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Large-Scale Maintenance and Rehabilitation Optimization for 
Multi-Lane Highway Asphalt Pavement: A Reinforcement 

Learning Approach 
Linyi Yao, Zhen Leng, Jiwang Jiang, Fujian Ni 

Abstract—Pavement maintenance and rehabilitation (M&R) 
optimization is of great importance to the sustainable development 
of roadway infrastructure. Various models have been developed 
for supporting M&R decision-making. However, there is still a 
lack of research that can provide lane-specific M&R strategies for 
large-scale pavement networks which consider uncertainty in 
optimization to achieve management flexibility. This study 
proposes an innovative M&R optimization approach for multi-
lane highway pavement based on a reinforcement learning (RL) 
method. Life cycle assessment (LCA) and life cycle cost analysis 
(LCCA) were integrated to assess the environmental and economic 
impact of M&R decisions, respectively. The uncertainty of 
pavement deterioration was considered by constructing an RL 
simulation environment that contains several probabilistic 
pavement performance models. The proposed method was applied 
to a large-scale real-world highway network as demonstration, 
and compared with the state-of-the-practice hierarchical 
threshold-based approach (HT). The results show that the RL 
model saved about 26.59% of the cost in comparison to the HT 
approach, which was equal to 18147.27 million CNY. It could keep 
the long-term pavement performance within an acceptable range 
in a cost-effective manner. The RL model tends to select less 
rehabilitations and more preventive maintenance than the HT 
model. It was also found that incorporating uncertainty into 
optimization allows the model to balance the expected return and 
the negative (risk) and positive (opportunity) uncertainty of the 
solution. The outcomes of this study are expected to improve the 
current pavement management practice and demonstrate the 
potential of RL in pavement M&R optimization. 

Index Terms—Pavement maintenance optimization; 
reinforcement learning; lane-specific solution; large-scale pavement 
network; managerial flexibility 

I. INTRODUCTION

Road pavement inevitably deteriorates over time under the 
repeated traffic loading and joint impact of climatic factors. The 
deteriorated pavement would incur high maintenance and 
rehabilitation (M&R) cost, extra fuel consumption and 
greenhouse gas (GHG) emissions, and increased vehicle 
operating cost, etc., which significantly affect the sustainable 
development of roadway infrastructure. Improving the cost-
effectiveness of M&R activities while maintaining the 
pavement in good conditions has long been the concern of 
highway agencies. Recent years, reducing the environmental 
impact through effective management of pavement 
infrastructure is also an important consideration in pavement 

maintenance planning [1]-[3]. However, the limited resource, 
expanding road network, rapid aging of pavement, and 
mutually conflicting goals impose great challenges to decision-
makers. 

The methodological frameworks for determining the optimal 
pavement M&R strategy for the whole road network can be 
broadly classified into top-down, two-stage bottom-up (TSBU), 
and simultaneous network optimization (SNO) [4]. The top-
down approach divides the pavement network into groups and 
applies the same M&R strategy to segments within each group 
[5]. Though computationally efficient, this method ignores the 
segment-specific features, and thereby cannot provide segment-
specific decisions. By contrast, the bottom-up approach derives 
segment-specific M&R strategies by decomposing the problem 
into two stages. In the first stage (i.e., segment-level), the 
segment-optimal M&R activities are selected for each segment, 
which are then considered in the second stage (i.e., system-level 
or network-level) to determine the system-optimal M&R 
strategy that optimizes the system-wide objectives while 
meeting the resource constraints [6]. However, the main 
drawback of TSBU is that it does not account for future 
resource limitations [4]. Another alternative is the SNO 
approach which selects the optimal segment-level strategy and 
solves the network-level resource allocation problem 
simultaneously. Although the SNO method takes into account 
the interdependency of distinct segments (e.g., the shared 
budget), it is computationally expensive. This study falls within 
the TSBU framework for two reasons: 1) the future available 
budgets are usually highly uncertain, depending on the revenues 
from multiple sources, and 2) the TSBU approach is more 
computationally tractable than SNO, thereby allowing more 
detailed formulation of the problem. Specifically, this study 
aims to solve the segment-level optimization problem in the 
TSBU framework as there remains room for improvement in 
this area. 

Table I presents a summary of the representative studies in 
pavement management that have attempted to optimize the 
segment-level M&R strategy while providing segment-specific 
solutions. These studies formulate the segment-level 
optimization problem with various objectives, performance 
indicators, M&R options, deterioration models, planning 
horizon lengths, etc. The solution methods generally fall into 
two categories: mathematical programming and heuristic 
approaches. Mathematical programming could guarantee the  
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TABLE I  
SUMMARY OF EXISTING STUDIES IN SEGMENT-LEVEL PAVEMENT MAINTENANCE OPTIMIZATION WITH SEGMENT-SPECIFIC 

SOLUTIONS 

Studies 
Optimization objectives Pavement 

performance 
indicators 

M&R 
options Horizon Optimization 

algorithm 

Action forms Uncertain
ty Agenc

y cost 
User 
cost 

Environme
ntal impact 

Pavement 
condition A B C D 

Ouyang and 
Madanat [7] √ √ Roughness c  Overlay 

thickness c 100 Calculus of 
variations √ 

Gao and Zhang 
[8] √ IRI c 4 20 Robust 

optimization √ √ 

Zhang et al. [9] √ √ √ DI d  3 40 DP √ √ 
Irfan et al. [10] √ √ √ IRI c 5 25~32 MINLP √ √ 
Yeo et al. [6] √ √ PSR d  3 40 DP √ 
Yu et al. [11] √ √ √ PSI d 3 40 DP √ √ 
Yu et al. [2] √ √ √ √ PSI c 5 40 GA √ 

Bai et al. [12] √ √ IRI c 1 20 DP √ 
Lee and 

Madanat [13] √ √ IRI d  6 infinite DP √ 

Lee and 
Madanat [14] √ √ IRI c M&R 

intensity c infinite MINLP √ 

Hadiwardoyo et 
al. [15] √ √ SDI c 5 5 GA √ 

Santos et al. [1] √ √ √ CCI c, IRI c  7 50 GA √ 
Zhang et al. 

[16] √ √ IRI d, c 3 infinite DP, greedy 
heuristic √ 

Santos et al. 
[17] √ CCI c  6 30/50 GA √ 

Heidari et al. 
[18] √ √ √ PSI d  8 35 DP √ √ 

Guo et al. [19] √ √ IRI c  8 20 Backtrack-
search √ √ 

Yao et al. [20] √ √ 
RD c, IRI c, 
SFC c, and 

PDCI c  
38 15 Deep Q-

learning √ 

Renard et al. 
[21] √ IRI d  7 50 Q-learning √ √ 

Shani et al. [22] √ √ √ IRI d 7 20/30 Q-learning √ √ 

Han et al. [23] √ √ 
PCI c, RDI c, 
RQI c, and 

SRI c  
14 30 PPO √ 

Note: c = continuous; d = discrete; A= applying the same M&R treatment to the entire section; B= testing only on one-lane highway or one lane 
of a multi-lane highway; C= lane-specific M&R treatment; D= not mentioned; MINLP= mixed-integer nonlinear program; DI= distress index; 
IRI= international roughness index; SDI= Surface Distress Index; CCI= critical condition index; PSR= pavement serviceability rating; PSI= 
present serviceability index; PCI= pavement surface condition index; RDI= pavement rutting depth index; RQI= pavement riding quality index; 
SRI= pavement skidding resistance index; RD= rutting depth; SFC= side-way force coefficient; PDCI= pavement distress condition index; PPO= 
proximal policy optimization; 

global optimality of the solution. The most commonly used 
mathematical programming approach in segment-level 
optimization is dynamic programming (DP) [6] [13][18], as it 
is essentially a sequential decision problem. However, 
traditional DP suffers heavily from the so-called “curse of 
dimensionality”, with limited applicability to problems that 
have high-dimensional state space or action space. Common 
solutions include reducing the state variables to only contain the 
current pavement conditions, discretizing the continuous state 
variables, limiting the number of actions, etc. However, these 
simplifications also cause other problems. For example, several 
studies have demonstrated the necessities of developing 
history-dependent deterioration model and incorporating the 
history variables (e.g., pavement age) into the state space 
[14][16][24]. It was also reported that the state discretization 
would lead to significant information loss which is inversely 
proportional to the number of discrete states [25]. In addition, 
most studies only considered limited M&R options, and usually 
described these options in general terms, e.g., maintenance, 
preservation, rehabilitation, reconstruction, etc., so as to reduce 

the solution space [16][24]. This simplification does not 
recognize the characteristics of different M&R activities, and 
thus may introduce considerable bias. On the other hand, 
heuristic methods are sometimes deemed to be more promising 
in solving problems with large solution space due to their better 
computational efficiency. Genetic algorithm (GA) is one of the 
heuristic methods most commonly used in pavement 
management [1][26].However, GA could only find near 
optimal solutions, and is prone to converge to the local optimum 
in some cases. Therefore, improved GA techniques and other 
new heuristic algorithms have also been introduced to 
pavement maintenance decision-making [27]. 

Recently, some researchers leveraged reinforcement learning 
(RL) to solve the segment-level maintenance optimization 
problem [20]-[23]. RL is a subfield of machine learning (ML) 
where the intelligent agent learns an optimal policy through 
interaction with the environment to maximize long-term 
cumulative rewards [28]. Compared with other optimization 
algorithms, RL learns an optimal policy that maps the states to 
actions or learns a value function that maps the states to the 
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expected returns of a specific state-action pair. It takes 
advantage of individual behavioral interactions which enables 
more efficient search [28]. RL has also been proven by many 
studies to provide flexibility for decision-making [21][29]. 
Managerial flexibility, which is defined as the available 
flexibilities for decision-makers to alter their policies as new 
information arrives, has gained increasing attention in 
pavement community in recent years [18][30]. A typical 
example is the ability of decision-makers to quickly adjust their 
M&R strategies when future pavement conditions are different 
from expectations. Managerial flexibility in pavement 
management is often achieved by combining uncertainty 
consideration with multiple M&R and construction alternatives 
[18]. RL can not only simultaneously address these two needs, 
but its mapping structure also makes it easier to adjust the 
strategy in future years. By inputting new state variables into 
the policy network or value function, the updated strategy could 
be obtained without the need to reconstruct the optimization 
algorithm [21]. 

Despite the contributions made by previous researchers, 
there are still limitations. Firstly, very few studies have dealt 
with the lane-specific M&R decisions. Most of the existing 
studies either apply the same M&R treatment to the entire road 
section or test the algorithm only on one-lane highway or one 
lane of a multi-lane highway. It should be noted that due to the 
uneven distribution of traffic over multiple lanes, the pavement 
conditions of different lanes in the same road section may vary 
significantly. Hence, applying the same M&R treatment to the 
entire road section may result in a waste of resources for some 
lanes, and insufficient maintenance for the others. Besides, the 
actions of adjacent lanes are interdependent because of the 
vertical restriction [31]. For instance, overlay without milling 
the existing pavement would add the pavement elevation, so it 
must be implemented on the entire road section to maintain the 
same elevation. To address this problem, this study will use the 
joint action of multiple lanes in the same road section for 
modelling. Though such method exponentially increases the 
computational complexity, a subtype of RL algorithm was 
introduced to tackle the challenge. Secondly, previous studies 
that resort to RL to solve the segment-level optimization 
problem only learn from a small number of segments or a single 
highway. This will lead to an inadequate exploration of the 
actual state space (i.e., the information required to make an 
informed choice in the real world), and the learnt policy cannot 
be directly applied to other segments in the road network.  

This study developed a decision support tool that aims to 
improve the sustainability of roadway infrastructure while 
providing lane-specific M&R strategies for large scale 
pavement networks and increasing the flexibility of pavement 
management. Life cycle assessment (LCA) and life cycle cost 
analysis (LCCA) methods were integrated to assess the 
sustainability performance of the M&R decision. Twin Delayed 
Deep Deterministic policy gradient algorithm (TD3) [32] was 
combined with the Wolpertinger Policy [33] to achieve lane-
specific decision-making with vertical restriction. The learning 
was performed on a large number of real-world road segments, 
and a complex state space was built, allowing the policy model 
to be applied to a large-scale pavement network. Managerial 
flexibility was embedded in the model to proactively adapt to 
the uncertain future pavement deterioration. While previous 

studies have proven the efficacy of utilizing RL to enhance 
flexibility [21], this study further expanded upon this by using 
the TD3-Wolpertinger algorithm to replace the tabular Q-
learning which is a bit cumbersome especially in high-
dimensional state space.  

II. PROBLEM FORMULATION

The problem in this study is a segment-level system-wide 
pavement maintenance optimization problem. It is supposed 
that there is a road network consisting of 𝑁𝑁𝑠𝑠 one-way pavement 
segments with 2 to 4 lanes (in one direction). The segment set 
is denoted by 𝑆𝑆, 𝑆𝑆 = {1,2, … ,𝑁𝑁𝑠𝑠}. The optimization objective is 
to minimize the sum of discounted agency costs (AC), user 
costs (UC) and environmental damage costs (EDC) for each 
segment 𝑛𝑛 ∈ 𝑆𝑆 over a given planning horizon T, as shown in 
Eq.1a. 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡  represents the agency cost of a certain lane 𝑙𝑙 in 
segment 𝑛𝑛 in year 𝑡𝑡, which is a function of the selected M&R 
activity (including do-nothing) 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡  and consists of material, 
machine, and labor costs. 𝑈𝑈𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡  signifies the user costs, 
including the costs incurred during the usage phase as well as 
the work zone (WZ) traffic management phase. Environmental 
impacts are assessed by converting the GHG emissions 
associated with material extraction and production, 
construction, transportation, and pavement-vehicle interaction 
(PVI) into monetary values, i.e., environmental damage cost 
(EDC) [11]. Three constraints are imposed to avoid ineffective 
exploration and improve algorithm efficiency, as shown in 
Eq.1b~1d. Constraint 1b specifies that a maintenance or 
rehabilitation treatment must be selected when any of the 
pavement performance indicators (PPI) falls below (for non-
increasing PPI, e.g., side-way force coefficient (SFC)) or rise 
above (for non-decreasing PPI, e.g., international roughness 
index (IRI)) the threshold. Constraint 1c enforces that a 
rehabilitation treatment must be implemented when the 
threshold of any indicators is reached. Constraint 1d guarantees 
that no M&R activity is performed if all PPIs are very close to 
brand new conditions. 
∀𝑛𝑛 ∈ 𝑆𝑆 , minimize: 

∑ ∑ [𝛾𝛾𝑡𝑡−1(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑈𝑈𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡)]𝐿𝐿𝑛𝑛
𝑡𝑡=1

𝑇𝑇
𝑡𝑡=1  (1a) 

subject to: 
∃𝑖𝑖 ∈ 𝐼𝐼,𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑜𝑜𝑜𝑜 > 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖&𝑅𝑅 : 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝐴𝐴𝑖𝑖&𝑅𝑅 (1b) 

∃𝑖𝑖 ∈ 𝐼𝐼,𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑜𝑜𝑜𝑜 > 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑅𝑅 : 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝐴𝐴𝑅𝑅 (1c) 
∀𝑖𝑖 ∈ 𝐼𝐼, |𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖| ≤ 𝜖𝜖𝑖𝑖: 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 = do-nothing (1d) 

where 𝐿𝐿𝑡𝑡= number of lanes in segment 𝑛𝑛; 𝛾𝛾= discount factor; 
𝑖𝑖= index of PPI; 𝐼𝐼= set of PPI index; 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡= the 𝑖𝑖𝑡𝑡ℎ PPI of lane 
𝑙𝑙 in segment 𝑛𝑛 in year 𝑡𝑡; 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖&𝑅𝑅= the threshold of the 𝑖𝑖𝑡𝑡ℎ PPI 
that a maintenance or rehabilitation treatment must be selected; 
𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑅𝑅 = the threshold of the 𝑖𝑖𝑡𝑡ℎ  PPI that a rehabilitation 
treatment must be selected; 𝐴𝐴𝑖𝑖&𝑅𝑅= set of M&R treatments; 
𝐴𝐴𝑅𝑅= set of rehabilitation treatments; 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖= the brand new 
condition of the 𝑖𝑖𝑡𝑡ℎ PPI; 𝜖𝜖𝑖𝑖= the distance between the value of 
the 𝑖𝑖𝑡𝑡ℎ  PPI and its brand new condition for mandatory do-
nothing. 

III. METHODOLOGY

Fig. 1 presents an overview of the present study with a 
general presentation of the used methods. The pavement 
maintenance optimization problem was solved through both our 
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innovative TD3-Wolpertinger algorithm and the state-of-the-
practice hierarchical threshold-based approach (HT). A set of 
probabilistic pavement performance models developed by a 
recently published paper [34] were used for predicting the 
future pavement deterioration. The integrated LCA-LCCA 
method was adopted to quantify the cost of applying the 
selected M&R actions. To demonstrate the validity and 
performance of the proposed method, we compared the 

performance of the TD3-Wolpertinger algorithm with the HT 
approach in terms of the cost savings, pavement performance 
evolutions and treatment type distributions. Monte Carlo 
simulation (MCs) was performed to obtain the cumulative 
reward distributions of the selected actions and to provide some 
insight into the trade-off between the expected return and the 
uncertainty of the actions. The following sections further detail 
the techniques employed in this study. 

 
Fig. 1. An overview of the present study

A. Integrated LCA-LCCA Method 
We employed the integrated LCA-LCCA method to estimate 

the cost and environmental impact induced in various pavement 
life cycle phases, with LCA accounting for the environmental 
aspects and LCCA dealing with the economic aspects of the 
pavements. The integration was achieved through the monetary 
method, i.e., monetarizing the GHG emissions. The functional 
unit is a one-way asphalt pavement segment of 1 km in length 
with 2 to 4 lanes (in one direction). The planning horizon was 
set to be 20 years, from 2021 to 2041. The carbon price was 
obtained from the 2020 China Carbon Pricing Survey [35], 
taking the expected average value at the midpoint (i.e., 2031) of 
the analysis period for calculation. The cost and environmental 
burden of applying the selected M&R action was assessed on a 
yearly basis. As this study aims to solve the pavement M&R 
optimization problem, the material production and construction 

stages for constructing the new pavement were not included. 
The pavement life cycle only encompasses three phases: M&R, 
usage, and WZ traffic management phases. We used the 
process-specific data for compiling the life cycle inventory 
(LCI) [36]-[39]. The costs of maintaining and rehabilitating the 
pavement were calculated using the local reference prices. The 
LCA consideration during the usage phase mainly results from 
the pavement-vehicle interaction. PVI describes the excess fuel 
consumption of vehicles driving on the uneven pavement. We 
employed the calibrated HDM-4 fuel consumption model [40] 
to determine the effect of pavement roughness on vehicle fuel 
consumption and tailpipe emissions. Regarding the economic 
dimension in usage phase, the models developed in the same 
study [40] were utilized to estimate the vehicle operation costs 
associated with fuel consumption, tire wear, and vehicle 
maintenance and repair. Moreover, work zone operation causes 
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additional user costs due to the lane closure and reduced vehicle 
speed. In this study, the RealCost software [41] was applied to 
account for the impact of work zone on traffic congestion. 

B. TD3 and Wolpertinger Algorithm 
1) Reinforcement learning 

Recent years have witnessed the significant success of 
reinforcement learning in solving various sequential decision-
making problems [42]-[44]. RL learns the decision policy by 
enabling the agent to interact with the simulation environment 
and receive reward signals. At each time step 𝑡𝑡, with a given 
state 𝑠𝑠, the agent selects an action 𝑎𝑎 ∈ 𝐴𝐴 according to its policy 
𝜋𝜋: 𝑆𝑆 → 𝐴𝐴 . By applying the action 𝑎𝑎  to the simulation 
environment, a reward signal 𝑜𝑜 is received and the next state of 
the environment 𝑠𝑠′ is observed. These steps are repeated until a 
terminal state is reached (e.g., 𝑡𝑡 = 𝑇𝑇). The return of an episode 
is the discounted sum of the rewards 𝑅𝑅𝑡𝑡 = ∑ 𝛾𝛾𝑖𝑖−𝑡𝑡𝑇𝑇

𝑖𝑖=𝑡𝑡 𝑜𝑜(𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖), 
and the goal of RL is to find the optimal policy that maximize 
the expected return over all episodes. There are generally two 
types of RL algorithms: value-based and policy-based. 
Additional information about these two types of RL algorithms 
are introduced in Section 1.1 of the supplementary materials. 
Both types have been applied to addressing the pavement 
maintenance optimization problem [20]-[23]. 
2) TD3 Algorithm 

In this study, we resorted to the TD3 algorithm to solve the 
pavement maintenance optimization problem. TD3 builds upon 

the actor-critic framework. Actor-critic methods combine the 
advantages of policy-based and value-based methods, aimed to 
learn both the value function (i.e., the critic) and the policy (i.e., 
the actor). In actor-critic methods, the actor decides which 
action should be taken and the critic informs the actor how good 
the action is and how it should adjust. TD3 algorithm was 
developed to tackle the overestimation bias with the value 
function by making a couple of modifications on Deep the 
Deterministic Policy Gradient algorithm (DDPG) [32]. More 
information about TD3 algorithm can be found in Section 1.2 
of the supplementary materials. 
3) Wolpertinger policy 

Wolpertinger is a policy architecture which allows the agent 
to efficiently learn from large discrete action spaces. A 
schematic diagram is shown in Fig. 2 to prompt understanding. 
The method embeds the discrete actions in a continuous space 
based on priori information. The policy network outputs 
continuous actions within this space, but they may not be valid 
actions (i.e., the actions that are not within the discrete action 
space and thus cannot be performed in real world). Thus, an 
approximate nearest neighbor method is used to find a set of 
closest discrete actions and selects the action with the maximum 
Q-value as the final action. In this study, we combined the 
Wolpertinger policy with the TD3 algorithm instead of the 
DDPG algorithm that was used in the original study [33] due to 
the effort made by TD3 in mitigating the overestimation of 
value function [32]. 

Fig. 2. A schematic diagram of the Wolpertinger policy 

C. RL Components Definition in Pavement Maintenance 
Optimization 

There are generally five key components in RL, i.e., agent, 
environment, state, action, and reward. The following are more 
detailed descriptions of their definitions in our problem. 

1) Agent and environment 
In the context of highway pavement maintenance 

optimization, the agent is the decision-maker who is in charge 
of making M&R plans. Decision-makers implement M&R 
activities on pavement after observing the pavement conditions 
and considering all other factors that may affect the M&R 
decision. Therefore, the environment encompasses the 
pavement segment itself, as well as the external environment in 
which it is located. In this study, we built our own RL 

simulation environment which contains a set of probabilistic 
pavement performance models and a reward system.  
2) State 

The state represents the minimum amount of information 
required by the agent to make M&R decisions in the simulation 
environment. In segment-level optimization problem, state 
variables need to cover all or at least the most important factors 
involved in the pavement performance models, while excluding 
variables that remain constant between road segments and over 
the planning horizon, or that can be fully deduced from other 
variables. Based on these principles, the state variables 
considered in the RL model were presented in Table S1 of the 
supplementary materials. 
3) Action 

Action space in pavement maintenance optimization problem 
typically refers to a set of available M&R treatments. In this 
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study, the joint M&R treatment of multiple lanes in a certain 
segment was regarded as the action. Let 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡  be the M&R 
treatment for lane 𝑙𝑙 in segment 𝑛𝑛 in year 𝑡𝑡, then the joint M&R 
treatment for segment 𝑛𝑛 could be expressed as 𝑥𝑥𝑡𝑡𝑡𝑡1& … &𝑥𝑥𝑡𝑡𝑡𝑡𝐿𝐿𝑛𝑛. 
To impose the vertical restriction, joint M&R treatments that 
violate the restriction were excluded when constructing the 
action space. Table II illustrates the various M&R treatments 
for a typical asphalt pavement in China with three asphalt 
layers, which are divided into preventive maintenance and 
rehabilitation treatments. Mill & fill and overlay differ in 
whether the existing pavement is milled to maintain the same 
pavement elevation before and after maintenance. The 
treatment thickness for fine mill & fill and thin overlay is 
generally within 2.5 cm for a typical road segment with upper, 
middle and lower asphalt layer thicknesses of 4 cm, 6 cm and 8 
cm, respectively. PAC, ARAC and AC denote the porous 
asphalt concrete, asphalt-rubber concrete, and a dense-graded 
mixture, respectively, whereas the number “13” signifies the 
nominal maximum aggregate size in millimeters. 

For a single lane, there are a total of 13 M&R options 
including the 12 treatments listed in Table II plus the “do-
nothing” (ID=0). Hence, the number of joint M&R treatments 
for a one-way 4-lane segment could be up to 134 = 28561 
before the vertical restriction is considered. Even though 
imposing a vertical restriction would reduce the number of 
available actions to 4193, this is still a large action space 
compared to previous studies that did not provide lane-specific 
M&R decisions. Moreover, the discrete actions need to be 
embedded in a continuous action space. This was done by first 
ranking the actions according to their unit cost and then 
embedding them in a continuous space from -1 to 1. Fig. 3 is a 
schematic diagram for a one-way 4-lane segment. The different 
colored circles have the same meanings as those in Fig. 2. 

TABLE II  
THE AVAILABLE M&R TREATMENTS 

ID M&R treatment Category 
1 Seal coating 

Preventive 
maintenance 

2 Micro-surfacing 
3 Hot-in-place rehabilitation 
4 Fine mill & fill  
5 Thin overlay  
6 Fine mill & fill and thin overlay 
7 Mill & fill the upper asphalt layer 

Rehabilitation 

8 Overlay with PAC-13 
9 Overlay with ARAC-13 

10 Overlay with SBS modified AC-13 

11 Mill & fill the upper and middle asphalt 
layer 

12 Mill & fill the entire asphalt layer 
 
4) Reward 

The reward in this study is defined as the negative of the sum 
of agency costs and additional user and environmental damage 
costs at each time step, as shown in Eq. 2(a)~(b). The additional 
user costs and EDC represent the additional costs and carbon 
emissions associated with the change in IRI from its baseline 

condition (IRI = 1 m/km) as well as the different traffic 
conditions between work zone operation and normal operation. 
 𝑜𝑜𝑟𝑟𝑟𝑟𝑎𝑎𝑜𝑜𝑟𝑟𝑡𝑡𝑡𝑡 = −𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡 (2a) 
𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ (𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑈𝑈𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡)

𝐿𝐿𝑛𝑛
𝑡𝑡=1 ,∀𝑛𝑛 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇  

(2b) 

  
Fig. 3. Action embedding 

D. Framework of TD3-Wolpertinger Algorithm 
The pseudo-code of the TD3-Wolpertinger algorithm 
developed in this study is presented in Algorithm 1 of the 
supplementary materials. The detailed flowchart of the 
algorithm and the definitions of the RL components are 
illustrated in Fig. 4. A particle method [45][46] was used to 
propagate the uncertainty in pavement performance prediction. 
To do so, a set of particles with the same initial states were 
created at the beginning of each episode. Dynamic models are 
sampled from the previously developed probabilistic models 
[34]. These particles are then passed through different dynamic 
models to yield different outputs (i.e., next states). The expected 
reward was obtained by averaging over multiple particle 
trajectories. Moreover, the constraints in Eq.1 are imposed by 
removing the actions that violate the constrains from the 
original action space. A similar approach was employed and 
verified by Yuan et al. [47]. 

E. The Hierarchical Threshold-based Approach 
The same problem was also solved through the hierarchical 
threshold-based approach which is widely used in practice. The 
HT approach makes decisions by constructing a decision-tree 
and going through a sequential list of questions. A specific 
M&R treatment was triggered once a sequence of thresholds 
was met. In this study, the HT model used in Jiangsu province, 
China [48] was adopted to serve as a benchmark method for our 
TD3-Wolpertinger model.
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Fig. 4. Detailed flowchart of TD3-Wolpertinger algorithm

IV. EXPERIMENTS AND RESULTS 
To demonstrate the ability of our TD3-Wolpertinger 

algorithm in solving pavement M&R optimization problem, it 
was applied to the highway network in Jiangsu and compared 
with the HT approach. Road sections with complete data 
required for developing the RL model were extracted from the 
pavement management system (PMS). They were then 
segmented into shorter sections according to the directions, 
locations, structure sections, and traffic sections they belong to, 
and were further divided at 1-km intervals. Hence, a segment in 
this study generally refers to a 1-km one-way highway section 
containing 2 to 4 lanes (in one direction). After segmentation, a 
total of 7109 segments were obtained including 3967 2-lane 
segments, 2570 3-lane segments, and 572 4-lane segments. We 
developed three TD3-Wolpertinger models for the three groups 
of segments, denoted as RL-2, RL-3, and RL-4. The large 
number of pavement segments allows the model to cover a wide 
range of state space and enables it to be flexibly applied to 
large-scale road networks. Additionally, thresholds for 
mandatory do-nothing, maintenance or rehabilitation, and 
rehabilitation only, were set to the values when the evaluation 
index (e.g., RDI, RQI, SRI, and Transverse Cracks Evaluation 
Index (TCEI)) corresponding to each inspection index (e.g., 
RD, IRI, and SFC) reaches 95, 80 and 75, respectively.  

F. Implementation Details 
The TD3-Wolpertinger algorithm was coded in Python 3.8.3 

using the PyTorch framework. The numerical experiment was 
performed on a desktop computer with Intel Core i7 2.90 GHz 
CPU and 64 GB RAM. Table III shows the adopted parameters 
in our TD3-Wolpertinger model, which were determined after 
a process of trial and error. Other parameters, such as the 

Gaussian exploration noise, target network update rate, clipped 
noise added to target policy, range to clip target policy noise, 
and frequency of delayed policy updates, followed the default 
settings in the original paper [32]. 

TABLE III  
PARAMETERS IN TD3-WOLPERTINGER 

Parameters RL-2 RL-3 RL-4 
Number of hidden layers 2 2 2 

Number of 
hidden neurons 

Actor 256, 128 256, 128 256, 128  
Critic 256, 256 256, 256 256, 256 

Learning rate 0.0003 0.0003 0.0008 
Learning episodes 1500 1000 800 

Batch size 256 256 256 
Memory size 30000 30000 20000 

Discount factor 0.99 0.99 0.99 
Number of nearest 

neighbors 10 200 500 

Number of discrete 
actions 77 547 4193 

G. Results and Discussion 
Fig. 5 illustrates the learning curves of the three TD3-

Wolpertinger models. The x-axis is the learning episodes. One 
episode represents a sequence of states, actions, and rewards, 
which ends with the terminal states. The y-axis denotes the total 
rewards (i.e., the negative of the total costs) over a planning 
horizon averaged by the number of segments and lanes, whose 
unit is million CNY/lane-km/20 years. It can be observed that 
the total rewards gradually increase over time and finally 
converge to a stable value. This implies that the M&R policy 
can no longer be improved, and so the optimal policies have 
been found. 
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(a) 2-lane segments (b) 3-lane segments 

 
(c) 4-lane segments 

Fig. 5. Learning curve of the three TD3-Wolpertinger models 

To demonstrate the superiority of the innovative TD3-
Wolpertinger model over the traditional HT approach, the 
M&R strategies for the entire pavement network were 
determined using both methods. Fig. 6 presents the distributions 
of the cost savings of the TD3-Wolpertinger model relative to 
the HT approach. The yellow diamond symbol and black 
horizontal line within each box signify the mean and median 
values of the cost savings. The top and bottom edges of the 
boxes are the 75th and 25th percentiles. The two whiskers 
specify the maximum and minimum values. Fig. 6 suggests that 
using the TD3-Wolpertinger model to replace the traditional 
HT approach could produce significant cost savings, and the 
average savings per lane-km in 20 years is about 1.72, 0.76, and 
0.84 million CNY for 2-lane, 3-lane, and 4-lane segments, 
respectively. When considering the entire pavement network, 
such cost savings could reach 18147.27 million CNY, about 
26.59% of the network cost of the HT approach. 

 
Fig. 6. Distribution of cost savings using TD3-Wolpertinger 
model compared to HT approach 

Fig. 7 shows the breakdowns of the network cost savings for 
the three case studies. The reduced environmental impact was 
expressed in both monetary values (i.e., EDC) and original 
forms (i.e., GHG emission). In the three cases, the number of 2-
lane segments was the largest, resulting in the greatest cost 
savings, totaling about 12058.47 million CNY. Among them, 
61.03% came from the reduced agency costs, 37.88% was 
derived from the lower user costs due to the smoother pavement 
surface, and 1.09% was generated by the reduction of GHG 

emissions throughout the planning horizon. For the 3-lane 
segments, a total of 4548.50 million CNY cost savings were 
achieved, including 94.85% agency cost savings, 4.42% user 
cost savings and 0.73% EDC savings. The 4-lane segments 
have the minimal cost savings (1540.30 million CNY) because 
of its relatively small number of segments compared to the 
other two cases. The three cost items account for 40.16%, 
58.63%, and 1.21% of the total cost savings, respectively. 
Additionally, despite the relatively small percentage of EDC 
savings, the savings in terms of GHG emissions of the three 
cases could reach 1321.14, 331.15, and 186.84 kilotonnes 
carbon dioxide equivalent (CO2e), respectively.  

 
Fig. 7. Breakdown of the network cost savings 

Based on the above analysis, it can be concluded that the 
developed TD3-Wolpertinger model dramatically improves the 
current M&R practice, and is beneficial to various stakeholders, 
including the highway agencies, road users and people who are 
affected by climate change due to the additional carbon 
emissions arising from the deteriorated pavement and the 
implementation of M&R treatments. 

The pavement network performances across the planning 
horizon using the M&R strategies developed by both 
techniques were compared, as shown in Fig. 8. The network 
performance was evaluated using the traffic-length weighed 
indicator (TWI) [19], as shown in Eq.3. 

𝑇𝑇𝑇𝑇𝐼𝐼 =
∑ 𝐴𝐴𝐴𝐴𝐸𝐸𝑇𝑇𝑡𝑡 ∙ 𝑙𝑙𝑟𝑟𝑛𝑛𝑙𝑙𝑡𝑡ℎ𝑡𝑡 ∙ 𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡
𝑁𝑁𝑠𝑠
𝑡𝑡=1

∑ 𝐴𝐴𝐴𝐴𝐸𝐸𝑇𝑇𝑡𝑡 ∙ 𝑙𝑙𝑟𝑟𝑛𝑛𝑙𝑙𝑡𝑡ℎ𝑡𝑡
𝑁𝑁𝑠𝑠
𝑡𝑡=1

 

(3) 
where 𝐴𝐴𝐴𝐴𝐸𝐸𝑇𝑇𝑡𝑡 is the annual average daily traffic of segment 𝑛𝑛, 
and 𝑙𝑙𝑟𝑟𝑛𝑛𝑙𝑙𝑡𝑡ℎ𝑡𝑡 denotes the length of segment 𝑛𝑛. Since this study 
seeks to build a multi-indicator decision process, four pavement 
performance indicators were embraced. IRI was directly 
incorporated into the reward function. A higher IRI would 
considerably increase the user cost, so the agent tends to reduce 
the IRI values to avoid reward losses. This was confirmed by 
Fig. 8(b) (also Fig. S1(b) and (f) of the supplementary 
materials) which show that the RL model produces better or at 
least similar roughness conditions compared to the HT model. 
As for the other pavement performance indicators (i.e., RD, IRI, 
and SFC), they were not directly targeted for optimization, but 
were subject to some constraints to avoid particularly poor 
conditions. Thus, the agent will not always pursue to optimize 
these indicators. Instead, it trades off between performing M&R 
to improve pavement conditions and deferring M&R to reduce 
M&R expenses. As demonstrated in Fig. 8(d) (and Fig. 
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S1(a)~(e) and (h) of the supplementary materials), the agent 
attempts to maintain the pavement condition within an 
acceptable range rather than keeping it in an optimal state at a 
high expense. There are also situations where the RL model 
yields better long-term performance as well as lower costs, such 
as those in Fig. 8(a)~(c) (and Fig. S1(f) and (g) of the 
supplementary materials). 

  

 

Fig. 8. Traffic-length weighed network performance for 2-lane 
segments 

Furthermore, in order to shed some light on how the M&R 
strategies generated by the two approaches were different, the 
treatment type distributions over time for both models were 
plotted in Fig. 9 and Fig. S2 of the supplementary materials. 
The RL model has higher overall treatment ratios, but compared 
with the HT model, it tends to select less rehabilitations and 
more preventive maintenance throughout the analysis period. 
This reveals the benefits of preventive maintenance in reducing 
costly pavement rehabilitations.  

 
(a) TD3-Wolpertinger (b) HT approach 

Fig. 9. Ratios of treated segments by different treatment types 
for 2-lane segments 

In addition, the cumulative reward of an M&R action is 
actually a random variable because of the uncertainties 
embedded in the pavement deterioration process. As pointed by 
Guo et al. [19], introducing uncertainty to the optimization 
forces the algorithm to make trade-off between the expected 
value of the solution and its uncertainty. To demonstrate this, 
we first obtained the optimal and suboptimal actions for each 

segment by comparing the Q-values of the candidate actions 
(the action with the largest Q-value was considered to be the 
optimal one). MCs was then adopted to randomly sample 1000 
future deterioration trajectories for each segment starting from 
the selected current action and following the learned policy 
thereafter. Finally, the cumulative probability curves for the 
network costs over the entire analysis period were drawn in 
Fig. 10. From left to right in Fig. 10 are the network costs for 
the two-, three- and four-lane segments, respectively. The solid 
and dashed lines in each subplot represent the network cost 
distributions when each road segment takes its respective 
optimal and suboptimal actions, respectively.  

 
Fig. 10. Distribution of the network costs 

We also investigated the segment-specific characteristics. In 
most cases, the optimal action of a certain segment has a lower 
mean cost than the suboptimal action. However, there are also 
exceptions where the trade-off was reflected. Fig. 11 shows the 
cost distributions of two representative segments when the 
optimal and suboptimal actions were selected respectively. For 
the first segment, the optimal action has larger mean value and 
standard deviation(std) than the suboptimal action. In this case, 
the larger deviation of the cost has positive effect as it provides 
better opportunity to get lower costs, as shown in Fig. 11(a). For 
the second segment, the mean cost of the optimal action is also 
larger but its std value is smaller. Thus, the larger deviation here 
exerts negative effect because it increases the risk of having a 
very high total costs, as shown in Fig. 11(b).  

 
(a) Segment 1 (b) Segment 2 

Fig. 11. Cost distributions of two representative segments if 
taking the optimal and suboptimal actions 

Hence, it can be concluded that incorporating uncertainty 
into the optimization allows the agent to make trade-off 
between the expected return, the risk, and the opportunity of the 
solution. Meanwhile, the positive and negative deviations need 

(a) RD (b) IRI 

(c) SFC (d) TCEI 
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to be differentiated. The uncertainty or variance not only 
measures the risk of the solution, but also implies the 
opportunity.  

V. CONCLUSIONS 
In this study, we proposed an innovative M&R optimization 

approach for multi-lane asphalt pavement in large-scale 
highway network based on a variant of RL algorithm, namely 
TD3. The Wolpertinger policy was combined with the TD3 
algorithm to deal with the large discrete action space arising 
from the consideration of joint M&R actions for multi-lane road 
segments in this study. The integrated LCA-LCCA method was 
employed to assess the environmental and economic impact of 
the selected M&R actions. The uncertainty in pavement 
deterioration was introduced to the optimization process by 
integrating a set of probabilistic pavement performance models 
into the simulation environment of RL. The TD3-Wolpertinger 
method was demonstrated on a large-scale real-world highway 
pavement network and compared with the state-of-the-practice 
HT approach. Three case studies including all the one-way two-
lane, three-lane, and four-lane segments in the road network 
were conducted.  

The results show that the developed TD3-Wolpertinger 
models have good convergence performance. Compared with 
the traditional HT approach, the TD3-Wolpertinger models 
could offer significant cost savings of 18147.27 million CNY, 
approximately 26.59% of the network cost of the HT approach. 
Agency cost, user costs and environmental damage costs all 
made contributions to the total cost savings, which reveals that 
the proposed RL-based method is beneficial to various 
stakeholders. The TD3-Wolpertinger models always yield 
better or at least similar pavement roughness performance 
compared to the HT approach since roughness was directly 
incorporated into the reward function. For other PPIs, the first 
priority of the algorithm was not to keep them in the best 
conditions, but to ensure the long-term pavement performance 
within an acceptable range in a cost-effective manner. 
Moreover, the TD3-Wolpertinger models tend to select less 
rehabilitations and more preventive maintenance in contrast to 
the HT model, which leads to considerable cost savings.  

In addition, incorporating the uncertainty of future pavement 
deterioration into the M&R optimization allows the model to 
trade off between the expected return and the uncertainty of the 
solution. It is worth noting that negative uncertainty measures 
the risk of the solution, while positive uncertainty actually 
describes the opportunity of obtaining better results. Thus, these 
two effects of uncertainty need to be distinguished in M&R 
decision-making. The proposed method also enhanced the 
flexibility of pavement management and made the policy model 
more adaptable to future variations due to the mapping structure 
of the policy model, the introduction of uncertainty in 
optimization, the large number of M&R alternatives and the 
large-scale pavement network.  

Despite the contributions of this study, there is still much 
work to be done to further extend this research. One important 
issue is to solve the network-level resource allocation problem 
based on the outcomes of this study, thus enabling a complete 
bottom-up decision-making process. In addition, the current 
study considered the environmental impact of M&R strategies 

in decision-making by simply monetarizing the GHG 
emissions. Future research could improve this by applying 
multi-objective optimizations or incorporating other impact 
categories. Finally, other uncertain factors besides the 
uncertainty in pavement deterioration, such as the uncertain unit 
costs, emission factors, traffic volumes, etc., also need to be 
considered in future work.  
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and mechanics analysis of steel deck pavement, and cold in-
place recycling.  
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