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Abstract

The Windkessel (WK) model is a simplified mathematical model used to represent

the systemic arterial circulation. While the WK model is useful for studying blood

flow dynamics, it suffers from inaccuracies or uncertainties that should be consid-

ered when using it to make physiological predictions. This paper aims to develop an

efficient and easy-to-implement uncertainty quantification method based on a local

gradient-based formulation to quantify the uncertainty of the pressure waveform

resulting from aleatory uncertainties of the WK parameters and flow waveform. The

proposed methodology, tested against Monte Carlo simulations, demonstrates good

agreement in estimating blood pressure uncertainties due to uncertain Windkessel

parameters, but less agreement considering uncertain blood-flow waveforms. To

illustrate our methodology's applicability, we assessed the aortic pressure uncertainty

generated by Windkessel parameters-sets from an available in silico database rep-

resenting healthy adults. The results from the proposed formulation align qualita-

tively with those in the database and in vivo data. Furthermore, we investigated

how changes in the uncertainty of the Windkessel parameters affect the uncertainty

of systolic, diastolic, and pulse pressures. We found that peripheral resistance uncer-

tainty produces the most significant change in the systolic and diastolic blood pres-

sure uncertainties. On the other hand, compliance uncertainty considerably

modifies the pulse pressure standard deviation. The presented expansion-based

method is a tool for efficiently propagating the Windkessel parameters' uncertainty

to the pressure waveform. The Windkessel model's clinical use depends on the reli-

ability of the pressure in the presence of input uncertainties, which can be efficiently

investigated with the proposed methodology. For instance, in wearable technology

that uses sensor data and the Windkessel model to estimate systolic and diastolic

blood pressures, it is important to check the confidence level in these calculations to

ensure that the pressures accurately reflect the patient's cardiovascular condition.
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1 | INTRODUCTION

The Windkessel (WK) model is a simplified mathematical model often used to represent the systemic arterial circula-
tion of blood in the human body. This model assumes that the circulatory system can be lumped into a simple dynamic
model that relates arterial pressure and flow variations.1 The model is governed by an ODE with a few parameters
describing global properties of the systemic arterial network.2 Several studies3–6 have provided evidence for the utility
and accuracy of the WK model in simulating blood flow dynamics in the arterial system. Moreover, in the context of
integrating data from diverse modalities for clinical decision-making, a parsimonious model grounded in physiology
would be preferable due to its efficiency and ease of use.7 For instance, pulse control is a method to continuously esti-
mate the cardiac output (CO). This method combines the Windkessel model with blood pressure measurements. Con-
stant CO monitoring is relevant for making clinical decisions when managing critically ill patients.8

Prior to launching into further technical issues of the WK model, we should clarify its valuable contribution as a
simple but acceptable model to be applied in the preventive cardiovascular healthcare. Specifically in predicting the sys-
tolic blood pressure (SBP) and diastolic blood pressure (DBP) from wearables, the collected sensor data—for example,
from photoplethysmography (PPG)—can be used to estimate some parameters of the WK model (e.g., impedance),
while others are set as known quantities calibrated through other standard cuff-based elaborate methods. With this, the
WK model enables to estimate the pressure waveform, including SBP and DBP. Several studies from the literature dis-
cuss how the WK model can be used to predict blood pressure using wearable sensors. Among which, Wu et al.9 have
recently proposed a camera-based approach for blood pressure estimation via the WK Model. While such an estimation
may suffer from several types of uncertainties, it still is of great value in cardiovascular health as it provides real-time
monitoring, early detection of abnormalities, and promotes active lifestyle choices for preventive care. That is also the
reason behind the success and market reception of wearables nowadays.

While the WK model is useful for studying blood flow dynamics, it suffers from inaccuracies or uncertainties that
should be considered when using it to make physiological predictions. In system identification context, the uncer-
tainties are divided into aleatoric and epistemic uncertainties.10 Aleatoric uncertainty refers to the inherent randomness
or unpredictability in a system, that is, Windkessel parameters herein. Whereas epistemic uncertainty deals with limita-
tions in our assumptions in cardiovascular modeling. The WK model's primary aleatory uncertainty source is its param-
eters, including compliance, resistance, and impedance.11 These parameters can significantly vary based on patients'
physiology and health status, leading to challenges in accurately estimating them.5,12 In addition, the approach to eval-
uating these parameters is prone to measurement errors and variability; for instance, when using Doppler ultrasound
to measure the blood flow waveform, inaccuracies may occur due to errors in the measurement of the vessel's cross-
sectional area or angle approach.13 Additional sources of uncertainty (both aleatory and epistemic) in the WK model
are the assumptions made about the arterial system's geometry and topology.14 The model assumes that the arterial sys-
tem is zero-dimensional, which is a considerable simplification since the arterial network has branching and changing
diameters. The model also assumes a uniform flow and pressure distribution throughout the arterial system, which does
not hold since the shape of the pulse waves changes as they travel from the heart to the periphery.1 Furthermore, the
WK model does not account for important physiological phenomena like wave reflections and wall viscoelasticity.1

These phenomena can significantly affect blood flow dynamics, especially in older patients or those with arterial stiff-
ness. Acknowledging these uncertainties of the WK parameters and considering the function of this model to simulate
blood flow and pressure variations, the question of how to systematically quantify the consequences of these uncer-
tainties in blood pressure arises. Considering the contribution of the article which is limited to the Windkessel model
for the cardiovascular system, one may categorize this research as a contribution to the aleatoric uncertainty quantifica-
tion of the Windkessel model.

Before embarking on a systematic aleatory uncertainty quantification (UQ) of the WK model, one may divide this
model's variability into two classes: (i) UQ of the state variables and (ii) UQ of the WK parameters. The former finds
the uncertainties of the blood pressure for a known set of statistical properties of the WK parameters and blood flow
waveform. The latter discusses how pressure and flow measurement errors will spread to the WK parameters while esti-
mating them through the so-called inverse problems. Given that the WK model mimics the blood flow dynamics, any
of the two types of model variability can help assess the reliability of associated decisions drawn based on this model.
For example, greater uncertainty in blood pressure measurement corresponds to decreased reliability in clinical deci-
sions derived from them, and vice versa. This research focuses on the former type of variability, meaning we aim to
quantify the uncertainty of the pressure waveform (specifically, the systolic, diastolic, and pulse pressures) subject
to the variability of the arterial compliance, resistance, characteristic impedance, and flow waveform. Although
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subjective (non-quantitative) trends resulting from each parameter's variation are well understood,1 the development of
simple quantitative techniques for predicting pressure uncertainties is yet to be established.

The literature offers several attempts to enhance the knowledge of the UQ of the blood pressure and flow waveform.
For example, Chen et al.15 quantified uncertainties from various sources in the human cardiovascular system based on
stochastic simulation of a one-dimensional (1D) arterial network. Quicken et al.16 presented an adaptive generalized
polynomial chaos expansion and applied it to a three-dimensional (3D) abdominal aortic aneurysm wall mechanics
model and a 3D model of flow through an arteriovenous fistula. While both studies provide valuable contributions to
the quantification of hemodynamic uncertainty, their focus has been on the development of UQ methods tailored for
sophisticated models for arterial networks and 3D simulations, hereby considering nonlinear, non-additive and non-
monotone relationships between model inputs and outputs. Lee et al.17 used a Bayesian approach to determine ratios of
systolic and diastolic oscillometric amplitude to the mean arterial pressure. Turner et al.18 used a Monte Carlo simula-
tion to estimate the effects of the sphygmomanometer error and the day-to-day variability of the pressure measure-
ments on the detection of hypertension. Other researchers, for example, Xiu and Sherwin,19 did not directly investigate
the uncertainty of the blood pressure waveform but concentrated on the pulse wave velocity, which is another impor-
tant indicator of cardiovascular health. Although all these methods offer promising methodologies to predict uncer-
tainties, they can be computationally intensive and time-consuming, especially when dealing with high-dimensional
problems and large data sets. Specifically, the Bayesian methods involve repeated simulations of the model for different
parameter values, which is computationally expensive.

Despite its simplicity, the WK model is convenient for describing the arterial system. For example, it has been
used to evaluate arterial compliance,1 an important biophysical marker of the arterial wall related to vascular
aging,2 to study the cardiac pump function,20 and to simulate the load in an artificial heart and valve studies.21,22

Windkessel models can be divided into mono-compartment and multi-compartment.23 The main advantages of
multi-compartment models are that they are computationally efficient and require few parameters. Such models
have been used to estimate different cardiovascular parameters. For example, they were used to assess the elasticity
of blood vessels from photoplethysmography measurements24 or to evaluate oxygen consumption.25 Different works
have used the WK model as boundary conditions in terminal vessels of 1D and 3D models.2,26–32 To estimate the
Windkessel parameters, distinct methods like vector fitting27 and optimization28,30 have been used. Such methods
allow the incorporation of patient-specific data. In addition, various uncertainty quantification methods, like gener-
alized polynomial chaos,26 Monte Carlo29 or first order second moment,31 have been employed to propagate uncer-
tainties due to the Windkessel boundary conditions and to analyze the effect of uncertain wall elasticity on flow
and arterial area variations.28

The numerous recent works on the WK model, for example,23,29,33–37 demonstrate the increasing interest and
importance of uncertainty quantification in blood pressure waveform analysis for improved cardiovascular risk assess-
ment and personalized healthcare. Recent advancements in medical imaging, computational power, and the availability
of physiological signals have allowed the incorporation of patient-specific data into simulations, which involves uncer-
tainties and potential errors that require evaluation to ensure the reliability of cardiovascular models in clinical prac-
tice.23,35,38,39 Patient-specific models have gained interest in the medical industry, and assessment of their reliability
and credibility requires verification, validation, and uncertainty quantification (VVUQ).23,39–41 This paper aims to
develop an efficient and easy-to-implement UQ method based on a local gradient-based formulation to quantify the
uncertainty of the pressure waveform resulting from aleatory uncertainties of the WK parameters and flow waveform.
The proposed UQ framework was verified against Monte Carlo simulations. To establish the applicability of the formu-
lation, we analyzed an extensive data set constructed based on a comprehensive literature review42 and compared
uncertainties—of the SBP and DBP in different age groups—computed with the proposed formulation, with those
observed in vivo and in silico data. Furthermore, we analyzed the uncertainty variation of SBP and DBP due to varia-
tions in the uncertainty of WK parameters and extended the UQ formulation to the pulse pressure.

2 | MATERIALS AND METHODS

2.1 | Windkessel model

The two-element WK model adopts resistance, R, relating outflow to pressure difference at either side of the com-
ponent and compliance, C, denoting the ratio of a volume variation and the resulting pressure change. An
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improved version of the two-parameter WK model incorporates another resistive element, Z, to account for the
characteristic impedance of the vessels, that is, the impedance obtained from the input impedance spectrum at
high frequencies when no reflections exist.1 Assuming the flow rate Q(t) through the ascending aorta as uncertain
input and the aforementioned WK parameters as random quantities, the aortic blood pressure P(t) is evaluated
from Reference 43.

PþRC
dP
dt

¼ RþZð ÞQþZRC
dQ
dt

þPout, ð1Þ

where Pout is an asymptotic pressure representing the venous pressure.
Equation (1) can be solved using the integrating factor method, leading to.

P tð Þ¼ZQ tð Þþ 1
C
e�

t
RC

Zt0
0

e
t0
RCQ t0ð Þdt0 þ PD�Poutð Þe� t

RC þPout, ð2Þ

with PD is the diastolic blood pressure. This WK model can reduce the entire arterial network or part of it into a lumped
parameter model. In this work, the flow rate at the aorta was used to quantify the corresponding pressure, implying
that the employed WK parameters are for the entire arterial network.

2.2 | Uncertainty propagation to the aortic pressure

The aim of this study was to estimate the uncertainty of the pressure waveform subject to uncertain input WK
parameters and flow waveform. Following the work done by Charlton et al.,42 the flow rate morphology was
modeled to give reasonable pulse wave simulations. In Charton's work the morphology of the flow wave is
influenced by heart rate (HR), stroke volume (SV), left ventricular ejection time, peak flow time, and reverse flow
volume. We used the scrip AorticFlowWave, developed by Charlton et al.,42 which produces a flow waveform given
a set of cardiac parameters. To illustrate how uncertainties of flow waveform propagate to the pressure, we intro-
duced uncertainties in the flow waveform through variations of the SV and HR. The state variable P(t) is the solu-
tion of the ordinary differential equation (ODE) shown in Equation (1), which due to uncertain parameters and
flow waveform, is stochastic in nature.

Uncertainty analysis methods may be classified as probabilistic and non-probabilistic approaches.44 Belonging to
the former category, Monte Carlo is a simulation-based method used in this research to verify the proposed stochastic
formulations. The most efficient non-probabilistic techniques are local expansion-based methods, such as the Taylor
series (employed herein) and perturbation method.45–47 These methods are only robust for cases of relatively small
input variability and (relatively) linear models, which is the case of WK models. The next section introduces our pro-
posed expansion-based formulation.

2.3 | Estimation of the pressure variance

Let the random vector X ¼ R,C,Z,SV ,HRð ÞT define the WK (R, C, Z) and cardiac (SV, HR) parameters with covariance
matrix

cov X ,X½ � ¼ X� �Xð Þ X� �Xð ÞT
h i

¼

σ2R cov R,Cð Þ cov R,Zð Þ cov R,SVð Þ cov R,HRð Þ
cov C,Rð Þ σ2C cov C,Zð Þ cov C,SVð Þ cov C,HRð Þ
cov Z,Rð Þ cov Z,Cð Þ σ2Z cov Z,SVð Þ cov Z,HRð Þ
cov SV ,Rð Þ cov SV ,Cð Þ cov SV ,Zð Þ σ2SV cov SV ,HRð Þ
cov HR,Rð Þ cov HR,Cð Þ cov HR,Zð Þ cov HR,SVð Þ σ2HR

2
6666664

3
7777775

ð3Þ

4 of 18 FLORES-GERÓNIMO ET AL.

 20407947, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3867 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [16/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where �X ¼ Xð Þ, cov Xi,Xj
� �

, i, j¼ 1,2,3,4,5 stands for the covariance between variables Xi and Xj and σ2X ¼ var Xi½ �: Our
methodology considers that the WK and cardiac parameters are uncorrelated. Therefore, off-diagonal terms are equal
to zero in the covariance matrix. Taylor series analysis allows for the following expansion of the pressure waveform,

P Xð Þ¼P �Xð Þþ
X5

i¼1

∂P
∂Xi

����
�X

Xi� �Xið Þþ
X5

i¼1

∂2P

∂X2
i

����
�X

Xi� �Xið Þ2
2!

þ…: ð4Þ

By neglecting nonlinear terms, the variance of the pressure at each time step can be calculated as

 P Xð Þ�P �Xð Þð Þ2
h i

¼
X5

j¼1

X5

i¼1

∂P
∂Xi

����
�X

∂P
∂Xj

����
�X

 Xi� �Xið Þ Xj� �Xj
� �� �

, ð5Þ

or

σ2P ¼
∂P �Xð Þ
∂R

∂P �Xð Þ
∂C

∂P �Xð Þ
∂Z

∂P �Xð Þ
∂SV

∂P �Xð Þ
∂HR

� �
cov X ,X½ � ∂P �Xð Þ

∂R
∂P �Xð Þ
∂C

∂P �Xð Þ
∂Z

∂P �Xð Þ
∂SV

∂P �Xð Þ
∂HR

� �T
: ð6Þ

Note that the gradient vector pre-multiplying and post-multiplying the covariance matrix is deterministic, since it is
evaluated based on the pressure waveform which itself is quantified based on the WK and cardiac parameters. In
Equation (6), we assume a priori knowledge of the covariance matrix for the WK and cardiac parameters. This knowl-
edge may be achieved through different methods, depending on the context and available data. For example, one way
to estimate the covariance matrix is to use historical data or experimental measurements and use statistical analysis
techniques to estimate the covariance matrix from this data.48 Another approach is to use expert knowledge or prior
information about the system and its parameters to estimate the covariance matrix. In this case, the covariance matrix
may be based on physical principles or previous studies of similar systems.49

The numerical evaluation of the pressure gradients with respect to the WK parameters and flow waveform determi-
nants, as shown in Equation (6), is described in the following section.

2.4 | Evaluation of sensitivities

This section aims to estimate the gradients in Equation (6) using an efficient numerical approach. The numerical methods
approximate the ODE solution at discrete points in time. Common numerical methods for this purpose include the Euler
and Runge–Kutta methods used to obtain accurate and efficient solutions to a wide range of ODE problems.50 In this study,
the Euler method which constitutes the simplest scheme to solve the ODE in Equation (1) is implemented.50 Considering a
known time history of flow rate at the aorta, the computational solution to pressure reads

P tþΔtð Þ¼ αΔtþRCP tð Þ
ΔtþRC

,

α tð Þ¼ RþZð ÞQ tþΔtð ÞþZRC
Q tþΔtð Þ�Q tð Þ

Δt
þPout: ð7Þ

The provided expression for the pressure can now be differentiated with respect to each of the WK parameters to
arrive at the desired sensitivity. Consider ∂Q ∂Rð Þ�1 ¼ 0, ∂Q ∂Cð Þ�1 ¼ 0,and∂Q ∂Zð Þ�1 ¼ 0, since the flow waveform is
just a function of SV and HR. The expressions for the pressure gradient with respect to R then reduce to

∂P
∂R

tþΔtð Þ¼
∂α
∂R

ΔtþCP tð ÞþRC
∂P
∂R

tð Þ
	 


ΔtþRCð Þ�C αΔtþRCP tð Þð Þ
ΔtþRCð Þ2 ,

FLORES-GERÓNIMO ET AL. 5 of 18

 20407947, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3867 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [16/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with
∂α
∂R

¼Q tþΔtð ÞþZC
Q tþΔtð Þ�Q tð Þ

Δt
: ð8Þ

where ∂P ∂Rð Þ�1 tð Þ is the estimated gradient at the previous time step. Therefore, all variables are known quantities.
Likewise, the pressure derivative with respect to C is

∂P
∂C

tþΔtð Þ¼
∂α

∂C
ΔtþRP tð ÞþRC

∂P
∂C

tð Þ
	 


ΔtþRCð Þ�R αΔtþRCP tð Þð Þ
ΔtþRCð Þ2 ,

with
∂α

∂C
¼ZR

Q tþΔtð Þ�Q tð Þ
Δt

: ð9Þ

Finally, the sensitivity of pressure with respect to Z yields:

∂P
∂Z

tþΔtð Þ¼ 1
ΔtþRC

∂α

∂Z
ΔtþRC

∂P
∂Z

tð Þ
	 


, ð10Þ

with

∂α

∂Z
¼Q tþΔtð ÞþRC

Q tþΔtð Þ�Q tð Þ
Δt

: ð11Þ

The sensitivity of the pressure with respect the cardiac variables ∂P
∂SV ,

∂P
∂HR

� �
is given by.

∂P
∂SV

¼ ∂P
∂Q

∂Q
∂SV

and
∂P
∂HR

¼ ∂P
∂Q

∂Q
∂HR

: ð12Þ

Using Equation (7) we have that.

∂P tþΔtð Þ
∂Q

¼
∂α
∂QΔtþRC ∂P tð Þ

∂Q

ΔtþRC
,with

∂α
∂Q

¼ RþZð Þ: ð13Þ

The AorticFlowWave script42 provided data to compute the derivatives of the flow with respect to the cardiac vari-
ables ∂Q

∂SV ,
∂Q
∂HR

� �
that are required to calculate Equation (12). Substitution of Equations (8), (9), (10), and (12) into Equation (6)

(along with the covariance matrix) allows one to compute the pressure standard deviation for the expansion-based method.

2.5 | Stochastic properties of the Windkessel and cardiac parameters

To show how the uncertainty of the WK and cardiac parameters propagates to the pressure waveform, especially to the
systolic, diastolic, and pulse pressures, a sensible set of values for the statistical properties of the WK and cardiac param-
eters are required. To this end, we used an existing database containing in silico pressure and flow waves at the aortic
root in a group of 4374 virtual subjects.42 Pulse waves were simulated using a 116-artery 1D model of blood flow in the
larger systemic arteries of the thorax, limbs, and head. Charlton et al.42 considered a wide range of typical cardiovascu-
lar variables of healthy adults aged 25 to 75. Such cardiovascular properties were identified through a comprehensive
literature review, and simulated waves were verified by comparison against in vivo data. Six cardiovascular variables
(HR, SV, left ventricular ejection time, arterial diameter, pulse wave velocity, and mean arterial pressure) that strongly
influenced the pulse waves were varied independently by ± one standard deviation at each decade, that is, for each
decade 36 ¼ 729 virtual subjects were considered giving a total of 6�729¼ 4,374 virtual subjects. Following Charlton
et al.,42 virtual subjects with abnormal pulse pressure or its amplification were discriminated against.
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 20407947, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3867 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [16/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



We assessed the parameters of the WK model for each virtual subject as follows: the database provides the pulse
wave velocity (PWV), aortic area (Ao), blood density (ρ), outflow pressure (Pout), and time decay in diastole τ¼RCð Þ.
Using this information, we computed the characteristic impedance as19

Z¼ ρPWV
Ao

: ð14Þ

For one cardiac cycle with a period T, the total resistance (RT) was calculated based on the average pressure
P¼ 1

T

R T
0 P tð Þdt

� �
, the mean flow rate Q¼ 1

T

R T
0 Q tð Þdt

� �
and the outflow pressure Pout, that is,

RT ¼P�Pout

Q
: ð15Þ

The peripheral resistance and compliance were calculated as.

R¼RT �ZandC¼ τ

R
: ð16Þ

Once the foregoing calculations were implemented for each individual virtual subject, the statistical properties of
the WK parameters were estimated. Table 1 shows the mean values and standard deviations (STD) of the WK parame-
ters for each age decade.

Influence of the variability of the flow waveform was investigated by using the AorticFlowWave script42 to repro-
duce representative flow waveforms from data of the SV, HR, left ventricle ejection time (LVET), peak flow time,
reverse flow volume, and flow wave morphology.42 However, to simplify the methodology and results interpretability,
we selected two determinants of the flow waveform: the SV and HR.

2.6 | Uncertainty analysis of the pulse pressure

Pulse pressure (PP), defined as the difference between systolic and diastolic pressure, may indicate cardiovascular dis-
ease; for instance, elevated pulse pressure is recognized as a risk factor for coronary disease.51 Therefore, measuring
pulse pressure is important to assess a patient's cardiovascular health and to make informed decisions about their
treatment plan.

Due to the clinical relevance of PP, propagation of the uncertainty of the WK and cardiac parameters to PP is an
important task. The expansion-based method allows us to assess an approximated PP variance. The variance of the PP
can be calculated as

σ2PP ¼ PS Xð Þ�PD Xð Þð Þ2� �� PS �Xð Þ�PD �Xð Þð Þ2

TABLE 1 Windkessel parameters of the database; values are mean ± standard deviation; n is the number of virtual subjects in an age

group.

Age decade R (mmHg�s/mL) C (mL/mmHg) Z (mmHg�s/mL)

25 (n = 712) 0.6632 ± 0.1622 1.7389 ± 0.3472 0.0409 ± 0.0073

35 (n = 684) 0.6909 ± 0.1772 1.5495 ± 0.3900 0.0419 ± 0.0081

45 (n = 654) 0.7501 ± 0.1902 1.3086 ± 0.3047 0.0442 ± 0.0085

55 (n = 641) 0.7844 ± 0.2055 1.1177 ± 0.2769 0.0465 ± 0.0092

65 (n = 588) 0.8152 ± 0.2206 0.9503 ± 0.2502 0.0485 ± 0.0099

75 (n = 558) 0.8611 ± 0.2264 0.7997 ± 0.2539 0.0512 ± 0.0108
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¼ σ2Sþσ2D�2  PS Xð ÞPD Xð Þ½ ��PS �Xð ÞPD �Xð Þð Þ, ð17Þ

where PS is the systolic pressure and σS and σD are the standard deviations of the systolic and diastolic pressures,
respectively. Note that  PS Xð Þ½ � ¼PS �Xð Þ,  PD Xð Þ½ � ¼ PD �Xð Þ, and  X½ � ¼ �X .

The last term in Equation (17) represents the covariance between the systolic and diastolic pressures, that is,

 PS Xð ÞPD Xð Þ½ ��PS �Xð ÞPD �Xð Þ¼ cov PS,PD½ � ¼ PS Xð Þ�PS �Xð Þð Þ PD Xð Þ�PD �Xð Þð Þ½ � ð18Þ

This term can be quantified using pressure gradients. The Taylor series for the systolic and diastolic pressures are
given by

PS Xð Þ¼ PS �Xð Þþ
X5

i¼1

∂PS

∂Xi

����
�X

Xi� �Xið Þþ
X5

i¼1

∂2PS

∂X2
i

����
�X

Xi� �Xið Þ2
2!

þ…: ð19Þ

PD Xð Þ¼PD �Xð Þþ
X5

i¼1

∂PD

∂Xi

����
�X

Xi� �Xið Þþ
X5

i¼1

∂2PD

∂X2
i

����
�X

Xi� �Xið Þ2
2!

þ…: ð20Þ

By neglecting nonlinear terms and moving PS �Xð Þ, and PD �Xð Þ to the left-hand side of Equations (19) and (20),
respectively, we can approximate the product of the systolic and diastolic pressure deviation from their mean as

PS Xð Þ�PS �Xð Þð Þ PD Xð Þ�PD �Xð Þð Þ¼
X5
j¼1

X5

i¼1

∂PS

∂Xi

����
�X

∂PD

∂Xj

����
�X

Xi� �Xið Þ Xj� �Xj
� �

: ð21Þ

The expectation of the resultant expression in Equation (21) yields.

cov PS,PD½ � ¼ PS Xð Þ�PS X
�

	 
	 

PD Xð Þ�PD X

�
	 
	 
� �

¼
X5
j¼1

X5

i¼1

∂PS

∂Xi

����
X
�

∂PD

∂Xj

����
X
�
 Xi�X

�

i

	 

Xj�X

�

j

	 
� �

¼
∂PS X

�
	 

∂R

∂PS X
�

	 

∂C

∂PS X
�

	 

∂Z

∂PS X
�

	 

∂LV

∂PS X
�

	 

∂HR

2
664

3
775cov X ,X½ �

∂PD X
�

	 

∂R

∂PD X
�

	 

∂C

∂PD X
�

	 

∂Z

∂PS X
�

	 

∂LV

∂PS X
�

	 

∂HR

2
664

3
775
T

:

ð22Þ

Substitution of Equation (22) into Equation (17) leads.

σ2PP ¼ σ2Sþσ2D�2 ∂PS X
�

	 

∂R

∂PS X
�

	 

∂C

∂PS X
�

	 

∂Z

∂PS X
�

	 

∂LV

∂PS X
�

	 

∂HR

2
4

3
5

cov X ,X½ � ∂PD X
�

	 

∂R

∂PD X
�

	 

∂C

∂PD X
�

	 

∂Z

∂PS X
�

	 

∂LV

∂PS X
�

	 

∂HR

2
4

3
5
T

: ð23Þ

Equation (23) offers an efficient formula to quantify the variance of the pulse pressure based on the variance of the
systolic pressure σ2S, the variance of the diastolic pressure σ2D, the covariance matrix of the WK and cardiac parameters,
that is, cov X ,X½ �, and the gradient of the systolic and diastolic pressures. The latter can be quantified based on the for-
mulations developed in Section 2.4; note that the gradient values corresponding to the systolic and diastolic pressures
must be selected from the gradient vectors.
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2.7 | Verification of the proposed method

The proposed numerical formulation was verified against the exhaustive Monte Carlo simulations. Four different values
of the standard deviation of the WK and cardiac parameters were tested: 0, 2.5, 5, and 10% of the mean values, making
a total of 16 simulations. The mean values of the cardiac parameters are SV = 66.8 mL and HR = 75 beats/min. The
first row of Table 1 shows the mean values of the WK parameters. In the Monte Carlo method, Equation (1) was solved
15,000 times (for each simulation) using WK and cardiac parameters taken randomly from normal distributions. No
correlation between the variables was considered. For each simulation, collecting 15,000 solutions enables computing
the standard deviation and mean value at each time point using the 15,000 pressure samples. For that number of sam-
ples, convergence of the mean pressure and its standard deviation was achieved. We used Equation (6) for the
expansion-based method with the pressure derivatives given by Equations (8), (9), (10), and (12). The results of both
methods were compared using the root mean square error (RMS) defined as

ε� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Pi�σi½ �EB� Pi�σi½ �MC

Pi�σi½ �MC

	 
2

,

s
ð24Þ

where n is the number of temporal points in one cardiac cycle, Pi�σi½ �EB is the pressure plus and minus the standard
deviation (σ) obtained with the expansion-based method at the time point i. At the same time, Pi�σi½ �MC is the pressure
plus and minus the STD from Monte Carlo simulations.

2.8 | Uncertainty assessment of the aortic systolic and diastolic pressure

We illustrated the applicability of our uncertainty propagation method in two scenarios. In the first one, the parameters
of the WK model are known (as for each decade in the database) and are used to assess variations in SBP and DBP. To
do so, we propagated the uncertainties due to the WK parameters for each virtual subject with Equation (6) and
extracted the SBP ± STD and DBP ± STD. Moreover, we assessed the PP and its STD using Equation (23). To compare
our results with those of the in silico database,42 for each virtual subject, we collected the aortic systolic, diastolic, and
pulse pressures. Then, by decades, we calculate their means and standard deviations. Furthermore, we compared the
results with in vivo data for each age decade from the literature.52 In vivo data corresponds to the Anglo-Cardiff Collab-
orative Trial (ACCT), which consists of 10,096 individuals selected randomly from local General Practice lists and
open-access Cardiovascular Risk Assessment Clinics across East Anglia and Wales. Only data for healthy subjects were
selected, giving a total of 4001 individuals for the analysis.52

In the second scenario, the uncertainty variation of SBP and DBP due to variations in the uncertainty of WK param-
eters was analyzed. To do so, we used as reference values the STD of the WK parameters of the first row of Table 1. In
this scenario, one can determine the variables making considerable changes in SBP and DBP.

3 | RESULTS

Figure 1 shows the standard deviations obtained from Monte Carlo simulations (shaded areas) and, those of the pro-
posed method (i.e., the expansion-based approach; in dotted blue lines). When the flow waveform has no uncertainties
(first column), both methodologies produced similar uncertainties at all time points of the pressure waveform and
values of the WK standard deviations, with RMS errors smaller than 0.5%. However, when only propagating the uncer-
tainty due to the flow waveform (second row of Figure 1), the expansion-based method partially propagated the uncer-
tainty of the flow waveform, that is, in systole, it overestimated and underestimated the upper and lower STD
boundaries, respectively, and in diastole was not able to reproduce uncertainties, resulting in RMS errors of �10% with
increasing STD of the cardiac parameters. The expansion-base method results deviate from those of Monte Carlo simu-
lations as the STD of the cardiac parameters increases. To easily compare the signals, we used the same time interval in
all subplots. This makes the changes in heart rate less obvious, but they can still be seen at the end of the signals. For
instance, see the last column and third row, where the standard deviation diminishes due to the variation in the signal
duration. Our results indicate that the proposed method produces accurate pressure STDs when uncertainties steaming
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from the blood flow waveform are considerably smaller than those of the WK parameters; see, for instance, the last two
rows of the second column of Figure 1, where RMS errors are smaller than 2%.

3.1 | Uncertainty of the aortic systolic and diastolic pressure

In this section, the applicability of our uncertainty propagation method is illustrated in two scenarios. We only propa-
gated uncertainties steaming from the Windkessel parameters because the expansion-base method gives the most accu-
rate results in this situation.

FIGURE 1 Verification of the proposed uncertainty quantification method. The first row shows the mean and standard deviation (STD)

of the blood flow waveform due to variations of the stroke volume and heart rate STD from 0% to 10% of the mean value, which correspond

to those of the 25-year-old baseline subject, namely, 66.8 mL and 75 beats/min,42 respectively. The Windkessel (WK) parameters' standard

deviation varies from 0 to 10% of the mean value from the second to the fifth row; the mean values correspond to WK parameters shown in

the first row of Table 1. The resulting mean pressure and STD from Monte Carlo simulations are shown in black lines and shadows,

respectively. The blue line is the STD obtained with the proposed expansion-based method (Equation 6). Root means square errors

computed with Equation (24) are shown in each plot.
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3.2 | Uncertainty quantification of the systolic and diastolic pressures

For the first scenario, the uncertainty in the pressure waveform at each decade is investigated. Mean values and STD of
the WK parameters for each age decade, shown in Table 1, were used to calculate the pressure waveform and its uncer-
tainties through Equations (2) and (6), respectively. As depicted in Figure 2, the aortic pressure waveform and their
uncertainties for decades 25 and 75 are presented based on the data provided by Charlton et al.42 The aortic pressure
waveforms and their uncertainties for the rest of the decades (from 35 to 65) are shown in Appendix A. The Windkessel
model reproduces similar pressure waveforms to those of the virtual subjects with root-mean-square errors smaller than
5% for all decades.

Figure 3C shows the systolic, diastolic, and pulse pressures, along with their STD, for the expansion-based method.
The STD for the SBP and DBP obtained with the expansion-based method follows the trends seen in the database
(Figure 3A) and in vivo data (Figure 3B). For example, as age increases, the STD of diastolic and systolic blood pressure
also increases in both the database and the expansion-based method (first and second row of Figure 3D). Nonetheless,
the expansion-based method leads to higher SBP and DBP standard deviations. Additionally, the pulse pressure
increases with age in all cases (third row of Figure 3D).

3.3 | Variations in the standard deviations of the systolic and diastolic pressures

Figure 4 shows that the expansion-based method and Monte Carlo simulations predict similar systolic (Figure 4A) and
diastolic (Figure 4B) pressure standard deviations when varying the STD of the Windkessel parameters; however, when
the variation of the STD of the compliance is greater than 1.25 times the reference value ( stdC½ �0), there is a significant
difference in the STD of the SBP (see the results in red of Figure 4A), reaching a maximum error of 15%. The maximum
error was computed as, max STDEB

i �STDMC
i

� �
=STDMC

i

�� ��, where STDEB
i and STDMC

i are the STD of the expansion-based
method and Monte Carlo simulations for the same value (i) of the STD of a Windkessel parameter, respectively. Note
that in Figures 4 and 5 the range of the STD of each Windkessel parameter is determined by the reference value. For
instance, in Figures 4A,B and 5A the initial and final values of the STD of the peripheral resistance are given by
stdR½ � ¼ 0:5 stdR½ �0 ¼ 0:0811mmHg � s=mL and stdR½ � ¼ 1:5 stdR½ �0 ¼ 0:2493mmHg � s=mL, respectively. Variation of the
standard deviation of the peripheral resistance produces the most significant change in the SBP and DBP uncertainties
(see results in black of Figure 4A,B). On the contrary, the variation of the SBP uncertainty due to the uncertainty of the
characteristic impedance is insignificant (see the blue dots in Figure 4A), varying only 2.5% from the initial
(stdZ¼ 0:5 stdZ½ �0) to the last value (stdZ¼ 1:5 stdZ½ �0Þ. In the DBP, variation of the compliance leads to a slight varia-
tion of the STD (see the red dots Figure 4B).

FIGURE 2 Aortic pressure with standard deviations; for (A) 25 and (B) 75 decades. The shaded area shows the standard deviation of

pressure obtained with Equation (6). The black line is the pressure for the mean values of the Windkessel parameters. The blue line is the

aortic pressure from the in silico database (baseline subject of the decade).42 The root mean square error with the baseline subject's pressure

as a reference is shown in each plot.
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FIGURE 4 Standard deviation of (A) systolic (STD SBP) and (B) diastolic (STD DBP) blood pressures as a function of the standard

deviation of a Windkessel parameter (WKi ¼ R,C,Zð Þ) normalized by a reference value shown in the first row of Table 1

stdR½ �0 ¼ 0:1622mmHg�s
mL , stdC½ �0 ¼ 0:3472 mL

mmHgand stdZ½ �0 ¼ 0:0073mmHgmmHg�s
mL

� �
: Expansion-based method results (EB) are represented by

lines with dots and those obtained with Monte Carlo (MC) simulations with dots.

FIGURE 3 Systolic blood pressure (SBP), diastolic blood pressure (SBP) and pulse pressure (PP) variations with age, with standard

deviations (STD), for (A) the database, (B) in vivo data, and (C) the current method (obtained with the expansion-based approach). The solid

lines indicate mean values, and the dashed lines indicated +/� STD. The in silico and in vivo values were taken from References 42,52,

respectively. Column (D) compares the STD for all cases.
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3.4 | Uncertainty analysis of the pulse pressure

Figure 5 shows the uncertainty propagation of the WK parameters to the pulse pressure obtained with Equation (23)
(line with dots) and with Monte Carlo simulations (dots). We found that for relatively high variations of the STD of the
WK parameters, the expansion-base method describes the tendencies observed in Monte Carlo simulations but with dif-
ferent values (Figure 5A); for instance, the STD of the PP increases as the STD of the compliance does and is almost
constant as a function of the STD of the characteristic impedance. When the variations are smaller than 10% of the STD
of the WK parameters of the first row of Table 1, both methodologies reproduce similar results (Figure 5B) with maxi-
mum errors smaller than 2.5%. Note that the STD range of each Windkessel parameter in Figure 5A,B differs. For
example, in Figure 5A, the initial STD value of peripheral resistance is stdR½ � ¼ 0:0811mmHg � s=mL, while in Figure 5B
it is 0:00811mmHg � s=mL. We found that the variation of the STD of the compliance produces the most significant
change in the PP uncertainty. On the contrary, the peripheral resistance has the least impact on the PP uncertainty.

4 | DISCUSSION

The current research on the Windkessel model is conducted in view of the growing importance of uncertainty quantifi-
cation in blood pressure waveform, which has the potential to enhance cardiovascular risk assessment and facilitate
personalized healthcare. A comprehensive examination of the uncertainty quantification of blood pressure waveforms
generated by the Windkessel model enhances the reliability of the model's predictions and contributes to the advance-
ment to patient-specific models and so on the decision-making based on those models. For the quantification of uncer-
tainty in pressure waveform, one potential application lies in the estimation of the pressure waveform using the
Windkessel model. Fortunately, the parameters of the Windkessel model correlate with specific physical and patient-
specific factors, e.g. compliance correlates with pulse wave velocity. This correlation enables the estimation of these
parameters, albeit with a certain degree of uncertainty. Consequently, this introduces a critical question regarding the
validity of the estimated pressure waveform, particularly when sensor data are utilized to determine these Windkessel
parameters. It is essential to assess the level of confidence in these estimations to ensure that the resulting pressure
waveform reflects an accurate representation of the patient's cardiovascular status. This question has been partly
answered in the present article.

In this study, we have developed a local gradient-based approach to determine the uncertainty of the pressure wave-
form that results from the Windkessel parameters and aortic flow waveform. The proposed uncertainty quantification
framework is verified through comparison with Monte Carlo simulations. Furthermore, to demonstrate the practicality
of our formulation, we have analyzed extensive in silico data sets from recent literature, in addition to comparisons
against in vivo data.

FIGURE 5 Pulse pressure uncertainty (STD PP) as a function of the standard deviations a Windkessel parameters (WKi ¼ R,C,Zð Þ)
normalized by (A) the reference values shown in the first row of Table 1 and (B) 10% of the reference values, that is,

stdR½ �0 ¼ 0:01622mmHg�s
mL , stdC½ �0 ¼ 0:03472 mL

mmHgand stdC½ �0 ¼ 0:00073mmHgmmHg�s
mL . Expansion-based method results (EB) are represented by

lines with dots and those obtained with Monte Carlo (MC) simulations with dots.
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Our method requires a priori knowledge of the covariance matrix for the Windkessel and cardiac parameters, and
the evaluation of the derivatives of the pressure against the Windkessel and cardiac parameters. Compared to other
methodologies, like Monte Carlo simulations, our method is efficient since it avoids evaluating the governing equations
many times, reducing the computation time by about 1/30. It is worth noting that estimating the pressure uncertainties
using the Monte Carlo simulations is laborious, thus making it inefficient for practical applications. To measure the
complexity and exhaustiveness of the Monte Carlo simulations compared to the proposed methodology, one should
note that the former requires 15,000 times running the forward problem to solve for the pressure pulse wave (taking
about half a minute per simulation, giving a total of 8 min to reproduce Figure 1). In contrast, the proposed method
only needs a single simulation to predict the pressure signal (taking less than a second per simulation and a few seconds
to reproduce Figure 1).

The expansion-based method can robustly propagate uncertainties due to the Windkessel parameters. Nonethe-
less, the accuracy reduces when uncertainties steaming from the flow waveform are considered (Figure 1). As dis-
cussed regarding the findings of Figure 1, the proposed method like all other local expansion-based methods is
more reliable for small variations of the Windkessel parameters. Yet, it is worth noting concerning this figure that
the predictions of the proposed formulation overestimate the uncertainties, which puts our estimations on the safe
side when it is used for real-practice applications like wearable devices. In other words, the linear assumption incor-
porated in the proposed scheme gives rise to higher bounds of pressure uncertainty that puts the patients at a lower
risk of mismanagement.

To illustrate how uncertainties of flow waveform propagate to the pressure, we used an uncertain flow waveform
derived from variations of the SV and HR. When we only propagated the uncertainty due to the flow waveform (second
row of Figure 1), the expansion-based method was not able to reproduce uncertainties in diastole. This is because in
Equation (6), all the derivatives are equal to zero in diastole and, hence, the STD. Nonetheless, due to the relation
between the mean flow and pressure (P¼RT=QþPout), a variation in the SV must change the mean pressure, which
Monte Carlo simulations captured but not the expansion-base method. Uncertain flow waveforms are frequently
encountered in clinical practice due to natural wave variations during each cardiac cycle. One way to remove such vari-
ations is to average measurements over a specific number of heart cycles obtaining a deterministic (averaged) single
waveform. Nonetheless, uncertainties at each time point are presented. If one knows the uncertainties at each temporal
point due to natural wave variations, our method could be applied to assess pressure uncertainties. We found that the
proposed methodology is efficient and reliable for cases where flow waveform variations are much smaller than those
of the Windkessel parameters.

We illustrated the applicability of the proposed methodology with the information of data sets at different
age decades. The data sets correspond to an available database of pressure and flow waveforms obtained with a
1D model.42 We found that the expansion-based method estimates higher standard deviations for the SBP (first
row of Figure 3D) and DBP (second row of Figure 3D) than the database (approximately by a factor of 1.8 and
2.4, respectively) due to the uncertainties inherent to the zero-dimensional (0D) modeling. Namely, for 1D and
0D models with comparable cardiovascular properties, the 0D model overestimates the SBP and underestimates
the DBP,14 leading to higher SBP and DBP standard deviations. Our findings indicate that the variations in sys-
tolic and diastolic pressures across different age groups are similar to those observed in both in vivo and in vitro
database.

Another use of uncertainty propagation is to obtain information about the sensitivity of the function to the input
variables. We analyze the sensitivity of the SBP and DBP to the Windkessel parameters by varying their standard devia-
tion. Our results show that variation of the standard deviation of the peripheral resistance produces the most remark-
able change in the standard deviations of the SBP and DBP (see Figure 4A,B); this implies that a slight change in the
peripheral resistance may lead to a significant variation of the SBP and DBP. The last result can be explained as follows,
the peripheral resistance and characteristic impedance are related to the average pressure (Equation 15); consequently,
a change in their values will cause a pressure waveform with a different mean value and consequently with a different
systolic and diastolic pressures. Due to the peripheral resistance being at least one order of magnitude higher than the
characteristic impedance (so its standard deviation), the variation of R induces the most significant change in the SBP
and DBP.

We extended our framework to assess the pulse pressure uncertainty and found that the expansion-based method
captures the trends dictated by the Monte Carlo simulations, see Figure 5A,B. When variations of the STD of the
Windkessel parameters are small, Monte Carlo simulations and the proposed method reproduce similar results (see
Figure 5B). However, when variations are relatively high, the proposed methodology underestimates the pulse pressure
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uncertainty (see Figure 5A); this is due to the approximations considered in Equation (21), where the product of the
SBP and DBP neglects the non-linear terms. Our analysis also identified that the compliance of the arterial system con-
tributes the most significant change in the uncertainty of PP.

Our methodology has limitations; when using two temporal points of the pressure waveform, as in the pulse pres-
sure, the nonlinear terms of the Taylor series may play an important role, leading to a rough uncertainty evaluation. In
addition, this kind of frameworks are only robust for cases of relatively small input variability and (relatively) linear
models. Although the presented expansion-based method is developed for the Windkessel model, it is a tool that can
easily be applied to any model described by an ODE to assess how the model parameter's uncertainties propagate to the
state variables.

5 | CONCLUSION

Recognizing the inherent trade-off between accuracy and accessibility in medical devices, wearable technology has
emerged as a critical tool in alleviating the demands on clinical settings by providing convenient monitoring options.
However, the precision of these devices in cardiovascular health monitoring varies, thus understanding the uncertainty
associated with the pressure waveform estimated using their sensor data is crucial. The uncertainty estimation is instru-
mental in ensuring the reliability of data captured by multi-modal wearable sensors, thereby enabling clinicians to
make more informed decisions.

For example, a systolic PPG-based blood pressure estimation reported with a 30% uncertainty level is significantly
more trustworthy than one with a 60% uncertainty, as the standard deviation of the systolic pressure is a key determi-
nant of its reliability. Our research introduces a theoretical method designed to rigorously estimate the uncertainty of
the measured pressure waveform and its related indices. This advancement holds substantial importance for the inter-
pretation of pressure waveform data across various modalities, enhancing the value of wearable devices in health moni-
toring and clinical decision-making.

In summary, our study provides a comprehensive examination of the uncertainty quantification of blood pressure
waveforms generated by the Windkessel model and flow waveform, which has important implications for improving
cardiovascular risk assessment and healthcare. The proposed local gradient-based uncertainty quantification framework
demonstrates high efficiency and practicality for implementation in a variety of mathematical model applications. Spe-
cifically, we elucidated the method for quantifying the uncertainty of the pressure waveform resulting from the
Windkessel parameters and showed the applicability of the formulation to assess systolic and diastolic blood pressure
uncertainties.

The assumption of normally distributed parameters in the Windkessel model can have implications for uncer-
tainty quantification and prediction accuracy. If this assumption no longer holds, it can challenge the validity of
traditional statistical methods employed for analysis. In such cases, alternative approaches should be considered.
One possibility is to explore non-parametric methods that do not rely on specific distribution assumptions, all-
owing for more flexible modeling. Additionally, techniques like bootstrapping or Bayesian inference can be
employed to estimate the uncertainty in the absence of normality assumptions. However, given the estimative
nature of the Windkessel model and the lack of clear information about the probability density function of the
parameters, assuming a normal distribution is a sensible approach. Nonetheless, it is important to acknowledge
the potential impact of departing from normality and consider alternative methodologies if the assumption no
longer holds.

NOMENCLATURE
C total arterial compliance
N number of data points of the measured pressure signal
P =  Pmð Þ expectation of measured pressure waveform (computed by the Windkessel model)
Pout asymptotic (venous) pressure
R peripheral resistance
RT ¼RþZ total arterial resistance
X parameters of the Windkessel model
Z characteristic impedance
σ standard deviation
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SUBSCRIPTS
D diastolic pressure
PP pulse pressure
S systolic pressure
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APPENDIX A

The uncertainty steaming from each data set in Table 1 was propagated in the pressure waveform to illustrate the appli-
cability of the expansion-based method. Figure A1 shows the aortic pressure waveform and their uncertainties from
decades 35 to 65 years old.

FIGURE A1 Aortic pressure with standard deviations; from 35 to 65 decades. The shaded area shows the standard deviation of pressure

obtained with Equation (6). The black line is the pressure for the mean values of the Windkessel parameters. The blue line is the aortic

pressure from the base subject of the decade.42 The root mean square error with the baseline subject's pressure as a reference is shown in

each plot.
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