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Abstract—The brain-inspired Spiking Neural Networks (SNNs)
have garnered considerable research interest due to their superior
performance and energy efficiency in processing temporal signals.
Recently, a novel multi-compartment spiking neuron model,
namely the Two-Compartment LIF (TC-LIF) model, has been
proposed and exhibited a remarkable capacity for sequential
modelling. However, training the TC-LIF model presents chal-
lenges stemming from the large memory consumption and the
issue of gradient vanishing associated with the Backpropagation
Through Time (BPTT) algorithm. To address these challenges,
online learning methodologies emerge as a promising solution.
Yet, to date, the application of online learning methods in SNNs
has been predominantly confined to simplified Leaky Integrate-
and-Fire (LIF) neuron models. In this paper, we present a novel
online learning method specifically tailored for networks of TC-
LIF neurons. Additionally, we propose a refined TC-LIF neuron
model called Adaptive TC-LIF, which is carefully designed to
enhance temporal information integration in online learning
scenarios. Extensive experiments, conducted on various sequen-
tial benchmarks, demonstrate that our approach successfully
preserves the superior sequential modeling capabilities of the
TC-LIF neuron while incorporating the training efficiency and
hardware friendliness of online learning. As a result, it offers
a multitude of opportunities to leverage neuromorphic solutions
for processing temporal signals.

I. INTRODUCTION

The human brain, with a power consumption of only 20
Watts, is capable of processing complex sensory signals effi-
ciently [1]. Mimicking the discrete, spike-based information
processing observed in the brain, spiking neural networks
(SNNs) have been introduced for artificial intelligence (AI)
applications [2], [3], [4]. Remarkably, owing to the introduc-
tion of the backpropagation through time (BPTT) learning al-
gorithm with surrogate gradients [5], [6], SNNs have achieved
promising performance across a wide range of AI tasks [7],
[8], [9]. Moreover, these models demonstrate superior energy
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efficiency when deployed on ultra-low-power neuromorphic
hardware [10], [11], [12].

However, current SNNs still face challenges in effectively
processing sensory signals compared to their biological coun-
terparts [13], [14]. One contributing factor is the use of
overly simplified neuron models, such as the widely adopted
Leaky Integrate-and-Fire (LIF) model [15], [16], which has
limited capacity to store information over long time windows.
To overcome this limitation, recent research has introduced
slow-decaying variables into spiking neuron models to enrich
their neuronal dynamics and improve their ability to process
complex temporal signals [17], [18], [19]. Yet, these models
struggle to establish long-term temporal dependencies that are
crucial for effective temporal signal processing. Another line
of research has explored the use of self-attention mechanisms
to enable more flexible integration of temporal information
within SNNs [20], [21], [22]. However, these models require
significant memory resources that are currently unavailable
on neuromorphic chips. Recently, a two-compartment LIF
(TC-LIF) neuron model has been proposed, which captures
the intricate neuronal structure and rich temporal dynamics
observed in biological neurons [23]. By incorporating the
interaction between the somatic and dendritic compartments,
the TC-LIF neuron demonstrates superior sequential modeling
capabilities in many challenging temporal processing tasks.

Despite the impressive performance of SNNs utilizing TC-
LIF neurons in sequential modeling, they face significant
challenges during BPTT training. As depicted in Fig. 1, the
BPTT algorithm necessitates storing all internal states over the
whole time window for gradient updates, leading to a linear
increase in memory requirements as time window increases.
Additionally, the BPTT algorithm is susceptible to issues like
vanishing or exploding gradients [24], [25], which further
complicates the task of stable training due to the necessity of
carefully initializing the parameters. Furthermore, the BPTT
algorithm requires the entire sequence to be available before
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Fig. 1: Comparison of the proposed neuron models and learning algorithms. (a) The vanilla TC-LIF neuron captures the
interaction between dendritic and somatic compartments in biological neurons to facilitate temporal signal processing. (b)
The proposed Adaptive TC-LIF neuron further introduces time-varying membrane potentials decaying constants to facilitate
temporal information integration during online learning. (c) The vanilla TC-LIF model is trained using BPTT algorithm, where
the gradients are propagated from the last time step to all preceding time steps for parameter update. (d) Our proposed Adaptive
TC-LIF neuron facilitates efficient online learning by computing parameter updates at each time step based on the local loss
and eligibility trace derived at that specific time step. Importantly, the computation of eligibility traces for both neuronal
compartments occurs in a forward manner, eliminating the need to store intermediate network states as required in BPTT
training.

training, making it incompatible with online learning scenarios
[26], [27], [28].

To tackle these challenges, this study explores the biolog-
ically plausible and efficient online training approach known
as e-prop [27]. The e-prop algorithm is based on the concept
of eligibility trace, which enables the local and feedforward
computation of the error gradient at each time step. Notably,
e-prop has demonstrated comparable performance to BPTT on
a number of AI benchmarks [29], [30]. However, it is worth
noting that this method has primarily been investigated using
simplified LIF neurons, and its applicability to more complex
multi-compartment neuron models has yet to be explored
[17]. Notably, the TC-LIF neuron was initially designed to
work with the BPTT training algorithm, which necessitates
the adaptation of its parameter space when transitioning to
online learning settings.

In this study, we present an extension of the e-prop formula-
tion to accommodate the unique neuronal dynamics of the TC-
LIF neuron model. Additionally, we propose an Adaptive TC-
LIF model specifically designed for online learning scenarios.
The traditional BPTT algorithm suffers from the issue of
gradient vanishing, which restricts the leakiness of the mem-
brane potential in the original TC-LIF model. However, the
introduction of the e-prop algorithm addresses this limitation,
allowing for more flexible selection of the membrane potential
decaying constants. To ensure a balanced influence of inputs

from different time steps on parameter updates, we further
propose to set the membrane potential decaying constants to be
time-varying. Experimental results demonstrate that our pro-
posed approach successfully preserves the superior sequential
modeling ability of TC-LIF neurons while incorporating the
efficiency of online learning. The main contributions of this
work can be summarized as follows:

• We expand upon the e-prop online learning approach,
which was initially designed for LIF neurons, and adapt
it to accommodate multi-compartment TC-LIF neurons.
We provide comprehensive and rigorous mathematical
derivations for the proposed online learning method.

• We propose a novel Adaptive TC-LIF model that incor-
porates time-varying membrane potential decaying con-
stants. This enhances temporal information integration in
online learning scenarios.

• We perform comprehensive experiments on a range of
sequential modeling tasks to evaluate the performance of
our proposed Adaptive TC-LIF model. The results sub-
stantiate that our model exhibits exceptional sequential
modeling capacity, high training efficiency, and neuro-
morphic hardware friendliness.



II. PRELIMINARIES

A. Spiking Neuron Models

Motivated by the intricate structure and dynamic firing
behavior of biological neurons, numerous spiking neuron
models have been proposed in the literature [31], [32], [33].
These models offer SNNs superior capabilities in processing
temporal signals. Typically, the neuronal dynamics of these
spiking neurons encompass three fundamental components:
charging, firing, and resetting. For instance, the discrete-time
equations below can be used to model recurrently connected
[17], [34] LIF neurons:

vj [t+ 1] = αvj [t]− vthzj [t] + Ij [t+ 1], (1)

Ij [t+ 1] =
∑
i̸=j

W rec
ji zi[t] +

∑
i

W in
ji xi[t+ 1] + b, (2)

zj [t+ 1] = H(vj [t+ 1]− vth), (3)

where W in
ji and W rec

ji denote the feedforward and recurrent
connections from the presynaptic neuron i to the postsynaptic
neuron j, respectively. The parameter α represents the mem-
brane decaying coefficient, which ranges between 0 and 1. The
variable Ij [t + 1] represents the input current at time t + 1.
During the charging process, the membrane potential vj [t] is
updated until it reaches the firing threshold vth, at which point
an output spike zj [t] is generated. Subsequently, after firing,
the membrane potential is reset.

While the LIF neuron demonstrates promising results in
tasks with limited temporal context, it encounters difficulties
in retaining information over longer time periods (e.g., a
few hundred time steps), resulting in poor performance for
tasks that require long-term memory. This limitation arises
from the exponential decay of inputs to LIF neurons during
their membrane potential update. To enhance the sequential
modeling capacity of SNNs, a recent study has introduced
a novel spiking neuron model called TC-LIF [23]. The TC-
LIF neuron is specifically designed to replicate the interaction
between dendritic and somatic compartments of biological
neurons. The neuronal dynamics of the TC-LIF neuron can
be formulated as follows:

vDj [t+ 1] = vDj [t] + β1v
S
j [t]− γzj [t] + Ij [t+ 1], (4)

vSj [t+ 1] = vSj [t] + β2v
D
j [t+ 1]− vthzj [t], (5)

Ij [t+ 1] =
∑
i̸=j

W rec
ji zi[t] +

∑
i

W in
ji xi[t+ 1] + b, (6)

zj [t+ 1] = H(vSj [t+ 1]− vth). (7)

The TC-LIF neuron exhibits two distinct neuronal states,
denoted as hj [t] = [vDj [t], vSj [t]]. Notably, vDj [t] corresponds
to the dendritic compartment, which is responsible for stor-
ing long-term memory. On the other hand, vSj [t] represents
the somatic compartment, which is used to store short-term
memory. The interaction between these two compartments is
regulated by the coefficients β1 and β2. Specifically, β1 is
defined as −σ(c1), and β2 is defined as σ(c2), where σ(·)
denotes a sigmoid function. Both c1 and c2 are learnable

parameters that are jointly trained with network weights.
Following the somatic firing, both compartments undergo a
reset in their membrane potential. It is worth noting that the
reset of the dendritic compartment involves the initiation of a
backpropagating spike, the effect of which is governed by the
hyperparameter γ.

B. Challenges of Training SNNs with BPTT

Training SNNs presents a significant challenge due to the
intricate spatial-temporal dependency between distant spikes
and the discrete nature of spike generation. However, recent
advancements have addressed these issues by applying BPTT
algorithm [35] coupled with the surrogate gradient method.
To illustrate how BPTT algorithm can be applied across LIF
and TC-LIF spiking neurons, we denote the observable state
(i.e., spike) of neuron j at time t as zj [t], the hidden state as
hj [t] (i.e., membrane potential), and the input as xj [t]. The
update of the hidden state of a neuron can be expressed as
hj [t] = f(hj [t−1], zj [t−1], xj [t],Wji). The weight gradients
can be expressed as follows:

dE

dWji
=

T∑
t=1

dE

dzj [T ]

∂zj [T ]

∂Wji
, (8)

where E represents the error term. It is worth noting that by
expanding the above gradient expression using the chain rule,
as shown in (9), it becomes apparent that the BPTT algorithm
optimizes SNN parameters by unfolding the network state over
time and then applying the backpropagation algorithm. How-
ever, this process requires the storage of intermediate states for
all neurons, which imposes a significant computational burden.

dE

dWji
=

T∑
t=1

dE

dzj [T ]

∂zj [T ]

∂hj [T ]

∂hj [T ]

∂hj [t]

∂hj [t]

∂Wji
. (9)

C. Online learning with e-prop algorithm

The e-prop algorithm [27] has emerged as an alternative
to the BPTT training algorithm. This biologically inspired
online learning algorithm consists of two essential compo-
nents: learning signals and eligibility traces. The learning
signals encompass various top-down signals in the brain,
such as neuromodulators and error-related neural activities.
These signals convey information to neuronal populations
about behavioral outcomes. On the other hand, eligibility
traces refer to molecular-level traces exist within each neuron,
such as calcium ions or activated CaMKII enzyme. These
traces represent fading memories of past events. Supported by
rigorous mathematical derivation [27], the effective integration
of eligibility trace and learning signals can lead to high-
performance online learning.

As given in (10), the impact of future time steps from t+ 1
to T on the present state t is disregarded in e-prop, allowing
the weight gradient dE

dWji
to be expressed as a summation of

products across time steps 1 to t. The second term of this
equation represents a local gradient that remains independent
of error E:



Fig. 2: The comparison of gradient update principle of BPTT
and e-prop algorithms at time t. BPTT algorithm updates the
network parameters based on the global loss, which can only
be obtained at the last time step T . In contrast, the e-prop
algorithm accumulates eligibility traces that propagate forward
in time and multiplies them with the online error term. This
allows for the online update of network parameters.

dE

dWji
=

∑
t

dE

dzj [t]

(
dzj [t]

dWji

)
local

. (10)

In e-prop, the component dE
dzj [t]

is further approximated
with an online learning signal Lj [t] ≜ ∂E

∂zj [t]
, where E

is the cross entropy loss. Furthermore, the eligibility traces
eji[t] ≜

(
dzj [t]
dWji

)
local

aim to capture the maximum amount
of information about the network gradient, which can be
updated during the forward computation. Consequently, the
computation of the gradient in e-prop involves a combination
of the learning signal and the eligibility trace as:

dE

dWji
=

∑
t

Lj [t] · eji[t]. (11)

In the case where the learning signal assumes an ideal
value, we can provide rigorous proof demonstrating that the
eligibility trace effectively preserves the maximum amount
of gradient information [27]. In the e-prop algorithm, the
derivation of the eligibility trace accounts for the evolution
process of the hidden state within the neuron, eliminating the
need to store all hidden states by disregarding the influence
of future time steps. The specific expression of the eligibility
trace is:

eji[t] =
∂zj [t]

∂hj [t]

∑
t′≤t

∂hj [t]

∂hj [t− 1]
· · · ∂hj [t

′ + 1]

∂hj [t′]

∂hj [t
′]

∂Wji︸ ︷︷ ︸
=εji[t]

. (12)

In (12), the first term represents the surrogate gradient ψj [t]
[5], and the following terms are defined as eligibility vector
εji[t]. Furthermore, we can derive an iterative expression
for the eligibility vector that pertains to the eligibility trace
eji[t] = ψj [t] · εji[t] as:

εji[t] ≜
∑
t′≤t

∂hj [t]

∂hj [t− 1]
· · · ∂hj [t

′ + 1]

∂hj [t′]

∂hj [t
′]

∂Wji

=
∂hj [t]

∂Wji
+

∂hj [t]

∂hj [t− 1]

∂hj [t− 1]

∂Wji
+ · · ·

+
∂hj [t]

∂hj [t− 1]
· · · ∂hj [2]

∂hj [1]

∂hj [1]

∂Wji

=
∂hj [t]

∂Wji
+

∂hj [t]

∂hj [t− 1]
·(

∂hj [t− 1]

∂Wji
+
∂hj [t− 1]

∂hj [t− 2]

∂hj [t− 2]

∂Wji
+ · · ·

)
=

∂hj [t]

∂hj [t− 1]
εji[t− 1] +

∂hj [t]

∂Wji
.

(13)

It is evident that the key aspect of the e-prop algorithm re-
volves around the derivation of the neuron’s eligibility vector,
which holds a substantial amount of gradient information and
is propagated forward in time.

III. METHODOLOGY

A. Eligibility Traces for TC-LIF

Here, we present an elaborate derivation for the eligibility
vector of the TC-LIF neuron. By combining the neuronal
function of the TC-LIF neuron and the eligibility trace defined
in the earlier section, we can obtain the eligibility trace of the
dendritic compartment as:

∂vDj [t]

∂W in
ji

=
∂vDj [t]

∂W in
ji

+
∂vDj [t]

∂vDj [t− 1]

∂vDj [t− 1]

∂W in
ji

+
∂vDj [t]

∂vSj [t− 1]

∂vSj [t− 1]

∂W in
ji

= xi[t] +
∂vDj [t− 1]

∂W in
ji

+ β1
∂vSj [t− 1]

∂W in
ji

.

(14)

Similarly, for the somatic compartment, the eligibility trace
is formulated as follows:

∂vSj [t]

∂W in
ji

=
∂vSj [t]

∂vSj [t− 1]

∂vSj [t− 1]

∂W in
ji

+
∂vSj [t]

∂vDj [t]

∂vDj [t]

∂W in
ji

=
∂vSj [t− 1]

∂W in
ji

+ β2
∂vDj [t]

∂W in
ji

.

(15)

The Eqs. (14) and (15) can be further abstracted into a
two-dimensional eligibility vector εji[t] = [εDji[t], ε

S
ji[t]] =

[
∂vD

j [t]

∂W in
ji
,
∂vS

j [t]

∂W in
ji

] and expressed iteratively as follows:

εDji[t] = εDji[t− 1] + β1ε
S
ji[t− 1] + xi[t], (16)

εSji[t] = εSji[t− 1] + β2ε
D
ji[t]. (17)

By plugging (16) into (17), we could rewrite the eligibility
vector as:

εDji[t] = εDji[t− 1] + β1ε
S
ji[t− 1] + xi[t], (18)

εSji[t] = (1 + β1β2)ε
S
ji[t− 1] + β2ε

D
ji[t− 1] + β2xi[t]. (19)



As the eligibility trace defined in (12), we are left with the
task of deriving ∂zj [t]

∂hj [t]
, which can be obtained as follows:

∂zj [t]

∂hj [t]
≜ [

∂zj [t]

∂vDj [t]
,
∂zj [t]

∂vSj [t]
] =

[
∂zj [t]

∂vSj [t]

∂vSj [t]

∂vDj [t]
,
∂zj [t]

∂vSj [t]

]
= [β2ψj [t], ψj [t]],

(20)

with

ψj [t] =
∂zj [t]

∂vSj [t]
=

1

γ2
max(0, γ − |vSj [t]− vth|), (21)

which is the surrogate gradient [36] function used to overcome
the issue of discontinuity arising from spike generation and
reset.

As a result, the eligibility trace of the TC-LIF neuron can
be calculated as:

eji[t] =
∂zj [t]

∂hj [t]
· εji[t]

= ψj [t](β2ε
D
ji[t] + εSji[t]).

(22)

B. Redesign TC-LIF for Effective Online Learning

1) Redesigned Parameter Space: The original TC-LIF neu-
ron model has been meticulously designed to work with the
BPTT algorithm, wherein the membrane decaying constants of
the two neuronal compartments, namely α1 and α2, are set to 1
to ensure the preservation of gradient information across a long
time window. Such a design is critical for circumventing the
vanishing gradient problem commonly encountered in BPTT
training. However, within the context of e-prop online learn-
ing, the gradient preservation strategy is unnecessary. Unlike
BPTT, which relies on the chain rule for gradient updates, e-
prop employs an eligibility trace that updates iteratively for
online parameter update. As a result, e-prop algorithm is not
susceptible to the catastrophic vanishing gradient problem.
Hence, we can relax the parameter space of the vanilla TC-LIF
neuron to allow the values of α1 and α2 to become learnable.
This modification can significantly enhance the representation
power of TC-LIF neurons. As a result, the modified TC-LIF
neuron can be expressed as:

vDj [t+ 1] = α1v
D
j [t] + β1v

S
j [t]− γzj [t] + Ij [t+ 1], (23)

vSj [t+ 1] = α2v
S
j [t] + β2v

D
j [t+ 1]− vthzj [t], (24)

Ij [t+ 1] =
∑
i̸=j

W rec
ji zi[t] +

∑
i

W in
ji xi[t+ 1] + b, (25)

zj [t+ 1] = H(vSj [t+ 1]− vth), (26)

where the value of β1 and β2 are fixed.
Furthermore, this redesigned parameter space of α1 and α2

can also facilitate the memory integration process by balancing
the gradient contributions from different time steps. This point
is clearer if we look at the eligibility trace of the somatic
compartment of the original TC-LIF neuron as expressed
in (19). It is obvious that equal importance β2 has been
assigned to both the input term xi[t] and the memory term
εDji[t − 1]. However, we argue that this is not a reasonable
strategy. Specifically, the memory term εDji[t − 1] defined in

(18) consistently integrates the inputs xi[i] from i = 0 to t−1
without any decay, and its impact on weight parameters in (11)
will also accumulate over time. As a result, the inputs from
earlier time steps’ will have a much greater impact than the
later time steps, and the model will gradually lose sensitivity
to new input data as time progresses. Hence, it is imperative
to re-weight the impact of εDji[t − 1], εSji[t − 1], and xi[t] in
(19) to ensure the inputs at different time step can have a more
balanced contribution. This issue can be effectively alleviated
in our redesigned parameter space described as follows:

εDji[t] = α1ε
D
ji[t− 1] + β1ε

S
ji[t− 1] + xi[t], (27)

εSji[t] = (α2 + β1β2)ε
S
ji[t− 1] + α1β2ε

D
ji[t− 1] + β2xi[t],

(28)

where the importance of each item can be independently
adjusted by adapting the value of the membrane potential
decaying constants α1, α2.

2) Time-varying Decaying Constant: As previously dis-
cussed, it is essential to balance the influence of inputs from
different time steps during the gradient calculation. To further
improve the sensitivity on new inputs, we should gradually
reduce the contribution of εDji[t − 1], εSji[t − 1] in (28) as the
training progresses. In order to achieve this, we introduce
modifications to the decaying constants α1 and α2 of the
membrane potentials, making them time-varying. Specifically,
we use two time-varying terms AD[t], AS [t] to describe the
memory trace decaying rates for the dendritic and somatic
compartments, respectively, and we call the resulted neuron
model as Adaptive TC-LIF model. The neuronal dynamics
of the Adaptive TC-LIF model can be sumamrised as:

vDj [t+ 1] = AD[t] · vDj [t] + β1v
S
j [t]− γzj [t] + Ij [t+ 1],

(29)

vSj [t+ 1] = AS [t] · vSj [t] + β2v
D
j [t+ 1]− vthzj [t], (30)

AD[t] = Clamp (Γ(t+ 1, 1/(t+ 1)), ad, 1), (31)

AS [t] = Clamp (Γ(t+ 1, 1/(t+ 1)), as, 1), (32)

where Γ(·) is the gamma distribution function, which fol-
lows the long-tail distribution of memory trace discovered in
cerebral cortical neurons [37]. ad and as are two learnable
coefficients, describing the minimum value of AD[t], AS [t],
respectively.

C. Extending e-prop to Multi-layer SNNs

The original e-prop algorithm is proposed for single-layer
networks. In this work, we extend this algorithm to multi-layer
networks to solve more complex sequential tasks [38]. With a
single-layer network architecture, the original weight update
rule of e-prop can be formulated as:

∆W o
ji[t] = −ηLj [t]

∂zoj [t]

∂hoj [t]

∂hoj [t]

∂W o
ji

. (33)

where η denotes the learning rate, the superscript “o” indicates
the output layer, and

∂ho
j [t]

∂W o
ji

represents the eligibility vector of
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Fig. 3: Comparison of model performance on three benchmark tasks.

the output layer. We can straightforwardly extend (33) to the
hidden layers of multi-layer networks as:

∆W l
ji[t] = −ηLj [t]

∂zoj [t]

∂hoj [t]

∂hoj [t]

∂zlj [t]

∂zlj [t]

∂hlj [t]

∂hlj [t]

∂W l
ji

, (34)

where the superscript “l” denotes the lth hidden layer.

IV. EXPERIMENTAL EVALUATION

In this section, we first evaluate the online learning perfor-
mance of the Adaptive TC-LIF neuron model across various
sequential modeling benchmarks, including Sequential MNIST
(S-MNIST) [39], Permutated Sequential MNIST (PS-MNIST)
[39], and Spiking Heidelberg Digits (SHD) [40]. In the case
of the S-MNIST and PS-MNIST datasets, the pixels of images
are fed into networks row by row. Subsequently, we conduct
comprehensive ablation studies to verify the effectiveness of
the proposed modifications to TC-LIF neurons. Finally, the
memory efficiency of our proposed online training approach
has been compared against the BPTT-based training method-
ologies.

A. Experimental Setups

1) Hyper-parameter and Network Architecture: We provide
the detailed settings of network structure and hyperparameters
of the Adaptive TC-LIF model in Table I.

2) Training Configuration: We employed the SGD opti-
mizer [41] to train the S-MNIST dataset for 300 epochs, with
an initial learning rate of 0.08. The learning rate was adjusted
using a cosine schedule. For the PS-MNIST and SHD datasets,
we utilized the Adam optimizer [42] and trained the networks
for 200 epochs. In the case of the PS-MNIST dataset, both the
feedforward and recurrent networks had an initial learning rate
of 0.0005, which decayed to 0.8 times the previous value after
every 15 epochs. Similarly, for the SHD dataset, both networks
used an initial learning rate of 5e−5, which also decayed to 0.8
times the previous value after every 15 epochs. The training
process was conducted on an Nvidia GeForce GTX 3090Ti
GPU card with 24GB of memory.

TABLE I: Summary of hyperparameters and network archi-
tectures.

Dataset vth γ (ad, as) Network Architecture Parameters(K)

S-MNIST 1.0 0.5 (0.7,0.8) feedforward 64-256-256-10 85.1
1.0 0.5 (0.8,0.9) recurrent 64-256-256-10 155.1

PS-MNIST 1.0 0.5 (0.7,0.8) feedforward 64-256-256-10 85.1
1.8 1.0 (0.75,0.85) recurrent 64-256-256-10 155.1

SHD 1.6 0.5 (0.65,0.75) feedforward 700-128-128-20 108.8
1.6 0.5 (0.75,0.85) recurrent 700-128-128-20 141.8

B. Superior Sequential Modeling Capability

We conducted a comparative analysis of the proposed
Adaptive TC-LIF model against both LIF and TC-LIF models
using three widely-used sequential modeling datasets. The
comparison encompassed results obtained through both BPTT
(offline) and e-prop (online) training methodologies. As the
results presented in Fig. 3, our proposed Adaptive TC-LIF
model consistently outperforms the LIF neuron model in terms
of classification accuracy, under the online learning setting.
With the same number of parameters and employing the
recurrent architecture, the Adaptive TC-LIF model achieved
a remarkable classification accuracy of 98.61%, 98.54%, and
80.57% for the S-MNIST, PS-MNIST, and SHD datasets,
respectively. These findings highlight the superior sequential
modeling capacity of our proposed model.

Furthermore, the experimental results also demonstrate that
our online training approach achieves competitive accuracies
compared to the offline BPTT algorithm. Specifically, for the
S-MNIST dataset, our model when trained online exhibits a
minor accuracy gap of only -0.57% and -0.96% for the feed-
forward and feedback architectures, respectively. Similarly,
for the PS-MNIST dataset, our online trained feedforward
model shows an accuracy gap of -2.23% compared to BPTT,
while the recurrent model even surpasses the accuracy of
the vanilla TC-LIF model. The SHD dataset, comprising 250
time steps, poses a significant challenge for online learning
algorithms. Notably, the online training results of our Adaptive
TC-LIF model remain within 5% of the BPTT results. These
outcomes indicate that our proposed Adaptive TC-LIF neuron



model when coupled with the online learning method, strikes a
desirable balance between classification accuracy and training
efficiency.

C. Ablation Studies

1) Effectiveness of Learnable Decaying Constant: To em-
phasize the importance of adapting the membrane decaying
constants α1 and α2 to suit the online learning scenario, we
begin by conducting an ablation study on the vanilla TC-LIF
neuron. Specifically, we initialize the hyperparameters β1 and
β2 of TC-LIF neurons to -0.5 and 1, respectively. Furthermore,
we conduct a grid search for hyperparameters α1, α2. The
results depicted in Fig. 4 demonstrate that vanilla TC-LIF
neurons, with α1 = α2 = 1, struggle to adapt effectively
to the online learning setting. Conversely, the findings reveal
that employing moderate decay constants leads to improved
convergence. This enhancement can be attributed to a more
balanced contribution between past and new inputs.
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Fig. 4: The impact of hyperparameter setting on the test
accuracy of the S-MNIST dataset. In this figure, the dark green
color indicates high accuracy, while light red indicates low
accuracy. The location where both α1 and α2 are equals to
1.0 corresponds to the vanilla TC-LIF model.

2) Effectiveness of Time-varying Decaying Constant: To
further assess the effectiveness of incorporating time-varying
decaying constants into Adaptive TC-LIF neurons, we con-
ducted an ablation study on the SHD dataset. In this experi-
ment, we focused solely on modifying the decaying constant
A[t], while keeping other hyperparameters constant. As the
experimental results depicted in Fig. 5, the proposed Adap-
tive TC-LIF neuron with time-varying decaying constants
exhibited a substantial increase of nearly 10% in accuracy
compared to the best-performing vanilla TC-LIF model. This
improvement underscores the crucial role played by time-
varying decaying constants in enhancing the learning capabili-
ties of TC-LIF neurons, particularly in the context of long-term
sequential modeling tasks.
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Fig. 6: Actual GPU memory usage with varying time sequence
lengths on the S-MNIST dataset.

D. Efficient Memory Consumption

In theory, the memory cost of BPTT increases linearly
with the time window size T , denoted as O(T ). This linear
relationship poses significant challenges when dealing with
long sequence data. In contrast, the e-prop method enables
online updates of model parameters, resulting in constant
memory consumption. To evaluate the actual memory usage of
our proposed Adaptive TC-LIF model during e-prop (online)
and BPTT (offline) training, we conducted an empirical study
using the S-MNIST dataset. We varied the sequence length
from T = 1 to T = 784. The results, illustrated in Fig. 6,
validate our theoretical analysis. While BPTT exhibits a linear
increase in memory requirements, the e-prop method maintains
a relatively stable memory usage regardless of the sequence
length. This finding highlights the advantage of our proposed
online training approach, especially in scenarios involving
extended data sequences.



V. CONCLUSION

In this study, we investigated the feasibility of utilizing
an online learning approach to train networks of multi-
compartment spiking neurons. Our investigation began with
the mathematical derivation of the e-prop algorithm tailored
specifically for the TC-LIF neuron model. Additionally, we
introduced the Adaptive TC-LIF neuron model by carefully
analyzing the limitations of the original hyperparameter space
used in the vanilla TC-LIF neuron for online training sce-
narios. Our approaches showcased comparable performance
to the vanilla TC-LIF model achieved using the offline
BPTT method, substantially surpassing the performance of LIF
models trained with the e-prop algorithm. Furthermore, our
proposed online training approach requires consistent memory
usage, regardless of the sequence length. This highlights the
superior memory efficiency of our approach. As a result, our
study has laid a solid foundation towards enabling the training
of high-performance multi-compartmental SNNs on emerging
neuromorphic hardware.
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