
Received: 7 March 2024 Revised: 30 August 2024 Accepted: 27 September 2024

DOI: 10.1002/mp.17466

R E S E A R C H A RT I C L E

Motion and anatomy dual aware lung ventilation imaging
by integrating Jacobian map and average CT image using
dual path fusion network

Pei Ma1 Zhi Chen1 Yu-Hua Huang1 Mayang Zhao1 Wen Li1

Haojiang Li2 Di Cao2 Yi-Quan Jiang3 Ta Zhou1 Jing Cai1,4 Ge Ren1,4

1Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, Hong Kong

2Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Centre, Guangzhou, People’s Republic of China

3Department of Minimally Invasive Interventional Therapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for
Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China

4The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong Province, People’s Republic of China

Correspondence
Jing Cai and Ge Ren, Department of Health
Technology and Informatics, The Hong Kong
Polytechnic University, 11 Yuk Choi Rd, Hung
Hom, Kowloon, Hong Kong, China.
Email: jing.cai@polyu.edu.hk and
gary-ge.ren@polyu.edu.hk

Funding information
Health and Medical Research Fund,
Grant/Award Number: 09200576; Health
Bureau, the Pneumoconiosis Compensation
Fund Board in HKSAR, and Shenzhen
Science and Technology Program,
Grant/Award Number:
JCYJ20230807140403007; the Shenzhen
Basic Research Program, Grant/Award
Number: JCYJ20210324130209023

Abstract
Background: Deep learning-based computed tomography (CT) ventilation
imaging (CTVI) is a promising technique for guiding functional lung avoid-
ance radiotherapy (FLART). However, conventional approaches, which rely on
anatomical CT data, may overlook important ventilation features due to the lack
of motion data integration.
Purpose: This study aims to develop a novel dual-aware CTVI method that inte-
grates both anatomical information from CT images and motional information
from Jacobian maps to generate more accurate ventilation images for FLART.
Methods: A dataset of 66 patients with four-dimensional CT (4DCT) images
and reference ventilation images (RefVI) was utilized to develop the dual-
path fusion network (DPFN) for synthesizing ventilation images (CTVIDual).
The DPFN model was specifically designed to integrate motion data from
4DCT-generated Jacobian maps with anatomical data from average 4DCT
images. The DPFN utilized two specialized feature extraction pathways, along
with encoders and decoders, designed to handle both 3D average CT images
and Jacobian map data. This dual-processing approach enabled the com-
prehensive extraction of lung ventilation-related features. The performance of
DPFN was assessed by comparing CTVIDual to RefVI using various metrics,
including Spearman’s correlation coefficients (R), Dice similarity coefficients
of high-functional region (DSCh), and low-functional region (DSCl). Addition-
ally, CTVIDual was benchmarked against other CTVI methods, including a
dual-phase CT-based deep learning method (CTVIDLCT), a radiomics-based
method (CTVIFM), a super voxel-based method (CTVISVD), a Unet-based
method (CTVIUnet), and two deformable registration-based methods (CTVIJac
and CTVIHU).
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Results: In the test group, the mean R between CTVIDual and RefVI was 0.70,
significantly outperforming CTVIDLCT (0.68),CTVIFM (0.58),CTVISVD (0.62),and
CTVIUnet (0.66), with p < 0.05. Furthermore, the DSCh and DSCl values of
CTVIDual were 0.64 and 0.80, respectively, outperforming CTVISVD (0.63; 0.73)
and CTVIUnet (0.62; 0.77). The performance of CTVIDual was also significantly
better than that of CTVIJac and CTVIHU.
Conclusions: A novel dual-aware CTVI model that integrates anatomical and
motion information was developed to synthesize lung ventilation images. It
was shown that the accuracy of lung ventilation estimation could be signifi-
cantly enhanced by incorporating motional information, particularly in patients
with tumor-induced blockages. This approach has the potential to improve the
accuracy of CTVI, enabling more effective FLART.

KEYWORDS
CT ventilation imaging, deep learning, functional lung avoidance radiotherapy, Jacobian map

1 INTRODUCTION

Lung cancer is the leading cause of cancer-related mor-
tality globally.1 Radiotherapy (RT) plays a crucial role
in the management of lung cancer, serving as either
a primary or complementary therapy. This approach is
particularly valuable for patients who are not candi-
dates for surgical intervention or have advanced-stage
cancers.2 In the era of precision medicine, functional
lung avoidance radiotherapy (FLART) has been pro-
posed as a novel RT approach to improve treatment
accuracy for lung cancer. It aims to minimize radiation
exposure to high-functional lung regions, thereby reduc-
ing the risk of RT-related lung toxicity and improving
treatment outcomes.3–5

To implement FLART, functional images are essen-
tial for designing the treatment plan. Nowadays, various
pulmonary function imaging methods, such as single-
photon emission computed tomography (SPECT) per-
fusion imaging with technetium-99 m (Tc-99 m)6 and
positron emission tomography (PET) ventilation imag-
ing with gallium-68 (Ga-68),7 have been explored to
visualize blood supply and airflow, respectively. How-
ever, the spatial resolution of these modalities might
not be sufficient for high-quality imaging in this appli-
cation, thus reducing their usefulness in treatment
planning. In addition, the free-breathing acquisition
modality of SPECT/PET can lead to respiratory motion-
related blurring.8 Hyperpolarized noble gas magnetic
resonance imaging (MRI)9–12 provides a non-invasive,
radiation-free method for assessing lung function, but
is difficult to implement clinically due to the limited
availability of the special gas. In general, all these meth-
ods require additional scan(s) that are typically not of
interest to FLART.

An alternative method is to estimate the ventila-
tion images from non-contrast respiratory-correlated
CT datasets, named as CT ventilation imaging (CTVI)
method. Conventional CTVI methods primarily rely on

four-dimensional CT (4DCT) and deformable image reg-
istration (DIR) to analyze motion-related changes in
lung volume (Jacobian-based CTVI [CTVIJac])13 or lung
density (Hounsfield unit [HU]-based CTVI [CTVIHU]).14

The HU-based CTVI method assumes lung tissue den-
sity correlates with ventilation ability. When air volume
increases during inhalation,overall lung tissue density is
reduced. DIR aligns lung voxels across different breath-
ing phases for measuring HU value changes, which are
then utilized to estimate ventilation map. The Jacobian-
based method focuses on lung tissue deformation,using
the DIR-generated deformation field to calculate the
Jacobian determinant, which measures local volumetric
expansion or contraction. The Jacobian-based method
provides a direct measure of lung tissue expansion
and contraction. While the HU-based method is less
sensitive to DIR errors, the general accuracy of these
two methods depends on the DIR accuracy. In addi-
tion to the mentioned techniques, conventional CTVI
methods also incorporate radiomics and supervoxel
techniques to enhance the precision of lung ventilation
estimation.15–18

With the rapid development of deep learning technol-
ogy, several deep learning-based CTVI methods have
achieved high accuracy and outperformed conventional
CTVI methods in generating ventilation images.19–22

These deep learning models focus on direct feature
extraction from the anatomical information provided
by different inputs, such as peak-inhale/peak-exhale
CT images (CTin/CTex), 4DCT images, and three-
dimensional CT (3DCT) images.20–22 However, lung ven-
tilation is influenced not only by lung texture changes but
also by other conditions. Yuan et al. reported that tumor-
related airway blockages can lead to temporary loss
of function in the affected lung regions.23 Most existing
deep learning models overlook this blockage-induced
ventilation modality change, misclassifying them as
high-functional regions. To overcome this limitation, this
study seeks to incorporate a more comprehensive range
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TABLE 1 Summary of functional lung imaging data included in this study.

Sources Name Galligas 4DPET/CT DTPA-SPECT Galligas PET/CT

Institution Peter MacCallum Cancer
Centre

Stanford University Royal North Shore Hospital

Patient type Lung cancer Lung cancer Lung cancer

Number 25 21 20

Task Training/validation Test Training/validation

4DCT scans Scanner type 4DPET/CT 4DCT 4DCT

Breathing condition Free-breathing Free-breathing Free-breathing

Acquisition mode Cine Cine or helical Helical

Phase bins 5 10 10

Slice thickness 5.0 mm 2–3 mm 1.7 mm

In-plane resolution 1:07 × 1:07 mm2 0:97 × 0:97 mm2 0.96 × 0.96 mm2

Tube voltage/current: 140 kVp/10 mA 120 kVp/100 mAs /slice 120 kVp/80–200 mA

RefVI scans Scanner type 4DPET/CT SPECT/CT PET/CT

Radiotracer 68Ga 99mTc 68Ga

Axial coverage Whole lung Whole lung Whole lung

Slice thickness 3.27 mm 8 mm 2.2 mm

In-plane resolution 2.87 × 2.87 mm2 8 × 8 mm2 2.04 × 2.04 mm2

Scanner GE Discovery 690 PET/CT GE Infinia Hawkeye SPECT/CT Siemens Biograph mCT S/64 PET/CT

Abbreviations: 4DCT, four-dimensional computed tomography; DTPA, diethylenetriamine pentaacetate acid; PET, positron emission tomography; RefVI, reference
ventilation images; SPECT, single photon emission computed tomography.

of factors that influence ventilation function changes,
including anatomical information from CT images and
motion data derived from the DIR. By integrating these
diverse data sources, we aim to develop and evalu-
ate a more accurate deep learning-based approach for
CTVI.

2 METHODS

2.1 Patient cohort

A total of 66 patients with reference ventilation images
(RefVI) from two sources were included for the model
development (Table 1). The first dataset comprised
20 patients from The Cancer Imaging Archive (TCIA),
which provided 4DCT scans, Galligas PET scans, and
19 CT scans (one patient, CT-PET-VI-07, was miss-
ing the CT scan).24 The second dataset comprised 46
patients from the Ventilation And Medical Pulmonary
Image Registration Evaluation (VAMPIRE) challenge.25

In the second dataset, 21 patients had 4DCT images,
time-averaged 4DCT images, diethylenetriamine pen-
taacetate acid SPECT (DTPA-SPECT) ventilation, and
corresponding lung masks.26 The remaining 25 patients
from the Peter MacCallum Cancer Center had Galli-
gas 4DPET/CT and 4DCT images.27–29 All RefVI were
rigidly registered using 4DCT in the respective original
datasets.Figure S1 shows the selected images from the
three datasets.

2.2 Image preprocessing

To minimize computational cost, only the smallest
bounding box containing the lungs was cropped from
the CT scans. A median filter was applied to the ven-
tilation images as a smoothing prior in order to mitigate
noise. Automatic lung-mask generation and Jacobian
map calculation30 were respectively evaluated using a
well-trained Unet (R231) model31 and CT imaging (CTin
and CTex). In addition, DIR between CTin and CTex
was performed using the pTVreg registration method.32

Subsequently, the Jacobian map was calculated using
Equation (1):

Jacobian (x, y, z)

=

||||||||||||||

1 +
𝜕ux (x, y, z)

𝜕x
𝜕ux (x, y, z)

𝜕y
𝜕ux (x, y, z)

𝜕z
𝜕uy (x, y, z)

𝜕x
1 +

𝜕uy (x, y, z)

𝜕y

𝜕uy (x, y, z)

𝜕z
𝜕uz (x, y, z)

𝜕x
𝜕uz (x, y, z)

𝜕y
1 +

𝜕uz (x, y, z)
𝜕z

||||||||||||||

− 1

(1)

where function u(x, y, z) is the voxel displacement field,
ux(x, y, z) is the x component of u(x, y, z), uy(x, y, z) is
the y component of u(x, y, z), and uz(x, y, z) is the z
component of u(x, y, z).

The cropped CT scans and Jacobian maps were
resampled to a size of 60 × 60 × 60. To normalize the
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MA ET AL. 249

F IGURE 1 The overall flowchart (a) and the DPFN design (b). DPFN, dual path fusion network.

CT values for deep learning model training, the values
within the range of [-1000, 0] were rescaled to [0, 1]
using a proportional linear transformation method. Min-
max normalization was applied to the Jacobian image
values. To mitigate the effect of hotspots in RefVI, the
90th percentile value was used as the threshold for iden-
tifying hyper-functioning lung regions.33 Values of RefVI
exceeding this threshold were reset to the threshold
value and subsequently normalized to the range [0, 1].

2.3 Architecture of neural network

To leverage the anatomical information from average CT
images and motional information from Jacobian maps
for ventilation imaging (CTVIDual), a 3D dual-path fusion
network (DPFN) was developed based on the architec-
ture of our previously developed multimodality-guided
synergistic neural network (MMgSN-Net).34 The origi-
nal MMgSN-Net was designed to extract information
from 2D images, which limited its ability to capture the
depth information inherent in CT images. The proposed
method is based on two feature extraction branches
(FEBs), an encoder, and a decoder to effectively inte-
grate the 3D data from the average CT images and
Jacobian maps (Figure 1).

2.3.1 Feature extraction branches

The two FEBs were specifically designed to extract fea-
tures from the input CT images and Jacobian maps,
respectively.These FEB modules in the network focused
on different aspects due to the inherent differences in
the data. The FEB of CT image focuses on extract-
ing anatomical information, whereas the Jacobian FEB
specifically targets motional information. Each branch
consists of three convolutional blocks with a kernel size
of 3 × 3 × 3 and two pooling layers. To ensure feature
normalization, a batch normalization layer was applied
after each convolutional block.

2.3.2 Encoder

To integrate the information extracted from each branch,
feature maps with 64, 128, and 256 dimensions were
generated from the first, second, and third convolu-
tional blocks, respectively. The features were then
continuously fused using a fusion layer encoder, which
comprised four convolutional blocks with channel sizes
of 128, 256, 256, and 512, along with two pooling layers.
The fusion process employed a combination method35

that included voxel-wise summation, products, and
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250 MA ET AL.

maximization. These operations effectively integrated
different features to obtain useful complementary
information for the synthesis of ventilation images.

2.3.3 Decoder

The network employed a decoder module to upsample
and merge the feature maps extracted by the encoder,
gradually restoring image details and spatial informa-
tion.The decoder primarily consisted of two upsampling
layers and three convolutional layers with channel sizes
of 256, 128, and 64, respectively. Trilinear interpolation
was employed to upsample the features to match the
size of the feature map. Subsequently, this upsampled
feature map was convolved with features from the cor-
responding layer of the feature extraction branches to
restore the image details. Finally, a reconstructed ven-
tilation image was generated in the final layer of the
network structure.

2.4 Training and implementation
details

To prevent overfitting during training, several data aug-
mentation techniques were applied, including flipping in
all three directions with a 50% probability, left-right ran-
dom rotation angles within (-15, 15), random cropping
from the borders within 10% of the data size, and elas-
tic transformation within 25% of the data size using the
“Volumentations 3D”.36 To evaluate the effect of data
augmentation on the prevention of overfitting,a compar-
ative analysis was conducted by training a model without
augmentation.

The network was trained for 800 epochs via a decay-
based learning strategy using the Adam optimizer, with
an initial learning rate of 0.0001 and a batch size of
1. The decay factor of the learning rate is determined
using the current epoch. If the current epoch surpasses
the starting decay epoch, the decay factor can be com-
puted by subtracting the ratio from 1.0; the ratio can be
obtained by dividing the difference between the current
and starting decay epochs by the difference between the
total and starting decay epochs, thereby initiating learn-
ing rate decay. In addition, the mean absolute error was
considered as the loss function during training.

The implementation was performed using PyTorch
1.8 on a Windows-based computer with Intel Core i9-
12900F CPU (5.1 GHz), NVIDIA RTX 3090 GPU (24GB
memory), and 64GB RAM.

2.5 Evaluation of CTVIDual

The performance of the model was assessed using a
three-fold cross-validation scheme. Of the 66 patients,

45 with PET images as RefVI were randomly divided
into three folds. In each iteration, two folds were used
for training the model, and the remaining fold was used
for validation. Additionally, the data from the remain-
ing 21 participants with SPECT RefVI were reserved
as an external test dataset to assess the model’s
generalization ability.

To compare the model performance with different
inputs, CTin and CTex from the 4DCT were used
as inputs to generate the corresponding ventilation
images (CTVIDLCT). Moreover, the results of the net-
work using the test dataset were compared with those
of a radiomics-based method (CTVIFM),17 a supervoxel-
based method (CTVISVD),18 the Unet-based method
(CTVIUnet),37 and the two traditional DIR-based methods
CTVIJac

13 and CTVIHU.14 In CTVIFM, the time-averaged
4DCT images were divided into patches, and labeled
as defective or non-defective regions. Relevant features
were identified by extracting intensity and texture infor-
mation,and feature maps (FMs) were generated using a
voxel-based radiomics approach. CTVISVD utilized sim-
ple linear iterative clustering38 to segment the lung
volume supervoxels, which were then applied to calcu-
late the average density value (Dmean) for ventilation
image generation. For a direct comparison, the stan-
dard Unet (CTVIUnet) architecture was used,featuring an
analysis and synthesis path with four resolution steps,
each containing two 3 × 3 × 3 convolutions followed
by ReLU activation and 2 × 2 × 2 max pooling. The
Bonferroni correction39 was used to account for multiple
comparisons. Given that six methods were compared,
resulting in a total of 15 pairwise comparisons, the sig-
nificance level was adjusted to p = 0.0033 using the
Bonferroni correction.

For voxel-wise correlation comparisons, Spearman’s
correlation coefficient (R) was calculated for the entire
lung region between CTVIs and RefVIs for each partic-
ipant. R represents the degree of correlation between
two distributions, ranging from −1 to +1, with −1
indicating a perfect negative correlation and +1 indi-
cating a perfect positive correlation, as defined by
Equation (2):

R =

∑N
i=1 [(yi − ȳ) (pi − p̄)]√∑N

i=1 (yi − ȳ)2
√∑N

i=1 (pi − p̄)2
(2)

where p̄, ȳ, pi , and yi denote the average value and
the value at voxel i for the predicted and ground truth
images, respectively. N denotes the total number of
non-zero voxels.

For similarity comparisons, an image intensity thresh-
old of 0.66 was used to separate the high-functional
lung regions from the low-functional lung regions. Here
DSCh and DSCl stand for Dice similarity coefficients
of high-functional region and low-functional region,
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TABLE 2 The prediction performance for the three-fold cross-validation on validation datasets.

R DSCh DSCl p-value (R)

Fold 1 CTVIDual 0.76 ± 0.06 0.68 ± 0.09 0.83 ± 0.05 0.10

CTVIDLCT 0.73 ± 0.07 0.70 ± 0.06 0.84 ± 0.04

Fold 2 CTVIDual 0.73 ± 0.12 0.66 ± 0.09 0.82 ± 0.05 0.08

CTVIDLCT 0.69 ± 0.13 0.65 ± 0.13 0.80 ± 0.05

Fold 3 CTVIDual 0.73 ± 0.11 0.65 ± 0.13 0.81 ± 0.06 0.18

CTVIDLCT 0.70 ± 0.12 0.60 ± 0.18 0.80 ± 0.07

Average CTVIDual 0.74 ± 0.10 0.66 ± 0.11 0.82 ± 0.06 0.02

CTVIDLCT 0.71 ± 0.11 0.65 ± 0.14 0.81 ± 0.06

Note:The value was presented with mean ± SD format in the table.The p-value was used to evaluate the Spearman’s correlation between the CTVIDual and CTVIDLCT.
Abbreviations: CTVI, computed tomography ventilation imaging, CTVIDLCT, CT-based deep learning method; CTVIDual, synthesizing ventilation images; DSCh, the Dice
similarity coefficients of high-functional region; DSCl, the Dice similarity coefficients of low-functional region; R, the Spearman’s correlation coefficients.

TABLE 3 The model performance on test datasets.

R DSCh DSCl p-value (R)

Fold 1 CTVIDual 0.72 ± 0.10 0.65 ± 0.09 0.80 ± 0.04 0.03

CTVIDLCT 0.69 ± 0.13 0.65 ± 0.09 0.80 ± 0.05

Fold 2 CTVIDual 0.68 ± 0.10 0.64 ± 0.08 0.80 ± 0.04 0.27

CTVIDLCT 0.67 ± 0.14 0.63 ± 0.10 0.79 ± 0.05

Fold 3 CTVIDual 0.71 ± 0.10 0.65 ± 0.09 0.78 ± 0.04 0.06

CTVIDLCT 0.67 ± 0.15 0.64 ± 0.10 0.78 ± 0.05

Average CTVIDual 0.70 ± 0.10 0.64 ± 0.09 0.80 ± 0.04 0.01

CTVIDLCT 0.68 ± 0.14 0.64 ± 0.10 0.79 ± 0.05

Note:The value was presented with mean ± SD format in the table.The p-value was used to evaluate the Spearman’s correlation between the CTVIDual and CTVIDLCT.
Abbreviations: CTVI, computed tomography ventilation imaging, CTVIDLCT, CT-based deep learning method; CTVIDual, synthesizing ventilation images; DSCh, the Dice
similarity coefficients of high-functional region; DSCl, the Dice similarity coefficients of low-functional region; R, the Spearman’s correlation coefficients.

respectively. The similarity between RefVI and each
CTVI was evaluated by calculating the DSC for each
patient, as defined by Equation (3):

DSC (A, B) =
2 |A ∩ B|
|A| + |B| (3)

where A indicates functional lung volumes in RefVI
and B indicates the same functional lung volumes in
CTVIs.

2.6 Ablation study

To evaluate the role of the Jacobian map in the gen-
eration of the ventilation image, an ablation study
was conducted using only the average CT image as
the model input to generate the ventilation image
(CTVIDualCT). Only one FEB was used to extract fea-
tures from the average CT to feed the fusion layers. The
model’s performance was assessed using a threefold
cross-validation approach and compared with CTVIDual
on the test dataset.

3 RESULTS

3.1 Threefold cross-validation

Tables 2 and 3 summarize the results of the three-
fold cross-validation for voxel-wise R, DSCh, and DSCl
between CTVIDual and RefVI for the validation and test
datasets. In the validation set, the method achieved aver-
age evaluation scores of 0.74 ± 0.10 for R, 0.66 ± 0.11
for DSCh,and 0.82 ± 0.06 for DSCl.When applied to the
test set, these metrics slightly decreased to 0.70 ± 0.10
for R, 0.64 ± 0.09 for DSCh, and 0.80 ± 0.04 for DSCl,
respectively. For the model trained without augmenta-
tion, R, DSCh, and DSCl were respectively 0.66 ± 0.09,
0.63 ± 0.09, and 0.77 ± 0.05, in the test dataset. These
values were 0.04, 0.01, and 0.03 lower than those
obtained by the model trained with data augmentation.

3.2 Comparison between CTVIDual and
CTVIDLCT

The results of the comparisons between CTVIDual and
CTVIDLCT in different scenarios are shown in Tables 2
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252 MA ET AL.

F IGURE 2 The comparison of the CTVIDual and CTVIDLCT for a patient with tumor blocked the left lower lobe. (a) The tumor blocks the
airway to left lower lobe as red arrow pointed in a transverse CT slice. (b and c) One coronal slice of the CT and Jacobian map of the input of
CTVIDual. The red contour in (b) is the lower lobe of the left lung. (d–f) The corresponding coronal slices of the RefVI, CTVIDual, and CTVIDLCT.
CTVI, computed tomography ventilation imaging, CTVIDLCT, CT-based deep learning method; CTVIDual, synthesizing ventilation images; RefVI,
reference ventilation images.

and 3. In the validation dataset, CTVIDLCT achieved
lower accuracy than CTVIDual in all evaluation indices,
with differences of 0.03, 0.01, and 0.01 for R, DSCh,
and DSCl, respectively. Similar results were observed in
the test dataset, with CTVIDLCT exhibiting lower accu-
racy than CTVIDual by 0.02 and 0.01 for R and DSCl,
respectively. In both the validation and test datasets, the
p-values for R comparison were < 0.05, indicating a sta-
tistically significant difference. The results highlighted in
Figure 2 demonstrate that CTVIDual can accurately iden-
tify and display low-functional values in tumor-blocked
lung regions. This is particularly evident in Figure 2c,
where the blocked regions of the lung show a con-
sistent and homogeneously low value on the Jacobian
map, indicating that these blocked regions experienced
minimal volume changes during breathing. The use of
the Jacobian map aids CTVIDual in recognizing blocked
regions, as shown in Figure 2e. The DSCl of CTVIDual
was 0.01 higher than that of CTVIDLCT in the validation
and test datasets.

3.3 Comparison of CTVIDual with
CTVIFM, CTVIUnet, CTVISVD, CTVIJac, and
CTVIHU

Figure 3 compares the performance of CTVIDual with
CTVIFM, CTVIUnet, CTVISVD, CTVIJac, and CTVIHU in
the test dataset. In terms of R, CTVIDual showed a
significantly higher R compared to CTVIFM, CTVIUnet,
CTVISVD,CTVIJac, and CTVIHU,with differences of 0.12,

F IGURE 3 The comparison between the CTVIDual, CTVIFM,
CTVISVD, CTVIUnet, CTVIJac, and CTVIHU on the test dataset. CTVI,
computed tomography ventilation imaging; CTVIDual, synthesizing
ventilation images; CTVIFM, radiomics-based method; CTVISVD,
super voxel-based method; CTVIUnet, Unet-based method.

0.04, 0.08, 0.47, and 0.37, respectively. For CTVIFM,
CTVIJac, and CTVIHU, R was lower for CTVIDual with
p-values < 0.003. This indicates that CTVIDual was
better correlated with RefVI than with other methods.
For DSCh, CTVIDual had a higher value than CTVIFM,
CTVIUnet, CTVIJac, and CTVIHU, with differences of
0.03, 0.02, 0.23, and 0.22, respectively, comparable to
that of CTVISVD. However, only CTVIJac and CTVIHU
showed a significant difference of p < 0.003. Finally, for
DSCl, CTVIDual had the same value as CTVIFM but had
a higher value than CTVISVD, CTVIUnet, CTVIJac, and
CTVIHU, with differences of 0.07, 0.03, 0.10, and 0.10,
respectively. The DSCl values of CTVISVD, CTVIJac, and
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F IGURE 4 An example of patient with additional lung diseases. (a) One coronal slice of the CT image with additional lung diseases in the
right lung as pointed by the red arrow. (b–e) The corresponding coronal slices of the Jacobian map, RefVI, CTVIDual, and CTVIDLCT. CTVI,
computed tomography ventilation imaging; CTVIDLCT, CT-based deep learning method; CTVIDual, synthesizing ventilation images; RefVI,
reference ventilation images.

CTVIHU were significantly lower than that of CTVIDual,
with p < 0.003.

3.4 Results of the ablation study

CTVIDualCT achieved a lower accuracy in all evaluation
indices compared to CTVIDual in the test dataset, with
differences of 4.6%, 0.6%, and 3.2% for R, DSCh, and
DSCl, respectively. These results demonstrated that the
Jacobian map provided complementary perspectives
and information for the model.

3.5 Lung cancer patients with
additional lung diseases

For lung cancer patients with additional lung diseases,
CTVIDual yielded a low R with RefVI. As shown in
Figure 4a, a defective lung region with heterogeneous
density in the right lung caused a falsely high ventila-
tion value Figure 4d. This disease feature was relatively
rare and absent in the training dataset,and the Jacobian
map showed heterogeneity in the right lung Figure 4b,
resulting in the lowest R value for this patient (0.53).

4 DISCUSSION

This study introduces a novel CTVI approach that
directly integrates both anatomical and motional infor-
mation from 4DCT images. The proposed CTVIDual
achieved a mean R of 0.70 (0.53–0.82) with the
ground-truth ventilation images, which was significantly

higher than the correlations achieved by other methods:
CTVIFM (0.58, 0.18–0.74), CTVIJac (0.23, -0.06–0.43),
and CTVIHU (0.33, -0.11–0.53), all with p < 0.003. The
DSCh of CTVIDual was 0.64 (0.46–0.77), which was sig-
nificantly higher than those of CTVIJac (0.42, 0.24–0.55,
p < 0.003) and CTVIHU (0.43, 0.11–0.58, p < 0.003).
The DSCl values of CTVISVD (0.73, 0.56–0.83), CTVIJac
(0.70, 0.63–0.82), and CTVIHU (0.70, 0.60–0.82) were
lower than that of CTVIDual (0.80, 0.71–0.85), all with
p < 0.003. In addition,CTVIDual outperformed CTVIDLCT,
particularly in patients with obstructed lung regions.This
indicates that incorporating the Jacobian map as input
can guide the model in learning motional information
and synthesizing more accurate ventilation images.

The use of the average CT image and the Jacobian
map as inputs provided better performance compared
to using CTin and CTex. Enhancements to CTVIDLCT
could be achieved by adding an extra module for
direct learning of deformation information. For exam-
ple, incorporating a convolutional block attention module
(CBAM)40 learns the independent features,whereas the
spatial attention module models the correlation between
distinct spatial positions in the feature map, thereby
improving the overall network performance. However,
integrating a CBAM increases the computational cost
during training and inference, as well as the stor-
age requirements and model training time. Moreover,
because a 3D model was used in this study, the introduc-
tion of additional modules may necessitate reducing the
data input size, potentially decreasing the model’s final
accuracy.

The patient dataset in this study exhibited diverse lung
ventilation patterns due to factors such as lung disease,
tumor obstruction, and gravity effects. Figure 4 shows
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a weak correlation (R = 0.53) between CTVIDual and
RefVI in patients with additional lung diseases. The het-
erogeneity of lung disease patterns can be challenging
for deformable registration methods in accurately eval-
uating volume changes in diseased lung regions. The
high signal in the right lung, as shown in Figure 4c, may
have been caused by the deposition of the radioactive
tracer at the hilus of the right lung. The R and DSC
values varied among the three-fold cross-validations,
indicating differing patient characteristics in each fold.
Furthermore, the limited training dataset of 45 patients
may have impacted the generalizability of the algo-
rithms.Future studies should combine large and diverse
datasets to verify model performance in different clinical
applications.

The proposed network is generalizable to 4DCT
datasets with different temporal resolutions. However,
reduced temporal sampling limits temporal informa-
tion. Averaging CT images can smooth temporal gaps
and supplement missing information with the Jacobian
matrix. Moreover, image quality issues, such as noise,
reduced resolution,and artifacts,were common in these
datasets. The average CT image generated by averag-
ing multiple phases can effectively reduce noise and
enhance image quality. Besides, a low temporal resolu-
tion can omit crucial moments in the respiratory cycle,
thereby affecting the generation of ventilation images.
By integrating CT images from multiple time points, the
average CT image can restore lost information. The
Jacobian matrix compensates for the lack of temporal
information, thereby improving the integrity of the venti-
lation images. However, averaging CT images may blur
fine structures. Future studies should incorporate image
pyramids and super-resolution reconstruction to further
enhance details and clarity.

Yuan et al.,23 Meng et al.,41 and Kipritidis et al.42

have reported that lung function can change during
radiation therapy. Our innovative model, which merges
ventilation images, serves a dual purpose: it supports
initial treatment planning and enables adaptive FLART.
Adaptive re-planning based on changes in lung function
can help preserve lung function in patients after treat-
ment. In addition, regions with low ventilation because
of pressure from tumors in the central airway and
blood vessels may recover after radiotherapy.23 Protect-
ing these regions and minimizing the dose to normal
lung regions is crucial. If tumor shrinkage occurs after
treatment, patients may experience reduced dyspnea
and increased lung function. Our model could identify
blocked regions and assign them low-functional values.
Further investigation is needed to identify these regions
and determine whether they can recover, thereby guid-
ing initial treatment planning. Furthermore, an impor-
tant challenge in applying CTVIDual to patients with
blocked lung regions is determining whether the large
defect regions resulted from tumor obstruction or are

attributable to other pathological conditions. This dif-
ferentiation is crucial and warrants further research to
enhance diagnostic accuracy. Although the Jacobian
map is generated through deformable registration, its
accuracy can be compromised by the presence of arti-
facts. This limitation highlights the need for improved
methodologies to mitigate the impact of artifacts on
the registration process and ensure the reliability of the
Jacobian map.

This research encountered several limitations,primar-
ily associated with the model’s reliance on Jacobian
maps produced from deformable registration,which can
be sensitive to artifacts present in 4DCT images.43

Enhancing deformable registration accuracy through
artifact minimization in 4DCT images is critical for
improvement. The RefVI used in this study contained
artifacts such as hotspots located in the central airway
caused by airway blockage. This could have misguided
the model to generate false high-functional regions.
Future studies should utilize lung masks that exclude
the airways and pulmonary vasculature to reduce such
artifacts, thereby improving the accuracy of deformable
registration.31,44 In addition, further processing of 4DCT
images using techniques such as image filtering, arti-
fact removal algorithms,or image reconstruction may be
used to reduce the artifacts. The utilization of more pre-
cise spatial interpolation methods can also enhance the
accuracy of the generated Jacobian map by improving
the interpolation of the 4DCT images. Moreover, consid-
ering the limitations imposed by hardware capabilities
and the complexity of the model, the proposed network
faces the challenge of training with a batch size of
one. This design choice may increase the risk of over-
fitting during model training. To address this issue, data
augmentation and regularization techniques should be
utilized to improve the generalization. Furthermore, the
adoption of transfer learning can help mitigate the draw-
backs that affect network performance in constrained
conditions.By leveraging a pretrained model as the initial
parameter and fine-tuning it with samples, the adverse
effects on network performance can be mitigated within
the given limitations.

The proposed network, despite its intricacy, presents
substantial clinical benefits by integrating the average
4DCT with motional information derived from 4DCT. It
is able to synthesize lung ventilation images. As the
average 4DCT supplies crucial anatomical structure
while the Jacobian map reveals dynamic lung volume
shifts, a particularly valuable insight in cases with lung
obstructions. Furthermore, the study’s demonstration of
cross-modality generalization, training on PET images,
and validating with SPECT, underscores its versatility.
This capability is a significant step toward broad appli-
cability. However, to further validate and enhance the
clinical utility of this approach, it is imperative to expand
the research with a larger, multi-center patient dataset.
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5 CONCLUSION

In this study, an anatomy and motion dual-aware
lung ventilation imaging method is developed
to synthesize lung ventilation images using a
dual-aware-based neural network. This approach
demonstrates promising results, suggesting that defor-
mation information can provide valuable supplementary
inputs for estimating lung ventilation. Further research
and development in this area are required to fully under-
stand and utilize this approach in clinical applications.
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