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Abstract. Given the scale and complexity of large online service sys-
tems and the diversity of environments in which the services are to be
invoked, it is inevitable that those service systems contain bugs that
affect the users. As a result, it is essential for service providers to dis-
cover issues in their systems based on information gathered from users.
iFeedback is a state-of-the-art technique for user-feedback-based issue
detection. While it has been deployed to help detect issues in real-world
service systems, the accuracy of iFeedback’s detection results is relatively
low due to limitations in its design. In this paper, we propose the SKYNET
technique and tool that analyzes both user feedback gathered via spe-
cific channels and public posts collected from social media platforms to
more accurately detect issues in service systems. We have applied the
tool to detect issues for three real-world, large-scale online service sys-
tems based on their historical data gathered over a ten-month period of
time. SKYNET reported in total 2790 issues, among which 93.0% were
confirmed by developers as reflecting real problems that deserve their
close attention. It also detected 58 out of the 62 severe issues reported
during the period, achieving a recall of 93.5% for severe issues. Such
results suggest SKYNET is both effective and accurate in issue detection.

1 Introduction

Large-scale online service systems are becoming indispensable for people’s work
and everyday life nowadays. They also get more and more complex so as to
support the ever-growing needs of their users for new and more powerful func-
tionalities. The scale and complexity of such services as well as the diversity of
environments in which the services are to be invoked, however, have made it
more challenging than ever for developers to make sure the services will always
behave as expected. Despite the tremendous amount of time and effort devel-
opers invest in testing and debugging such online service systems, it is almost
inevitable that some bugs escape the developers’ attention, get released into the
field, and negatively impact users’ experience with the services. It is, therefore,
extremely important for the service providers to discover issues in their systems
based on information gathered from users in a timely manner.
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In view of that, Zheng et al. [45] recently proposed the iFeedback approach to
detecting issues based on user feedback. While the approach has been deployed
to help detect issues in large-scale online service systems and has successfully
detected severe issues, the overall precision of its results is relatively low, 76.2%
to be exact [45]. We conjecture there are three reasons for that. First, iFeedback
extracts word combinations from feedback texts as indicators of issues. Since
word combinations only capture the lexical, rather than semantical, character-
istics of feedback texts, they, as issue indicators, tend to be overly sensitive to
the wording of user feedback. Second, iFeedback detects anomalies at the level
of time intervals based on all the user feedback gathered during those intervals,
which is too coarse-grained. Since a wide range of different types of user feed-
back, concerning issues or not, may get reported during each time interval, it
is more likely for iFeedback’s judgment to be influenced or even misled by user
feedback that does not report any issues. Third, iFeedback applies an unsuper-
vised algorithm to cluster the feedback during anomalous time intervals based
on the word combinations and their contexts. While unsupervised clustering al-
gorithms are less expensive to apply, they tend to produce less precise results
than supervised algorithms in general [36].

To address these limitations of iFeedback and improve the quality of issue
detection results, we propose in this paper a novel approach, named SKYNET, to
automatically detecting issues in online service systems based on multi-channel
user input, including both user feedback and messages posted on social media
platforms. More concretely, SKYNET first employs a cascading classifier to label
the user feedback texts based on an input hierarchical label system for different
types of user experiences. Then, it applies time-series data analysis to predict,
based on historical data, a threshold for the normal frequencies of user feedback
reporting each known type of negative user experience; and it reports an issue
when more feedback of the same type than allowed by the threshold is gathered
from the users. Meanwhile, for user feedback reporting negative experiences of
previously unknown types, SKYNET reports an issue when an abnormous amount
of such user feedback concerns similar negative user experiences. The semantic
embedding of feedback texts and the customized issue detection process adopted
by SKYNET enables it to detect more real issues in service systems and to prune
out most false positives. In view that social media platforms have become im-
portant and popular venues for users to share their experiences with various
services and products, SKYNET also monitors and analyzes messages posted on
social media platforms to detect issues before they generate a large number of
user feedback or attract considerable unwanted public attention.

We have implemented the SKYNET approach into a tool with the same name.
To empirically evaluate SKYNET’s effectiveness, we applied it to detect issues for
three real-world, large-scale online service systems based on their historical data
gathered from a ten-month duration. SKYNET reported in total 2790 issues,
93.0% of which were confirmed by operators and developers as reflecting real
problems that deserve their close attention. Besides, SKYNET was able to detect
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58 of the 62 severe issues that occurred during that period of time. Such results
suggest SKYNET is highly effective and accurate in issue detection.
Contributions. This paper makes the following contributions:

— We propose the SKYNET technique that analyzes both user feedback gath-
ered from specific channels and public posts collected from social media
platforms to accurately detect issues in large-scale online service systems.

— We develop SKYNET into a tool with the same name.

— We empirically evaluate SKYNET by applying it to detect issues for three
real-world service systems based on historical data. The results produced
suggest that SKYNET is highly effective and accurate.

2 Related Work

Our work is closely related to existing work in the following areas.

Anomaly detection based on backend monitoring. In view that many
issues in online service systems affect performance attributes like “disk queue
length” and “network retransmission rate” of the backend systems, people often
monitor the corresponding key performance indicators (KPIs) of the systems and
rely on the values to detect anomalies in those services [15,18,21,22,23,25,26,39,44].
For instance, Laptev et al. [21] proposed the EGADS system that combines
a collection of anomaly detection and forecasting models to detect anomalies
in time-series KPI data. Liu et al. [25] proposed the Opprentice system that
trains a random forest with labeled KPI features to select appropriate param-
eters and thresholds for existing detectors. Xu et al. [44] proposed an unsuper-
vised anomaly detection algorithm, named Donut, to effectively detect anomalies
in seasonal KPIs. Given that online service systems automatically generate is-
sue reports and alerts when the monitored indicators exhibit anomalous values,
techniques have also been developed to mine attribute collections of issue re-
ports [15,24] to characterize and detect incidents [22].

Issue detection based on user feedback. Many issues, e.g., user interface
defects and silent back-end issues, in those systems, however, are not reflected by
pre-defined KPIs [45]. In view of that and the fact that user opinions coming in
different forms (e.g., user feedback, tweets, and forum posts) contain valuable in-
formation to support software development and maintenance [12,13,29,30,41,42],
Zheng et al. [45] proposed the iFeedback approach to detecting issues based on
user feedback on-the-fly. iFeedback first extracts word combination-based indi-
cators to represent an issue and collects each indicator’s historical occurrence
trend (HOT), then the long-term and short-term windows of the HOTs are fed
to a binary classifier to identify anomalous time intervals, and in the end, user
feedback from time intervals containing issues are clustered as reporting different
issues. SKYNET improves on iFeedback from three perspectives. First, iFeedback
extracts word combinations from feedback texts as indicators of issues, which
captures only the lexical characteristics of feedback texts, while SKYNET em-
ploys the ALBERT-tiny model to encode user feedback so that the semantics
of user feedback can be taken into account during the issue detection process.
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Fig. 1: An overview of the issue detection process with SKYNET.

Second, iFeedback detects anomalies at the level of time intervals based on all
the gathered user feedback, which is often too coarse-grained and increases the
chance of coincident non-issue-reporting feedback influencing and misleading the
issue detection process. In contrast, SKYNET employs a cascading classification
algorithm to label user feedback based on a hierarchical label system and only
takes feedback that reports negative user experiences into account in the re-
maining issue detection process. Third, SKYNET also monitors and analyzes
messages posted on social media platforms to detect issues in a timely manner,
which complements user-feedback-based issue detection.

Learning from user opinions in other forms. User opinions in other
forms have also been utilized to support various types of activities in software
development. Gao et al. [14] proposed the IDEA framework that detects issues
from review texts of apps. Stanik et al. [38] proposed an approach to iden-
tify aspects of software systems to improve based on user comments received
on Twitter. While those identified aspects may indeed need improvement, they
not necessarily are issues in the corresponding software systems. Guzman et
al. [16] proposed the ALERTme approach that automatically classifies, groups,
and ranks tweets to facilitate the analysis of application-related tweets. Williams
and Mahmoud [43] conducted a study on leveraging Twitter as a main source
of software user requirements. Johann et al. [19] proposed the SAFE approach
that extracts keywords from app feature descriptions written by developers and
app reviews on app stores to better characterize the apps. Compared with these
works, SKYNET focuses on detecting issues in online service systems based on
user feedback and social media posts.

3 The SkyNet Approach

Figure 1 depicts an overview of the issue detection process with SKYNET. SKYNET
leverages deep learning algorithms to detect issues based on multi-channel data
and it combines two loosely coupled processes: The main process is designed
for detecting issues based on user feedback texts gathered through dedicated
channels that are embedded in the service systems, while the auxiliary process
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complements the main process and aims to detect issues using posts collected
from social media platforms. Each issue detected by SkyNet is associated with
a collection of user feedback, a social media post in case it is the main concern
of the post, and a list of ten keywords extracted from the user feedback and
post using the TF-IDF method [6]. While the keywords help provide a rough
idea about an issue, developers must examine the associated user input to de-
termine whether the reported issues reflect real problems in the service systems.
In the rest of this section, we explain in detail the steps in SKYNET’s main and
auxiliary issue detection processes.

Note that, as in other model-based approaches, we periodically review the in-
put user feedback and social media posts as well as the detected issues, manually
rectify the incorrect detection results if any, and use the new data to fine-tune the
models that SKYNET utilizes so as to keep the models fit for the updated business
situation and to prevent model degradation. Also note that, although sometimes
users include images in their feedback and social media posts to help explain the
problems they have encountered, SKYNET does not utilize such information in
its current implementation. We leave the development of new techniques that
exploit the extra image information to facilitate issue detection for future work.

3.1 Hierarchical Classification of User Feedback

The first step in issue detection with SKYNET is to decide the type of user ex-
perience that each piece of the gathered user feedback reports. SKYNET makes
such decisions on the basis of a hierarchical label system, where the labels char-
acterize with different levels of detail the types of (negative) user experiences
that users report in their feedback.

SKYNET differentiates three broad categories of user feedback in issue de-
tection, namely feedback reporting negative user experiences of a known type,
feedback reporting negative user experiences of unknown types, and feedback
not reporting negative user experiences. User feedback from the first two cate-
gories is collectively called negative experience reporting feedback. Note that not
all negative user experiences are caused by issues in service systems. For exam-
ple, although a user’s access to an online service will be blocked if her device
is offline due to a hardware failure, the experience does not indicate anything
problematic in the online service system.

Feedback Encoding Since SKYNET is designed to detect issues in large-scale
online service systems, and it may need to process a large number of user feed-
back under tight time constraints, we use ALBERT-Tiny [20] to encode the
user feedback. BERT [11] is a pre-trained state-of-the-art language representa-
tion neural network model with strong semantic comprehension capability. AL-
BERT [20] is a lite BERT architecture, and it lowers the memory consumption
and increases the training speed of BERT, while without significantly sacrific-
ing BERT’s semantic comprehension ability, by sharing parameters across layers
and reducing embedding dimensions of words. ALBERT-Tiny [20] is the smallest
version of ALBERT that is 10x times faster than BERT for inference.
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Fig.2: A sample hierarchical label system (in blue) and some examples of the associated
user feedback.

Hierarchical Label System To correctly decide which type of user experience
each user feedback reports is crucial since incorrect decisions made here may
mislead the downstream steps and cause the whole task of issue detection to
fail. SKYNET employs an existing hierarchical label system to facilitate making
those decisions. In the system, each label corresponds to a particular type of
user experience that users may have with the target online service system.
Designing a label system to properly characterize user experiences is a chal-
lenging task. SKYNET adopts a hierarchical, rather than flat, label system mainly
because it is extremely difficult, if not impractical, to decide a priori on the right
granularity level for the labels in a flat system so as to strike a good balance
between the accuracy and the value of the classification results based on that
label system. On the one hand, a coarse-grained label system often makes it
easier for a classifier to correctly label the input data, but the classification re-
sults may not be very useful since each label encodes little extra information.
On the other hand, a fine-grained label system typically makes it harder for a
classifier to correctly label the input data, but a correct label in this case can be
highly valuable since it encodes abundant extra information. In the context of
user feedback classification for issue detection, coarse-grained labels provide rel-
atively vague information about the user experience, which may not be sufficient
to help developers effectively confirm or understand the underlying issues.
Figure 2 displays part of the hierarchical label system that SKYNET uses for
classifying the user feedback on an online video editing system. In the hierarchical
label system, labels at the top level classify all the user feedback into broad
categories concerning aspects like “Functionality” and “User Account” of the
online system, labels at the intermediate level partition the broad categories
into smaller, finer-grained ones, while labels at the bottom level correspond to
specific types of experiences that users may have when using the online system.
Two top-level labels in the hierarchical label system, namely “Unknown” and
“Non-negative”, are special in the sense that they do not have subordinate labels
because they are for user feedback texts that report negative user experiences
of previously unknown types and that do not report negative user experiences,
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respectively. Since some user experiences of previously unknown types may still
reveal important issues of the systems, SKYNET conducts extra analysis on the
related feedback to determine if they report any issues. Section 3.2 gives more
details about the analysis. User feedback classified as “Non-negative” will not
be further processed by SKYNET.

Figure 2 also lists some example feedback snippets from users of the online
video editing system and associates the snippets to their corresponding labels.
Two things from the examples are worth noting. First, users often use different
words in describing the same issue. For example, the words “save” and “ex-
port” were used in snippets 1-1 and 1-2 to refer to the action of exporting a
video, respectively. Second, different words with similar meanings may be used
to describe user experiences of distinct types. For example, the word “save” was
used in both snippets 2-2 and 3-2, which report different types of negative user
experiences. Due to such flexibility in natural language expressions, using word
combinations like (“save” and “video”) to characterize and group user feedback,
as was done in previous work [45], may often produce results of low precision. In
view of that, SKYNET extracts the semantics of the experiences reported in user
feedback via deep learning and classifies user feedback based on their semantics.

We do not consider the requirement for an input hierarchy of user feedback
labels as a major restriction to SKYNET’s applicability for two reasons. First,
although not every service system readily has a dedicated hierarchy of user feed-
back labels, hierarchies from similar systems could be used instead to bootstrap
the application of SKYNET on a new service system since, according to our
experience, systems with similar functionalities often share hierarchies of user
feedback labels. Second, a collection of appropriate issue labels is essential for the
effective management of issues in large online service systems. Developers need
to devise the labels with or without tool support, and the labels can be organized
into a hierarchy to drive SKYNET. While the construction of such a hierarchical
label system may require some manual effort, such investment is worthwhile in
the long term since a high-quality label system can greatly improve the result
accuracy of feedback classification and issue detection.

Cascading Classification SKYNET employs cascading classification to asso-
ciate user feedback to the labels from the hierarchical label system. Cascading
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is a particular case of ensemble learning based on the concatenation of several
sub-classifiers [2]. In SKYNET’s cascading classification for hierarchical labels,
each sub-classifier targets only the labels at a particular level, and the output
of a high-level sub-classifier is used as additional input to drive lower-level sub-
classifiers in the cascade. In such a setting, it is relatively easier for high-level
sub-classifiers to produce proper classification results since the number of labels
they need to consider is small and the differences between instances from dif-
ferent classes are big; It is also relatively easier for low-level sub-classifiers to
achieve more precise classification results since they only need to focus on the
labels subordinate to those labels output by high-level sub-classifiers [35].

Figure 3 shows the cascade classifier SKYNET employs to categorize the user
feedback on the online video editing system described in Section 3.1. The classi-
fier contains three sub-classifiers, each for one level of the label hierarchy. Each
sub-classifier is a two-layer network, with the neural cells on each layer being
fully connected with each other, and it takes all its parent-level classifiers’ output,
if any, as input for the current level’s classification. For instance, the top-level
sub-classifier classifies user feedback based on the highest level labels like “Func-
tionality” and “User Account” according to the input text embedding. While
the bottom-level sub-classifier takes both the text embedding and the output of
the two sub-classifiers at higher levels as input to conduct the most fine-grained
classification. The connections between classifiers help preserve the cascade re-
lationship between multi-level labels and improve classification accuracy.

Particularly, each sub-classifier is a multi-class classifier with a loss function
defined as L = % Zi\il chzl 1085(Yic, ic), where N is the number of samples,
C' is the total number of classes in the classification, ;. is the probability of ith
training example belonging to the cth class, y;. is a binary indicator function that
represents the ground truth label, while l0ss(yic, Jic) is the cross-entropy loss
between the classification results and the ground truth. Cross-entropy loss [10]
is a common loss function for classification tasks, and its value increases as the
predicted probability diverges from the actual labels.

The loss function for the overall cascading classification model is defined as
Loverait = aly + 8L +vL3. That is, the overall loss Lyyerq of the model is the
weighted sum of the loss L,, at the n-th cascading level (1 < n < 3), with «, 8
and v being the weights of corresponding levels. We assign decreasing values
0.8, 0.6, and 0.4, to «, B and -, respectively, based on the intuition that an
incorrect label at any level will lead to incorrect labels for all the underneath
levels. With the cascading connections, the weight of the first level sub-classifier
will be adjusted with respect to the loss of all classifiers at the three levels
during back-propagation, and the weight of the second level sub-classifier will be
adjusted with respect to the loss of sub-classifiers at the second and third levels.

3.2 Issue Detection Based on User Feedback

While it is useful to classify feedback texts based on the types of user experi-
ences they report, it is neither necessary nor practical to manually examine all
the user feedback that reports negative experiences. On the one hand, not all
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user feedback reporting negative experiences is caused by issues in online ser-
vice systems that demand manual inspection by developers. On the other hand,
user feedback reporting negative experiences with popular service systems often
comes in overwhelming numbers, and therefore it can be prohibitively expensive
to manually handle all those user feedback.

To help developers better distribute their time and effort on tasks for issue
handling, SKYNET only reports issues for negative experiences shared by a large
number of users. Particularly, SKYNET employs a time series forecasting tech-
nique to dynamically predict a threshold for the frequency of each known type
of negative user experience. An alert indicating the discovery of an issue that
needs to be handled will be raised if negative user experiences of the related type
get reported more often than allowed by the threshold.

Issues of Known Types When SKYNET classifies a piece of user feedback text
to a known type of negative user experience, we say the feedback is an instance
of the user experience type. By concatenating the instance numbers of a known
negative user experience type within each time unit, we form time-series data
about the frequency of that type of user experience. Based on the hypothesis
that a rising issue of known type will cause outliers in the time-series data of its
corresponding label, SKYNET determines that there is an issue when the number
of user feedback reporting a particularly known type of negative experience in a
time period exceeds a threshold.

Since the normal frequency of each type of negative user experience is closely
related to several factors that vary across experience types and over time, adopt-
ing a fixed threshold for all negative user experience types would be too rigid.
First, different types of negative experiences naturally occur in different frequen-
cies. For example, in our experience, it is normal to have in each day a few hun-
dred users of a large-scale service system reporting that they cannot receive the
verification code, and the reasons often include things like typos in their phone
numbers, unstable connections of their phones, and the low response speed of
their network operators, none of which is indicative of issues in our systems.
On the contrary, the daily number of users reporting problems with uploading
files is typically much smaller, and when that number increases significantly, it
is highly likely that an issue in our system is the cause. Second, the normal fre-
quency of any type of negative user experience fluctuates at different times in a
day, a week, or a month. For instance, most negative experiences occur more of-
ten during the day when most users are active than at midnight when most users
have fallen asleep. Since predicting a dynamic threshold with historical data is a
widely accepted way to detect issues [33,21], SKYNET naturally formulates the
issue detection problem as a time series forecasting problem that predicts the
normal frequency range for each label based on historical data.

More concretely, we apply a sliding window strategy for the segmentation
of each label’s historical data, and we adopt a classical bidirectional long short-
term memory (BiLSTM) [17] network to learn the historical trends of individual
labels. The window size is set to 50 time units in the current implementation, and
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Fig. 4: Expansion of frequency data with feedback type ID, which enables the prediction
of multiple thresholds with a unified BILSTM model.

the window slides with a stride length of one time unit. Note that all outliers—
data points outside the interquartile range [4]—in the time series are removed,
the Min-Max normalization [31,32] is applied for feature scaling before training.

BiLSTM is a recurrent neural network that takes historical time series data
as input to make a prediction based on the trend. To predict a value y; for time
t, the model takes a series of historical data [z:_5¢,...,2:—7] as input, where
x; represents the feature vector for the time unit immediately after ¢. During
training, the model loss is the mean squared error between the actual value y;
and the predicted value y; for time t.

Based on the predicted frequency y; for a label, SKYNET calculates the
threshold th; for the label as y] * dr, where dr is a dynamic ratio calculated as
log(std([z—50, ..., Tt—1])/mean([zi_50, ..., 2¢+—1])). The rationale behind the cal-
culation of the threshold is that the magnitude of acceptable frequency fluctu-
ations should be proportional to the absolute value of the frequency prediction
for the label. For example, when the occurrence of a label increases by ten, this
fluctuation would be relatively smaller if the label’s regular frequency y; is ten
thousand instead of a hundred. We apply a log transformation when calculating
dr to keep it relatively small.

Predicting Multiple Thresholds with A Unified BiLSTM Model Usually, predict-
ing the normal frequency of a particular type of user feedback requires training
a specialized model with the historical frequency data associated with that type.
Training one specialized model for each prediction task, however, would cause
high costs for the application and maintenance of SKYNET. To reduce those
costs, we expand the values in the time series data for each type of user feed-
back with the identity of that type and use the expanded time series data of all
feedback types to train a unified BiLSTM model. The unified model is then able
to predict the normal frequencies of different types of user feedback.
Particularly, we expand the feedback frequency data in three steps, as de-
picted in Figure 4. We first apply one-hot encoding to produce a unique value as
the identity of each type of user feedback. Since one-hot type IDs generated in
this way are typically sparse, we then transfer them to a dense vector via a fully-
connected network g(-). Afterward, the frequency data and the dense vector will



Smart Issue Detection for Large-Scale Online Service Systems 175

ALBERT
Feedback -

1
|

: Unknown
Clustering —

W2V + SIF

I qu3z 14397V B dIS

Fig. 5: Detecting issues of unknown types by clustering user feedback.

be combined to form the expanded frequency data. That is, given the one-hot ID
6 of a user feedback type and the vectorized frequency T; of this user feedback
type at time ¢, the expanded frequency is constructed as 77 ® g(d), where @
indicates vector concatenation. Here, the transfer of one-hot type IDs to dense
vectors is necessary because, without it, all but one dimensions of the input data
would be for the feedback type ID, and it will be extremely hard for the BiLSTM
model to learn meaningful knowledge about the feedback frequency.

Evaluation results of SKYNET on three real-world large-scale online service
systems, as detailed in Section 4, show that such unification does help improve
the efficiency, while without significantly sacrificing the effectiveness, of threshold
prediction in SKYNET.

Issues of Unknown Types Recall that all feedback reporting previously un-
known types of negative user experiences will be classified into the “Unknown”
category, and such feedback may also reveal issues if many of them concern
similar experiences. In view of that, SKYNET clusters user feedback in category
“Unknown” periodically (e.g., every half an hour) and raises an issue when the
number of feedback in a cluster exceeds a threshold. Figure 5 depicts the main
steps SKYNET takes to detect issues of unknown types based on clustering.

To increase the chance that user feedback reporting similar user experiences
gets placed into one cluster, it is important that the embedding properly cap-
tures the semantic characteristics of the feedback texts. To that end, SKYNET
naturally uses the fine-tuned ALBERT-Tiny model to generate the deep seman-
tic embedding of these feedback texts. Feedback clustering solely based on that
embedding, however, may suffer from the overfitting problem and miss issues
of unknown types because the ALBERT-Tiny model was fine-tuned w.r.t. the
input hierarchical label system. Therefore, SKYNET also incorporates the shal-
low semantics extracted with Word2Vec [27,28] and Smooth Inverse Frequency
(SIF) [9] to facilitate the clustering. Word2Vec is a pre-trained model that mas-
ters word associations from a large corpus of text, while SIF uses the vector cal-
culated as the weighted average of all word vectors to embed a sentence. Given
a piece of feedback text, SKYNET first applies Word2Vec to produce the em-
bedding for each token in the text and then converts the token embeddings to a
sentence embedding with SIF. Afterward, the overall embedding of the feedback
combining its shallow and deep semantic information is formed by concatenating
the embeddings produced by ALBERT-Tiny and SIF, respectively.
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With the overall semantic embedding as input, SKYNET employs the K-
means algorithm to cluster “Unknown” feedback into groups. Note that, since
the “Unknown” user feedback usually concerns a wide range of user experiences
without concentrating on any specific types, we expect the resultant clusters to
be small in size. Correspondingly, when those user feedback texts form large
groups, it is highly likely that the feedback in those groups reveals issues in the
system. Specifically, SKYNET reports an issue if the size of a cluster exceeds
a threshold Hy = MAX(Nyotar/m * @, ), where Nigiq is the total number of
feedback being clustered, m is the (predefined) number of clusters to produce,
while both a and S are constants. In other words, an alert will be raised if the
number of feedback in a cluster is larger than both « times the average cluster
size and a fixed value 3. We conservatively set a to 5 in SKYNET since, according
to our experience, an issue often causes the size of its corresponding feedback
cluster to increase by 10 times or even more. (3 is introduced to avoid reporting
issues merely because the value of Nyptqr/m* v is very small, e.g., when the total
number of user feedback to be clustered is small, and we empirically set it to 10.

3.3 Issue Detection Based on Social Media Data

Due to the potentially high cost and the impact that negative public opinions
may cause when they are overlooked, SKYNET dedicates an auxiliary process to
detecting issues reflected by posts on social media platforms.

Compared with user feedback collected from dedicated channels that is more
informative and has labeled historical data for training, social media posts usu-
ally contain noisy data, are less structured, and often cover a wide range of
topics, making it more challenging to extract issue-related information from
them. In view of that, SKYNET adopts a two-stage denoising process to prune
out most posts that are either not directly related to the service system under
consideration or not reporting experiences likely associated with issues.

More concretely, during the two-stage denoising process, SKYNET first ap-
plies keyword-based search to filter out posts that do not mention the name of
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the target service system, and then applies a binary classification model con-
structed with ALBERT-Tiny to further filter out posts not reporting negative
user experiences. To train the classification model, we collect product-related
posts and manually labeled them to distinguish whether they report negative
user experiences. We refer to all the social media posts that are retained after
the two-stage denoising process as relevant posts.

To identify social media posts that report negative experiences likely associ-
ated with issues, SKYNET employs a cross-domain joint-decision-making process
based on both user feedback and social media posts. As depicted in Figure 6,
for each relevant social media post, SKYNET first retrieves similar user feedback
from past time windows. We consider two types of similarities between user feed-
back and social media posts. The lexical similarity is calculated using the Lucene
correlation algorithm that comes with ElasticSearch [3], which is based on the
classic BM25 algorithm [8]. We consider a piece of user feedback to be a lexical
match of a social media post if the BM25 score between them is higher than a
threshold 40. The semantic similarity is calculated as the Euclidean distance be-
tween the ALBERT-Tiny embeddings of the user feedback and the social media
post. We consider a piece of user feedback to be a semantic match of a social
media post if the distance is smaller than a threshold of 0.4. A piece of user feed-
back is considered a match for a social media post if it is a lexical or semantic
match for the post. Obviously, it is possible that a piece of user feedback is both
a lexical and a semantic match of a social media post.

Given a relevant social media post p, let N and Ny be the total number of
matching user feedback for p in the past hour and day, respectively, SKYNET
raises an issue if Nj, exceeds the threshold Hj, = MAX (ay, * Np, B) or Ny
exceeds the threshold Hy = M AX (g% Ny, 34), where Nj, and Ny are the average
number of matching user feedback for p in each hour and day of the past week,
respectively, while ay, ag, O, and 4 are constants. Intuitively, an alert will be
generated if (1) the number of similar user feedback in the past hour is larger
than both «j, times the hourly average across the past week and a fixed value
Br or (2) the number of similar user feedback in the past day is larger than
both ag4 times the daily average across the past week and a fixed value fBy.
We empirically assign 3, 3, 5, and 10 to ap, ag, B, and g4, respectively, in
the current implementation of SKYNET, and we leave the development of more
sophisticated techniques for predicting the threshold values for future work.

4 Experimental Evaluations

We experimentally evaluated the effectiveness of SKYNET and the usefulness of
its components based on its application results produced on real-world online
service systems. Our evaluation aims to address the following research questions:

RQ1: How effective is SKYNET in detecting issues in industry-level online service
systems? In RQ1, we assess the effectiveness of SKYNET in issue detection
in terms of the precision and recall it achieves from a user’s perspective.
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Table 1: Industry-level online service systems used as the subjects in our experiments.

ID DESCRIPTION MAU #FEEDBACK #LABEL

TOP INTERM. BOTTOM

S1 An online video sharing platform > 600m > 100,000 36 140 360
S2 An online video editing system > 130m > 1,000 13 188 442
S3 An online beauty camera platform > 27m > 200 7 51 84

RQ2: How useful are the individual component mechanisms of SKYNET for the
overall issue detection? Recall that SKYNET integrates three components
to effectively detect issues in large-scale online service systems, namely a
component Cy, that applies cascading classification and time series analysis
to detect issues of known types based on user feedback, a component C,
that applies the K-means clustering algorithm to detect issues of unknown
types based on user feedback, and a component C), that applies joint decision
making to detect issues based on social media posts. In RQ2, we investigate
how much each of these components contributes to the overall effectiveness
of SKYNET.

We were not able to experimentally compare SKYNET with iFeedback for
two reasons. First, the implementation of iFeedback is not publicly available.
Second, faithfully re-building the tool is hardly viable because important in-
formation regarding its implementation is missing from the related publication.
For example, we only know from the publication that iFeedback employs an
XGBoost-based model to classify whether a time interval contains an issue, and
it applies a hierarchical algorithm to cluster the user feedback as reporting dif-
ferent issues [45], but no information about the settings and parameters of the
model and algorithm adopted in their implementation was given in the publi-
cation, although those settings and parameters may greatly affect iFeedback’s
issue detection capabilities.

4.1 Subject Systems

In our experiments, we applied SKYNET to three industry-level online service
systems. Table 1 summarizes the basic information about the systems. For each
system, the table gives its ID, a brief description, its number of monthly active
users (MAUs) in millions, and the average number of user feedback items re-
ceived per day for the system. System S1 is an online video-sharing social media
platform, system S2 is an online video editing system, and system S3 is an online
beauty camera platform. The subjects include systems of different types for dif-
ferent users, with different magnitudes of MAUs, and receiving different amounts
of user feedback. The diversity in the subject systems helps to ensure that the
experiments are representative of SKYNET’s behavior in different situations.
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4.2 Model Training

Since all three subject systems mainly target Chinese users, we configured SKYNET
to utilize a pre-trained ALBERT model [1], the DSG embedding corpora [7], and
the Jieba text segmentation library [5] for processing texts in Chinese. Mean-
while, we configured SKYNET to utilize the texts posted on Weibo?, one of the
biggest social media platforms in China, for issue detection in the experiments.

For each system, we utilized historical user feedback with labels manually
assigned by the system developers over a one-month period to fine-tune the
ALBERT-Tiny model and to train the cascading classification model as a whole.
To prepare the hierarchical label system, first, we invited the system developers
to decide which labels associated with negative user experience reporting feed-
back should be retained as the bottom layer labels. Then, following the principles
described in Section 3.1, the developers were asked to group and summarize the
bottom layer labels to form the intermediate and top layer labels. Finally, all the
other labels indicating negative user experiences were converted to “Unknown”,
and the remaining labels were converted to “Non-negative”. In this way, we pre-
pared for each online service a hierarchical label system and a large number
of user feedback associated with those labels. For each constructed hierarchical
label system, Table 1 gives the numbers of labels at its three different layers.

Afterward, we followed the standard practice [34] to tune the hyperparam-
eters to be used with the classification and BiLSTM models. Particularly, for
each service system, we we selected via random search a group of 10 hyperpa-
rameters that enables the classification model to correctly label the most his-
torical user feedback texts, and then we looked for values adjacent to these
hyperparameters via grid search [34] that produced the highest number of cor-
rect labels and used the values for the classification model in our experiments.
The BiLSTM model was trained through stochastic gradient descent [37] on
the time series data derived from the given historical feedback data. For exam-
ple, for the experiments on service system S1, the cascading classification model
used the following non-default hyperparameters: batch_size=24; dropout=0.1;
learning rate=2e—5; warm up_proportion=0.1; max_epoch=10, while the BILSTM
model used the following non-default hyperparameters: dropout=0.1; max_epoch=
50; sequence_len=50; learning rate=0.1; batch_size=24.

4.3 Experimental Setup

We applied SKYNET to detect issues in each subject system based on historical
data collected over a ten-month period of time. Each detected issue was checked
manually by operators and developers of the systems to confirm whether it
indicates a real problem that needs to be handled. Moreover, the operators and
developers also assessed the severity of each issue based on the functionalities it
may impact, the costs it may incur, and the extent to which users’ experience
may be jeopardized. An issue is called a severe issue if its impact in at least one
of those aspects is substantial.

3 https://www.weibo.com
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To answer RQ1, we collected all the issues reported by SKYNET for the sub-
ject systems as well as the results of manual inspections on the issues. Following
the practice in previous work [45], we measure the effectiveness of SKYNET in
terms of the precision and recall of the issue detection results produced by the
tool. In particular, the precision is calculated as the percentage of real issues in
all the detected issues, i.e., N!/N%, where N! and N/ are the numbers of issues
confirmed by developers and detected by SKYNET, respectively; The recall is
calculated as the ratio of detected severe issues to all the severe issues recorded
for the whole experiment period, i.e., N /N;?, where Nj and N/ are the numbers
of severe issues detected by SKYNET and recorded by developers, respectively.
Note that metric recall concerns only severe issues in the system because severe
issues will be reported eventually due to their high impact even if SKYNET fails
to detect them, while there is no practical way for us to find out the exact total
number of real issues in those systems.

To answer RQ2, we ran SKYNET two more times on all the user feedback
data and the social media posts to detect issues for the systems, the first time
with component C,, being disabled and the second time with both components
Cp and C, being disabled. Then, we compared the issue detection results from
the three runs in the number of issues detected as well as the precision and recall
of the corresponding results.

4.4 Experimental Results

In this section, we report on the results produced in the experiments and answer
the research questions.

RQ1: Effectiveness Table 2 lists the basic information about the issue detec-
tion results SKYNET produced on the systems. For each system, the table lists
its system ID, the numbers of issues detected by SKYNET and confirmed by
developers, the numbers of severe issues detected by SKYNET and recorded by
developers, and the precision (PREC) and recall (RECA) achieved accordingly.

SKYNET detected 2790 issues in total, 2595 of them were manually confirmed
to be true issues, achieving a precision of 93.0%. As for severe issues, developers
recorded in total 62 cases for the three systems in ten months, and 58 of them
were detected by SKYNET, achieving a recall of 93.5%. In comparison, iFeed-
back [45] was able to achieve 76.2% and 93.2% for precision and recall, respec-
tively, in its evaluation. SKYNET managed to significantly outperform iFeedback
in terms of precision while slightly improving the recall. Such results suggest that
SKYNET is both effective and accurate in issue detection.

To understand the reasons for SKYNET’s ineffectiveness, we manually in-
spected all four severe issues that were missed. Three of the four severe issues
were missed due to minor fluctuations in the number of associated user feedback.
For instance, one severe issue that SKYNET missed occurred during AB-testing
[40] of a service system. Since only a small number of users were involved in the
AB-test, while the issue seriously damaged the user experience of the system,
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Table 2: Issue detection results produced by SKYNET on the subject systems.

SID ISSUE SEVERE ISSUE PREC RECA
DETECTED CONFIRMED DETECTED RECORDED

S1 2003 1895 51 54 94.6% 94.4%

S2 507 452 7 8 89.2% 87.5%

S3 280 248 0 0 88.6% -

Overall 2790 2595 58 62 93.0% 93.5%

Table 3: Usefulness of SKYNET’s individual components for issue detection.

SID SIR Cr Cp + Cu SKYNET (Cp + Cuy + Cp)
i i s i i s i i s
NY NI Nj P R NY NI N§ P R NY NI N§ P R
S1 54 1975 1870 28 94.7% 51.9% 1997 1889 45 94.6% 83.3% 2003 1895 51 94.6% 94.4%
S2 8 497 444 5 89.3% 62.5% 507 452 7 89.2% 87.5% 507 452 7 89.2% 87.5%
S3 0 277 246 0 88.8% - 280 248 0 88.6% - 280 248 0 88.6% -

Overall 62 2749 2560 33 93.1% 53.2% 2784 2589 52 93.0% 83.9% 2790 2595 58 93.0% 93.5%

the total number of users affected was relatively small, compared with the num-
ber of users that routinely access the service provided by the system. Hence,
no alert was triggered. The severe issue could have been detected if SKYNET
predicts the threshold frequency of issue-reporting feedback texts as a ratio to
the total number of users with access to the relevant system feature. SKYNET
missed the other severe issue of a previously unknown type due to the impre-
cise clustering of feedback texts. Since various users’ descriptions of the issue
were quite different, SKYNET’s unsupervised model was not able to group all
the user feedback reporting the same issue into a cluster. This is not completely
unexpected since, although we have considered both the lexical and semantic
characteristics of feedback texts in their embedding, it is not a perfect solution
yet. We plan to devise more powerful embedding and clustering techniques to
facilitate the detection of issues of unknown types in the future.

SKYNET was effective and accurate in detecting issues for large-scale online
service systems. 93.0% of the issues detected by SKYNET reflect real problems
that demand manual inspection. 93.5% of the severe issues recorded for the
systems were detected by SKYNET.

RQ2: Usefulness of Component Mechanisms Table 3 shows the results
produced by SKYNET with various components being disabled in issue detection.
For each system identified by its SID, the table gives the issue detection results
from using just component C}, using both components Cj and C,,, and using
all three components of SKYNET. In each setting, the table lists the numbers of
issues detected by the tool (N}) and confirmed by developers (N?), the number
of severe issues detected by the tool (IV]), and the precision (P) and recall (R)
achieved accordingly.

When Cj is the only component enabled, SKYNET was able to detect 2749
issues, among which 2560 were manually confirmed, and 33 severe issues for the
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systems, achieving the overall precision and recall of 93.1% and 53.2%, respec-
tively. To put it in perspective, that is 98.7% (=2560/2595) of the real issues
and 56.9% (=33/58) of the severe issues the tool can ever detect with all its
components being enabled. Such results clearly show that both cascade feed-
back classification and dynamic threshold prediction of SKYNET were effective
in detecting issues based on user feedback. Although the recall that C} achieved
in detecting severe issues is relatively low, it is understandable since many se-
vere issues are of previously unknown types and hence beyond the detecting
capability of Cj.

Component C,, helped capture 29 (=2589-2560) real issues and 19 (=52-33)
severe issues that component Cj, failed to detect, which caused the precision of
the overall result to drop slightly to 93.0% but helped raise the recall of the over-
all result to 83.9%. The drop in the result precision is understandable since C,,
essentially detects issues of previously unknown types via unsupervised learning,
and the results of unsupervised learning are relatively low in general. Compared
with a few false positives, i.e., reported issues that were manually ruled out as
they were not real issues, the 19 severe issues detected by component C,, are sig-
nificantly more important for the developers. Therefore, we believe component
C, is a valuable complement to component Cy. Note that only feedback items
that report negative user experiences of previously unknown types are processed
by component C,,.

The issue detection results produced by components Cj and C,, also enable
us to directly compare SKYNET and iFeedback’s issue detection capability solely
based on user feedback. As shown in Table 3, if only having access to user feed-
back, or when component C), is disabled, SKYNET was able to detect 2784 issues,
among which 2589 were confirmed to be real ones and 52 were considered severe.
The precision and recall achieved are therefore 93.0% and 83.9%, respectively.
Recall that the precision and recall iFeedback achieved were 76.2% and 93.2%,
respectively. The differences suggest that SKYNET and iFeedback make different
tradeoffs between issue detection precision and recall. iFeedback is more lenient
in reporting issues. On the one hand, many issues it reported turned out to
be false positives; On the other hand, it managed to detect more severe issues;
SKYNET is stricter in reporting issues. On the one hand, it reported fewer false
positives; On the other hand, it missed a few more severe issues.

SKYNET makes up for its relatively low recall in issue detection based on
user feedback by taking into account also users’ posts on social media platforms.
Although component C), only detected 6 more real issues in our experiments,
all of them turned out to be severe, and missing any of these issues may have
caused great damage to the company. Therefore, although this component has
only slightly improved the overall recall, we consider it to be a crucial and non-
dispensable part of SKYNET.

All the three components Cy, C,,, and C,, are important for SKYNET to detect
(severe) issues in an effective and accurate manner.
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Threat to Validity In this section, we discuss possible threats to the validity
of our findings and show how we mitigate them.

Construct validity. In our evaluation, a reported issue could be manually
confirmed or rejected as a real or severe issue, but different people may provide
different assessments. To mitigate this threat, we directly reused the independent
issue assessment results from the developers of the service systems.

Internal validity. SKYNET makes use of a list of parameters, including, e.g.,
the size of the sliding window for BiLSTM and the similarity threshold for match-
ing social-media posts with user feedback texts. We set the parameters based on
our experience in the current implementation of SKYNET. Experimental eval-
uation conducted on three industry-level online service systems produced very
promising results, suggesting the chosen parameter values are appropriate. Hav-
ing said that, we are aware that different values for the parameters may influence
SKYNET’s effectiveness, and therefore we plan to conduct more experiments in
the future to systematically evaluate the possible influence.

We were not able to experimentally compare SKYNET with iFeedback for
reasons stated at the beginning of Section 4. As the result, we compared the
two tools based on the results they produced on the subject systems in their
corresponding evaluations. For the comparison to be as fair as possible, we eval-
uated SKYNET on service systems of similar scales from various categories of
applications. Moreover, the comparison was based on common metrics precision
and recall, instead of measurements like the numbers of issues and severe issues
detected, which greatly depends on the experimental setup.

FEaxternal validity. The subject service systems adopted in our experiments
were real-world services of different scales and from different application do-
mains. These characteristics help mitigate the risk that our evaluation overfits
the subjects. In the future, on the one hand, we will continue monitoring the
execution of SKYNET on existing service systems, on the other hand, we will
deploy SKYNET on more service systems. We see no intrinsic limitations that
would prevent SKYNET from working reliably on different online service systems.

5 Conclusions

This paper presents the SKYNET technique and tool that utilize user data gath-
ered from multiple channels to detect issues for large-scale online service systems.
The technique has been applied to detect issues for three real-world online ser-
vices based on historical data gathered over a ten-month period of time. The
produced results suggest that SKYNET is both effective and accurate in detect-
ing issues and severe issues for large-scale online service systems.

6 Data Availability

The SKYNET tool has been integrated into the production issue tracking system
in the first author’s company. For confidentiality reasons, neither the tool nor
the multi-channel user feedback can be available for public download.
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