
Citation: Wang, L.; Zhang, M.; Gao,

X.; Shi, W. Advances and Challenges

in Deep Learning-Based Change

Detection for Remote Sensing Images:

A Review through Various Learning

Paradigms. Remote Sens. 2024, 16, 804.

https://doi.org/10.3390/rs16050804

Academic Editor: Eufemia Tarantino

Received: 24 January 2024

Revised: 23 February 2024

Accepted: 23 February 2024

Published: 25 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

Advances and Challenges in Deep Learning-Based Change
Detection for Remote Sensing Images: A Review through
Various Learning Paradigms
Lukang Wang 1 , Min Zhang 2,3,* , Xu Gao 1 and Wenzhong Shi 2,3

1 School of Environment and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China; wanglukang@cumt.edu.cn (L.W.); xugao@cumt.edu.cn (X.G.)

2 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong;
john.wz.shi@polyu.edu.hk

3 Otto Poon Charitable Foundation Smart Cities Research Institute, The Hong Kong Polytechnic University,
Hong Kong

* Correspondence: lsgi-min.zhang@polyu.edu.hk

Abstract: Change detection (CD) in remote sensing (RS) imagery is a pivotal method for detecting
changes in the Earth’s surface, finding wide applications in urban planning, disaster management,
and national security. Recently, deep learning (DL) has experienced explosive growth and, with its
superior capabilities in feature learning and pattern recognition, it has introduced innovative ap-
proaches to CD. This review explores the latest techniques, applications, and challenges in DL-based
CD, examining them through the lens of various learning paradigms, including fully supervised,
semi-supervised, weakly supervised, and unsupervised. Initially, the review introduces the basic
network architectures for CD methods using DL. Then, it provides a comprehensive analysis of CD
methods under different learning paradigms, summarizing commonly used frameworks. Addition-
ally, an overview of publicly available datasets for CD is offered. Finally, the review addresses the
opportunities and challenges in the field, including: (a) incomplete supervised CD, encompassing
semi-supervised and weakly supervised methods, which is still in its infancy and requires further
in-depth investigation; (b) the potential of self-supervised learning, offering significant opportunities
for Few-shot and One-shot Learning of CD; (c) the development of Foundation Models, with their
multi-task adaptability, providing new perspectives and tools for CD; and (d) the expansion of
data sources, presenting both opportunities and challenges for multimodal CD. These areas suggest
promising directions for future research in CD. In conclusion, this review aims to assist researchers in
gaining a comprehensive understanding of the CD field.

Keywords: change detection; deep learning; remote sensing; semi-supervised; weakly supervised;
unsupervised; self-supervised; Foundation Models; multimodal

1. Introduction

Remote sensing (RS) image change detection (CD) is a technique that utilizes multi-
temporal RS imagery and auxiliary data to extract and analyze information on surface
changes [1]. CD serves as a crucial tool for earth surface observation and is extensively
used for updating land use changes [2], assessing natural hazards [3], and analyzing urban
sprawl [4].

With the rapid development of deep learning (DL) technology, it has shown great
potential and broad application prospects in the field of CD [5–7]. DL, with its excellent
capabilities in feature learning and pattern recognition, has brought innovative solutions
and methods to CD. Compared to traditional methods based on manually designed fea-
tures [8–11], DL automatically learns high-level feature representations from data, signifi-
cantly improving the performance of CD. The transition to DL-based methods signifies a
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paradigm shift in CD, moving from labor-intensive feature engineering to an era where
models can autonomously learn and adapt. This development promises to accelerate the
pace of innovation in CD, offering new avenues for research and practical applications that
were previously unattainable with conventional methods.

With the continuous advancement in Earth observation technologies [12,13], the ac-
quisition of RS imagery has made significant progress, as evidenced by improved spatial,
temporal, and spectral resolutions. This advancement has led to an increase in the volume,
complexity, and heterogeneity of RS data. Such developments present unprecedented
opportunities to deeply understand the changes and evolution on the Earth’s surface, but
also bring substantial challenges in data processing [14,15]. These challenges include the
considerable effort and time required to annotate large datasets, coarse-grained data labels,
and effective leveraging of the vast amount of unlabeled Earth observation data. Against
this backdrop of challenges, combined with practical application needs, CD tasks face
a diversity of data sample scenarios. Hence, employing various innovative methods to
tackle these varied data sample scenarios is crucial. This facilitates the maximization of
the continually evolving potential of remote sensing technology, enabling practitioners to
extract more meaningful solutions from the burgeoning data resources.

In these varied data scenarios, choosing the appropriate learning paradigm becomes
particularly crucial. Traditional fully supervised learning paradigms perform well with
sufficient labeled data but may encounter overfitting issues in data-scarce situations. Semi-
supervised and self-supervised learning paradigms can enhance model performance by ef-
fectively exploiting the abundant information contained within unlabeled samples. Weakly
supervised learning paradigms can achieve CD tasks using coarsely labeled data, such as
image-level, bounding box, or scribble labels. Additionally, transfer learning and domain
adaptation techniques play an active role in handling CD tasks across different data sources.
The distinct advantages and application contexts of these learning paradigms provide
diversified solutions for CD tasks, not only enriching the choice of methodologies but also
opening new possibilities for CD research adaptable to various data scenarios.

Most existing reviews [5–7,16,17] in the field of CD have predominantly focused
on fully supervised or unsupervised methods, often overlooking the nascent areas of
semi-supervised and weakly supervised methods. Given that these emerging directions
have seen limited exploration in the past reviews, this review adopts a comprehensive
perspective, examining DL methods for RS image CD across various learning paradigms,
as shown in as Figure 1. To better illustrate these paradigms, a schematic diagram of CD
across different learning paradigms is presented in Figure 2. This review extends from the
basic network architectures to the latest methods within various paradigms, providing a
thorough summary and analysis of common frameworks. Furthermore, this review keenly
focuses on the challenges and promising prospects brought forth by the rapid development
of DL in CD, particularly emphasizing areas like self-supervised learning and Foundation
Models. This comprehensive viewpoint underscores the timeliness and importance of this
review, especially against the backdrop of evolving DL technologies, which are reshaping
the field of CD. It not only offers researchers profound insights into the latest advancements
within the domain but also delineates potential future research directions and challenges.

The rest of the paper is organized as follows. Section 2 introduces the basic network
architectures of DL used for CD. Section 3 provides a comprehensive review of CD methods
under different learning paradigms. Section 4 discusses the adaptation, analysis, pros and
cons, and application scenarios of different learning paradigms for CD. Section 5 discusses
the opportunities and challenges of CD based on DL. Finally, we draw conclusions in
Section 6.
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2. Basic Network Architectures of DL

In this section, we explore the basic DL network architectures used for CD, encom-
passing key structures, such as Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), AutoEncoder (AE), and Transformer.

2.1. Convolutional Neural Network

CNN originated in the late 1980s, initially proposed by Yann LeCun with the LeNet-5
model for handwritten digit recognition [18]. With the expansion of dataset sizes and
increased computational power, CNNs began to demonstrate their potent feature extraction
and pattern recognition capabilities. The remarkable success of AlexNet [19] in the 2012
ImageNet image classification competition marked a significant milestone, signifying the
successful application of CNNs in large-scale image recognition tasks.

The core concept of CNN is the extraction of features from input data through convolu-
tion operations. By stacking multiple convolutional and pooling layers, CNN progressively
build a high-level abstract representation of the input data, as shown in Figure 3. Generally,
CNNs are regarded as hierarchical feature extractors that map raw pixel intensities into fea-
ture vectors across various abstract layers. The fundamental components of CNN include:
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Convolutional Layer. These are the essential building blocks of CNN, where con-
volution operations are performed to extract features from the input data. Convolution
can be seen as a filtering operation that scans across the input data with sliding filters to
obtain a series of local feature responses. The convolution operation is mathematically
represented as:

( f ∗ g)(i, j) = ∑
m

∑
n

f (m, n)g(i − m, j − n) (1)

where f represents the input data, g is the convolution kernel, and (i, j) represents the
position in the output feature map. Convolution layers often involve considerations such
as kernel size, which determines the dimension of the sliding filters and influences the
network’s ability to extract features of varying scales; stride, which indicates the distance
the filter moves across the input data; and padding, which involves adding zeros around
the input data to maintain its spatial dimensions after convolution.

Activation Function. Typically following the convolutional layers, activation functions
introduce non-linearity, mapping inputs to a new space and allowing the network to learn
complex features. The choice of an appropriate activation function, such as Sigmoid, Tanh,
ReLU, or Softmax, is crucial for the network’s training and performance.

Pooling Layer. Also known as subsampling, pooling layers reduce data dimensions
and the number of parameters while preserving essential features, thus improving computa-
tional efficiency and mitigating overfitting. Pooling functions, like max pooling or average
pooling, aggregate information within local regions to produce a reduced feature map.

Fully Connected Layer. In this layer, each neuron is connected to all neurons in the
previous layer, creating a fully connected network that combines the network’s high-level
abstractions to form complex mappings of the input data.
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CNNs play a pivotal role in the field of image processing. Their robust feature
extraction and hierarchical abstraction capabilities efficiently capture both local and global
information in images, enabling recognition of edges, textures, shapes, and other features.
This makes them the architecture of choice for tasks such as image classification [20–23],
object detection [24–26], image segmentation [27–29], and change detection [30–33].

2.2. Recurrent Neural Network

The RNN excels at processing sequential data, capturing temporal dependencies
inherent within it. This makes RNNs highly effective for tasks involving sequential or time-
related information. The RNN has a long history, dating back to the 1980s [34]. However,
training RNNs has historically been challenging due to issues such as vanishing and
exploding gradients. It was not until the early 2000s, with the development of technologies
like Long Short-Term Memory (LSTM) [35] and Gated Recurrent Units (GRU) [36], that
RNNs began to see broader application.

The RNN is distinguished by its feedback connections, allowing the network to
transmit information over time and consider entire input sequences for prediction purposes.
Specifically, at each time step, an RNN receives an input and the hidden state from the
previous time step. It then performs a linear transformation via weight matrices, followed
by a non-linear transformation through an activation function to generate the current time
step’s hidden state. This hidden state is conveyed to the network’s input layer at the
subsequent time step, creating a loop, as shown in Figure 4. The computations of an RNN
can be described as:

ht = f (Wihxt + bih + Whhht−1 + bhh) (2)

yt = f (Who · ht + bho) (3)
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Equation (2) represents the computation from the input layer to the hidden layer,
where ht is the hidden state at the current time step, xt is the input at the current time step,
Wih and Whh are the weight matrices for the input and the hidden state, respectively, bih
and bhh are the corresponding bias terms, and f is the activation function. Equation (3)
represents the computation from the hidden layer to the output layer, where yt is the output
at the current time step, Who is the weight matrix connecting the hidden state to the output,
and bho is the bias term.

The RNN is commonly employed in tasks that involve modeling sequential data, such
as language modeling [37], machine translation [38], and time series forecasting [39]. In the
realm of image processing, the RNN is typically used in conjunction with the CNN [40–42].
While the CNN effectively captures local features in image processing, the RNN leverages
its sequential processing capacity to integrate global information or capture temporal
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dependencies. Especially in tasks involving long-term sequential CD, the RNN plays a
vital role.

2.3. AutoEncoder

The AE, originating from research in neural networks and information theory, can
be traced back to the 1990s [43]. With the advancement of DL, the AE has garnered
increased attention. In 2006, Hinton proposed a method of unsupervised pre-training
followed by supervised fine-tuning [44], enabling the deep AE to effectively solve many
practical problems.

An AE is an unsupervised learning neural network model, consisting of two main
components: an encoder and a decoder, as shown in Figure 5. The encoder maps input data
to a low-dimensional hidden representation, aiming to capture the most significant features
of the input, as calculated in Equation (4). The decoder maps the hidden representation
back to the original input space, attempting to reconstruct the original data. Its goal is
to ensure that the hidden representation retains as much of the original information as
possible, as described in Equation (5).

h = f (Weh · x + beh) (4)

x̂ = g(Wdh · h + bdh) (5)
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In these equations, x represents the input data, Weh, Wdh are the weight matrices for
the encoder and decoder, respectively, beh, bdh are bias terms, f , g denotes the encoding
and decoding functions, h is the hidden representation obtained, and x̂ is the output of
the decoder. A loss function is used to measure the difference between the reconstructed
input and the original input, with common choices being Mean Squared Error (MSE) or
Cross-Entropy (CE) loss, as shown in the following equation:

L =
1
N

N

∑
i=1

||xi − x̂i||2 (6)

The AE continually learns to extract useful features from input data and aims to
accurately reconstruct the original input during the decoding phase. This capability makes
the AE a powerful tool for feature learning. In the field of image processing, the AE is
primarily used for feature learning and extraction [45], dimensionality reduction [46], and
as an initialization tool for generative models [47].

2.4. Transformer

The Transformer, a neural network architecture introduced by Google in 2017 [48], was
initially developed for natural language processing tasks, achieving remarkable success,
particularly in machine translation. As research progressed, the Transformer’s versatil-
ity became apparent, showcasing its powerful sequence modeling capabilities in image
processing [49–52] and speech recognition [53–55] etc. This versatility has made the Trans-
former one of the most prominent models in the field of DL, with an increasingly broad
range of applications.

At its core, the Transformer relies on the self-attention mechanism to process input
sequences. This mechanism enables the model to dynamically focus on different parts
of the input sequence while processing each position, thereby capturing global contex-
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tual information. The Transformer comprises components such as multi-head attention
and feedforward neural networks, as shown in Figure 6. It achieves efficient modeling
of input sequences by stacking multiple layers of these components. The fundamental
components include:

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 36 
 

 

sequences by stacking multiple layers of these components. The fundamental components 
include: 

 
Figure 6. Schematic diagram of Transformer. 

Multi-Head Attention. The Transformer introduces the multi-head attention mecha-
nism, allowing the model to focus on different aspects in various representational sub-
spaces. In multi-head attention, the input is mapped to different linear subspaces (heads), 
and attention weights are computed separately for each. The outputs from these sub-
spaces are then concatenated and linearly transformed to produce the final output. 

Positional Encoding. As the Transformer lacks a recurrent structure, it requires a 
method to handle the relative positional information within a sequence. Positional encod-
ing is added to the input embeddings to provide this information. Typically, positional 
encoding is a matrix of the same dimension as the input, with values calculated based on 
position and dimension. 

Feedforward Neural Network. Following the multi-head attention layer, each posi-
tion passes through a feedforward neural network. This network typically consists of two 
linear layers and a nonlinear activation function, independently processing the elements 
in the sequence at each position. 

Figure 6. Schematic diagram of Transformer.

Multi-Head Attention. The Transformer introduces the multi-head attention mecha-
nism, allowing the model to focus on different aspects in various representational subspaces.
In multi-head attention, the input is mapped to different linear subspaces (heads), and
attention weights are computed separately for each. The outputs from these subspaces are
then concatenated and linearly transformed to produce the final output.

Positional Encoding. As the Transformer lacks a recurrent structure, it requires a
method to handle the relative positional information within a sequence. Positional encod-
ing is added to the input embeddings to provide this information. Typically, positional
encoding is a matrix of the same dimension as the input, with values calculated based on
position and dimension.

Feedforward Neural Network. Following the multi-head attention layer, each position
passes through a feedforward neural network. This network typically consists of two linear
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layers and a nonlinear activation function, independently processing the elements in the
sequence at each position.

Residual Connections and Layer Normalization. To prevent gradient vanishing or
explosion, each sublayer’s input (such as multi-head attention and feedforward neural
network) is passed through a residual connection. This means that the input is added to
the output of the sublayer, preserving the original information. Additionally, each sub-
layer’s output undergoes normalization to ensure the network’s stability and convergence
during training.

When the concept of the Transformer was introduced into the visual domain, the Vision
Transformer (ViT) [52] redefined image classification tasks by treating images as a sequence
of regular patches, providing a new paradigm for image processing. Furthermore, in object
detection [56,57], segmentation tasks [58–60] and change detection [61–63], dividing image
regions into sequences allows the Transformer to understand images both globally and
locally, offering new perspectives and methodologies for these key tasks.

3. DL-Based CD Methods across Various Learning Paradigms

In this section, we will review and analyze DL-based methods for RS image CD
from the perspectives of different learning paradigms, including fully supervised learning,
semi-supervised learning, weakly supervised learning, and unsupervised learning. The
discussion will encompass a variety of data sample scenarios, exploring how these learning
paradigms utilize different types of data samples to address specific challenges.

3.1. Fully Supervised Learning

Fully supervised CD methods leverage multi-temporal RS imagery, richly labeled with
dense change labels, to construct and train neural network models. These trained models
are then applied to pairs of images with unknown labels for detecting changes. Currently,
research in CD using fully supervised learning is both widespread and deeply developed.
With ongoing technological advancements, two primary frameworks have emerged as
particularly successful in this field: those based on CNN and those based on Transformers.
These frameworks have achieved significant accomplishments in the field of CD.

3.1.1. Fully Supervised CD Methods Based on CNN

Fully supervised CD methods based on CNN typically utilize an encoder–decoder ar-
chitecture. This structure allows for efficient feature extraction from input data and precise
reconstruction. In the encoding phase, layers of convolutions and pooling gradually map
the raw data into a high-dimensional feature representation, effectively capturing spatial
and semantic information. The decoding phase, through deconvolution or up=sampling op-
erations, reconstructs these high-dimensional features into segmentation results matching
the input data. Numerous image segmentation networks based on this encoder–decoder
structure, such as U-Net [29], U-Net++ [64], FCN [65], SegNet [66], Deeplab [28], and
PSPNet [27], have been successfully applied to CD tasks.

Early methods [67–72] based on CNN typically began with image fusion of bi-temporal
RS imagery, as illustrated in Figure 7, using techniques like direct stacking [73], differenc-
ing [74], or principal component analysis (PCA) [75]. These fused images were then input
into DL models with single input channels to achieve CD. With further research, Siamese
network structures have become mainstream [30–33,76–83]. In these architectures, bi-
temporal images are processed through feature encoders with identical structures, enabling
the fusion of features at the level of the feature maps. This method allows models to better
understand and capture changes between the bi-temporal images, thus enhancing the accu-
racy and robustness of CD. Additionally, designing mechanisms for feature transfer or deep
feature fusion methods between the encoder and decoder helps preserve more contextual
information, which is crucial for improving CD accuracy. Integrating various attention
mechanisms for feature transfer or fusion has become a prevalent approach, including
channel attention [84–86], spatial attention [87,88], and channel-spatial attention [89,90].
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These mechanisms assign different weights to each input element, emphasizing important
features and enabling the model to focus on task-relevant aspects, reducing sensitivity to
irrelevant features. The Siamese structure has shown excellent performance in CD tasks,
becoming a significant research direction in the field.
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Consequently, current mainstream methods based on CNN typically rely on Siamese
network encoder–decoder structures, combined with attention mechanisms at the core
of feature transfer and fusion modules. Figure 8 showcases a basic network structure,
building upon this network with tailored encoder–decoder structures, feature transfer
and fusion modules, and other improvements can achieve higher accuracy in CD and
exhibit stronger applicability and effectiveness in practical applications. For example, Chen
et al. [30] designed a spatio-temporal attention neural network based on a Siamese network,
inputting bi-temporal images into two branches of a shared-weight Siamese network
to capture rich spatio-temporal features using the correlation between spatio-temporal
pixels. They integrated the attention module into a pyramid structure to capture spatio-
temporal dependencies at various scales and generate feature maps of bi-temporal images,
subsequently achieving refined CD results through deep metric learning. Shi et al. [31]
first used a Siamese network to learn the nonlinear transformation from input images
to embedding space, then applied convolutional attention mechanisms to extract more
discriminative features, employing a metric module to learn the change map and a deep
supervision module [91] to enhance the feature extractor’s learning capability. They also
used a contrastive loss function to encourage smaller distances between unchanged pixels
and greater distances between changed ones. Fang et al. [32] proposed a densely connected
Siamese network, stacking feature maps after feature extraction through the network,
and utilizing attention modules to capture relationships between pixels at different times
and locations, thus generating more distinctive features. Li et al. [33] introduced a novel
lightweight network, A2Net, using a shared-weight MobileNetV2 [92] to extract deep
features from images. They incorporated a neighborhood aggregation module (NAM) to
fuse features from adjacent stages of the backbone network, enhancing the representation
of temporal features. The progressive change identification module (PCIM) was proposed
to extract temporal difference information from bi-temporal features, and the supervised
attention module was used for reweighting features, effectively aggregating multi-level
features from high to low levels. Similarly, Zhu et al. [79] used an encoder–decoder-
based Siamese network to extract features from bi-temporal images and introduced a global
hierarchical sampling mechanism for balanced training sample selection. Additionally, they
incorporated a binary change mask into the decoder to reduce the influence of unchanged
background areas on changed foreground areas, further enhancing detection accuracy.
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3.1.2. Fully Supervised CD Methods Based on Transformer

In 2020, Google’s research team introduced the Vision Transformer (ViT) model, pi-
oneering the application of the Transformer architecture to computer vision tasks. They
demonstrated, through extensive experiments on large-scale image datasets, that ViT could
achieve performance on par with CNN in image classification tasks, marking the official en-
try of Transformers into the visual domain. This milestone sparked a wave of development
in Transformer-based visual models, such as DeiT [50], Swin Transformer [51], Twins [93],
PVT [49], Cait [94], TNT [95], and SETR [28]. These advancements have positioned Trans-
formers as one of the focal points in the research into visual tasks.

In CD tasks, fully supervised methods based on Transformers have achieved signifi-
cant results. Typically combined with CNN, these methods leverage the CNN’s prowess
in extracting local features and image details while utilizing the Transformer’s ability to
capture global dependencies and contextual information. This dual approach enables a
comprehensive understanding of complex changes in remote sensing imagery, leading to
superior performance in CD. Common model structures, similar to those used in semantic
segmentation tasks within computer vision, involve using the Transformer as a feature
extractor. Post-extraction, a decoder, either CNN- or Transformer-based, maps the features
back to the size of the input image to produce the CD output. Most methods are built on a
basic architecture, as shown in Figure 9, and can be categorized into two types based on
the decoder used:

• Transformer Encoder + Transformer Decoder [61–63,96–100]. This design fully ex-
ploits the Transformer’s self-attention mechanism in both encoding and decoding
phases, effectively integrating global information during up-sampling in the decoding
process. Additionally, this all-attention architecture maintains efficiency in handling
long-distance dependencies and large-scale contextual information, especially in pars-
ing complex remote sensing data structures. For example, Cui et al. [61] proposed
SwinSUNet, a pure Transformer network with a Siamese U-shaped structure, com-
prising encoders, fusers, and decoders, all based on Swin Transformer blocks. The
encoder uses hierarchical Swin Transformers to extract multi-scale features, while the
fuser primarily merges bi-temporal features generated by the encoders. Similar to the
encoder, the decoder, also based on hierarchical Swin Transformers, uses up-sampling
to restore the feature map to the original input image size and employs linear projec-
tion for dimensionality reduction to generate the CD map. Chen et al. [98] introduced



Remote Sens. 2024, 16, 804 11 of 35

an RS image CD framework based on bi-temporal image Transformers. This uses
Siamese CNN to extract high-level semantic features and spatial attention to convert
each temporal feature map into a compact processing unit (token) sequence. The
Transformer encoder then models the context of these two token sequences, generating
context-rich tokens. An improved Transformer decoder reprojects these back into
pixel space, enhancing the original pixel-level features. Finally, a feature difference
map is computed from the two refined feature maps and input into a shallow CNN to
produce the CD map.

• Transformer Encoder + CNN Decoder [101–107]: In this configuration, the Transformer
encoder acts as the feature extractor, capturing the global contextual information
of the input data. The extracted features are then passed to a CNN decoder for
more refined image segmentation and reconstruction. For instance, Li et al. [102]
proposed TransUNetCD, an end-to-end CD model combining Transformer and UNet.
The Transformer encoder, based on the UNet architecture, encodes feature maps
obtained from Siamese CNN, models the context, and extracts rich global contextual
information. The CNN-based decoder up-samples the encoded features and integrates
them with high-resolution, multi-scale features through skip connections. This process
learns local–global semantic features, restoring the feature map to the original input
image size to generate the CD map.
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Beyond the common method previously mentioned, there are additional Transformer-
based model architectures. For instance, Bandara et al. [108] utilized a hierarchical Trans-
former solely as an encoder to extract features from bi-temporal images, followed by
employing a lightweight Multi-Layer Perceptron (MLP) as the decoder. Additionally,
another method [109,110] employs the Transformer as a key metric module positioned
between the CNN encoder and CNN decoder, optimizing the depth features.

3.2. Semi-Supervised Learning

Semi-supervised learning sits at the intersection of supervised and unsupervised
learning paradigms. It trains models using both labeled and unlabeled samples, extracting
features in a supervised manner from labeled samples while also employing various
strategies to expand features from unlabeled ones. This approach facilitates the construction
of more effective models while reducing reliance on extensive labeled data, making it highly
practical in real-world scenarios, where acquiring a large volume of fully labeled data is
often challenging.

In the context of rapid advancements in RS technology and the accumulation of vast
amounts of unlabeled multi-temporal RS imagery, semi-supervised learning methods have
emerged as a viable and promising research approach for CD tasks. Currently, semi-
supervised CD methods can be categorized into three types: those based on adversarial
learning, self-training, and consistency regularization.

3.2.1. Semi-Supervised CD Methods Based on Adversarial Learning

These methods are developed based on generative adversarial networks (GANs) [111].
The training process of GANs is an optimization problem where the generator aims to create
increasingly realistic samples to deceive the discriminator, which strives to differentiate
between real and generated samples. The model’s performance is enhanced by minimizing
the adversarial loss between the generator and the discriminator.

In semi-supervised CD tasks, the key to these methods lies in using the discriminator
to distinguish between actual change maps and those generated by the CD network.
Specifically, the discriminator is adversarially trained alongside the CD segmentation model,
with the objective of accurately differentiating between true and predicted labels. During
this process, the discriminator can produce prediction confidence maps for unlabeled
samples. By selecting highly confident unlabeled samples and incorporating them into the
training, the model gains more information, thus enhancing its predictive capabilities for
changes. The basic framework of this approach is illustrated in Figure 10. In the field of CD,
semi-supervised learning methods based on adversarial learning are still in their nascent
stage. Jiang et al. [112] initially trained a GAN model, then connected two identically
trained discriminators in parallel to extract features from bi-temporal images. The outputs
of these discriminators were concatenated into a vector as the final output, which was
then fine-tuned using a subset of labeled data to derive the CD model. Yang et al. [113]
followed the basic framework shown in Figure 10 but did not adopt a confidence strategy;
instead, they directly incorporated all unlabeled samples into the training process. Peng
et al. [114] introduced SemiCDNet, which inputs labeled and unlabeled samples into a CD
segmentation network to generate initial predictions and entropy maps. It then employs
two discriminators to reinforce the consistency of feature distribution between change
segmentation maps and entropy maps. The final model is trained by combining supervised
loss, segmentation adversarial loss, and entropy adversarial loss.
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3.2.2. Semi-Supervised CD Methods Based on Self-Training

The core concept of these methods is as follows: initially, model parameters trained on
labeled samples are used to predict unlabeled samples, treating these predictions as pseudo-
labels for the unlabeled samples. Subsequently, the training dataset is augmented with
these unlabeled samples and their corresponding pseudo-labels, and the model is retrained
on this expanded dataset. The general workflow of self-training methods includes:

1. Initialization: Train the initial model using the available labeled dataset.
2. Pseudo-Label Generation: Predict unlabeled samples using the initial model, select

those with high prediction confidence, and assign the prediction results as their
pseudo-labels.

3. Model Re-Training: Merge unlabeled samples with pseudo-labels into the labeled
dataset to form an expanded training set and retrain the model using this dataset.

This process is iteratively repeated, generating new training data with pseudo-labels
from unlabeled samples in each iteration. However, in practical applications, the self-
training process can introduce noise, particularly regarding the reliability of pseudo-label
generation. If the pseudo-labels are not reliable, they might adversely affect model training.
Hence, additional strategies are often employed, such as implementing effective confidence
strategies [115] to filter unlabeled samples and enhance the stability and effectiveness of
self-training. For instance, Wang et al. [116] select reliable unlabeled samples based on their
prediction stability across different training checkpoints and the stability between class
activation maps and prediction results within the model. Yang et al. [117] proposed using
checkpoints set in the early, middle, and late stages of training, selecting reliable unlabeled
samples for self-training based on the stability of predictions from different checkpoints.
Wang et al. [118] built upon this stability with different checkpoints and designed a positive–
negative pixel contrast loss to enhance the model’s ability to extract change features. Sun
et al. [119] utilized the confidence threshold filtering from FixMatch [115] to select reliable
unlabeled samples for self-training, further enhancing model performance and robustness
by enforcing consistency between CD results from distorted images and pseudo-labels dur-
ing the self-training phase. In addition to these strategies, many other methods [120–123]
have been proposed to improve the effectiveness of self-training, and their efficacy in the
domain of semi-supervised CD is a subject worthy of deeper exploration.

3.2.3. Semi-Supervised CD Methods Based on Consistency Regularization

The essence of consistency regularization methods lies in encouraging the model
to produce similar outputs for the same sample subjected to different perturbations or
transformations. Based on two key hypotheses, smoothness and clustering, consistency
regularization operates as follows. The smoothness hypothesis posits that closely situated
samples are likely to share the same label. As illustrated in Figure 11, in a feature space,
samples of the same category are usually closer to each other than to samples of different
categories. This implies that models should offer similar predictions for neighboring sam-
ples. The clustering hypothesis suggests that decision boundaries should lie in low-density
regions. An effective decision boundary (like the solid line in Figure 11) should ideally
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pass through the sparsest areas of the sample space, reducing the model’s sensitivity to
noise and irrelevant features, thereby enhancing stability and accuracy. On these founda-
tions, consistency regularization methods incorporate unlabeled samples into the training
process, expanding the model’s feature space by constraining the consistency of various
perturbations or transformations of these samples. This leads to more generalized feature
representations and improved model performance.
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The critical aspect of consistency regularization methods is how to obtain the perturba-
tion space of unlabeled samples and, once obtained, how to train a model that is insensitive
to these perturbations, ensuring consistency in predictions for the original image and
its various perturbed spaces. Currently, consistency regularization methods, categorized
into three types based on the perturbation space, are illustrated in terms of their basic
framework for different perturbation spaces in Figure 12.

• Image Perturbation Space [116,119,124,125]. This approach involves applying op-
erations, like rotation, scaling, and color transformations, to images, generating a
series of perturbed images. For example, Sun et al. [124] proposed a semi-supervised
CD method using data augmentation strategies to access image perturbation space
and generate pseudo bi-temporal images to further expand this space. The method
then minimizes the differences between the change maps obtained from the image
perturbation space and the original images.

• Feature Perturbation (FP) Space [126,127]. This involves perturbing the internal feature
space of the image within the model, rather than directly manipulating the image
itself. This can be achieved through operations like dropout on features. For instance,
Bandara et al. [126] introduced a semi-supervised CD method based on feature con-
sistency regularization. The method perturbs the deep feature space of bi-temporal
difference features of unlabeled image pairs, minimizing the differences between
change maps derived from various feature perturbation spaces and the original space
as a consistency loss.

• Model Perturbation Space [128,129]. This approach involves altering the model itself
to create pseudo-labels for unlabeled samples using different models and then su-
pervising them mutually. For example, Chen et al. [129] used two networks with the
same structure but different initializations during model training. They added a loss
function to ensure that both networks produce similar outputs for the same sample.

• Combined Perturbation Space [130]. This approach synergizes elements from Image
Perturbation Space, Feature Perturbation Space, and Model Perturbation Space. Yang
et al. [130] effectively merged image perturbation techniques with feature perturba-
tion strategies, an integration that led to the exploration of a broader perturbation
space and yielded models with superior performance and enhanced generalization
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capabilities. Notably, their method demonstrated commendable results in CD datasets,
underscoring the benefits of this integrated perturbation approach.
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3.3. Weakly Supervised Learning

Weakly supervised learning methods involve training models with incomplete or
imprecise labeling information, subsequently employing these models to achieve pixel-
level predictions for unlabeled samples. The labels in these methods are usually in a
“weaker” form, such as image-level, bounding box, or scribble labels, rather than detailed,
pixel-level labels, which is often prohibitively expensive or unattainable due to limitations
in domain-specific knowledge. Compared to fully supervised learning, weakly supervised
learning provides greater flexibility in acquiring labels, making it highly applicable and
promising across diverse real-world scenarios.

Weakly supervised learning typically follows two core steps, as shown in Figure 13:

• Step 1: Extract information from incomplete or imprecise labels to generate pixel-level
pseudo-labels.

• Step 2: Utilize these pseudo-labels to train a pixel-level CD model.

The central challenge in these steps is the generation of high-quality pseudo-labels.
Among all weak labels, image-level labeling is a relatively cost-effective option. It requires
only semantic labeling of each image pair as changed or unchanged, without the need for
pixel, region, or boundary labels. The process of generating pseudo-labels includes:

1. Firstly, creating initial change areas from the image-level labels for each image pair.
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2. Then, propagating semantic information from these initial areas across the entire
image pair to generate pixel-level pseudo-labels.
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The process of developing initial change areas involves evolving image-level labels
into scribble-level or bounding box-level labels. Hence, this paper will focus in detail on
image-level weakly supervised learning.

The method for generating initial change areas generally involves training an image-
level classifier with image-level labels and extracting information from the classifier’s deep
features to create initial change areas. As Shen [131] suggests, this step often embodies a
concept similar to Class Activation Mapping (CAM) [132]. CAM can locate specific areas in
an image associated with changes, serving as the initial change areas for weakly supervised
methods. The basic workflow of CAM, as shown in Figure 14, assumes that the feature
map of the last convolutional layer is F with N channels. Let the weights of the model’s
final fully connected layer be w, then the process of generating CAM can be represented by
the following formula:

Lc = ∑
i

wiFi (7)

where Lc represents the Class Activation Maps (CAMs). There are many variants of CAM,
such as Grad-CAM [133], Grad-CAM++ [134], Score-CAM [135], LayerCAM [136], and
EigenCAM [137], offering more flexible ways to generate initial change areas.
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In the field of weakly supervised CD, current methods for propagating initial change
areas across the entire image pair to generate pixel-level pseudo-labels predominantly rely
on relatively traditional post-processing techniques such as PCA [138], K-Means [139], and
conditional random fields (CRF) [140]. For instance, Kalita et al. [141] trained a Siamese
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CNN classification network using image-level labels to obtain deep features of image pairs
and generate change localization maps. They then applied PCA and K-Means methods to
segment these maps for pixel-level CD results. Jiang et al. [142] trained an image-level CNN
model with weighted global average pooling, also obtaining change localization maps,
and then used CRF to refine the boundaries of these maps for CD. Andermatt et al. [143]
proposed a weakly supervised convolutional network that utilizes a feature comparator
to obtain change features, ultimately forming pixel-level CD results through a change
segmentation module composed of residual blocks and CRF–RNN.

In the image segmentation domain, we have witnessed the emergence of novel post-
processing strategies for initial areas, such as cross-consistency [144,145], pixel relation-
ships [146,147], and affinity learning [148–150]. Huang et al. [151] attempted to extend
some of these new methods from weakly supervised semantic segmentation to weakly su-
pervised CD, including SGCD [152] and AFA [150], achieving promising results. However,
whether these new strategies are suitable for RS imagery, or if further development of more
fitting post-processing methods for initial change areas in RS imagery is required, remains
an area for further research.

Beyond the mainstream methods, scholars have also explored the application of other
approaches to weakly supervised CD. For example, Wu et al. [153] proposed a GANs-based
weakly supervised CD framework, which deceives discriminators into predicting image
pairs with masked change areas as unchanged. They use these masked areas as pseudo-
labels to train segmentation networks, forming a robust CD segmentation network through
iterative adversarial learning. Additionally, Zhang et al. [154] introduced a novel neural
network that combines CD with multiple instance learning for landslide detection.

3.4. Unsupervised Learning

Unsupervised DL methods for CD employ deep neural networks to autonomously
learn image features, facilitating CD without prior knowledge or manual intervention.
These unsupervised methods, not requiring any labeled data, leverage raw imagery for
training, offering higher automation and broader adaptability.

Unsupervised CD methods generally combine DL networks with traditional CD
techniques. The primary concept involves extracting effective feature representations using
DL networks and applying traditional CD methods for post-processing to obtain CD maps.
For instance, LV et al. [155] first used linear iterative techniques to obtain super-pixels, then
proposed a feature extraction network based on stacked contractive AE (sCAE) [156] to learn
advanced encoded features, utilizing the k-means method for binary classification of these
high-level encoded features to achieve final CD results. Luppino et al. [157] introduced an
unsupervised heterogeneous data CD method that uses local information extracted from
input imagery to align two AEs for CD. Bergamasco et al. [158] proposed an unsupervised
deep neural network method based on multi-layer convolutional AE (CAE) [159], using
single-temporal image blocks to train the CAE. The feature representations are learned
by minimizing the reconstruction error between inputs and outputs. The trained CAE
is then used to extract multi-scale features from pre- and post-change images, and these
features are fused using a detail-preserving, scale-driven approach to generate CD maps.
Saha et al. [160] described a deep change vector analysis (DCVA) for Very High Resolution
(VHR) image CD, initially extracting deep features from a pre-trained multi-layer CNN. By
combining features from different CNN layers to form a deep feature hyper-vector, spatial
contextual information of images is captured. Deep change hyper-vectors of bi-temporal
images are computed using CVA with threshold constraints to produce CD maps. Wu
et al. [161] applied kernel PCA (KPCA) [162] convolution as a basic module in a Siamese
structure to extract deep-level features of images. Channel differences are used to obtain
feature differential maps, which are then mapped to a two-dimensional polar domain,
with unsupervised clustering techniques employed to obtain CD results. Du et al. [163]
initially used CVA for pre-detection, treating invariant pixel pairs as training input for the
deep network. Upon network convergence, transformed features are input into a slow
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feature analysis for difference calculation, followed by Chi-square distance computation
for change intensity mapping and, finally, thresholding methods are applied for final CD
results. Gong et al. [164] used stacked AE (SAE) to transform differential images into
feature space, subsequently establishing pseudo-labels through clustering methods for
training a CNN-based CD network. Zhang et al. [165] captured information of change and
invariant areas through deep belief networks to generate feature spaces, followed by a
feature change analysis network to identify changes.

Moreover, GANs have found applications in unsupervised CD. They employ adver-
sarial learning between generators and discriminators to facilitate image transformation,
enhancement, or reconstruction, while assessing differences between images using dis-
criminator outputs or feature distances. For instance, Gong et al. [166] initially utilize
conventional methods like CVA, PCA, and IR-MAD [167] for initial CD, subsequently
training the discriminator to learn the distribution and the correlation of change pixels
from both initial CD results and generator-produced CD maps. This process enables the
generator to create more refined CD outputs. Gong et al. [168] start with CVA and Otsu
methods for initial CD, followed by generating additional training samples using a gener-
ator. These samples, along with the initial detection results, are fed into a discriminative
classification network (DCN) [169] to learn the concept of changed and unchanged pixels.
The adversarially trained generated data approaches real labels, allowing the well-trained
DCN to categorize original image data into changed and unchanged pixels, completing
the CD process. Noh et al. [170] introduced an unsupervised CD method based on image
reconstruction loss, which is trained solely on single-temporal images. It inputs both source
and optically transformed images into an encoder–decoder-based GAN, training the model
to reconstruct the original source image. During inference, the model receives bi-temporal
images, where areas of change exhibit higher reconstruction loss. Wu et al. [153] developed
an approach based on the assumption that unchanged landscapes exhibit certain spectral,
spatial, and semantic similarities across multi-temporal images. They transformed the CD
task into identifying a minimal region on an image that, once having masked this region,
allows a GAN’s generator to predict it accurately as another image.

4. Discussion of Different Learning Paradigms for CD

In this section, we embark on a comprehensive and progressive discussion of CD across
various learning paradigms. The discussion is structured into four key aspects. First, we
delve into publicly available fully supervised datasets, exploring how they can be adapted
to generate datasets suitable for other learning paradigms. Next, we provide a comparative
analysis of state-of-the-art (SOTA) methods within these paradigms. Thirdly, we summarize
the advantages and disadvantages inherent to each learning paradigm, offering a balanced
perspective that evaluates their applicability in the context of CD. Finally, we discuss the
specific application scenarios for each paradigm. This multifaceted exploration aims to
offer a deeper understanding of the current landscape in CD methodologies and to inspire
future directions in this dynamic field.

4.1. Adaptation of Datasets for Various Learning Paradigms

In this subsection, we focus on several widely-used publicly available datasets that
play a pivotal role in the field of CD. These datasets provide researchers with abundant
experimental materials to validate and assess the performance of various CD methods.
Through analysis and application of these datasets, researchers can better understand the
problems and challenges in remote sensing image CD and develop more effective solu-
tions. Table 1 presents some representative open datasets, primarily sourced from GitHub
(https://github.com/wenhwu/awesome-remote-sensing-change-detection, accessed on
23 January 2024), along with additional datasets from various other sources. This paper
compiles and summarizes information about these datasets, including their image types,
image resolutions, number of image pairs, acquisition years, coverage areas, and data
sources. Additionally, the datasets have been categorized based on their data types.

https://github.com/wenhwu/awesome-remote-sensing-change-detection
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Table 1. A list of publicly available datasets for CD.

Dataset Name Image
Type Resolution Number of Image Pair Acquisition Year Coverage Area Image Source

HRCUS-CD [171] RGB 0.5 m 11,388 pairs of 256 × 256
pixels 2010 to 2022 Zhuhai, China -

GVLM [172] RGB 0.59 m 17 pairs of varying sizes 2010 to 2021 Global Google Earth

EGY-BCD [173] RGB 0.25 m 6091 pairs of 256 × 256
pixels 2015 to 2022 Egypt Google Earth

SI-BU [174] RGB 0.5–0.8 m 4932 pairs of 512 × 512
pixels 2019 to 2021 Guiyang, China Google Earth

BANDON [175] RGB 0.6 m 2283 pairs of 2048 × 2048
pixels - Some cities in

China

Google Earth,
Microsoft Virtual

Earth, ArcGIS

DynamicEarthNet
[176] RGB 3 m 730 pairs of 1024 × 1024

pixels 2018 to 2019 75 regions
worldwide Planet Labs

CLCD [177] RGB 0.5–2 m 600 pairs of 512 × 512 pixels 2017 to 2019 Guangdong
Province, China GF-2

S2Looking [178] RGB 0.5–0.8 m 5000 pairs of 1024 × 1024
pixels

Spanning
1–3 years Global -

SYSU-CD [31] RGB 0.5 m 20,000 pairs of 256 × 256
pixels 2007 to 2014 Hong Kong,

China -

DSIFN [78] RGB - 3940 pairs of 512 × 512
pixels - Six cities in China Google Earth

SenseEarth2020 RGB 0.5–3 m 4662 pairs of 512 × 512
pixels - - -

Google Dataset
[114] RGB 0.55 m 1067 pairs of 256 × 256

pixels 2006 to 2019 Guangzhou,
China Google Earth

LEVIR-CD [30] RGB 0.5 m 637 pairs of 1024 × 1024
pixels

Spanning
5–14 years Texas, USA Google Earth

HRSCD [179] RGB 0.5 m 291 pairs of 10,000 × 10,000
pixels 2005 to 2012 France IGN

WHU-CD [180] RGB 0.075 m One pair of 15,354 × 32,507
pixels 2012 to 2016 New Zealand Aerial

CDD [181] RGB 3–100 cm 16,000 pairs of 256 × 256
pixels - - Google Earth

SZTAKI [182] RGB 1.5 m 13 pairs of 952 × 640 pixels Spanning
5–23 years - -

Hyperspectral
CDD [183] Hyperspectral - Three pairs of varying sizes 2004 to 2014 USA AVIRIS

River dataset
[184] Hyperspectral 30 m One pair of 463 × 241 pixels 2013.5–2013.12 Jiangsu Province,

China
EO-1

Hyperion

MtS-WH [185] Multispectral 1 m One pair of 7200 × 6000
pixels 2002 to 2009 Wuhan, China IKONOS

OSCD [186] Multispectral 10–60 m 24 pairs 2015 to 2018 Global Sentinel-2

SMARS [187] RGB,
DSM

0.3 m/
0.5 m

Two pairs of 5600 × 5600
pixels, one pair of
4500 × 3560 pixels

- Paris and Venice Synthetic

LEVIR-CC [188]

RGB,
Natural

Lan-
guage

-
10,077 pairs of 512 × 512

pixels, 50,385 natural
language statements

Spanning
5–14 years Texas, USA Google Earth

MSBC [189]
RGB,

Multispectral,
SAR

2 m 3769 pairs of 256 × 256
pixels 2018 to 2019 Guigang,

Guangxi, China

GF-2,
Sentinel-1,

Sentinel-2A

MSOSCD [189]
RGB,

Multispectral,
SAR

- 5107 pairs of 256 × 256
pixels 2015 to 2018 Global Sentinel-1,

Sentinel-2
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The datasets presented in Table 1 are characterized by their dense labeling, rendering
them particularly suitable for fully supervised CD methods. However, it is essential to rec-
ognize that the use of these datasets extends beyond fully supervised learning. Adaptations
of these fully labeled datasets form the basis for semi-supervised, weakly supervised, unsu-
pervised, and self-supervised learning paradigms, each undergoing specific modifications
to meet their unique requirements:

• In the case of semi-supervised learning, a subset of the data (typically around 5% to
10%) is used as labeled data, with the remainder serving as unlabeled data.

• In the case of weakly supervised learning, weak labels are generated from these precise
labels. The transition from dense to weak labels is made by transforming the detailed
annotations into more generalized or less informative labels.

• For unsupervised learning, the original labels of the dataset are completely disregarded.
• Furthermore, in self-supervised learning, the focus is on exploiting the unlabeled

dataset for primary model training. This is followed by a fine-tuning phase, wherein a
minimal subset of the data (approximately 1%) with labels is employed to refine the
model’s performance.

4.2. Analysis of SOTA Methods for Different Learning Paradigms

In this subsection, our focus shifts to an in-depth analysis of the highest achievable ac-
curacy across various learning paradigms. To conduct this evaluation, we utilize the widely
recognized WHU–CD dataset [180], a benchmark in the field that facilitates a comprehen-
sive assessment. The significance of selecting the WHU–CD dataset lies in its extensive use
in current research encompassing fully supervised, semi-supervised, weakly supervised,
and unsupervised learning paradigms. It provides a common ground for comparing the
efficacy of different learning approaches, ensuring consistency and reliability in the evalua-
tion of accuracy metrics. The accuracies achieved by each learning paradigm are detailed
in Table 2, offering a direct comparison and quantitative understanding of their respective
performances. The fully supervised method, represented by A2Net [33], demonstrates
superior performance with precision, recall, F1 score, and IoU metrics, all indicating high
accuracy. This underscores the effectiveness of fully supervised learning in scenarios where
detailed and accurate labeling is available, as seen in its highest F1 score of 0.9536 and
IoU of 0.9113. In contrast, the semi-supervised approach, exemplified by STCRNet (10%
labeled) [130], shows a noteworthy IoU of 0.8191, despite not having full label availability.
This highlights the efficacy of semi-supervised methods in situations where only a limited
amount of labeled data is accessible, leveraging the vast amount of unlabeled data to
achieve considerable accuracy. The weakly supervised paradigm, as demonstrated by
CS-WSCDNet (Image-level labels) [190], presents a different picture. With an IoU of 0.5729,
it reflects the challenges inherent in relying on less detailed, image-level labels, which
tend to yield lower precision value. Lastly, the unsupervised method, CDRL [170], shows
an IoU of 0.5000, indicating its potential in scenarios where no labeled data is available.
Despite the lower accuracy compared to supervised methods, its recall of 0.9300 is notably
high, suggesting effectiveness in identifying relevant changes, albeit with less precision.
These results collectively illustrate the trade-offs and decision-making considerations when
selecting a learning paradigm for CD tasks, depending on the availability of labeled data
and the required accuracy level.

Table 2. Comparative accuracy metrics across learning paradigms on the WHU–CD dataset.

Method Paradigm Pre. Rec. F1 IoU

A2Net [33] Fully Supervised 0.9430 0.9644 0.9536 0.9113
STCRNet (10% labeled) [116] Semi-Supervised - - 0.9006 0.8191

CS-WSCDNet [190] Weakly Supervised 0.6457 0.8356 0.7284 0.5729
CDRL [170] Unsupervised 0.5200 0.9300 - 0.5000
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4.3. Pros and Cons of Different Learning Paradigms in CD

Building upon our earlier analysis of the frameworks of various learning paradigms,
their specific data requirements, and a comparative assessment of accuracy across these
paradigms, this subsection provides a critical evaluation of the various learning paradigms
used in CD, shedding light on their advantages and disadvantages, as shown in Table 3.
By examining the intrinsic characteristics and operational efficiencies of each paradigm,
we aim to present a balanced perspective that can guide researchers and practitioners in
selecting the most appropriate method for their specific CD tasks.

Table 3. Advantages and disadvantages across learning paradigms.

Paradigm Advantages Disadvantages

Fully Supervised High accuracy; Reliable performance with
well-defined ground truth

Time-consuming and costly data annotation
process; Less adaptable to new data scenarios

Semi-Supervised Utilizes both labeled and unlabeled data;
Balances performance with data availability

Performance depending on the quality and
amount of label; Requires careful tuning;

Less effective when label is not representative

Weakly Supervised Reduces annotation burden with coarse
labels; Suitable for rapid response

Limited performance; Struggles with
complex scenarios; Dependent on the quality

and relevance of weak labels

Unsupervised No need for labeled data; Suitable for
exploratory and large-scale monitoring

Lower performance; Challenging
objective evaluation

4.4. Application Scenarios for Different Learning Paradigms

In this subsection, we delve into the practical deployment of different learning
paradigms in the realm of CD, highlighting their optimally suited application contexts. It is
imperative to recognize that each learning approach, while exhibiting a particular affinity
for certain applications, possesses the inherent flexibility to be adapted to a multitude of
scenarios. This subsection, therefore, focuses on elucidating the most congruent application
scenarios for each learning paradigm, based on their intrinsic characteristics and efficacy in
addressing the unique challenges posed by these contexts.

• Fully Supervised Learning: This approach is most apt for the detailed monitoring of
urban expansion and land use changes, such as tracking the growth of urban buildings
or the development of roadways. These scenarios often demand highly accurate CD,
as they directly impact urban planning and management. Moreover, in these contexts,
there are usually sufficient resources available to acquire a large amount of precise
ground truth data.

• Semi-Supervised Learning: This is suitable for the monitoring of natural resources,
such as assessing deforestation or degradation. Given the vast coverage of forest
areas, often only a portion of these regions may have detailed annotated data, with the
majority remaining unlabeled. In such cases, the limited annotated data, in conjunction
with extensive unlabeled data, can be utilized to monitor the health of forests over
large areas, thus efficiently evaluating environmental impacts.

• Weakly Supervised Learning: This paradigm is ideal for rapid disaster response, such
as quick assessment of changes following floods or fire disasters. In these instances,
rapidly acquiring a general understanding of the disaster-affected areas through
limited and coarse annotated data is of paramount importance.

• Unsupervised Learning: This method is suitable for monitoring global environmental
changes, such as glacier retreat or desertification. The long-term nature of these
changes often makes it challenging to obtain a large quantity of precise annotated data.



Remote Sens. 2024, 16, 804 22 of 35

5. Opportunities and Challenges for DL-based CD

While DL technology has made significant progress in the field of CD, its rapid
evolution has introduced new challenges and opportunities, urgently calling for further
research and innovation. This section focuses on these emerging aspects, including the
continued development of incompletely supervised CD in scenarios with scarce data, the
potential applications of self-supervised learning in RS image processing, the exploration
of Foundation Models’ adaptability in CD tasks, and the challenges of multimodal CD
in integrating heterogeneous data sources. These points not only highlight key issues
currently awaiting solutions but also suggest possible future research directions, charting a
course for the evolution of DL in the field of CD.

5.1. Incomplete Supervised CD

In Section 3, we comprehensively reviewed the methods of incomplete supervision in
CD, with a particular focus on semi-supervised and weakly supervised methods. These
methods have shown significant potential both in theoretical research and practical ap-
plications, especially in scenarios with limited labeled data or coarse-grained labels. By
effectively leveraging unlabeled data or coarse labels, these methods offer new perspectives
for addressing CD tasks, reducing reliance on costly fine-grained labeled data. Conse-
quently, further research and development in incomplete supervision techniques for CD
represent a crucial trend and opportunity in the field. However, these methods are still in
their nascent stages and face several challenges:

• Model Performance: In CD tasks, the performance of models is crucial, directly
impacting their practical efficacy. Weakly supervised methods, which rely on vague
or incomplete labels (image-level, bounding box, scribble-level), may struggle with
recognition in complex scenarios. Additionally, sensitivity to subtle changes poses a
challenge, particularly in applications sensitive to fine-grained variations.

• Uncertainty Management: Incompleteness, imprecision, or vagueness in annotations
can lead to uncertainty in weakly supervised learning predictions, affecting reliability
and trust in practical applications. Managing this uncertainty—accurately representing
and quantifying it in predictions—is key to enhancing the effectiveness of weakly
supervised models. Current strategies include integrating Bayesian methods and
confidence assessments into the training process to explicitly account for uncertainties
and achieve more reliable model outcomes.

• Severe Sample Imbalance: Existing semi-supervised CD studies typically select 5% to
40% of samples from supervised datasets to simulate a semi-supervised scenario. In
real-world contexts, this ratio is often more skewed, with labeled samples possibly
comprising less than 1% of a much larger total sample size. Thus, developing robust
semi-supervised learning algorithms that utilize a minimal amount of labeled data
and learn from a large pool of unlabeled data is a significant challenge.

The rapid advancement in DL within the field of computer vision has brought about
many new technologies and methods, offering potential solutions to these challenges:

• Existing incomplete supervision methods in CD primarily utilize CNN as the back-
bone. The swift evolution of DL has introduced more powerful and flexible network
architectures capable of handling complex and high-dimensional data more effectively,
thereby enhancing the accuracy and efficiency of CD. For instance, the ViT has become
a popular model in image processing, recently applied to supervised CD with satisfy-
ing results. Exploring its application in incomplete supervision CD is one of the most
promising future research directions.

• Emerging learning paradigms, like self-supervised learning, not only provide effective
solutions for handling severely imbalanced datasets but also offer new approaches for
rapid model adaptation and generalization. Self-supervised learning will be further
discussed in Section 5.2.
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• Additionally, the emergence of Visual Foundation Models opens new possibilities.
Their exceptional transferability offers novel tools and innovative potential for incom-
plete supervision in CD, which will be further discussed in Section 5.3.

5.2. Self-Supervised Learning

Self-supervised Learning leverages the intrinsic structure of unlabeled data as a learn-
ing signal, learning effective feature representations from the data itself through pretext
tasks. It has garnered immense attention in DL and achieved remarkable success in com-
puter vision. Numerous self-supervised methods, like MoCo [191], BYOL [192], SwAV [193],
SimCLR [194], MAE [195], and DINO [196], have been extensively applied in image classi-
fication, object detection, image reconstruction, and image semantic segmentation, demon-
strating performance comparable to traditional supervised training methods with minimal
fine-tuning on a small set of samples. However, the potential of self-supervised in RS image
CD is yet to be fully exploited. Given the significant strides made in CD due to DL, yet
with data annotation remaining a major challenge, the self-supervised approach is seen as
a promising in CD research.

Existing studies have attempted to apply the self-supervised concept to CD, as seen
in references [197–200], focusing mainly on medium-resolution imagery and combining
self-supervised with transfer learning or traditional CD techniques, operating in an unsu-
pervised manner without relying on labeled samples. While these methods demonstrate
the potential application of self-supervised methods in CD tasks, their performance lags
behind fully supervised methods due to their unsupervised nature. On the other hand,
self-supervised methods for high-resolution image CD have been proposed, as in refer-
ences [201–204], but they still rely on a substantial amount of supervised data during
fine-tuning, not fully addressing the challenges of data annotation. To date, only refer-
ence [205] has experimented with fine-tuning self-supervised models on a minimal dataset
(1%), but there remains significant room for performance improvement.

A key future research direction for CD is exploring self-supervised methods under con-
ditions of few-shot and even one-shot learning. This direction is crucial for understanding
and enhancing self-supervised applications in CD and also offers a new perspective to ad-
dress the challenge of scarce labeled data. Several challenges might emerge in this process:
first, ensuring that features extracted by self-supervised learning from unlabeled samples
are sufficiently representative; second, avoiding overfitting in few-shot or one-shot learning
scenarios; and third, optimizing and adjusting self-supervised strategies for specific CD
tasks. These challenges boil down to a core question: how to maintain the generalizability
of self-supervised models while adapting quickly to specific CD tasks with minimal or
single sample learning. Addressing these challenges necessitates in-depth exploration
of innovative self-supervised methods and how they can be effectively integrated with
CD tasks.

5.3. Visual Foundation Models

The concept of “Foundation Models [206],” proposed by The Stanford Institute for
Human-Centered Artificial Intelligence’s (HAI) Center for Research on Foundation Models
(CRFM) in August 2021, is defined as “models trained on broad data (generally using
large-scale self-supervised learning) that can be adapted (e.g., via fine-tuning) to a wide
range of downstream tasks.” This definition highlights the Foundation Models’ charac-
teristics of leveraging extensive data for pre-training and their wide applicability across
various scenarios. Initially achieving breakthrough success in natural language process-
ing, particularly through the development of Large Language Models (LLMs), like GPT
series [207], PaLM [208], T5 [209], LLaMa [210], and ERNIE [211], these models, with their
DL of language semantics and syntax from massive textual data, can perform a wide
range of complex linguistic tasks, including text generation, translation, sentiment analy-
sis, and question-answering systems, marking a new era in AI research and applications.
Exploration of Foundation Models has also been conducted in the field of vision. Models
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like CLIP [212] and ALIGN [213], trained on a vast number of image–text pairs, demon-
strate the capability to understand and link image content with textual descriptions. They
map images and text into a shared representational space, enabling potent cross-modal
capabilities. Derived models, such as Florence [214], RegionCLIP [215], CLIP2Video [216],
and CLIP-ViL [217], along with integration with modules like DALL-E [218], have shown
adaptability to various computer vision tasks, like image classification, object detection,
visual question answering, and image generation.

In RS image processing, a related task in computer vision, the application of Visual
Foundation Models has shown significant potential and broad prospects [219–222]. As
CD in RS imagery is essentially a semantic segmentation task, models specifically de-
veloped for segmentation, like CLIPSeg [223], SegGPT [224], Segment Anything Model
(SAM) [225], and SEEM [226], are closer to CD tasks and exhibit immense potential in
precisely identifying and tracking terrestrial changes. Recent research [227–230] efforts
have begun to explore the applicability of these Visual Foundation Models in the field of
RS image segmentation, offering innovative perspectives and methodologies. For more
specific CD tasks, Ding et al. [231] integrated FastSAM [232] as an encoder in a supervised
learning model for feature extraction in RS imagery, exploring its potential advantages
in semi-supervised CD tasks. Wang et al. [190] combined the localization capability of
CAM with SAM’s zero-shot segmentation ability, establishing a weakly supervised CD
framework that achieves precise pixel-level CD on VHR RS images using only image-level
labels. These explorations demonstrate the opportunities Visual Foundation Models bring
to RS image processing, accelerating data processing speed, enhancing task accuracy, and
reducing reliance on large-scale annotated datasets, offering new directions for future
developments in CD and related tasks in RS image processing. Nevertheless, applying
Visual Foundation Models in RS image processing still faces several challenges that need to
be overcome through continuous technological innovation and research depth:

• In incomplete supervision CD scenarios, Visual Foundation Models can serve as a
powerful auxiliary tool. Researchers can generate high-quality pseudo-labels using
Visual Foundation Models combined with appropriate prompts, reducing reliance on
extensive accuracy annotations. However, the potential of Visual Foundation Models
extends beyond this; developing effective learning algorithms to leverage Foundation
Models’ advantages in incomplete supervision and integrating them more directly
into the main process of CD are crucial areas for further exploration.

• Existing research shows that pre-training datasets for Visual Foundation Models often
lack images specific to certain domains, like RS imagery. Further exploration into
developing specialized Foundation Models using large-scale RS datasets could enable
models to capture the unique features of remote sensing imagery more accurately,
facilitating zero-shot transfer to related tasks. However, processing and analyzing
large-scale RS datasets require immense computational resources.

• In scenarios with limited computational resources, fine-tuning Visual Foundation
Models through open interfaces is a practical solution. Employing a partial weight-
locking strategy allows researchers to update the model for specific RS image-related
tasks selectively. This method not only conserves computational resources but also
ensures the model’s ability to adapt quickly to new tasks. Developing more effec-
tive fine-tuning strategies to maintain the model’s generalizability and ensuring its
continuous update and maintenance remain significant challenges.

5.4. Multimodal CD

Traditionally, CD has relied on single-source data, primarily optical imagery. However,
with technological advancements and growing application demands, RS has seen significant
improvements in data acquisition and sensor technologies. This progress has yielded a
wealth of heterogeneous and complex earth observation data for CD, such as optical, SAR,
LiDAR, thermal infrared, and satellite video data. Additionally, various data sources. like
GIS and ground survey data. provide rich information about geographical environments,
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topographical features, and land use, offering multi-dimensional references and support for
CD. The fusion of multimodal data not only overcomes the limitations of single data sources,
such as temporal and spatial coverage or occlusions, but also leverages the strengths of
each modality, presenting immense potential for a more comprehensive and detailed
understanding of surface changes.

Multimodal data can enrich the representation of the Earth’s surface, detecting changes
that may be challenging to discern in single datasets. For instance, SAR data excel in
all-weather conditions, penetrating clouds to complement optical imagery; LiDAR data
provides detailed information about terrain and surface elevation, enhancing CD accuracy
in diverse terrain regions. There are already some DL-based CD studies leveraging multi-
modal data [157,233–236]. For instance, Li et al. [237] proposed a GAN and CNN-based
network for optical and SAR image CD, using GANs to align optical and SAR images into
the same feature space, followed by supervised CNN for CD. Zhang et al. [238] applied
domain adaptation constraints to align optical and SAR images at a deep feature level
within the same feature space, unifying deep heterogeneous feature alignment and CD
tasks in an end-to-end framework, thereby avoiding unintended noise introduction.

However, current DL-based multimodal CD approaches mostly focus on bi-modal
imagery. Effectively utilizing a broader range of multimodal imagery, as well as integrating
data beyond imagery such as GIS and ground survey data, remain challenges in multi-
modal CD tasks. Furthermore, better aligning multimodal data using DL techniques, such
as registering non-homogenous imagery or recognizing relationships among elements
across different modalities, remains a direction for future research. Equally important is
the design of DL networks that can effectively merge the complementary aspects of multi-
modal data and eliminate redundancy, thereby achieving improved feature representation.
Utilizing these enhanced multimodal feature representations to execute tasks such as CD is
also crucial.

6. Conclusions

This review, taking diverse learning paradigms as perspectives, reports on and ana-
lyzes the latest methods and challenges in the field of DL-based CD. Firstly, it introduces
the fundamental network architectures utilized in DL for CD, laying a solid foundation for
understanding core technologies in the field. Subsequently, the review comprehensively
summarizes and analyzes DL-based CD methods under different learning paradigms,
meticulously sorting out their commonalities and characteristics, and summarizing com-
monly used frameworks, thus providing essential references for designing CD methods.
Following this, the review highlights a range of publicly available datasets for CD, under-
scoring the importance of diverse data sources in advancing research. Finally, the review
explores forward-looking prospects and challenges in CD, focusing on the roles of incom-
plete supervision, self-supervised learning, visual Foundation Models, and multimodal CD.
These insights pave the way for future research directions, emphasizing the need for contin-
uous innovation and adaptation in the rapidly evolving field of DL-based CD. Through this
review, researchers gain a comprehensive understanding of current methods, challenges,
and future trajectories in CD, benefiting both newcomers and seasoned professionals in
the field.
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