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HIGHLIGHTS

e Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces
training cost.

e DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.

e Both the accuracy and efficiency of inverse analysis are improved by several orders of magnitude.

e Inverse analysis of three-dimensional heterogeneous engineering structures can be accomplished in seconds.

e DFEM can be readily extended as Physics-Encoded Numerical Network (PENN) to revitalize classical numerical methods for Al4Science.

ARTICLE INFO ABSTRACT
Keywords: Physics-informed neural networks (PINNs) are well-regarded for their capabilities in inverse
Physics-Informed Neural Network (PINN) analysis. However, efficient convergence is hard to achieve due to the necessity of simultaneously

Differentiable Finite Element Method (DFEM)
Physics-Encoded Numerical Network (PENN)
Inverse analysis

Heterogeneous engineering structures

handling physics constraints, data constraints, blackbox weights, and blackbox biases. Conse-
quently, PINNs are highly challenged in the inverse analysis of unknown boundary loadings and
heterogeneous material parameters, particularly for three-dimensional engineering structures. To
address these limitations, this study develops a novel differentiable finite element method
(DFEM) based on Galerkin discretization for diverse inverse analysis. The proposed DFEM directly
embeds the weak form of the partial differential equation into a discretized and differentiable
computational graph, yielding a loss function from fully interpretable trainable parameters.
Moreover, the labeled data, including boundary conditions, are strictly encoded into the
computational graph without additional training. Finally, two benchmarks validate the DFEM’s
superior efficiency and accuracy: (1) With only 0.3 % training iterations, the DFEM can achieve
an accuracy three orders of magnitude higher for the inverse analysis of unknown loadings. (2)
With a training time five orders of magnitude faster, the DFEM is validated to be five orders of
magnitude more accurate in determining unknown material parameters. Furthermore, two cases
validate DFEM as effective for three-dimensional engineering structures: (1) A damaged canti-
lever beam characterized by twenty heterogeneous materials with forty unknown parameters is
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efficiently solved. (2) A tunnel lining ring with sparse noisy data under unknown heterogeneous
boundary loadings is successfully analyzed. These problems are solved in seconds, corroborating
DFEM’s potential for engineering applications. Additionally, the DFEM framework can be
generalized to a Physics-Encoded Numerical Network (PENN) for further development and
exploration.

1. Introduction

Solving governing partial differential equations (PDEs) is the essential way to predict and optimize system behaviors. Since
analytical solutions are rarely available for most PDEs, numerical methods have garnered significant interest and achieved substantial
success. For example, finite element method (FEM) [1,2], finite difference method (FDM), peridynamics (PD) [3,4], material point
method (MPM) [5,6], discontinuous deformation analysis (DDA) [7-9], and discrete element method (DEM) [10,11] have flourished.
Advanced schemes like the fluid-solid coupling methods have been developed for disaster mitigation and complex engineering
problems [12,13]. These numerical methods can readily solve forward problems. However, in scenarios where material properties or
boundary conditions are not well-defined, classical numerical methods often cannot be directly applied and may require costly iter-
ative invocations. Thus, inverse analysis and data assimilation pose challenges to classical numerical methods, hindering further
application and development in digital twins.

The development of neural networks has provided a universal approximator to PDE solutions [14]. However, the data-driven way
to train neural networks can incur unaffordable costs in scientific and engineering areas. Thus, the recently developed
physics-informed neural network (PINN) [15] has emerged as a new paradigm to solve PDEs considering both physics and data. The
key of classical PINNS is to incorporate both residuals from strong-form PDEs and errors from labeled data into the loss function. Thus,
conventional forward and inverse analysis of various PDEs can be solved in a unified way by minimizing this loss function [16].
Extensive progress has been made in porous flow [17,18], constitutive modeling [19,20], earthquakes [21], fracture modeling [22],
geoengineering [23,24], monitoring [25], etc.

Focusing on solid mechanics, fruitful work has been made to perform forward and inverse analysis with homogeneous materials.
Haghighat et al. [26] proposed a multi-network model for inverse analysis using labeled displacements and stresses with or without
their derivatives. Abueidda et al. [27] applied PINN on forward analysis of a three-dimensional cantilever beam without labeled data.
Vahab [28] solved forward biharmonic equations of elasticity. Roy et al. [29] developed a PINN formulation for linear elastic plate
theory and practiced forward analysis. On the other hand, a variant of PINN, the deep energy method (DEM) [30] or deep Ritz method
[31] employs the functional as the loss function. Li et al. [32] compared DEM and conventional PINN in forward analysis of elastic
plates with finite deformation. Nguyen-Thanh et al. [33] used a parametric/reference space to accelerate DEM forward analysis in
elasticity and strain gradient elasticity. Wang et al. [34] implemented exact Dirichlet boundary conditions in forward analysis of elastic
solid mechanics.

PINN methods can also be combined with classical numerical methods to circumvent sampling points and reduce automatic dif-
ferentiations, for example, the FEM and PD. Wang et al. [35] reviewed PINN methods leveraging FEM in three genres. Our work can be
defined as the way with a fully differentiable computational graph. In this way, Gao et al. [36] predicted nodal variables of a finite
element mesh by a graph convolutional network (GCN). Motiwale et al. [37] used fully-connected neural networks (FCNN) with FEM.
Wang et al. [35] implemented FCNN, modified FCNN, and GCN with FEM, and systematically revealed the role of finite element mesh
in three-dimensional cases. Millions of degrees of freedom were considered in Wang et al. [35]. PD formulations were also absorbed in
PINNSs to solve solids with cracks [38], cracks of correspondence materials [39], thermomechanical loadings [40], and crack ini-
tiation/propagation in rock-like materials [41]. Alternatively, an advanced graph transformer was proposed as the surrogate model to
predict long-term evolution of physics systems [42]. In these studies, blackbox weights and biases are entailed in problems with
homogeneous materials.

In solid mechanics with homogeneous materials, concentration features often take place near fixed boundaries, local tractions, and
cracks. Conventional PINNs and DEM usually end up with low accuracy in such scenarios. To solve these problems, peridynamic
differential operator, mixed-form residuals, Fourier feature mapping, and some other methods were developed. Haghighat et al. [43]
devised a nonlocal PINN using the peridynamic differential operator to remove spatial derivatives and solve the inverse analysis of an
indentation problem with sharp gradients. Fuhg and Bouklas [44] proposed the mixed DEM method to solve forward hyperelastic
problems with concentration features. Abueidda et al. [45] mixed strong-form residuals and the energy functional in the loss function
to solve forward hyperelastic problem. Chadha et al. [46] applied random Fourier feature mapping to DEM method. Jeong et al. [47]
adopted a two-stage learning strategy for forward analysis of the specimen under uniaxial tension with a crack. With extra output from
neural networks or additional operations, these methods can well reproduce concentration features in homogeneous materials.

Another challenge arises when dealing with heterogeneous materials, which are crucial in damaged structures, composite mate-
rials, and geotechnical engineering. Heterogeneity with discontinuous material interfaces also introduces concentration features and is
more difficult for inverse analysis. Wang et al. [48] developed domain decomposition for DEM and solved forward heterogeneous
problems with two different materials. Diao et al. [49] also embedded domain decomposition in PINN with multi-task learning for
forward analysis of two-material heterogeneity. Zhang et al. [50] considered a two-material inverse analysis and also analyzed geo-
metric parameters. Rezaei et al. [51] included both energy and strong-form residual in the loss to handle forward heterogeneous
problems with two materials. Harandi et al. [52] employed a similar formulation for forward analysis and parametric learning of a
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thermo-mechanically coupled problem with two materials. Ren and Lyu [53] utilized mixed-form PINN based on dimensionless strong
form PDEs to solve forward problems with two-phase random materials. These applications are mostly investigated with simple ge-
ometry and experimental setup.

Recently, advancements utilizing PINN have been presented for forward analysis in engineering scenarios. For example, with
normalization factors into the loss function, Ouyang [54] simplified the pile as a one-dimensional (1D) Euler-Bernoulli beam with soil
resistance described by p-y curves. However, in this study, we focus on the inverse analysis in solid mechanics, especially the
application of PINNs to engineering structures. For instance, considering two-dimensional (2D) linear elastic heterogeneous strata,
Vahab et al. [55] employed domain decomposition for inverse analysis of the modulus of a 2D bottom layer of soil. Zhang et al. [56]
examined a tunnel in 2D linear elastic homogeneous strata and performed inverse discovery of Lame parameters. He et al. [57,58]
simplified the immersed tunnel into a 1D linear elastic multi-beam model to estimate the foundation modulus. Ouyang [59] performed
back analysis for a parameter related to soil stiffness using a simplified 1D linear elastic beam. In addition to material parameters,
inverse analysis is also crucial for unknown boundary loadings. For example, using multi-task learning, Xu et al. [60] predicted
loadings on a 2D elastic tunnel ring. By simplifying the tunnel ring as a 1D linear elastic curved beam, Wang et al. [61] estimated
loadings considering linear elastic soil. Despite the significant achievements, current PINN inverse analyses for engineering structures
remain constrained to homogeneous parameters and 1D/2D cases.

PINNs are required to simultaneously handle physics constraints, data constraints, blackbox weights, and blackbox biases. Thus,
PINNs are highly challenged in complex problems involving heterogeneous engineering structures. Existing enhancements to PINNs
for heterogeneity, such as those employing mixed form and domain decomposition cannot guarantee universal improvements in ef-
ficiency and accuracy. Moreover, extra hyperparameters and design of neural networks in improved PINNs are not friendly for en-
gineers to start with.

To perform efficient inverse analysis for multidimensional heterogeneous engineering structures, we develop a new Differentiable
Finite Element Method (DFEM) based on Galerkin discretization. Using this new DFEM method, several nontrivial gains can be
leveraged: (1) Rather than employing classical neural networks with blackbox weights and biases, the DFEM in this study directly
encodes physics into a discretized differentiable network. The computational graph is fully interpretable, obviating the need for
hyperparameters in neural network design. (2) The Dirichlet and Neumann boundary conditions, as well as labeled data, can be
directly encoded into the DFEM, eliminating the need for multiple loss terms that may cause gradient pathology. (3) By only keeping
interpretable trainable parameters and encoding constraints from data and physics, the DFEM facilitates more accurate inverse an-
alyses of 2D and 3D engineering structures with significantly faster convergence and higher accuracy.

As follows, further introduction of PINN and its challenges are presented. Subsequently, the methodology of the new DFEM,
discretized using the Galerkin method, is detailed. Section 4 validates the superior accuracy and efficiency of the DFEM by reproducing
some typical published case studies. The inverse analysis of 3D engineering structures is performed in Section 5. Discussions and
conclusions offer relevant insights, along with the advantages and possible limitations of the approach.

2. PINN and its challenges

The classical PINN in Raissi et al. [15] incorporates residuals of strong-form PDEs and mean square errors of labeled data.
Collocation points are sampled inside the domain and on the boundaries. Haghighat et al. [26] investigated PINN in solid mechanics
with the strong-form PDE:

V-6+f=0, onQ

u=g, on dQp (€8}
c-n=t, on 0Qy

where ¢ € R™m*™m jg the Cauchy stress tensor. f € R™m is the body force. u € R™ is the displacement. g € R™ is the prescribed
Dirichlet boundary value on dQp. t € R™i is the force on Neumann boundaries 0Qy with outer normal n € R™im. ng;,, is the spatial
dimension. n, is the dimension of target variables. The linear constitutive and small strain are

6 = Atr(e)l + 2ue

2)
£ = % (Vu+ (Vu)") = Vu

where A and p are Lamé constants, which can be computed with the Young’s modulus E and Poisson’s ratio v:
Ev

1+v)(1-2v)
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F=21+v)
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Neural networks are used in PINN to predict displacements u:

u(x) = (Anz °0p-1°An-1°°01 °A1)(x)
Ai(x) = Wix +b; 4
0i(x) = RELU(x) = max(0, x)

A typical neural network is composed of linear transformations A; and nonlinear activation functions o;. The type of activation
functions, as well as depth and width of neural networks are hyperparameters that are commonly determined by trial-and-error.
Trainable parameters of neural networks typically include black box weights W; and biases b;. The influence of weights and biases
on the model’s performance is implicit and can hardly be quantified or controlled. PINN leverages the universal approximation ability
of neural networks to predict the field variable over the entire domain. With the predicted displacement u, strain € and stress ¢ can be
derived using Eq. (2). In mixed-form PINN [44], strain € and stress ¢ can be predicted directly from a neural network. After getting
these variables, the loss function of PINN can be computed with

LN = 2oLS + daoy Logy + AsayLooy + AdataLdata

1 No
L?} =_—_— Z |V . G(Xgl) +f(Xgl)
Ne =1
Nogy
Lio, = Nug, ; }u(xf)ﬂm) _g(xdﬂm)
1 Naay
Loy = Z |6(xr’ﬂwi) ‘n-— t(xfmm)|
Nooy =
(5)
Ldata = Ldatau + Ldatag + Ldata,,
1 Naatay
Ldatau Ndatau - !u(xdatam) - ll* (xdatam)|
Ndata, v
Ldatat Nda(aé — !8 (xdataf,v) —& (Xdatay,) !
Naatay
Laa, Naata, }G(Xdataﬂ) - (Xdataai) |

where | o | denotes the square error. The total loss LFNN is composed of the loss from the strong form governing equation L§, loss from

Dirichlet boundary conditions Ly, loss from Neumann boundary conditions L;q,, and loss from labeled data Lyata. Ldata,» Ldata,» and
Lgata, represent losses from labeled displacements, strains, and stresses, respectively. Ao, A, , daqy, and A4ata denote weights of each loss
term, they can be adjusted to mitigate the gradient pathology problem caused by multiple unbalanced losses. An adaptive strategy
applies trainable weights to each sampling point and accelerate convergence [62], or we can sample the collocation points adaptively
according to a distribution proportional to the loss function [63]. Alternatively, multiple losses can be balanced using multitask
learning techniques [64]. The quantities with asterisks denote the given labeled data. Haghighat et al. [43] used labeled data of
displacements, strains, and stresses. Xu et al. [60] only took displacements as labeled data. Assuming € denotes the unknown pa-
rameters of material properties and boundary conditions. PINNs solve the inverse problem by minimizing a loss function with respect
to 0, W;, and b;. Physics softly informs PINNs during this minimization process.

However, PINNs are facing challenges during applications in solid mechanics. Both classical PINN and DEM cannot readily
reproduce concentration features, like those near fixed boundaries, local tractions, and material interfaces [26,44,49]. Moreover, the
inverse analysis for boundary loadings using a vanilla PINN is hard to converge [60]. The neural network itself is a black box, while
interpretability is crucial and often desired in modeling physical system [65]. The necessity of simultaneously handling physics
constraints, data constraints, blackbox weights, and blackbox biases hinders the convergence and efficient application of PINNs. For
example, Wang et al. [66] identified a common failure mode of PINN, in which gradients of the boundary loss term in each layer are
sharply concentrated at the origin and overall attain significantly smaller values than the gradients of the PDE residual loss. Aiming to
solve these problems, this study develops a new DFEM method that is fully interpretable and can resolve fine features with fast
convergence in inverse analysis.

Classical numerical methods and neural networks are closely related. For instance, Rao et al. [67] encoded the physics by refor-
mulating the explicit forward Euler time integration as a recurrent neural network (RNN). Furthermore, neural network architectures
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like RNNs and ResNet (residual neural network) have been demonstrated to be closely connected to Runge-Kutta methods, which are
well-established classical numerical integration techniques [68,69]. Rao et al. [67] and Karnakov et al. [70] used mesh grids to dis-
cretize field variables. They adopted finite difference methods to discretize variables on structured Cartesian grids, which cannot easily
deal with complex geometries. For example, extra penalization parameters and body fraction functions have to be constructed to
consider irregular boundaries in Karnakov et al. [70]. In comparison, we use weak-form PDEs to reduce the smoothness requirement of
field variables and finite element approximation to readily handle complex engineering geometries. Thus, the finite element formu-
lation used in this study can have nontrivial gains compared with the finite difference or finite volume formulation in Rao et al. [67]
and Karnakov et al. [70] for multidimensional engineering structures. Wang and Yin [71] utilized the finite element mesh to discretize
field variables with the Ritz energy functional as the loss function. Significant speedup and accuracy were achieved in cases with
concentration features and heterogeneous hyperelasticity. Its training from zero can be faster than FEM. The inverse analysis for an
unknown Dirichlet boundary condition was performed. However, the Galerkin loss in this study is more proper for diverse inverse
analysis.

3. Methodology of DFEM

Instead of using the blackbox deep neural networks and softly informing the physics in the loss function with PDE residuals, in this
section, we design an interpretable differentiable network directly based on physics. Physics will be introduced in its weak form, which
is then discretized using the Galerkin method.

3.1. Physics in terms of weak form PDE

Here we take a test function w(x) € R™ and u(x) € R™ as the trial function. u is assumed to satisfy Dirichlet boundary conditions,
and w = 0 on Dirichlet boundaries. Multiplying the test function w to the strong-form equations in Eq. (1) and integrating over
corresponding domains lead to

/w~(7V-o-7f)dQ+ /w~(o--n7t)dl“:0 ®)

0y

Applying integration by parts and the divergence theorem, the following weak form should hold for arbitrary test function w:

/sz:adﬂf/wfdgf /w~tdF:0 @
Q Q

Qy

where ¢ is computed from the first-order derivative of u. In the first term of Eq. (7), the first-order derivative of u and w should be
square integrable, namely u € H'(Q) and w € H'(Q), where H!(Q) is the interested Sobolev space. This is a weaker requirement
compared with that in strong-form Eq. (1). To facilitate the efficient implementation into a deep learning framework, we present the
vector form corresponding to the tensor representation.

The constitutive in vector form is:

[6] = [D[e] 8

where [D] is the elasticity matrix. [6] and [¢] are vectors of stress and strain, respectively. In 2D plane strain scenarios, €33 = €23 = €31 =
0, 033 = A(e11 + €22). The strain vector, stress vector, and elasticity matrix are:

[8] = [811 €22 2612]T
[0'] = [0’11 022 012 ]T
A+ 2u 2 0 ©)
D] = A A+2u O
0 0 u

In 2D plane stress scenarios, 633 = 623 = 031 = 0:
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[e] = [811 €22 2812]T
[0'] = [611 022 012]T
1 v 0 10)
E
D] = A= v 1 0
00 (1-v)/2
In 3D cases:
[ =[en exm e 2015 265 26y
[0'] = [011 022 033 012 023 031 ]T
[+ 2u i i 0 0 0]
A A+ 2u A 00O
an
1 A A+2u4 0 0 0
D] =
0 0 0 u 00
0 0 0 0 u O
. O 0 0 0 0 uj
Denoting [e(u)] = [V,ul, and [e(w)] = [V,w], the vector representation of the weak form in Eq. (7) is:
[ewrDjewlaa- [wifaa- [wigar-o (12)
Q Q 0QN

3.2. Differentiable computational graph with Galerkin discretization

In this section, we use the Galerkin method to discretize the weak-form physics and encode it into a differentiable network.
Assuming there is a finite dimensional subspace U,CH!(Q), the discretized Galerkin formulation is to find u, € Uy, such that the
following equation holds for arbitrary wy, € Up:

[etwnmlietwide - [wil"iflae - [ wi"idar—o a3

Q QN

Global finite element basis functions {Ni}ﬁ’;’d“ are used to build the space Uy. Nyodes is the number of all the nodes in a finite element
mesh. For any point in the domain, it will be inside an element e, and we denote this elemental domain as Q.. The number of nodes in
an element is ney, each with n, freedoms. ngin, equals n, for solid mechanics. In element e, uf _ is the n, degrees of freedom of node iey.
N;  is the nodal basis function of node i.,. In this study, linear Lagrange basis functions are utilized. un(x) € R™ and its derivatives

% € R™ can be computed with:
Idim

up(x) = Y N (x)u

fen ien
fen

(14)
dup(x) _ L ONE, ()
axidim a Ten axidim fen
We write uy, in its vector form:
uy = [N°][u’]
[N‘] = [ NiL,, N3l - Np I |
ue
. (15)
e u,
W= .
e

where I,,, is the n, x n, identity matrix, [N°] € R™*(Mumen) uf €R™, and [u’] € R™"™. The strain vector [e(up)] is
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[e(un)] = [B][u’]

B]=[B; B, - B ]
oN;
o 0 0
N,
0 . 0
oNg,
0 0 o |
[Bfen} = e e in 3D
Zllen " Then 0
0x5 0x,
o N, oV (16)
0x3 0x5
0x3 0x
oN;
. 0
. oN; | .
[Bie“} = 0 Y in 2D
ON; ~ ON;
0x1 0x,

In 3D scenarios, a node is assigned three unknown displacement variables. In this case, [e(u;)] € R®, [Bf] €R® 3, [B] € R® * 3en,
For a fixed point, the computation to get u, and [¢(uy)] from nodal displacements [u°] of an element e is a linear transformation, which is
like the linear transformation by A; in the neural network of Eq. (4). In contrast to stacking linear transformations and nonlinear
activation functions in depth to build neural networks, the DFEM uses piecewise finite element approximation and combines them in

spatial width. Neglecting the interfaces between elements, the weak form of an element e is:

[l Dle@)jaa- [wfde - [ wiidar—o a7)
We have got [e(wy)] = [B°][w*], [e(un)] = [B®][u°], [wn] = [N°][w*], and Eq. (17) becomes
w"[R] =0

[R°] = / (B°]" [D][e(un)]dQ | — Q/ [N?) [f]dsz—o Q/ [N°]"[g]dT" & .

Qe

®] = | [BTDBe| W] - [Wfae - [ N

Qe Qe 0QeN

Given the arbitrariness of [w*], a set of linear equations can be obtained as [R¢] = 0. In FEM, [[B°]"[D][B¢|dQ will be assembled into
Q

the global stiffness matrix, and [[N°|"[f]dQ+ [ [N*]"[¢]dl" will be added into the global force vector. In the proposed DFEM with
Q. QN

Galerkin discretization, the loss function only needs to consider [R°] € R™"" as a 1D vector, instead of a 2D stiffness matrix. [R®] will be

collected into a global residual [R] € R™, where ng, is the number of total degrees of freedom. Gaussian quadrature is employed to

break the integral into a weighted sum:



X. Wang et al. Computer Methods in Applied Mechanics and Engineering 437 (2025) 117755

Tyquad Nsquad
R = D B[R (Ko ) |+ D Brs [RE (i )| =
Iyquad Isquad
Myquad T
> i [B (s ) | 101[B (i) | | 1) 19)
iyquad
Myquad T Nsquad T
> s N (Fis) | [ (s )] = D Brs [N (i) | [E(¥)]
Iyquad Isquad

where <ﬂivquad,xivquad) and </}isq“ad,xisquad> are Gaussian weights and points inside the domain and on boundaries, respectively.

[Rf} (xivqua .1)] is the residual computed on the volume Gaussian point X;,,,,- [R§ (xisq“a d)} is the residual computed on the boundary

Gaussian point x; ... Based on the above derivation, the DFEM with Galerkin discretization is built as shown in Fig. 1.

Fig. 1a presents the differentiable computational graph of the DFEM. Unknown nodal displacements [u¢|, material parameters [D],
volume forces [f], and boundary forces [t] are trainable parameters, which are marked green in Fig. 1a. If we already know some of
them, they can be substituted as constants. Similarly, the Dirichlet boundary conditions and monitored displacements are encoded into
[u?] by directly substituting unknown variables with labeled data, while PINNs usually add data terms in the loss function like that in
Eq. (5). The displacements and strains at a point can be interpolated using Eq. (15) and Eq. (16). This interpolation procedure is an
interpretable linear transformation, while the linear transformation using A; in Eq. (4) is a blackbox operation. The DFEM’s nonlin-
earity comes from nonlinear piecewise basis functions. As shown in Fig. 1b, the 1D element e has two nodes with displacements [u;,

Residual computation and

Trainable parameters ) Llnez}r transformatlons . Gaussian quadrature
+ Piecewise nonlinear functions as linear transformations
/// _____________ \\\ /,/ _____________________ \\\\ /// ____________________________ \\\\
‘y ‘: II \\‘ // \\\
Constants and | E e | Interpolation for P |
ncode Dirichlet 1 p b !
! unknowns ! boundary conditions | displacements and strains | | R§ = [B°]1"[D][B][u’] — [N°]"[f] i
I ! 1 ! |
| | and labeled data | | RS = [N°]"[1] ;
| I ] I ]
| > T — '
| ! ! = [N°][u°] ‘ |
| L T ] | IRY = S0 B[RS (Fivguna)] |
! ! } ! l;{quadd vqua vqua :
| | = e e | squa
| i i [S(uh)] [B ][u ] i i Zisqua\d ﬁLSquad [ ( quuad)] i
i i '\ J l\ /'
\ / N S \\\ ’/’/
Optimizer step T o )
~ | |
<=~ Loss> & S>e— Loss = MSE ([R],0) :
~< - I |
N \ )
(b) Nodal basis N;  Nodal basis N,

Nodal variable u; Nodal variable u;

I
Node i Elemente Nodei+1
Nonlinear piecewise basis functions Nonlinear RELU activation function
Fig. 1. The structure of the DFEM with Galerkin discretization: (a) The differentiable computational graph encodes weak form physics, Dirichlet

boundary conditions, and labeled data (possible trainable parameters are marked green); (b) Comparison of nonlinear basis functions of the DFEM
and the nonlinear RELU activation function in neural networks.
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ui11] and corresponding basis functions [N;, Ni+1]. The displacement at element e is approximated with [w;, uit1] { N, ! } The basis
i+1

function is nonlinear since it is effective only in its neighborhood, just like the RELU activation function which is nonzero only when
the input is positive. The difference is that basis functions are distributed with partial overlaps across the spatial domain and are fully
interpretable, while activation functions are stacked between linear transformations and are hard to interpret. With displacements and
strains at Gaussian points, the residual is integrated over the domain and boundary surfaces. The weighted sum is also an interpretable
linear transformation. The loss function is built by computing the mean square error of the overall residual. Leveraging the automatic
differentiation of the computational graph, gradients of the loss function with respect to the trainable parameters are collected via
backpropagation, circumventing the implementation of an adjoint framework. When the loss approaches zero, trainable parameters
will gradually converge to the target value. Compared with PINNs, in DFEM, there are no blackbox weights and biases, and the target
trainable parameters are fully interpretable. Thus, the DFEM can be regarded as a very sparse and fully interpretable neural network
specialized in Al for Science. Moreover, this framework is also compatible with classical equation solvers, such as those utilizing
Newton’s method. Thus, it is perfectly valid and valuable to perform forward analysis given a specific weak form.

3.3. Physics-Encoded Numerical Network (PENN) as a novel paradigm

In this section, we put classical numerical methods, PINN, and the proposed DFEM in juxtaposition, demonstrating that the pro-
posed DFEM is a kind of Physics-Encoded Numerical Network (PENN) as a novel paradigm to encode physics and data in a differ-
entiable framework. In Fig. 2, these methods are mainly composed of three parts: approximation/discretization of field variables, PDE
embedding, and solvers. Classical numerical methods usually use meshes (FEM, FDM, FVM) or particle methods (MPM, PD, SPH) to
discretize field variables. The physics embodied in PDEs is thus transformed into different forms and organized into a simultaneous
equation system. Finally, direct methods or iterative methods are used to solve the equation system. In comparison, the recently
flourished PINN [15] directly uses a neural network to approximate field variables. It incorporates the PDE information by absorbing
PDE residuals. Thus, it can perform forward and inverse analysis in a unified way. PINN also faces limitations of blackbox parameters
and spectral bias [72], which limits its training efficiency and application to engineering cases. Thus, this study proposed the DFEM.
The approximation of continuous field variables using finite element procedures has already been fully analyzed [73], and its powerful
approximation ability in PDE solving is not inferior to neural networks. Since the same formulation can be readily applied to most
classical numerical methods, Physics-Encoded Numerical Network (PENN) is utilized to name the novel paradigm. PENN is fully
interpretable with classical approximation methods. Only necessary trainable parameters are used. PENN also circumvents spectral
bias of classical neural networks and thus can easily handle problems with heterogeneous materials. Subsequent numerical experi-
ments corroborate the superiority of PENN over the conventional PINN and some improved PINNs.

4. Benchmark experiments

This section reproduces two typical numerical experiments from published works about improved PINNs [26,60] to validate the
DFEM’s superior accuracy and efficiency. Firstly, a thick cylinder with unknown internal pressure is simulated to perform inverse
analysis of the boundary loading. Then the test of indentation by a rigid punch is performed for the inverse analysis of material pa-
rameters. Double-precision floating point numbers are used in all cases. Taking u, as the vector of the x-axis displacement component
at all sampling points as an example, if the reference result is ug, error vector is computed with (u; - ux) = (erry,erry, -+, erryp). To
reduce the influence of magnitudes and get a reasonable estimation of the overall error, the relative L? error norm is defined as || u} —
Uy, /|| u|l,. Since the DFEM uses the same approximation method as FEM, correct nodal displacements naturally lead to reasonable
strain and stress.

4.1. Thick cylinder with internal pressure

In this section, we conduct the numerical experiment of a thick cylinder with unknown internal pressure, which is formulated as a
plane stress problem. The configuration is set as the same with Xu et al. [60]. Fig. 3a is the geometry and boundary conditions of this
experiment. Fig. 3b is the mesh used in COMSOL Multiphysics 6.2 and the DFEM. A quarter of the cylinder is taken for simplicity. The
inner radius is 1m, and the outer radius is 5m. The center is used as the origin. The Neumann boundary is the inner pressure P = 20Pa.
Dirichlet boundary conditions are u,(x = 0) =0, and u,(y =0) =0. Young’smodulusisE =1 x 10°Pa, and Poisson’s ratioisv = 0.3.
This test can help us to understand components like pipes, pressure vessels, and other cylindrical structures. The DFEM is expected to
perform better than PINN for the inverse analysis of internal pressure P.

Fig. 4 is reprinted from Xu et al. [60], in which the reference displacement components u, and uy are used as labeled data. The plain
PINN failed in this case. With non-dimensionalization, a scaled PINN can get a P with relative error 2.2 % after 50,000 iterations.
Improved PINNs like SA-PINN (scaled self-adaptive PINN) and scaled PINN with uncertainty weighting can further improve the ac-
curacy of the unknown loading P. Detailed algorithms can be referred to in Xu et al. [60].

Commonly, an Adam optimizer using first-order derivatives will be used before an LBFGS optimizer to avoid being trapped at
saddle points [74]. The LBFGS optimizer uses an approximation of the Hessian matrix to minimize the loss function. Thus, the
convergence using LBFGS is faster than Adam by leveraging second-order information. Since the DFEM only keeps minimal number of
trainable parameters, we can directly use the LBFGS optimizer in PyTorch for cases with simple loadings. In this case, we also utilize an
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(a) (b)

DX

Fig. 3. Thick cylinder under internal pressure: (a) Geometry and boundary conditions; (b) Mesh for FEM and the PENN (DFEM).
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Fig. 4. Reprinted from Fig. 6 in Xu et al. [60]: Results of loads for the thick cylinder problem: (a) plain PINN versus scaled PINN and (b) SA-PINN
versus PINN with uncertainty weighting. (The first epoch to converge to <1 % prediction error is marked with dash-dotted line).

Adam optimizer to compare the convergence iterations with PINN and improved PINNs. Referring to PyTorch documentation, the step
size of the LBFGS optimizer is set as 1.0 with “strong wolfe” line search function. Adam optimizer uses step size 1.0. Displacement
components u, and u, at mesh nodes are used as labeled data. The DFEM converges in 150 Adam iterations like that in Fig. 5a and b.
The loss curve slightly fluctuates in the beginning and stabilizes with high accuracy. The DFEM encodes labeled displacements u, and
u, from FEM. Thus, the training loss only contains the mean square error of the residual as shown in Fig. 1. When using an LBFGS
optimizer, only six steps are consumed to reach convergence. The loss and relative error share the same trend. It is obvious that there is
no underfitting or overfitting. Fig. 6 gives displacement components u, and uy. Errors with respect to the reference displacements u;
and u; are negligible.

Table 1 compares the accuracy and efficiency of the conventional PINN, improved PINNs in Xu et al. [60] and the DFEM in this
study. The conventional plain PINN fails in this case. Three improved PINNs achieved satisfactory accuracy in 50,000 training iter-
ations with an Adam optimizer. The DFEM, in comparison, achieves a relative error three orders of magnitude lower than improved
PINNs with only 0.3 % Adam training iterations of improved PINNs. The DFEM trains well in only 0.31 s with an Adam optimizer. The
LBFGS optimizer is much faster with 0.025 s. Such superior accuracy and speed can be attributed to two essential merits of the DFEM.
The DFEM eliminates all implicit parameters and only keeps those interpretable and necessary. The DFEM encodes boundary con-
ditions and labeled data into its interpretable architecture, circumventing gradient pathology and additional training to fit data
constraints.

11
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Fig. 5. Convergence with the PENN (DFEM) of the thick cylinder problem: (a) Loss and (b) Loading with respect to training iterations using the
Adam optimizer; (c) Loss and (d) Loading with respect to training iterations using the LBFGS optimizer (red dotted line denotes the real value).

4.2. Indentation by a rigid punch

This section studies the problem of indentation by a rigid punch, which is formulated as a plane strain problem. The configuration is
set after Haghighat et al. [43]. Fig. 7a presents the geometry and boundary conditions of the problem. Fig. 7b is the mesh used in
COMSOL Multiphysics 6.2 and the DFEM. Dimensions of the domain are 1m x 1m. The left lower corner is set as the origin. Dirichlet
boundary conditions are uy(x = 0) =0, ux(x =1) =0, ux(y = 0) =0, and u,(y = 0) = 0. The frictionless rigid punch with a width
0.2m exerts pressure by a downward displacement u, = A =1 x 10~3m from the upper center. It is a common mixed-type boundary,
since the rest of the upper boundary is Neumann boundary with zero traction. The sharp transition of boundary condition leads to
stress concentration, and the accuracy of PINN degrades in such scenarios [43]. Young’s modulus is E = 7 x 10'°Pa, and Poisson’s
ratio is v = 0.3. This case can help us to understand material behaviors in hardness testing, material analysis, and it also resembles the
footing problem in geotechnical engineering. Haghighat et al. [43] proposed a nonlocal PINN to perform inverse analysis of Lamé
elastic constants 1 = 40.358 x 10°Pa, y = 26.923 x 10°Pa with labeled displacements, strains, and stresses from FEM. The DFEM
uses reference displacements and modulus as labeled data.

Fig. 8 presents the convergence of loss and Lamé elastic constants. An Adam optimizer is used to compare the convergence iter-
ations with PINN and improved PINNs. A second-order LBFGS will converge in much less iterations. Referring to PyTorch docu-
mentation, the step size of the LBFGS optimizer is set as 1.0 with “strong_wolfe” line search function. Adam optimizer uses step size
0.0001. In Fig. 8a and b with an Adam optimizer, a satisfactory accuracy of material parameters is achieved within 69 iterations. The
LBFGS optimizer, in comparison, converges much faster. With only 12 iterations, the loss reaches a very small value, and the unknown
material parameters converge to the real value. In both cases with the Adam optimizer and LBFGS optimizer, respectively, the material
parameters slightly fluctuate in the beginning and stabilize with high accuracy. The DFEM encodes labeled displacements u, and u,
from FEM. Thus, the training loss only contains the mean square error of the residual. Fig. 9 gives displacement components u, and uy.
Errors with respect to the reference displacements uy and uj are negligible.

Table 2 compares the accuracy and efficiency of the conventional PINN, improved PINNs in Haghighat et al. [43] and the DFEM in

12
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Fig. 6. Displacement components and errors of the thick cylinder: (a) Reference displacement along x axis of FEM; (b) Displacement along x axis of the PENN (DFEM); (c) The PENN (DFEM) error of
displacement along x axis; (d) Reference displacement along y axis of FEM; (e) Displacement along y axis of the PENN (DFEM); (f) The PENN (DFEM) error of displacement along y axis.
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Table 1
Comparison of the conventional PINN, improved PINN and PENN (DFEM) in the thick cylinder experiment.
Method 12 relative error Computational cost
Uy uy p Iterations (Optimizer) Time (Hardware)

Conventional PINN - - - - _

Scaled PINN 1.2e-2 1.2e-2 2.2e-2 50,000 (Adam) -

SA-PINN 1.8e-3 2.1e-3 3.5e-3 50,000 (Adam) -

PINN with uncertainty weighting 3.5e-3 2.8e-3 3.6e-3 50,000 (Adam) -
PENN (DFEM) 3.9e-17 1.7e-33 3.3e-6 150 (Adam) or 6 (LBFGS) 0.31s with Adam or 0.025 s with LBFGS

(Intel i9-14900KF)

L1y =
(@) e e (b)

1m U, =0 U, =0

OHOHONONONONO

(0,0) Uy = Uy = 0

S S
1m

Fig. 7. Indentation by a rigid punch: (a) Geometry and boundary conditions; (b) Mesh for FEM and the PENN (DFEM).

this study. Two improved PINNs (AD-PDDO-PINN and PDDO-PINN) achieved higher accuracy than conventional PINN in 20,000
training iterations. In comparison, the DFEM achieves a relative error that is five orders of magnitude lower than the conventional
PINN, while requiring only 0.34 % of the Adam training iterations needed for the conventional PINN. The DFEM trains well in only
0.27 s with an Adam optimizer. The LBFGS optimizer is much faster with 0.051 s. Good performance during the inverse analysis of
material parameters validates the merits of the DFEM. The DFEM only contains minimal interpretable parameters. The DFEM encodes
labeled data into its interpretable architecture without additional training cost.

Combining Galerkin loss with the DFEM enables extraordinary efficiency and accuracy in solving inverse analysis as shown in
Fig. 8. When the previous Ritz/energy loss is utilized in this inverse analysis, the corresponding losses and unknown parameters are
plotted in Fig. 10. Both the losses and parameters diverge towards the negative infinity when using the Adam or LBFGS optimizers. The
failure of Ritz/energy loss for the inverse analysis of material parameters is as expected. The energy loss is

energy = / e ()] D e (un )AL — / fun] 1A% — / fup]Fdr 20)

QN

Assuming all u, are known, the energy boils down to the linear function of material parameters [D] and forces [f] and [t|. Thus,
minimizing the Ritz/energy loss with respect to unknown [D], [f], and [t] will drive the loss and unknown parameters to negative
infinity. On the contrary, the Galerkin loss is proved capable of dealing with inverse analysis of material parameters and forces in Gao
et al. [36] and this study. Moreover, the differentiable and interpretable network architecture in this study enables much faster and
more accurate inverse analysis.

5. Inverse analysis of three-dimensional engineering structures
Previous 2D benchmark tests showcase the significantly improved accuracy and efficiency of the DFEM over the conventional PINN

and some published improved PINNSs. This section presents the inverse analysis of 3D engineering structures. A damaged cantilever
beam is tested for the inverse analysis of heterogeneous material parameters. With partial observed data, unknown heterogeneous

14
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Fig. 8. Convergence of the PENN (DFEM) with Galerkin loss for the indentation problem: (a) Loss and (b) Material parameters with respect to
training iterations using the Adam optimizer; (c) Loss and (d) Material parameters with respect to training iterations using the LBFGS optimizer (red
dotted line denotes the real value).

loadings acting on the tunnel lining can be back calculated. The influence of noisy data is also discussed. The 3D geometry and mesh
building are completed in COMSOL Multiphysics 6.2. The mesh is exported in the format of nastran file. The computational program is
written in Python. The postprocess is realized with Python and Paraview. It seems DFEM cannot be easily embedded into commercial
software like COMSOL or ABAQUS because the classical solvers are not used, and a fully differentiable computational process is not

available in commercial software.

5.1. A damaged cantilever beam with ten unknown materials

A 3D cantilever beam is simulated for the inverse analysis of material parameters. The geometry and boundary conditions are
presented in Fig. 11a. Fig. 11b is the mesh used in COMSOL Multiphysics 6.2 and the DFEM. Dimensions are 2m x 2m x 10m. Itis
fixed on the left corner. A distributed loading P = 1 x 10°Pa is uniformly applied on the right end. The initial Young’s modulus and
Poisson’s ratio are E =2 x 10'°Pa and v = 0.15, which are homogeneous over the domain. We assume this cantilever beam is
damaged after being used, and it becomes heterogeneous characterized with ten different degraded materials as shown in Fig. 11a.
Parameters of the deteriorated materials are [E; ~ E1o] = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9] x 10'°Pa, and [v; ~ v19] =
[0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3] x 101°Pa. For inverse analysis, the reference displacements from FEM are encoded into
the DFEM architecture. There are ten materials with twenty unknown parameters, namely [E; ~ E1o] and [v; ~ vig)-

It is already validated in previous tests that the LBFGS optimizer will converge in much less iterations and computational time than
the Adam optimizer. Thus, an LBFGS optimizer is utilized with step size 0.5 and “strong_wolfe” line search function. Fig. 12 presents
the convergence of twenty unknown material parameters. These twenty material parameters are initialized from E= 2 x10'°Paand v
= 0.15. Young’s modulus parameters E; ~ Ejo share the same trend. They initially decrease to a lower value than the real modulus,
and then they converge to the target values. Poisson’s ratios v; ~ vy also converge at the same time after some perturbations in the
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Fig. 9. Displacement components and errors of the indentation problem: (a) Reference displacement along x axis of FEM; (b) Displacement along x axis of the PENN (DFEM); (c) The PENN (DFEM) error
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Table 2
Comparison between the conventional PINN, improved PINN and PENN (DFEM) in indentation experiment.
Method 12 relative error Computational cost
Uy uy A u Iterations (Optimizer) Time (Hardware)
Conventional PINN 1.1e-2 3.2e-3 4.2e-3 2.5e-2 20,000 (Adam) 24,000 s (-)
AD-PDDO-PINN 1.1e-3 1.6e-3 2.4e-5 1.8e-5 20,000 (Adam) ~34,000 s (-)
PDDO-PINN 2.1e-3 2.4e-3 9.1e-5 8.0e-4 20,000 (Adam) ~21,000 s (-)
PENN (DFEM) 0 0 3.1e-6 3.1e-7 69 (Adam) or 12 (LBFGS) 0.27s with Adam or 0.051 s with LBFGS
(Intel 199-14900KF)
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Fig. 10. Convergence of the PENN (DFEM) with Ritz/energy loss for the indentation problem: (a) Loss and (b) Material parameters with respect to
training iterations using Adam optimizer; (c) Loss and (d) Material parameters with respect to training iterations using LBFGS optimizer.

beginning. These twenty unknown material parameters converge in just 117 iterations. This training process takes 1.5 s on a CPU (Intel
i9-14900KF). Fig. 13 presents the displacements along three orthogonal axes. Since the DFEM strictly encodes labeled displacements
from FEM, without the cost of training, the DFEM can maintain a very high accuracy. Relative errors of E; ~ Ejo are
[7.8 x10712, 7.7 x107'%, 7.6 x 1071275 x 10712, 7.4 x107'2 7.1 x .

1o 12 1o 12 12 . Relative errors of V1~ V1o are
11072, 7.7 x 1072, 6.6 x 10712, 7.4 x 1072, 4.4 x 10713

[3.7 x1071, 43 x107™ 32 x107'3 2.0 x1073, 52 x107'3, 40 x10713, 5.0 x1073,122 x107'2, 2.0
12 12 . The accu-
x10712, 8.4 x 10712

racy is quite high with very short training time, corroborating the potential of the DFEM being used in real-time analysis and data
assimilation for digital twin.
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Fig. 11. A damaged heterogeneous cantilever beam with ten unknown materials: (a) Geometry and boundary conditions; (b) Mesh for FEM and the
PENN (DFEM).

5.2. A damaged cantilever beam with twenty unknown materials

As shown in Fig. 14, the same initial setting as the former section is utilized, but with more refined representation of damage using

twenty unknown materials and forty unknown parameters. Actual parameters of the deteriorated materials are [E; ~ Ep] = [1.00,
1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95] x 10'°Pa, and

[v1 ~v90] = [0.200, 0.205, 0.210, 0.215, 0.220, 0.225, 0.230, 0.235, 0.240, 0.245, 0.250, 0.255,0.260, 0.265,

0.270, 0.275, 0.280, 0.285, 0.290, 0.295] x 10'°Pa. An LBFGS optimizer is utilized with step size 0.5 and “strong_wolfe” line
search function. These forty material parameters are initialized from E =2 x 10'°Pa and v = 0.15. Fig. 15 shows that Young’s
modulus parameters E; ~ Eyq share the same trend. They initially decrease to a lower value than the real modulus, and then they
converge to target values. Fig. 16 demonstrates that Poisson’s ratios v; ~ vy also converge at the same time after some perturbations in
the beginning. These forty unknown material parameters converge in just 251 iterations (the former case with twenty unknown
material parameters converge in 117 iterations). This training process takes 2.8 s on a CPU (Intel i9-14900KF). Fig. 17 presents the
displacements along three orthogonal axes. Since the DFEM strictly encodes labeled displacements from FEM, without the cost of
training, the DFEM can maintain a very high accuracy. Relative errors of E; ~Ey  are

[15 x107',15 x1071,1.5 x1071,1.5 x107*,1.5 x1071,1.5 x107',1.5 x 107'*,1.4
x 1071114 x10711,1.4 x1071,1.3 x10711,1.2 x1071,1.2 x107',1.1 x107'1,9 x 107!
x10712 6 x 107124 x107'%1 x107'3 15
x107121]
[36 x1071°,33 x101%,1.2 x1073,22 x1073,1.5 x10713,2.6 x 10 '3,3.7x
are 1071348 x107'3, 3.7 x1071%,6.4 x1071%,33 x107!13,59 x1071%,1.1 x107'%,19 x1073,24 x 10712, 1.4x. The
10712,1.3 x10712,3.2 x10712,2.3 x10712,6.4 x 10712
same accuracy and efficiency as the former case corroborate DFEM’s good scalable performance for inverse analysis of engineering
cases.

2
'8 . Relative errors of v; ~ v

5.3. The tunnel lining under unknown heterogeneous loadings

This section investigates the application of the DFEM for tunnel lining under unknown loadings with partially observed data. In
Fig. 18a, half of the tunnel lining is studied in this section under the assumption of symmetry. Fig. 18b is the mesh used in COMSOL
Multiphysics 6.2 and the DFEM. The inner radius is 4.0m, and the thickness is 0.5m. The initial Young’s modulus and Poisson’s ratio
are E = 3 x 10'%Pa and v = 0.2. The longitudinal width is 4.0m. The boundary conditions are as follows:

U(x=0.0, y,2)=0 ye (0.0, 4.0),z€ (0.0, 0.5)U (3.5, 4.0)

u(x=00,y, 2)=0 y € (0.0, 4.0),z € (0.0, 0.5)

uy(x, y=00,2)=0 y,zon the lining 2n
u,(x, y=4.0,2)=0 y,zon the lining

U(x=0.0,y, 2)=0 y € (0.0, 4.0),z< (0.0, 0.5)

We assume the tunnel lining structure is under heterogeneous loadings P; = 1 x 10°N and P, = 8 x 10*N like that in Fig. 18c. In
underground space, only partial monitoring data can be obtained. Taking the 3D tunnel lining in Fig. 18 as an example, displacements
on the inner boundary can be readily monitored. There are 1,111 nodes in total, we only have 342 nodes being monitored. Dis-
placements of one-third of the nodes are encoded into the DFEM architecture. The rest of the displacement variables are initialized as
zZeros.

Since the loading acting on the outside boundary of the lining is hard to measure, P, and P, are set as unknowns. Loadings are
obtained by inverse analysis with monitored displacements on the inner boundary. The LBFGS optimizer is utilized with step size 0.5
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Fig. 12. Inverse analysis of ten unknown materials with twenty unknown parameters (Young’s modulus E;, i = 1 ~ 10; Poisson’s ratio v;, i =
1 ~ 10) in the damaged heterogeneous cantilever beam (red dotted line denotes the real value).

and “strong_wolfe” line search function. The loss curve and the convergence curve of P and P, are presented in Fig. 19. The training
can be divided into three stages. In the first stage (about 0~350 steps), the loss decreases rapidly and reaches a plateau. Unknown
loadings are initialized as zeros. P; and P, do not change much in the first stage. The reason for loss reduction in this stage is probably
the adjustment of displacement variables conforming to the encoded labeled displacements. The second stage is about 350~700 steps.
Estimates of P; and P, start to change, corresponding to the decrease of loss. A stabilized stage also follows, during which the unknown
displacements should also undergo a period of adjustment. The final stage (700 steps~end) reaches the accurate estimate of loadings,
as well as a quite small loss value. In the end, as shown in Fig. 20, the L? relative error of uy is 2.1 x 109, and L2 relative error of uy is
7.4 x 1077, The relative error of P; is 2.8 x 108, and the relative error of P is 2.8 x 10~8. The DFEM converges in 1,079 steps with 13 s
on a CPU (Intel i9-14900KF), proving its potential for real time inverse analysis and data assimilations for digital twin in engineering.
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Fig. 14. A damaged heterogeneous cantilever beam with twenty unknown materials: (a) Geometry and boundary conditions; (b) Mesh for FEM and
the PENN (DFEM).

5.4. Discussions about the influence of noisy data

The previous section studying tunnel lining under unknown loadings with sparse labeled displacements on the inner boundary is
employed here to evaluate the performance of the DFEM during inverse analysis utilizing noisy data. A random noise sampled from the
standard Gaussian distribution with zero mean and unit deviation is amplified for the expected noise level. The corrupted labeled data
is also directly encoded to the DFEM’s interpretable structure. L, relative errors of the labeled displacements match the relative noise
magnitude. The error bar is plotted in Fig. 21. Each noise level is sampled ten times for a fair quantification. The data noise can lead to a
large standard deviation in the inverse analysis of P; and Ps. For example, relative magnitude of 0.05 can lead to 0.4 relative error of P;.
It can be explained by the precise absorption of labeled data in the DFEM. The DFEM is sensitive to high frequency patterns, and thus it
can efficiently and accurately deal with heterogeneous materials and complex cases with fine or concentration features. However, the
noise is also a kind of local fluctuation with high-frequency patterns. The DFEM is like a high-resolution device that is sensitive to
noises. Effective denoising methods can be leveraged for preprocessing. For example, a very simple way is to averaging monitoring
data from several observations. The mean value of P; under 0.05 relative magnitude of noise only deviates from real value by a relative
error of 0.01.

6. Conclusions

This study proposes the novel DFEM, a kind of Physics-Encoded Numerical Network (PENN) based on Galerkin discretization for
diverse inverse analyses of multidimensional heterogeneous engineering structures. PINNs use neural networks with blackbox weights
and biases to learn physics and data in a soft way by incorporating PDE residuals, the loss of boundary conditions, the loss of initial
conditions, and the loss of data into the loss function, while multiple loss terms can impede convergence. With the DFEM, the weak-
form physics discretized with the Galerkin method is encoded into the interpretable differentiable network. The DFEM eliminates all
blackbox trainable parameters that are required in classical neural networks, retaining only those with clear and interpretable
meanings (nodal displacements, material parameters, and boundary conditions). The interpretability enables the DFEM to accurately
encode labeled data without additional training. These merits contribute to the DFEM’s superior performance.

Two benchmark experiments are conducted to validate the DFEM’s superior efficiency and accuracy. In the thick cylinder case to
back calculate the internal pressure with inverse analysis, the conventional PINN failed. Compared with improved PINNs, the DFEM
requires only 0.3 % of the training iterations to achieve an accuracy three orders of magnitude higher. In the test of indentation by a
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Fig. 15. Inverse analysis of twenty unknown materials (Young’s modulus E;, i = 1 ~ 20) in the damaged heterogeneous cantilever beam (red
dotted line denotes the real value).

rigid punch, the accuracy of material parameters is not as expected using the conventional PINN because of stress concentration
features. With a training time five orders of magnitude faster than the conventional PINN, the DFEM is also validated to be five orders
of magnitude more accurate in determining unknown material parameters.

Moreover, the DFEM proves effective for 3D engineering structures. A damaged cantilever beam, characterized by ten heteroge-
neous materials with twenty unknown parameters, is efficiently solved in just 1.5 s. A tunnel lining ring with sparse labeled data under
unknown heterogeneous boundary loadings is also readily cracked with very low errors and high efficiency in 13 s. The performance of
the DFEM under noisy data is also discussed. The average results are robust and accurate under high noise levels. The vanilla Galerkin
loss of Gao et al. [36] was realized with black box graph neural network. The DFEM eliminates all black box parameters, retaining only
those with clear interpretable meanings. To the best of the authors’ knowledge, it has never been done using a vanilla Galerkin loss.
Comparisons with improved PINNs fully demonstrate the improved efficiency and accuracy of DFEM, which are several orders of
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Fig. 16. Inverse analysis of twenty unknown materials (Poisson’s ratio v;, i = 1 ~ 20) in the damaged heterogeneous cantilever beam (red dotted
line denotes the real value).

magnitude faster and more accurate. Inverse analysis of multidimensional heterogeneous structures is accurately solved in seconds. To
the best of the authors’ knowledge, such performance has never been achieved using classical PINNs or vanilla Galerkin loss. DFEM
provides an innovative and practical way to bridge PINN and classical numerical methods. Similar to PINN, DFEM leverages physics
and automatic differentiation, serving as a general and flexible framework to seamlessly combine physics and data. In addition, DFEM
is fully compatible with classical numerical methods.

This study significantly expands the application scope of PINN-like methods. From mostly 1D/2D simplified homogeneous inverse
analysis in engineering scenarios with conventional PINNs to 3D heterogeneous inverse analysis for engineering structures using the
DFEM, we demonstrate its substantial speed improvements and high-fidelity results, corroborating the DFEM’s potential for digital
twin in civil and mechanical engineering.

For future research, more complex constitutive models like path-dependent plastic ones should be implemented by sampling
enough steps along the loading path. A multistep update can be leveraged to capture the dependency of stress evolution path. Other
physical phenomena like fluid flow and heat conduction can be addressed by following the similar derivation in our methodology.
Multi-physics problems can be more difficult, and a straightforward solution is to use multistep sequential update scheme or coupled
update scheme. Moreover, our Differentiable Finite Element Method (DFEM) can be easily generalized into Physics-Encoded
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Fig. 18. Tunnel lining under unknown heterogeneous loadings: (a) Geometry and boundary conditions; (b) Mesh for FEM and the PENN (DFEM);
(c) Loading patterns on the lining.
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Numerical Network (PENN) to revitalize classical numerical methods towards Al4Science.
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