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Abstract

The Windkessel (WK) model is a simplified mathematical model used to represent
the systemic arterial circulation. While the WK model is useful for studying blood
flow dynamics, it suffers from inaccuracies or uncertainties that should be consid-
ered when using it to make physiological predictions. This paper aims to develop an
efficient and easy-to-implement uncertainty quantification method based on a local
gradient-based formulation to quantify the uncertainty of the pressure waveform
resulting from aleatory uncertainties of the WK parameters and flow waveform. The
proposed methodology, tested against Monte Carlo simulations, demonstrates good
agreement in estimating blood pressure uncertainties due to uncertain Windkessel
parameters, but less agreement considering uncertain blood-flow waveforms. To
illustrate our methodology's applicability, we assessed the aortic pressure uncertainty
generated by Windkessel parameters-sets from an available in silico database rep-
resenting healthy adults. The results from the proposed formulation align qualita-
tively with those in the database and in vivo data. Furthermore, we investigated
how changes in the uncertainty of the Windkessel parameters affect the uncertainty
of systolic, diastolic, and pulse pressures. We found that peripheral resistance uncer-
tainty produces the most significant change in the systolic and diastolic blood pres-
sure uncertainties. On the other hand, compliance uncertainty considerably
modifies the pulse pressure standard deviation. The presented expansion-based
method is a tool for efficiently propagating the Windkessel parameters’ uncertainty
to the pressure waveform. The Windkessel model's clinical use depends on the reli-
ability of the pressure in the presence of input uncertainties, which can be efficiently
investigated with the proposed methodology. For instance, in wearable technology
that uses sensor data and the Windkessel model to estimate systolic and diastolic
blood pressures, it is important to check the confidence level in these calculations to
ensure that the pressures accurately reflect the patient's cardiovascular condition.
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1 | INTRODUCTION

The Windkessel (WK) model is a simplified mathematical model often used to represent the systemic arterial circula-
tion of blood in the human body. This model assumes that the circulatory system can be lumped into a simple dynamic
model that relates arterial pressure and flow variations." The model is governed by an ODE with a few parameters
describing global properties of the systemic arterial network.? Several studies®® have provided evidence for the utility
and accuracy of the WK model in simulating blood flow dynamics in the arterial system. Moreover, in the context of
integrating data from diverse modalities for clinical decision-making, a parsimonious model grounded in physiology
would be preferable due to its efficiency and ease of use.” For instance, pulse control is a method to continuously esti-
mate the cardiac output (CO). This method combines the Windkessel model with blood pressure measurements. Con-
stant CO monitoring is relevant for making clinical decisions when managing critically ill patients.®

Prior to launching into further technical issues of the WK model, we should clarify its valuable contribution as a
simple but acceptable model to be applied in the preventive cardiovascular healthcare. Specifically in predicting the sys-
tolic blood pressure (SBP) and diastolic blood pressure (DBP) from wearables, the collected sensor data—for example,
from photoplethysmography (PPG)—can be used to estimate some parameters of the WK model (e.g., impedance),
while others are set as known quantities calibrated through other standard cuff-based elaborate methods. With this, the
WK model enables to estimate the pressure waveform, including SBP and DBP. Several studies from the literature dis-
cuss how the WK model can be used to predict blood pressure using wearable sensors. Among which, Wu et al.® have
recently proposed a camera-based approach for blood pressure estimation via the WK Model. While such an estimation
may suffer from several types of uncertainties, it still is of great value in cardiovascular health as it provides real-time
monitoring, early detection of abnormalities, and promotes active lifestyle choices for preventive care. That is also the
reason behind the success and market reception of wearables nowadays.

While the WK model is useful for studying blood flow dynamics, it suffers from inaccuracies or uncertainties that
should be considered when using it to make physiological predictions. In system identification context, the uncer-
tainties are divided into aleatoric and epistemic uncertainties.'® Aleatoric uncertainty refers to the inherent randomness
or unpredictability in a system, that is, Windkessel parameters herein. Whereas epistemic uncertainty deals with limita-
tions in our assumptions in cardiovascular modeling. The WK model's primary aleatory uncertainty source is its param-
eters, including compliance, resistance, and impedance.'’ These parameters can significantly vary based on patients’
physiology and health status, leading to challenges in accurately estimating them.>'? In addition, the approach to eval-
uating these parameters is prone to measurement errors and variability; for instance, when using Doppler ultrasound
to measure the blood flow waveform, inaccuracies may occur due to errors in the measurement of the vessel's cross-
sectional area or angle approach.”® Additional sources of uncertainty (both aleatory and epistemic) in the WK model
are the assumptions made about the arterial system's geometry and topology.'* The model assumes that the arterial sys-
tem is zero-dimensional, which is a considerable simplification since the arterial network has branching and changing
diameters. The model also assumes a uniform flow and pressure distribution throughout the arterial system, which does
not hold since the shape of the pulse waves changes as they travel from the heart to the periphery.' Furthermore, the
WK model does not account for important physiological phenomena like wave reflections and wall viscoelasticity.
These phenomena can significantly affect blood flow dynamics, especially in older patients or those with arterial stiff-
ness. Acknowledging these uncertainties of the WK parameters and considering the function of this model to simulate
blood flow and pressure variations, the question of how to systematically quantify the consequences of these uncer-
tainties in blood pressure arises. Considering the contribution of the article which is limited to the Windkessel model
for the cardiovascular system, one may categorize this research as a contribution to the aleatoric uncertainty quantifica-
tion of the Windkessel model.

Before embarking on a systematic aleatory uncertainty quantification (UQ) of the WK model, one may divide this
model's variability into two classes: (i) UQ of the state variables and (ii) UQ of the WK parameters. The former finds
the uncertainties of the blood pressure for a known set of statistical properties of the WK parameters and blood flow
waveform. The latter discusses how pressure and flow measurement errors will spread to the WK parameters while esti-
mating them through the so-called inverse problems. Given that the WK model mimics the blood flow dynamics, any
of the two types of model variability can help assess the reliability of associated decisions drawn based on this model.
For example, greater uncertainty in blood pressure measurement corresponds to decreased reliability in clinical deci-
sions derived from them, and vice versa. This research focuses on the former type of variability, meaning we aim to
quantify the uncertainty of the pressure waveform (specifically, the systolic, diastolic, and pulse pressures) subject
to the variability of the arterial compliance, resistance, characteristic impedance, and flow waveform. Although
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subjective (non-quantitative) trends resulting from each parameter's variation are well understood,' the development of
simple quantitative techniques for predicting pressure uncertainties is yet to be established.

The literature offers several attempts to enhance the knowledge of the UQ of the blood pressure and flow waveform.
For example, Chen et al.'”> quantified uncertainties from various sources in the human cardiovascular system based on
stochastic simulation of a one-dimensional (1D) arterial network. Quicken et al.'® presented an adaptive generalized
polynomial chaos expansion and applied it to a three-dimensional (3D) abdominal aortic aneurysm wall mechanics
model and a 3D model of flow through an arteriovenous fistula. While both studies provide valuable contributions to
the quantification of hemodynamic uncertainty, their focus has been on the development of UQ methods tailored for
sophisticated models for arterial networks and 3D simulations, hereby considering nonlinear, non-additive and non-
monotone relationships between model inputs and outputs. Lee et al.'” used a Bayesian approach to determine ratios of
systolic and diastolic oscillometric amplitude to the mean arterial pressure. Turner et al.'"® used a Monte Carlo simula-
tion to estimate the effects of the sphygmomanometer error and the day-to-day variability of the pressure measure-
ments on the detection of hypertension. Other researchers, for example, Xiu and Sherwin,'® did not directly investigate
the uncertainty of the blood pressure waveform but concentrated on the pulse wave velocity, which is another impor-
tant indicator of cardiovascular health. Although all these methods offer promising methodologies to predict uncer-
tainties, they can be computationally intensive and time-consuming, especially when dealing with high-dimensional
problems and large data sets. Specifically, the Bayesian methods involve repeated simulations of the model for different
parameter values, which is computationally expensive.

Despite its simplicity, the WK model is convenient for describing the arterial system. For example, it has been
used to evaluate arterial compliance,’ an important biophysical marker of the arterial wall related to vascular
aging,” to study the cardiac pump function,”® and to simulate the load in an artificial heart and valve studies.?"**
Windkessel models can be divided into mono-compartment and multi-compartment.”> The main advantages of
multi-compartment models are that they are computationally efficient and require few parameters. Such models
have been used to estimate different cardiovascular parameters. For example, they were used to assess the elasticity
of blood vessels from photoplethysmography measurements>* or to evaluate oxygen consumption.*® Different works
have used the WK model as boundary conditions in terminal vessels of 1D and 3D models.>*** To estimate the
Windkessel parameters, distinct methods like vector fitting?” and optimization®®*° have been used. Such methods
allow the incorporation of patient-specific data. In addition, various uncertainty quantification methods, like gener-
alized polynomial chaos,”® Monte Carlo® or first order second moment,*’ have been employed to propagate uncer-
tainties due to the Windkessel boundary conditions and to analyze the effect of uncertain wall elasticity on flow
and arterial area variations.*®

The numerous recent works on the WK model, for example,>*>**7*7 demonstrate the increasing interest and
importance of uncertainty quantification in blood pressure waveform analysis for improved cardiovascular risk assess-
ment and personalized healthcare. Recent advancements in medical imaging, computational power, and the availability
of physiological signals have allowed the incorporation of patient-specific data into simulations, which involves uncer-
tainties and potential errors that require evaluation to ensure the reliability of cardiovascular models in clinical prac-
tice.”>*>%3% Patient-specific models have gained interest in the medical industry, and assessment of their reliability
and credibility requires verification, validation, and uncertainty quantification (VVUQ).>***"** This paper aims to
develop an efficient and easy-to-implement UQ method based on a local gradient-based formulation to quantify the
uncertainty of the pressure waveform resulting from aleatory uncertainties of the WK parameters and flow waveform.
The proposed UQ framework was verified against Monte Carlo simulations. To establish the applicability of the formu-
lation, we analyzed an extensive data set constructed based on a comprehensive literature review** and compared
uncertainties—of the SBP and DBP in different age groups—computed with the proposed formulation, with those
observed in vivo and in silico data. Furthermore, we analyzed the uncertainty variation of SBP and DBP due to varia-
tions in the uncertainty of WK parameters and extended the UQ formulation to the pulse pressure.

2 | MATERIALS AND METHODS
2.1 | Windkessel model

The two-element WK model adopts resistance, R, relating outflow to pressure difference at either side of the com-
ponent and compliance, C, denoting the ratio of a volume variation and the resulting pressure change. An
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improved version of the two-parameter WK model incorporates another resistive element, Z, to account for the
characteristic impedance of the vessels, that is, the impedance obtained from the input impedance spectrum at
high frequencies when no reflections exist." Assuming the flow rate Q(t) through the ascending aorta as uncertain
input and the aforementioned WK parameters as random quantities, the aortic blood pressure P(f) is evaluated
from Reference 43.

P
P+RC%= (R+Z)Q+ZRCCZ—?+PM, (1)

where P,y is an asymptotic pressure representing the venous pressure.
Equation (1) can be solved using the integrating factor method, leading to.

t/
1 t ! t
P(t) =ZQ(t) tae / excQ(t')dt' + (Pp — Poyt)€ 7 + Poyy, (2)
0

with Pp is the diastolic blood pressure. This WK model can reduce the entire arterial network or part of it into a lumped
parameter model. In this work, the flow rate at the aorta was used to quantify the corresponding pressure, implying
that the employed WK parameters are for the entire arterial network.

2.2 | Uncertainty propagation to the aortic pressure

The aim of this study was to estimate the uncertainty of the pressure waveform subject to uncertain input WK
parameters and flow waveform. Following the work done by Charlton et al.,** the flow rate morphology was
modeled to give reasonable pulse wave simulations. In Charton's work the morphology of the flow wave is
influenced by heart rate (HR), stroke volume (SV), left ventricular ejection time, peak flow time, and reverse flow
volume. We used the scrip AorticFlowWave, developed by Charlton et al.,** which produces a flow waveform given
a set of cardiac parameters. To illustrate how uncertainties of flow waveform propagate to the pressure, we intro-
duced uncertainties in the flow waveform through variations of the SV and HR. The state variable P(t) is the solu-
tion of the ordinary differential equation (ODE) shown in Equation (1), which due to uncertain parameters and
flow waveform, is stochastic in nature.

Uncertainty analysis methods may be classified as probabilistic and non-probabilistic approaches.** Belonging to
the former category, Monte Carlo is a simulation-based method used in this research to verify the proposed stochastic
formulations. The most efficient non-probabilistic techniques are local expansion-based methods, such as the Taylor
series (employed herein) and perturbation method.*>*” These methods are only robust for cases of relatively small
input variability and (relatively) linear models, which is the case of WK models. The next section introduces our pro-
posed expansion-based formulation.

2.3 | Estimation of the pressure variance

Let the random vector X = (R,C,Z,SV, HR)T define the WK (R, C, Z) and cardiac (SV, HR) parameters with covariance
matrix

o% cov(R,C) cov(R,Z) cov(R,SV) cov(R,HR)
cov(C,R) o cov(C,Z) cov(C,SV) cov(C,HR)
covX, X] =E[(X - X) (X—X)T] = | cov(Z,R) cov(2,C) o2 cov(Z,SV) cov(Z,HR) (3)

cov(SV,R) cov(SV,C) cov(SV,Z) ooy cov(SV,HR)
cov(HR,R) cov(HR,C) cov(HR,Z) cov(HR,SV) Orr
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where X = E(X), cov [X i X j] ,1,j=1,2,3,4,5 stands for the covariance between variables X; and X; and a§( =var[X;]. Our
methodology considers that the WK and cardiac parameters are uncorrelated. Therefore, off-diagonal terms are equal
to zero in the covariance matrix. Taylor series analysis allows for the following expansion of the pressure waveform,

2*p

P =p)+ 3 28] (X 30 2] X

2!

Fo (4)

By neglecting nonlinear terms, the variance of the pressure at each time step can be calculated as

E[(P)—PX)7| =300 S0 15)’; i | B[00 (- )] (5)
» _ [?P(X) IP(X) JP(X) JP(X) IP(X) JIP(X) IP(X) IP(X) IP(X) IP(X)|"
”P_[ IR JC 9Z SV 3HR}COV[X’X][ JR dJC dzZ ISV OHR| (6)

Note that the gradient vector pre-multiplying and post-multiplying the covariance matrix is deterministic, since it is
evaluated based on the pressure waveform which itself is quantified based on the WK and cardiac parameters. In
Equation (6), we assume a priori knowledge of the covariance matrix for the WK and cardiac parameters. This knowl-
edge may be achieved through different methods, depending on the context and available data. For example, one way
to estimate the covariance matrix is to use historical data or experimental measurements and use statistical analysis
techniques to estimate the covariance matrix from this data.*®* Another approach is to use expert knowledge or prior
information about the system and its parameters to estimate the covariance matrix. In this case, the covariance matrix
may be based on physical principles or previous studies of similar systems.*

The numerical evaluation of the pressure gradients with respect to the WK parameters and flow waveform determi-
nants, as shown in Equation (6), is described in the following section.

2.4 | Evaluation of sensitivities

This section aims to estimate the gradients in Equation (6) using an efficient numerical approach. The numerical methods
approximate the ODE solution at discrete points in time. Common numerical methods for this purpose include the Euler
and Runge-Kutta methods used to obtain accurate and efficient solutions to a wide range of ODE problems.*® In this study,
the Euler method which constitutes the simplest scheme to solve the ODE in Equation (1) is implemented.”® Considering a
known time history of flow rate at the aorta, the computational solution to pressure reads

aAt+RCP(t)

+Pout~ (7)

a(t) = (R+2Z)Q(t+At) +ZRCQU$2_Q(0

The provided expression for the pressure can now be differentiated with respect to each of the WK parameters to
arrive at the desired sensitivity. Consider dQ(JR) ' =0,dQ(dC) ' =0,anddQ(dZ) ' =0, since the flow waveform is
just a function of SV and HR. The expressions for the pressure gradient with respect to R then reduce to

o

JP <ﬁ
t+ At
R )= (At+RC)?

At+CP(t) +RC%(t)> (At+RC) — C(aAt+RCP(t))

>
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Q+a0-Q(1) )

d
with o = Q(t + Af) + ZC o

JR

where JP(JR) ' (t) is the estimated gradient at the previous time step. Therefore, all variables are known quantities.
Likewise, the pressure derivative with respect to C is

da JP
iP(HAt) B <%At +RP(t) +RC% (t)> (At+RC) —R(aAt+RCP(t))
ac B (At+RC)? ’
a0 Q(t+At) —Q(t)
Wltha_C_ZRA—t’ (9)

Finally, the sensitivity of pressure with respect to Z yields:

ap 1 da Jop
9z A =1 Re (az“”RCaz(“)’ (10)
with
da Q(t+4t)—Q(r)
— = A RC—— - =7 11
7 Q(t+At)+RC A (11)
The sensitivity of the pressure with respect the cardiac variables (9‘95—’;,, %) is given by.
JP _JP JQ an JP _JdP JQ (12)
ISV 9QdJSV"  GHR JQJHR’
Using Equation (7) we have that.
a IP(1)
OP(t+At) SEAL+RCTH  Qa
= th—=(R+2). 13
20 ArRe Vithgo = (R+2) (13)

The AorticFlowWave script** provided data to compute the derivatives of the flow with respect to the cardiac vari-
ables (;S—QV, 5%) that are required to calculate Equation (12). Substitution of Equations (8), (9), (10), and (12) into Equation (6)

(along with the covariance matrix) allows one to compute the pressure standard deviation for the expansion-based method.

2.5 | Stochastic properties of the Windkessel and cardiac parameters

To show how the uncertainty of the WK and cardiac parameters propagates to the pressure waveform, especially to the
systolic, diastolic, and pulse pressures, a sensible set of values for the statistical properties of the WK and cardiac param-
eters are required. To this end, we used an existing database containing in silico pressure and flow waves at the aortic
root in a group of 4374 virtual subjects.** Pulse waves were simulated using a 116-artery 1D model of blood flow in the
larger systemic arteries of the thorax, limbs, and head. Charlton et al.** considered a wide range of typical cardiovascu-
lar variables of healthy adults aged 25 to 75. Such cardiovascular properties were identified through a comprehensive
literature review, and simulated waves were verified by comparison against in vivo data. Six cardiovascular variables
(HR, SV, left ventricular ejection time, arterial diameter, pulse wave velocity, and mean arterial pressure) that strongly
influenced the pulse waves were varied independently by + one standard deviation at each decade, that is, for each
decade 3° =729 virtual subjects were considered giving a total of 6 x 729 = 4,374 virtual subjects. Following Charlton
et al.,** virtual subjects with abnormal pulse pressure or its amplification were discriminated against.
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We assessed the parameters of the WK model for each virtual subject as follows: the database provides the pulse
wave velocity (PWV), aortic area (A,), blood density (p), outflow pressure (Py,), and time decay in diastole (z =RC).
Using this information, we computed the characteristic impedance as'”

PWV
Z:pA . (14)
0

For one cardiac cycle with a period T, the total resistance (Ry) was calculated based on the average pressure
(1_’ =1 fOTP(t)dt), the mean flow rate (@ =1 fOTQ(t)dt> and the outflow pressure Py, that is,

Ry — L —Fout. (15)
Q

The peripheral resistance and compliance were calculated as.

R=Ry —ZandC:%. (16)

Once the foregoing calculations were implemented for each individual virtual subject, the statistical properties of
the WK parameters were estimated. Table 1 shows the mean values and standard deviations (STD) of the WK parame-
ters for each age decade.

Influence of the variability of the flow waveform was investigated by using the AorticFlowWave script™ to repro-
duce representative flow waveforms from data of the SV, HR, left ventricle ejection time (LVET), peak flow time,
reverse flow volume, and flow wave morphology.** However, to simplify the methodology and results interpretability,
we selected two determinants of the flow waveform: the SV and HR.

t42

2.6 | Uncertainty analysis of the pulse pressure

Pulse pressure (PP), defined as the difference between systolic and diastolic pressure, may indicate cardiovascular dis-
ease; for instance, elevated pulse pressure is recognized as a risk factor for coronary disease.! Therefore, measuring
pulse pressure is important to assess a patient's cardiovascular health and to make informed decisions about their
treatment plan.

Due to the clinical relevance of PP, propagation of the uncertainty of the WK and cardiac parameters to PP is an
important task. The expansion-based method allows us to assess an approximated PP variance. The variance of the PP
can be calculated as

o3p = E[(Ps(X) — Pp(X))*] - (Ps(X) — Pp(X))’

TABLE 1 Windkessel parameters of the database; values are mean + standard deviation; n is the number of virtual subjects in an age
group.

Age decade R (mmHg-s/mL) C (mL/mmHg) Z (mmHg-s/mL)
25 (n =712) 0.6632 + 0.1622 1.7389 + 0.3472 0.0409 + 0.0073
35(n = 684) 0.6909 + 0.1772 1.5495 + 0.3900 0.0419 + 0.0081
45 (n = 654) 0.7501 + 0.1902 1.3086 + 0.3047 0.0442 + 0.0085
55(n = 641) 0.7844 + 0.2055 1.1177 + 0.2769 0.0465 + 0.0092
65 (n = 588) 0.8152 + 0.2206 0.9503 + 0.2502 0.0485 + 0.0099
75 (n = 558) 0.8611 + 0.2264 0.7997 + 0.2539 0.0512 + 0.0108
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=05 +0p — 2(E[Ps(X)Pp(X)] — Ps(X)Pp (X)), (17)

where Ps is the systolic pressure and os and op are the standard deviations of the systolic and diastolic pressures,
respectively. Note that E[Ps(X)] = Ps(X), E[Pp(X)] =Pp(X), and E[X] =
The last term in Equation (17) represents the covariance between the systolic and diastolic pressures, that is,

E[Ps(X)Pp (X)] — Ps(X)Pp(X) = cov[Ps, Pp] = E[(Ps(X) — Ps(X)) (Pp(X) — Pp(X))] (18)

This term can be quantified using pressure gradients. The Taylor series for the systolic and diastolic pressures are
given by

5 3P5 = 5 32P5 (Xi—)_(i)z
+Zl 13X Xi— i>+Zi:1—3Xi2 }?72! + e (19)
_ s JP _ s 2Pp| (Xi—Xi)?
PD(X):PD(X)JrZi:la—; X=X+ aXf 7( i Sy (20)
Lix ilX :

By neglecting nonlinear terms and moving Ps(X), and Pp(X) to the left-hand side of Equations (19) and (20),
respectively, we can approximate the product of the systolic and diastolic pressure deviation from their mean as

(Ps(X) — P5(X)) (Pp(X) ZZI §§ %o °| (=X (- %). (21)
The expectation of the resultant expression in Equation (21) yields.
el ((5) ()| S5 2 o 3) o)

m(;}) aps(;}) ap5<;}> aP; (x) aps<)}) . aPD(;}> aPD()}> aPD(}}> aps<;}) aPS(,’f) T.

dR aC 0z aLV o0HR JdR aC Z oLV J0HR

(22)

Substitution of Equation (22) into Equation (17) leads.

2— oot a| OPs (X) aPs(X> aPs (x) aPs <x) aPs (x>

oR oC 0Z oLV o0HR
- _ - - - T
g [7(x) 30o(x) o7 () o (x) am(x)] "
oR aC 0Z oLV 0HR

Equation (23) offers an efficient formula to quantify the variance of the pulse pressure based on the variance of the
systolic pressure 6%, the variance of the diastolic pressure o3, the covariance matrix of the WK and cardiac parameters,
that is, cov[X,X], and the gradient of the systolic and diastolic pressures. The latter can be quantified based on the for-
mulations developed in Section 2.4; note that the gradient values corresponding to the systolic and diastolic pressures
must be selected from the gradient vectors.
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2.7 | Verification of the proposed method

The proposed numerical formulation was verified against the exhaustive Monte Carlo simulations. Four different values
of the standard deviation of the WK and cardiac parameters were tested: 0, 2.5, 5, and 10% of the mean values, making
a total of 16 simulations. The mean values of the cardiac parameters are SV = 66.8 mL and HR = 75 beats/min. The
first row of Table 1 shows the mean values of the WK parameters. In the Monte Carlo method, Equation (1) was solved
15,000 times (for each simulation) using WK and cardiac parameters taken randomly from normal distributions. No
correlation between the variables was considered. For each simulation, collecting 15,000 solutions enables computing
the standard deviation and mean value at each time point using the 15,000 pressure samples. For that number of sam-
ples, convergence of the mean pressure and its standard deviation was achieved. We used Equation (6) for the
expansion-based method with the pressure derivatives given by Equations (8), (9), (10), and (12). The results of both
methods were compared using the root mean square error (RMS) defined as

_ 1 - [Pi £ 0i]gg — [PiE il 2
gi\/ﬁz< [Pii"i]Mc C) ' (24)

i=1

where n is the number of temporal points in one cardiac cycle, [P; £ 6|55 is the pressure plus and minus the standard
deviation (o) obtained with the expansion-based method at the time point i. At the same time, [P; & 6], is the pressure
plus and minus the STD from Monte Carlo simulations.

2.8 | Uncertainty assessment of the aortic systolic and diastolic pressure

We illustrated the applicability of our uncertainty propagation method in two scenarios. In the first one, the parameters
of the WK model are known (as for each decade in the database) and are used to assess variations in SBP and DBP. To
do so, we propagated the uncertainties due to the WK parameters for each virtual subject with Equation (6) and
extracted the SBP + STD and DBP + STD. Moreover, we assessed the PP and its STD using Equation (23). To compare
our results with those of the in silico database,** for each virtual subject, we collected the aortic systolic, diastolic, and
pulse pressures. Then, by decades, we calculate their means and standard deviations. Furthermore, we compared the
results with in vivo data for each age decade from the literature.’* In vivo data corresponds to the Anglo-Cardiff Collab-
orative Trial (ACCT), which consists of 10,096 individuals selected randomly from local General Practice lists and
open-access Cardiovascular Risk Assessment Clinics across East Anglia and Wales. Only data for healthy subjects were
selected, giving a total of 4001 individuals for the analysis.>

In the second scenario, the uncertainty variation of SBP and DBP due to variations in the uncertainty of WK param-
eters was analyzed. To do so, we used as reference values the STD of the WK parameters of the first row of Table 1. In
this scenario, one can determine the variables making considerable changes in SBP and DBP.

3 | RESULTS

Figure 1 shows the standard deviations obtained from Monte Carlo simulations (shaded areas) and, those of the pro-
posed method (i.e., the expansion-based approach; in dotted blue lines). When the flow waveform has no uncertainties
(first column), both methodologies produced similar uncertainties at all time points of the pressure waveform and
values of the WK standard deviations, with RMS errors smaller than 0.5%. However, when only propagating the uncer-
tainty due to the flow waveform (second row of Figure 1), the expansion-based method partially propagated the uncer-
tainty of the flow waveform, that is, in systole, it overestimated and underestimated the upper and lower STD
boundaries, respectively, and in diastole was not able to reproduce uncertainties, resulting in RMS errors of ~10% with
increasing STD of the cardiac parameters. The expansion-base method results deviate from those of Monte Carlo simu-
lations as the STD of the cardiac parameters increases. To easily compare the signals, we used the same time interval in
all subplots. This makes the changes in heart rate less obvious, but they can still be seen at the end of the signals. For
instance, see the last column and third row, where the standard deviation diminishes due to the variation in the signal
duration. Our results indicate that the proposed method produces accurate pressure STDs when uncertainties steaming
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FIGURE 1 Verification of the proposed uncertainty quantification method. The first row shows the mean and standard deviation (STD)
of the blood flow waveform due to variations of the stroke volume and heart rate STD from 0% to 10% of the mean value, which correspond
to those of the 25-year-old baseline subject, namely, 66.8 mL and 75 beats/min,** respectively. The Windkessel (WK) parameters' standard
deviation varies from 0 to 10% of the mean value from the second to the fifth row; the mean values correspond to WK parameters shown in
the first row of Table 1. The resulting mean pressure and STD from Monte Carlo simulations are shown in black lines and shadows,
respectively. The blue line is the STD obtained with the proposed expansion-based method (Equation 6). Root means square errors
computed with Equation (24) are shown in each plot.

from the blood flow waveform are considerably smaller than those of the WK parameters; see, for instance, the last two
rows of the second column of Figure 1, where RMS errors are smaller than 2%.

3.1 | Uncertainty of the aortic systolic and diastolic pressure
In this section, the applicability of our uncertainty propagation method is illustrated in two scenarios. We only propa-

gated uncertainties steaming from the Windkessel parameters because the expansion-base method gives the most accu-
rate results in this situation.
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3.2 | Uncertainty quantification of the systolic and diastolic pressures

For the first scenario, the uncertainty in the pressure waveform at each decade is investigated. Mean values and STD of
the WK parameters for each age decade, shown in Table 1, were used to calculate the pressure waveform and its uncer-
tainties through Equations (2) and (6), respectively. As depicted in Figure 2, the aortic pressure waveform and their
uncertainties for decades 25 and 75 are presented based on the data provided by Charlton et al.** The aortic pressure
waveforms and their uncertainties for the rest of the decades (from 35 to 65) are shown in Appendix A. The Windkessel
model reproduces similar pressure waveforms to those of the virtual subjects with root-mean-square errors smaller than
5% for all decades.

Figure 3C shows the systolic, diastolic, and pulse pressures, along with their STD, for the expansion-based method.
The STD for the SBP and DBP obtained with the expansion-based method follows the trends seen in the database
(Figure 3A) and in vivo data (Figure 3B). For example, as age increases, the STD of diastolic and systolic blood pressure
also increases in both the database and the expan