from feedback and execute new 
actions, gaining the ability to interact with their environment 
[60]. LLM-based agents can interact seamlessly, forming multi-
agent systems that promote collaboration and competition 
between multiple agents [61]. 

4.2.2. Collaboration of functional models for one task 
LLMs can help specialized models perform specific tasks more 

effectively. For example, in image-generation tasks, while Stable 
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Diffusion [62] can generate high-quality images, it struggles to 
control the output strictly based on the prompts. LLMs can better 
understand prompts and guide the behavior of the generation 
model, leading to improved controllability in the image-
generation process. Wu et al. [63] proposed a framework that gene-
rates an image from the input prompt, assesses its alignment with 
the prompt, and performs self-corrections on the inaccuracies in 
the generated image. Steered by an LLM controller, this framework 
turns text-to-image generation into an iterative closed-loop pro-
cess, ensuring correctness in the resulting image. Wang et al. 
[64] proposed a training-free method for text-to-image generation 
and editing. It utilizes the reasoning ability of MLLMs to improve 
compositionality in diffusion models. This method breaks down 
complex image generation into simpler tasks for different sub-
regions using regional diffusion. It integrates text-guided genera-
tion and editing in a closed-loop system, improving its generaliza-
tion capabilities. 

Some specialized SMs can also enhance the capabilities of 
MLLMs. For example, Sachin et al. [65] used visual models such 
as semantic segmentation and instance segmentation to improve 
MLLMs’ performance in object-counting tasks. 
5. Model co-evolution 

Model co-evolution refers to a dynamic process in which multi-
ple models evolve together to solve complex, heterogeneous tasks 
and share insights across diverse environments. In this context, 
models not only adapt and improve based on their individual learn-
ing paths but also influence each other’s development, ensuring 
efficient cross-task generalization, parameter sharing, and knowl-
edge transfer. This process becomes essential in scenarios charac-
terized by varied architectures, task requirements, or data 
distributions, as co-evolution enables models to collaboratively 
address the heterogeneity by balancing specialization and generali-
zation. The resulting co-adaptation yields models that are more 
robust, efficient, and capable of solving a wider array of tasks, espe-
cially under the constraints of resource limitations and privacy con-
cerns, which are typical of decentralized and federated 
environments. 

This section is organized into three subsections that explore the 
co-evolution of models under different types of heterogeneity— 
namely, model, task, and data heterogeneity. Section 5.1 focuses 
on co-evolution under model heterogeneity, discussing techniques 
such as parameter sharing, dual knowledge distillation (KD), and 
hypernetwork-based parameter projection. Section 5.2 addresses 
co-evolution under task heterogeneity, examining methods such 
as dual learning, adversarial learning, and model merging. Lastly, 
Section 5.3 explores co-evolution under data heterogeneity, with 
a focus on federated learning and out-of-distribution (OOD) KD. 
Each section examines specialized strategies for optimizing model 
collaboration and efficiency in diverse environments. 

5.1. Co-evolution under model heterogeneity 

5.1.1. Parameter sharing under sub-model homogeneity 
In the context of parameter sharing under sub-model homo-

geneity, recent works have significantly advanced the balance 
between model-specific learning and shared parameter efficiency. 
Haller et al. [66] introduced ‘‘sparse sharing,” which utilizes over-
lapping subnetworks within a larger model, improving parameter 
efficiency through iterative magnitude pruning (IMP), based on 
the Lottery Ticket Hypothesis. Ding et al. [67] extended this idea 
by proposing the multiple-level sparse sharing model (MSSM), 
which enables more granular control through task-specific 
and shared features at different network levels. Wang et al. [68]
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introduced multitask prompt tuning (MPT), which distills shared 
knowledge into transferable prompts for efficient adaptation 
across LLMs. Zhang et al. [69] employed a shared encoder across 
tasks in their contrastive learning model for blind image-quality 
assessment, dynamically adjusting shared parameters to boost 
performance. In a different domain, Chen et al. [70] introduced 
group detection transformer, which applies a group-wise 
parameter-sharing mechanism across object queries, significantly 
improving the efficiency of detection transformers. Ghosh et al. 
[71] proposed iterative federated clustering algorithm (IFCA), in 
which shared representation layers are employed across user clus-
ters in federated learning, enabling parameter sharing across dis-
tributed environments while preserving cluster-specific learning. 
Lastly, Ye et al. [72] presented OpenFedLLM, a federated learning 
framework for LLMs, in which parameter sharing across decentral-
ized systems is achieved through federated instruction tuning and 
value alignment, allowing collaborative learning without exposing 
raw data. These works collectively highlight the power of parame-
ter sharing to enhance model efficiency, reduce redundancy, and 
enable robust performance across heterogeneous task settings 
and domains. 

5.1.2. Dual KD 
Dual KD has emerged as a pivotal strategy under the paradigm 

of model co-evolution, particularly addressing the challenges of 
model heterogeneity. In this approach, models simultaneously 
assume the dual roles of both student and teacher, fostering bidi-
rectional knowledge transfer and enhancing learning efficacy 
across diverse architectures. Unlike traditional unidirectional dis-
tillation, dual KD leverages mutual learning, as demonstrated in 
frameworks such as mutual contrastive learning (MCL) [73], adap-
tive cross-architecture mutual knowledge distillation (ACMKD) 
[74], and all-in-one knowledge distillation (AIO-KD) [75]. For 
example, AIO-KD enables the simultaneous optimization of multi-
ple student models through dynamic gradient detaching and 
mutual learning strategies, optimizing knowledge exchange with-
out sacrificing the teacher model’s performance. Similarly, in the 
context of semi-supervised learning, multistage collaborative 
knowledge distillation (MCKD) [76] refines pseudo labels itera-
tively across multiple student models, preventing overfitting and 
fostering generalization in sequence-generation tasks. This duality 
is also critical in tasks such as text-to-image synthesis, in which an 
adaptive teacher–student collaboration [77] refines student out-
puts through iterative guidance by means of an oracle mechanism. 
Additionally, frameworks such as Selective-FD [78] ensure that 
knowledge sharing is efficient and accurate, selectively filtering 
ambiguous or OOD predictions in federated learning environ-
ments. Collectively, these methods demonstrate the power of dual 
KD for addressing both architectural and domain-specific discrep-
ancies and thus enhancing model performance and generalization 
through iterative and collaborative learning processes. 

5.1.3. Hypernetwork-based parameter projection 
The concept of hypernetwork-based parameter projection has 

emerged as a robust strategy for addressing model heterogeneity 
in co-evolutionary systems, particularly when dealing with large-
scale models such as pre-trained language models. Hypernetworks, 
originally introduced to generate weights for target networks, can 
facilitate the transfer of information across heterogeneous models 
by learning a mapping from a shared latent space to the diverse 
parameter spaces of different models. This projection technique 
is especially beneficial in scenarios where models have been fine-
tuned on distinct tasks or domains and a unified mechanism is 
required to harmonize the varied representations. By utilizing 
hypernetworks, it becomes feasible to dynamically generate task-
specific parameters for a target model, effectively adapting the 
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model to different inputs or tasks without the need for exhaustive 
retraining. In the context of knowledge fusion, hypernetworks 
allow for the seamless integration of heterogeneous model out-
puts, as demonstrated by approaches such as knowledge fusion 
for large language model (FUSELLM) [79] and mixture-of-
adaptations (AdaMix) [80], in which the alignment of tokenizations 
or adaptation modules is a critical factor. This method aligns well 
with other model averaging techniques, such as model soups 
[81] and ensemble strategies [82], by enhancing the parameter 
space exploration while preserving the unique characteristics of 
each model through modularity. Additionally, methods such as 
regression mean (RegMean) [83] and ranking-based merging 
(RankMean) [84], which focus on parameter fusion without requir-
ing downstream data, highlight the flexibility of hypernetwork-
based projection in optimizing the fusion of diverse model param-
eters. By effectively navigating the parameter projection space, 
hypernetworks can create a more coherent and efficient model 
co-evolution process in heterogeneous environments. 

5.2. Co-evolution under task heterogeneity 

5.2.1. Dual learning 
Dual learning has emerged as a powerful paradigm for tackling 

task heterogeneity in model co-evolution by leveraging the intrin-
sic duality between paired tasks to enhance learning efficiency and 
performance across diverse domains. For unbiased learning to rank 
(ULTR), Yu et al. [85] proposed the contextual dual learning algo-
rithm with listwise distillation (CDLA-LD), which combines a 
listwise-input ranking model employing self-attention to capture 
local context with a pointwise-input model for distilling relevance 
judgments, outperforming existing methods on the Baidu-ULTR 
dataset by mitigating position and contextual biases. For con-
strained optimization, Park and Van Hentenryck [86] introduced 
self-supervised primal-dual learning (PDL), a method that jointly 
trains primal and dual networks without pre-solved instances by 
mimicking the augmented Lagrangian method to balance optimal-
ity and feasibility, achieving negligible constraint violations and 
minor optimality gaps. Fei et al. [87] enhanced dual learning by 
aligning structural information between tasks, introducing syntac-
tic structure co-echoing and cross-reconstruction in text-to-text 
generation, and using syntactic–semantic alignment in text-to-
non-text scenarios, thus significantly improving performance 
across tasks such as machine translation and image captioning. 
For video captioning, Ji et al. [88] developed an attention-based 
dual learning (ADL) approach that establishes a bidirectional flow 
between videos and captions using a multi-head attention mecha-
nism to focus on effective information, resulting in more accurate 
and coherent captions. Li et al. [89] presented a multi-pass dual 
learning (MPDL) framework for stylized dialogue generation, lever-
aging mappings among the context and responses of different 
styles and incorporating discriminators to ensure stylistic consis-
tency, and achieved state-of-the-art results. Additionally, frame-
works such as dual learning enhanced auto-reflective translation 
(DUAL-REFLECT) [90] enhance LLMs for reflective translation 
through dual learning feedback mechanisms, while the dual learn-
ing with dynamic KD (DL-DKD) framework [91] integrates con-
trastive language–image pre-training (CLIP) models into partially 
relevant video-retrieval tasks by employing a teacher–student net-
work with dynamic KD, further demonstrating the merits of dual 
learning for addressing task heterogeneity under model 
collaboration. 

5.2.2. Adversarial learning 
Adversarial learning is pivotal in model co-evolution under task 

heterogeneity. It frames objectives as adversarial games between 
competing models or components, thereby enhancing robustness,
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alignment, and performance across diverse tasks. An LLM-
enhanced adversarial editing system for lexical simplification 
employs confusion and invariance losses to predict lexical edits, 
effectively distinguishing complex words from simple ones while 
preserving semantics [92]. Latent adversarial training removes 
undesirable behaviors in LLMs by using targeted adversaries to eli-
cit and mitigate harmful outputs [93]. In AI-text detection, adver-
sarial learning between a paraphraser and a detector enhances 
robustness against paraphrasing attacks [94]. Worst-class adver-
sarial training addresses class imbalance in adversarial robustness 
by focusing on improving the worst-performing classes using no-
regret dynamics [95]. In weakly supervised semantic segmenta-
tion, adversarial learning between a classifier and a reconstructor 
improves segmentation precision by encouraging the classifier to 
produce more accurate class activation maps [96]. By fostering 
adversarial interactions, these methods effectively tackle the chal-
lenges of task heterogeneity in collaborative models. 

5.2.3. Model merging 
Model merging under task heterogeneity is a technique for cre-

ating a unified model that can handle heterogeneous tasks while 
minimizing interference. Basic methods such as parameter averag-
ing [97], despite being straightforward, often result in suboptimal 
performance due to task conflicts. To address this, weighted-
based approaches, such as spherical linear interpolation [98], opti-
mize merging coefficients by evaluating the importance of each 
model or task vector, with some techniques extending this to 
layer-wise or parameter-specific weighting using methods such 
as layer-wise adaptive model merging [99] or merging models 
with fisher-weighted averaging [100]. Subspace-based methods, 
including trim, elect sign and merge (TIES-MERGING) [101] and 
drop and rescale (DARE) [102], focus on pruning unimportant 
parameters and leveraging the over-parameterized nature of neu-
ral networks to merge sparse subspaces, thereby reducing task 
interference. Routing-based strategies dynamically adjust merging 
during inference, thus adapting to input-specific variations. Exam-
ples include twin-merging [103] and weight-ensembling MoE 
[104], which use routing networks to guide the merging process. 
Finally, post-calibration techniques, such as representation surgery 
[105], address representation bias in merged models by aligning 
the representations of merged and independent models to enhance 
performance. Together, these methods provide a sophisticated 
toolkit for merging models in multi-task learning environments 
in order to optimize performance while addressing the complexi-
ties introduced by task heterogeneity. 

5.3. Co-evolution under data heterogeneity 

5.3.1. Federated learning 
Federated learning addresses the challenges of data heterogene-

ity in model co-evolution by leveraging the powerful multimodal 
capabilities of LLMs and the low computational requirements and 
swift response times of SMs. The essence of federated learning lies 
in enabling LLMs to enhance the performance of SMs in domain-
specific tasks while rigorously protecting data privacy. To augment 
LLMs’ performance through training, OpenFedLLM [72] involves a 
comprehensive pipeline that includes federated instruction tuning 
(FedIT) and federated value alignment (FedVA), which optimize 
instruction adherence and model alignment while safeguarding 
data privacy. Zhang et al. [106] introduced multimodal large lan-
guage model assisted federated learning (MLLM-FL) to bolster fed-
erated learning performance on heterogeneous and long-tailed 
data distributions through global multimodal pretraining, feder-
ated finetuning, and global alignment, effectively mitigating data 
heterogeneity while minimizing privacy risks and computational 
burdens on client devices. Bai et al. [107] developed a federated 
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learning scheme for fine-tuning LLMs that dynamically adjusts 
the low-rank adaptation (LoRA) ranks based on individual client 
resources, thus enhancing the effective use of diverse client capa-
bilities and improving generalization across heterogeneous tasks 
and resources. For collaborative model performance enhancement, 
FedMKT [108] involves a framework for federated selective mutual 
knowledge transfer and token alignment using a minimum edit 
distance, which enhances the performance of both LLMs and 
SMs. To improve the effectiveness of SMs through LLMs, Li et al. 
[109] extracted generalized and domain-specific knowledge from 
LLMs via synthetic data generation and then transfers this knowl-
edge to local SMs while preserving privacy. Fan et al. [110] devel-
oped PDSS, a framework that employs the step-by-step distillation 
of LLMs to augment the capabilities of SMs, utilizing advanced 
strategies for prompt and rationale encoding to maintain informa-
tion integrity during the perturbation and subsequent distillation 
of domain-specific knowledge. 

5.3.2. OOD KD 
KD involves training computationally efficient specialized mod-

els as student models to replicate the performance of more power-
ful LLMs as teacher models. This process reduces resource 
demands without significantly impacting performance, thereby 
facilitating broader deployment of LLMs. Traditional distillation 
techniques using synthetic or data-free approaches often suffer 
performance declines in OOD scenarios. To address these chal-
lenges, Gholami et al. [111] used a task-agnostic framework for 
OOD KD, which iteratively leverages feedback from LLMs to refine 
the specialized models, thus enhancing their generalizability. Li 
et al. [112] targeted OOD distillation challenges in vision language 
models (VLMs) by improving prompt coherence and enriching lan-
guage representations in teacher models in order to better align 
vision-language tasks between teacher and student models. 
Agarwal et al. [113] developed generalized knowledge distillation 
(GKD), which uses reinforcement-learning-based fine-tuning to 
align the training and inference distributions, informed by the tea-
cher model’s feedback on the student models’ outputs. Chen et al. 
[114] used a perturbation distillation approach that integrates 
modifications in score, class, and instance levels to distill knowl-
edge to SMs, specifically addressing domain generalization 
challenges. 
6. AI for science, engineering, and society 

The post-LLM era marks a significant shift in the role of AI 
across multiple domains—particularly in science, engineering, 
and society. These domains share common challenges and unique 
characteristics that necessitate the tailored application of AI 
methodologies. Fig. 3 depicts the outline of this section, which 
elaborates on hypothesis development, problem formulation, 
problem-solving, and the interpretability of AI applications in 
science, engineering, and society, exploring how knowledge, col-
laboration, and co-evolution underpin these advances.

6.1. Hypothesis development 

The development of hypotheses is a foundational challenge 
shared across science, engineering, and society domains. Hypotheses 
can  take  on  various  forms,  depending  on  the  domain.  In  science,
hypotheses often serve as theoretical propositions aimed at explain-
ing natural phenomena and are typically crafted to be empirically 
tested [29]. For example, hypotheses in scientific research might pre-
dict the effects of a specific variable on a biologi-
cal process or forecast the outcome of a chemical reaction under 
certain conditions. In engineering, hypotheses often manifest as
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Fig. 3. Outline of AI for science, engineering, and society.
objectives designed to achieve specific goals or meet operational 
constraints [115]. For example, the operation of complex systems 
such as power grids, space stations, or autonomous vehicles often 
requires setting hypotheses related to efficiency goals and safety 
constraints. These hypotheses are more practical and serve as a basis 
for system design and decision-making, helping engineers determine 
the optimal settings and controls for achieving the desired perfor-
mance under the given limitations. In societal contexts, hypotheses 
are often related to behavioral or policy outcomes [22]. For example, 
an AI model might hypothesize that specific interventions (e.g., pub-
lic awareness campaigns or infrastructure adjustments) could lead to 
better outcomes in areas such as healthcare accessibility or traffic 
management. These hypotheses are typically tested in simulations 
or pilot programs prior to broader implementation. Despite the 
diversity in hypothesis types across these domains, there are shared 
categories of hypotheses, such as predictions about system behavior 
under various scenarios or predictions that serve as the basis for sim-
ulation models in order to validate different configurations before 
real-world implementation. These shared and unique hypotheses 
guide subsequent formulation and problem-solving processes in all 
three domains. 
95
In the post-LLM era, knowledge-empowered AI models are 
instrumental in crafting these hypotheses, as they incorporate 
domain-specific expertise and thus enhance both accuracy and 
reliability. For example, advanced meteorological AI models such 
as Pangu [116], FengWu [117], and FuXi [118] could be integrated 
with domain-specific knowledge to improve renewable energy 
(e.g., wind and solar) forecasting, which is crucial for the integra-
tion of renewable energy sources into power systems. Collabora-
tion among multiple smaller AI models also plays a critical role 
in validating hypotheses by cross-verifying outcomes from diverse 
perspectives, thereby enhancing the robustness of the hypotheses. 
This collaborative approach helps mitigate biases and provides a 
more holistic understanding of the problem space. Moreover, co-
evolution fosters the iterative refinement of hypotheses. Through 
ongoing learning from both successes and failures, models can 
evolve to develop more nuanced and effective hypotheses. In this 
way, the post-LLM advancements contribute significantly to trans-
forming hypothesis development, enabling deeper theoretical rea-
soning and more extensive data-driven exploration across science, 
engineering, and societal applications. The iterative process of co-
evolution leads to hypotheses that are more adaptive to changing
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environments, better aligned with domain-specific challenges, and 
ultimately more capable of driving meaningful advancements in 
each respective field. 

6.2. Problem formulation 

The application of large models for modeling the real world is 
currently a focal point of science, engineering, and society research. 
There are three types of modeling in this research domain: the 
modeling of objective entities, the modeling of objective environ-
ments, and the modeling of objective laws. 

For entity modeling, multi-agent systems are introduced to 
effectively simulate personalized roles such as students and teach-
ers in educational scenarios [119]. The strategic integration of 
simulated rules based on large model agents has propelled the 
educational field forward by uncovering the principles of education 
and teaching. 

For environment modeling, the key challenge is how to realize 
the organized interaction between multiple agents. A proposal 
has emerged for a virtual classroom platform that leverages the 
power of multi-agent systems. The virtual platform applies large 
model agents to simulate multiple students and explore the culti-
vation of their academic abilities. Yue et al. [119] integrated 
domain knowledge in the teaching process into the classroom 
simulation process. Utilizing well-crafted role simulators, the 
exploration of classroom teaching processes is meticulously con-
ducted through the orchestration of meaningful role interactions. 

Exploring objective laws is an important goal for the develop-
ment of AI [120]. To this end, PINNs [11] have been proposed that 
utilize physical laws to improve the model’s predictive accuracy 
and generalization ability for the physical world. Compared with 
traditional neural networks, PINNs can achieve predictive out-
comes that adhere to physical laws using a more modest amount 
of training data. Moreover, they exhibit enhanced resilience to 
noise and other interference. PINNs have been widely applied in 
many fields of physical research, such as fluid mechanics and heat 
conduction research [12]. In the study of heat conduction, they can 
help analyze physical-world objective phenomena such as heat dif-
fusion [121]. Although research on PINNs has made great progress, 
problems such as slow training and difficulty in convergence still 
remain. Furthermore, PINNs perform poorly when processing 
high-dimensional data and solving high-dimensional equations. 

6.3. Problem-solving 

The application of AI has undergone extensive development for 
problem-solving in the domains of science, engineering, and soci-
ety [122]. When symbolicism prevailed in the development of AI, 
many studies [123] designed various logical automatic reasoners 
using first-order logic and higher-order logic for scientific research, 
such as automatic mathematical provers [124] and automatic 
physical reasoners [125]. However, the amount of knowledge 
(i.e., logical rules) stored in these manually designed reasoners is 
often limited, and they may perform unsatisfactorily on more com-
plex science problems. With the rise of deep learning, researchers 
[123] turned their attention to large-scale neural networks with 
greater knowledge retention and utilization capabilities. Such 
studies are roughly divided into two categories based on the func-
tion of neural networks. ① One way is to design deep learning 
models as retrievers [122]. The deep learning models are responsi-
ble for retrieving the knowledge needed for each reasoning step 
from knowledge databases, thus assisting in the step-by-step solu-
tion of a science problem. ② Another way is to regard deep learn-
ing models as pure memorizers [126]. During the training process, 
deep learning models fully memorize knowledge. In the subse-
quent inference process, the deep learning models directly produce 
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the sufficient and complete solution without needing to retrieve 
knowledge databases. 

LLMs designed for real-world problem-solving, such as the 
mathematical model DeepSeek_prover_v1.5 [126], take the ability 
to induce and store domain knowledge of neural networks to the 
extreme. The collaboration of multiple agents has also been grad-
ually applied to the field of science research with the development 
of large models. For example, similar to the separation of computa-
tion and verification in the real world, separate mathematical 
problem-solving agents and mathematical conclusion verification 
agents are set up [127]. The effective collaboration of these two 
types of agents has achieved more accurate solutions to mathe-
matical problems. 

6.4. Interpretability 

In AI-driven research, aside from reaching conclusions, explaining 
the reasoning process is an important issue. To this end, a meta-
programming framework, MetaGPT [128], has been proposed, which 
integrates SOPs into the workflows of multi-agent systems. This 
framework is designed to enhance task decomposition and coordina-
tion, which are critical for managing complexity in software engi-
neering projects. By encoding SOPs into prompt sequences, 
MetaGPT allows agents to operate with human-like domain exper-
tise, verifying intermediate results and reducing errors. By mimick-
ing the behavior of human experts, this approach of integrating 
SOPs increases the interpretability of model operations. Improving 
a model’s capability for human–computer interaction is another 
way to improve interpretability. Building on this concept, Qian 
et al. [129] introduced as a framework for software development dri-
ven by multiple LLM-based agents. These agents collaborate through 
natural language and programming language exchanges, guided by 
chat chains and a dehallucination mechanism to improve software 
completeness, executability, and consistency. 

Supporting hypotheses is another important goal in realizing 
model interpretability. Fang et al. [130] presented KANO, a KG-
enhanced molecular contrastive learning method that integrates 
chemical domain knowledge to provide interpretable molecular 
representations and superior prediction performance. KANO gen-
erates functional prompts that evoke downstream task-related 
knowledge, thus enhancing the interpretability of the model’s pre-
dictions. Li et al. [131] introduced modSAR, an optimization-based 
quantitative structure–activity relationship (QSAR) modeling tech-
nique that offers transparent and explainable predictions by pin-
pointing key breakpoint features and crafting piecewise linear 
regression equations. The model’s ability to generate clear rules 
and assign Shapley additive explanations (SHAP) values to molec-
ular fragments enhances its justification of its predictions, making 
it a valuable tool for drug discovery. 

7. Future directions and emerging applications 

7.1. Future lines of research 

Beyond the topics covered above, several important and rele-
vant areas warrant further exploration. 

(1) Embodied AI. Embodied AI is a promising post-LLM 
direction. Collecting high-quality robotic datasets is labor inten-
sive, and over-reliance on simulation data intensifies the sim-to-
real gap, requiring collaborative dataset creation and improved 
simulators. Efficiently integrating human demonstration data and 
advancing cognition in complex environments are also critical in 
building adaptive models. Additionally, enabling causal reasoning, 
continual learning, and unified evaluation benchmarks will be 
essential for robust, scalable, and generalizable embodied AI 
systems.
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(2) Brain-like AI. AI systems and algorithms inspired by 
the structure and functions of the human brain seek to emulate 
the brain’s parallel processing, adaptability, and efficiency to 
enhance computational models. Interdisciplinary integration with 
neuroscience could yield AI models that closely mirror human cog-
nitive functions by adopting insights into brain-based learning, 
memory, and decision-making processes. Advances in neuro-
science could also inspire robust brain-like AI models capable of 
naturalistic emotional and contextual responses, enhancing the 
potential for human–computer empathy and adaptability. More-
over, significant opportunities lie in developing scalable, efficient, 
and responsible AI frameworks that can operate reliably in real-
world applications, especially in resource-constrained or sensitive 
domains. By integrating insights from the structure and adaptabil-
ity of neural circuits, researchers can enhance the resilience, effi-
ciency, and transparency of brain-like AI models, ultimately 
moving closer to designing AI that is responsible, adaptable, and 
responsive to complex human-centered needs. 

(3) Non-transformer foundation models. Despite the 
prominence of transformer architectures in large foundational 
models, several alternative architectures show promise as poten-
tial replacements. Hyena [132] introduces an efficient structure 
by integrating data-controlled gating with implicitly parametrized 
long convolutions, providing a subquadratic solution to large-scale 
sequence processing. Other models leverage state space models 
(SSMs) [133] to achieve linear scaling and improved efficiency over 
traditional transformers. RetNet [134], which replaces multi-head 
attention with a multi-scale retention mechanism, captures 
sequence information effectively while reducing memory usage 
and significantly accelerating training. Thus, these models can be 
seen as viable and efficient transformer alternatives. 

(4) LLM-involved model generation. Leveraging LLMs to 
generate small, task-specific models by summarizing user require-
ments and a few in-domain data into latent variables, which are 
then decoded to produce tailored AI models directly usable for pre-
diction [135], can be a promising post-LLM direction. 

7.2. Emerging applications 

In the post-LLM landscape, the next generation of AI, character-
ized by knowledge empowerment, model collaboration, and co-
evolution, will definitely redefine the capabilities of AI and reshape 
our perceptions of these new AI systems. Its continually evolving 
nature will bring new possibilities to our real-world society, meet-
ing the highly complex demands of more specialized, adaptative, 
and human-aligned applications. 

The characteristic of knowledge empowerment suggests that 
the post-LLM AI systems will increasingly emphasize the fusion 
of more specialized, factual, and structured information, signifi-
cantly enhancing their expertise in specific fields with precision 
and logical reasoning and eventually surpassing today’s general-
purpose AI models. In particular, with the integration of rich 
knowledge sources accumulated from science, engineering, and 
human society, next-generation AI is expected to delve deeper into 
exploring scientific laws, generating new hypotheses for scientific 
research and discoveries, and predicting the trajectory of events. 
For example, in the field of mathematics, the integration of AI will 
become more widespread, with large-scale neural networks being 
utilized to store mathematical knowledge and to conduct reason-
ing, and with the accuracy of problem-solving being improved 
through multi-agent collaboration. This will benefit other emerg-
ing AI interdisciplinary fields as well, such as online education, 
physics, and more. For example, the personalized application of 
AI will appear in the field of education, enriching teaching interac-
tions and experiences by simulating and integrating interactive 
insights between students and teachers. In the realm of physics, 
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technologies such as PINNs will leverage the laws of physics to 
enhance models’ predictive accuracy and generalization 
capabilities. 

Model collaboration in the post-LLM era will involve deeper col-
laboration among both heterogeneous data and heterogeneous mod-
els. By fusing data from multiple sources (e.g., text, images, audio, 
and sensory signals), omni-modal AI systems will gain a more holis-
tic understanding of the physical world, which will be particularly 
useful in fields such as autonomous vehicles, cross-media content 
generation, and digital twins. Collaboration between large 
(general-purpose) and small (specialized) models is another emerg-
ing trend in collaborative AI. Large models exhibit strong capabilities 
in generation, reasoning, and knowledge integration, while SMs dis-
play merits such as efficiency, low latency, security, and privacy. 
Achieving deeper collaboration between large and small models is 
a future development trend, involving not only effective data 
exchange but also knowledge sharing and task decomposition to 
address complex task scenarios, particularly in areas such as embod-
ied intelligence. As application scenarios expand, personalized and 
adaptive collaborative systems incorporating large and small models 
will become a significant development direction in areas including 
intelligent assistants and service robots. 

Model co-evolution, inspired by biological ecosystems, is 
another key ingredient in establishing the next generation of 
AI, in which AI models evolve collectively, learning and adapt-
ing in an interdependent process. This dynamic and continually 
evolving relationship between collective models is expected to 
remarkably advance the intelligence level and adaptation capa-
bility of AI systems, enhancing their robustness to dynamic and 
unknown physical-world changes. Merging diverse functional 
models may be a potential approach to co-evolving AI systems, 
as this can synthesize information from multiple models into a 
cohesive, unified framework. Nevertheless, several crucial chal-
lenges still remain to be resolved, including the lack of a deeper 
theoretical understanding of the merging mechanism—espe-
cially in scenarios involving models trained on different data-
sets or for different tasks—and the high computational and 
memory costs of merging schemes, among other issues. Co-
evolved AI models have broad potential applications, such as 
autonomous driving, mining robotics, and industrial 
manufacturing. 

Knowledge-empowered, collaborative, and co-evolving AI will 
likely bring AI systems to a new level with higher intelligence, resi-
lience, and autonomy, expanding AI’s capability to handle complex 
real-world applications such as scientific discoveries, engineering 
design, personalized education, manufacturing, and more. Mean-
while, the increasing autonomy and interconnectivity of AI models 
may also present challenges in terms of safety and societal 
impacts, requiring mechanisms to monitor and control AI systems 
in order to prevent unforeseen behaviors. 

8. Conclusions 

In this survey, we explored the evolving landscape of AI 
beyond LLMs, with a focus on the paradigms of knowledge-
empowered AI, model collaboration, and the co-evolution of AI 
systems. While LLMs have significantly advanced AI capabilities, 
they present inherent challenges in scalability and adaptability. 
To address these limitations, we discussed a range of post-LLM 
techniques and applications aimed at building more robust, scal-
able, and adaptable AI models. This survey sheds light on poten-
tial roadmap points in the post-LLM era for researchers and 
practitioners. The ongoing evolution of AI requires continued 
innovation and interdisciplinary collaboration to build systems 
that are not only powerful but also adaptable and aligned with 
human values.
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