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Abstract 

Previous work has failed to fit classic SEIR epidemic models satisfactorily to the prevalence data of 

the famous English boarding school 1978 influenza A/H1N1 outbreak during the children’s 

pandemic. It is still an open question whether a biologically plausible model can fit the prevalence 

time series and the attack rate correctly.  To construct the final model, we first used an 

intentionally very flexible and overfitted discrete-time epidemiologic model to learn the 

epidemiological features from the data. The final model was a susceptible (S) - exposed (E) - 

infectious (I) - confined to bed (B) - convalescent (C) - recovered (R) model with time delay 

(constant residence time) in E and I compartments and multistage (Erlang-distributed residence 

time) in B and C compartments. We simultaneously fitted the reported B and C prevalence curves 

as well as the attack rate (proportion of children infected during the outbreak). The non-

exponential residence times were crucial for good fits. The estimates of the generation time and 

the basic reproductive number (ℛ0) were biologically reasonable. A simplified discrete-time model 

was built and fitted using the Bayesian procedure. Our work not only provided an answer to the 

open question, but also demonstrated an approach to constructive model-generation. 
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Introduction 
Mathematical models have long been used as tools for providing plausible explanations of the 

epidemiologic mechanisms underlying respiratory virus outbreaks, both city-level and community-

level. For example: 

• Simple differential equation models have been successfully used to explain the multiple 

death waves in 1918 influenza A/H1N1 pandemic at the city level [1, 2]. 

• Such models were also used in isolated small size populations (community level) for two 

waves of cases due to reinfection for A/H3N2 [3]. 

• The COVID-19 outbreak onboard the Diamond Princess cruise ship, 2020 

[4] is a widely used and important modelling example of an outbreak in a closed population. 

Our work deals with the unexpected and unusual return of influenza A/H1N1 in 1977 and, more 

specifically, with a dataset of the 1978 England boarding school influenza outbreak [5] that 

occurred during the 1977-1978 influenza A/H1N1 pandemic, or the so-called children’s pandemic 

[5-8]. This dataset is a classical example used in numerous mathematical biology textbooks and 

lectures [8-12]. The data from a boarding school contains: 1) the daily populations of confined to 

bed schoolboys and convalescent schoolboys; 2) the total attack rate (the number of persons 

eventually infected): 512 out of 763 students were impacted (67%) [5]. 

The return of A/H1N1 was brought up in the discussion of the 2019 COVID-19 pandemic [13], 

although it had always been a topic of gain-of-function research before the pandemic [14]. 

Historically, influenza A/H1N1 first appeared in 1918 and was referred to as the Spanish flu, a 

pandemic that led to the deaths of >60 million people across the globe. A/H1N1 continued to 

circulate for 40 years, and was then replaced by H2N2 in 1957. It then reemerged in 1977 as 

H1N1/77 (also known as the Russian Flu), and co-circulated with H3N2/68, until 2009. Given that 

the H1N1/77 virus was almost identical to the main strain from that in the 1950’s, there have been 

claims that the reappearance was due to a laboratory leak of a stored sample [14]. 

The boarding school outbreak of A/H1N1 in 1978 was explosive (67% were infected during ≈14 

days) and there are records of many similar events. For example, “[t]he outbreak at the U.S. Air 

Force Academy (USAFA) was so severe — over the course of 9 days, 76%, or 3,280 cadets, became 

ill — that all academic and military training was suspended“ [14]. More than 45 years have passed 

since the boarding school outbreak and, despite many attempts to fit the data with mathematical 

models, all attempts to date were either wrong or provided unsatisfactory fits [8-11, 15, 16]. For 

example, Prof. M.Y. Li [15] called this dataset “an epidemic enigma” and noted that previous 

studies had drastically overestimated the attack rate of the outbreak (and this problem is common 

in mathematical epidemiology – for example, in Ebola studies [17]). Kalachev et al. [16] pointed out 

that previous attempts [8] misinterpreted the data and forced them into the pure and overly 

simplistic SIR-type modelling paradigm. However, even Kalachev’s improved and more realistic 

models were still problematical. Importantly, their estimated attack rate was close to 100%, and 

failed to match the reported 67%. 

In this paper, we build a mathematical model that achieves all three fitting targets, which, to the 

best of our knowledge, has not been successfully achieved by other authors: (i) the time series of 

the daily number of children confined to bed, (ii) the time series of the daily number of 

convalescents, and (iii) the total attack rate. Our objective is to find a biologically plausible model 

which can fit the observed data satisfactorily – in particular, the attack rate, which was omitted so 
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far in previous works. We hope that the revisit of the dated 1978 example will also help other 

researchers with the very general problem of overestimating the attack rate.  

The boarding school dataset indicates how pandemic influenza is transmitted in a boarding school 

setting, and reminds us of similar occurrences in the 2019 COVID-19 pandemic, e.g. a cruise ship 

(the Diamond Princess cruise ship), nursing homes, or prisons [18]. Thus, it is still relevant and of 

significance to reveal the dynamics of the transmission of pandemic viruses in such a setting with 

biologically justifiable mathematical models. 

The basic reproduction number and generation time 
One of most important characteristics of the epidemic process is the basic reproduction number, 

ℛ0, defined as “the expected number of secondary cases produced, in a completely susceptible 

population, by a typical infected individual” [19]. Another important quantity is the generation 

time (GT), defined as the time delay between the infection time of an infector and that of their 

infectee. Estimations of the basic reproduction number ℛ0 and the distribution of GT are crucial 

both for understanding the general dynamics of the spread of the infection and for planning 

vaccination or quarantine campaigns. 

Data 
The source of the data on the outbreak in a boarding school for boys in England is an anonymous 

publication in the British Medical Journal [5]. It gives the daily prevalences only as points on the 

graph and therefore has to be digitised. Thus, there are slight variations in different datasets of the 

event. We used the data as presented in the R package “outbreaks” [20] – see Fig.1. and Appendix 

Section 1. The source publication [5] reports the total number of boys infected (512 persons) and 

the total number of schoolboys in the school (763 persons). 

 

 

Figure 1. The daily numbers of confined to bed and convalescent schoolboys during the 1978 

English boarding school influenza A/H1N1 outbreak; as presented in [20] (reproduced ultimately 

from [5]). 
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Previous SIR-like models 
The boarding school dataset has been approximated with standard SIR or SEIR epidemiologic 

models numerous times (e.g., [8-12]). The data on attack rate (AR) and the number of 

convalescents were usually ignored, the number of confined to bed students was interpreted as the 

size on the I-group (infectious), and the goodness-of-fit was often mediocre. 

To illustrate this point, we fitted a number of SIR/SEIR model variants (see the Appendix, Section 2 

for full details and graphs): 

• SIR and SEIR models with a completely naïve starting population (𝑅𝑡=0 = 0, the typical 

approach) fail to approximate the attack rate: they converge to a nearly-100% attack rate; 

• SIR and SEIR models with an estimated, non-zero initial number of immune 

individuals (𝑅𝑡=0) can approximate the correct attack rate, but the goodness-of-fit even in 

the I-curve alone is not satisfactory (𝑅𝑀𝑆𝐸 = 16–16.5 pers.; moreover, the time-span of the 

outbreak is significantly overestimated). 

Prof. M.Y. Li [15] described it as “there is no known model of any kind in the literature that has 

correctly described both the time course of the epidemic (𝐼(𝑡)) and the final size”. 

Kalachev et al. [16] believed it to be erroneous to interpret the “confined to bed” persons (B) as the 

“infected and infectious” (I in the classical SEIR model). 

Methods 
General modelling idea 
In contrast to other studies, Kalachev et al. [16] argued that the B-state is actually a later stage of 

the disease preceded by an unobserved highly infectious state. This is also supported by the 

information from the initial publication [5] which mentioned that “symptoms subsided quickly once 

the boys were confined to bed”. Kalachev et al. called their approach “a very natural interpretation” 

and “the most realistic for the available data”. 

Following their work, we initially assumed that the individuals proceeded through the following 

consecutive stages: 

• S – susceptible (not infected, not infectious), 

• E – exposed (infected, not infectious yet), 

• I – infectious (active disease), 

• B – confined to bed (still ill, potentially infectious (to be estimated)), 

• C – convalescent (possibly ill, not infectious), 

• R – recovered and/or immune (not ill, not infectious).  

It is natural to assume that, on a two-week time interval, people’s behaviour and contact patterns 

changed little, so that all effects of quarantining can be captured by the difference between the I- 

and B-states. On longer time intervals (months or years), the infectivity rate would likely change. 

We therefore incorporated time-independent effective infectiousness (infectivity rate) into our 

models and attempted to explain all features of the data with an appropriate model of disease 

progression.  

An important feature of our models was non-exponential distributions of residence times in some 

compartments. Classic linear ODE-based models like d𝑋 d𝑡⁄ = −𝜎𝑋 result in an exponential 



5 
 

residence time distribution in 𝑋, and this may be a limiting factor in reproducing real or realistic 

residence times in certain biological states. 

 

Building the model 
We built our final model in two stages: first, we created a very flexible discrete-time model capable 

of reproducing every possible discrete distribution of residence time by having it defined as a 

tabulated function, and then fitted the model to the data; second, we constructed a simpler final 

model (continuous time, delay differential equations) that used residence time distributions and 

other model features close to those observed in the fitted flexible model. 

The flexible discrete-time model included groups S, E, I, B, C, R, with tabulated distributions of 

residence time for groups E, I, B, C. Each table prescribed the probability distribution of the number 

of time-steps (days) that an individual spends in the given group. The model allowed for the 

possibility that both I and B became infectious, and other flexible features (a full definition of the 

model is in the Appendix, Section 3). This model was fitted to the data (hence, the tabulated 

distributions of residence time were estimated), and the results so obtained (see the Appendix) 

drove our choice of the features of the much simpler final continuous-time model: 

• the survival function of E in the flexible model which abruptly dropped at two points in time 

(Fig. AF5) was interpreted in the continuous model as some E-individuals having zero 

residence time (“E-bypass”) and some having a Dirac-δ-distributed residence time in E (i.e., 

spending exactly the same time in the group); (survival function is the probability for an 

individual to remain in the given model group for at least the given amount of days, it is 

equal to 1 − 𝐶𝐷𝐹𝜏, where 𝐶𝐷𝐹𝜏 is the cumulative distribution function of residence time 𝜏) 

• the abrupt drop in the survival function of I (Fig. AF3) called for a Dirac-δ-distributed 

residence time in I in the continuous model; 

• the survival functions of B and C with little to no drop in the first days (Fig. AF3) called for 

non-exponential residence time distributions separated from zero (i.e., with a low density 

near zero);  

• B-individuals’ infectivity was estimated to be zero in the flexible model (Table AT3), and this 

was postulated to be so in the final model; 

• non-zero initial number of immune individuals 𝑅𝑡=0 > 0 (Table AT3). 

 

Final DDE model 
The final model used the same groups (S, E, I, B, C, and R), but was defined with delay differential 

equations (DDEs). The features of the final SEIBCR model, based on the results of the flexible model, 

are: 

• the residence time in E- and I-stages is Dirac-δ-distributed, and it is naturally modelled with 

DDEs; 

• a fraction of newly infected individuals (pnoE, which is a parameter) “bypasses” the E-stage 

and goes directly to the I-stage, thus approximating the overall residence time distribution 

in E observed in the flexible model (Fig. AF5); 
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• the residence time in B and C follows the Erlang distribution, and is modelled by creating 10 

consecutive dummy groups Bj and Cj, j=1,…,10, with equal-rate linear transfer terms 

between them (known as the “linear chain trick”); 

• the only source of infection is I-individuals; stages B and C are non-infectious; 

only S-individuals can be infected; there is no immunity loss; 

• the population is fixed (no deaths, births, or migration). 

 

The model consists of equations (1), and the variables and parameters are defined in Table 1.  

d𝑆

d𝑡
= −𝛽𝐼

𝑆𝐼

𝑁
 

d𝐸

d𝑡
= (1 − 𝑝𝑛𝑜𝐸)𝛽𝐼 (

𝑆𝐼

𝑁
−

𝑆(𝑡 − 𝑇𝐸)𝐼(𝑡 − 𝑇𝐸)

𝑁
) 

d𝐼

d𝑡
= (1 − 𝑝𝑛𝑜𝐸)𝛽𝐼 (

𝑆(𝑡 − 𝑇𝐸)𝐼(𝑡 − 𝑇𝐸)

𝑁
−

𝑆(𝑡 − 𝑇𝐸 − 𝑇𝐼)𝐼(𝑡 − 𝑇𝐸 − 𝑇𝐼)

𝑁
) 

+𝑝𝑛𝑜𝐸𝛽𝐼 (
𝑆𝐼

𝑁
−

𝑆(𝑡 − 𝑇𝐼)𝐼(𝑡 − 𝑇𝐼)

𝑁
) 

d𝐵1

d𝑡
= (1 − 𝑝𝑛𝑜𝐸)𝛽𝐼 (

𝑆(𝑡 − 𝑇𝐸 − 𝑇𝐼)𝐼(𝑡 − 𝑇𝐸 − 𝑇𝐼)

𝑁
) 

+𝑝𝑛𝑜𝐸𝛽𝐼 (
𝑆(𝑡 − 𝑇𝐼)𝐼(𝑡 − 𝑇𝐼)

𝑁
) − 𝑁𝑔𝐵𝛿𝐵1 

d𝐵𝑗

d𝑡
= 𝑁𝑔𝐵𝛿(𝐵𝑗−1 − 𝐵𝑗), 𝑗 = 2, … , 𝑁𝑔𝐵 

d𝐶1

d𝑡
= 𝑁𝑔𝐵𝛿𝐵𝑁𝑔𝐵

− 𝑁𝑔𝐶𝜀𝐶1 

d𝐶𝑗

d𝑡
= 𝑁𝑔𝐶𝜀(𝐶𝑗−1 − 𝐶𝑗), 𝑗 = 2, … , 𝑁𝑔𝐶  

d𝑅

d𝑡
= 𝑁𝑔𝐶𝜀𝐶𝑁𝑔𝐶

 

[𝑆, 𝐸, 𝐼, 𝐵1, … , 𝐶1, … , 𝑅](𝑡 = 0)
= [𝑁 − 𝐸𝑡=0 − 𝑅𝑡=0, (1 − 𝑝𝑛𝑜𝐸)𝐸𝑡=0, 𝑝𝑛𝑜𝐸𝐸𝑡=0, 0, … ,0, … , 𝑅𝑡=0] 

(1) 

The lagged terms 𝛽𝐼
𝑆(𝑡−𝑇)𝐼(𝑡−𝑇)

𝑁
 (where 𝑇 can be 𝑇𝐸, 𝑇𝐼, or 𝑇𝐸 + 𝑇𝐼) were assumed to be equal to 0 

when (𝑡 − 𝑇) < −0.25 days, and equal to 𝐸0/0.25 when −0.25 ≤ (𝑡 − 𝑇) < 0 in order to model 

the initial infection events that had given rise to exactly 𝐸0 infected individuals at 𝑡 = 0. 

The delayed terms in the equations for groups E and I ensure individuals spend exactly 𝑇𝐸 and 𝑇𝐼 

time units in these groups. The outflow at moment 𝑡 is equal to the inflow at (𝑡 − 𝑇𝐸) or (𝑡 − 𝑇𝐼) 

respectively. This is equivalent to both the residence time distribution and outflow rate being equal 

to the shifted Dirac delta function (unit impulse) of the time spent in the group, or to a rectangular 

survival function in the group. At the same time, it can be viewed as an extreme case of the Erlang 

(or Gamma) distribution of residence times as in groups B and C, but if the number of dummy 

variables (𝑁𝑔𝐵 and 𝑁𝑔𝐶) went to infinity. 

The initial number of immune schoolboys (i.e., those in group 𝑅 at t=0, or 𝑅𝑡=0) was assumed to be 

non-zero for two reasons: 

1) Some schoolboys might have been immune to influenza A/H1N1. The strain that caused the 

“children’s pandemic” had not been widespread for 15-20 years before the event, but the 
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original paper [5] reported that 630 boys were vaccinated with Fluvirin (that had no H1N1 

component) in October 1977. Thus, some cross-immunity might have played a role [21, 22]. 

2) Non-zero 𝑅𝑡=0 can be a crude way of accounting for contact network effects when using a 

globally mixed compartmental model: the real contact network is usually far from globally 

connected. The original publication [5] reported that the schoolboys were of very different 

ages, 10 to 18 y.o., and “113 boys of 10-13 y.o. were in the junior house, and the rest were 

divided into 10 houses of about 60 boys each”. Thus, some boys could have been shielded from 

the infection by saturation of their local contact networks, thus making them unavailable for 

infection (hence, immune in the model), while still being biologically susceptible.   
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Table 1. Variables, parameters, and fitting results of the SEIBCR model (1). Parameters that were 

estimated in the fitting process are marked with “e”. 

Sym-
bol 

Description Dime
nsion 

Min. 
value 

Max. 
value 

Optimal 
value 

𝑆(𝑡) Number of susceptibles at time 𝑡 pers. - - Variable 

𝐸(𝑡) Number of exposed/infected boys at time 𝑡 pers. - - Variable 

𝐼(𝑡) Number of infectious boys at time 𝑡 pers. - - Variable 

𝐵𝑗(𝑡) Number of “confined to bed” boys at time 
𝑡; 𝑗 is the index for dummy cascade 
variables, 𝐵(𝑡) = ∑ 𝐵𝑗(𝑡)𝑗  

pers. - - Variable 

𝐶𝑗(𝑡) Number of convalescent boys at time 𝑡; 𝑗 is 
the index for dummy cascade variables, 
𝐶(𝑡) = ∑ 𝐶𝑗(𝑡)𝑗  

pers. - - Variable 

𝑅(𝑡) Number of recovered/immune boys on day 
𝑡 

pers. - - Variable 

𝛽𝐼 Infectivity coefficient for “I” state 1/day 0 30 4.3757e 

𝑇𝐸 Residence time in “E” group day 0.1 5 2.984e 

𝑝𝑛𝑜𝐸 Probability for an infected person to have 
no “E” state and go to “I” state immediately 

- 0% 100% 67.87%e 

𝐸𝑡=0 Initial number of E individuals at 𝑡 = 0 pers. 0.01 5 0.0429e 

𝑇𝐼 Residence time in “I” group day 0.1 5 1.860e 

𝛿 Average “B”→“C” progression rate 1/day 0.01 1.0 0.3341e 

𝑁𝑔𝐵 The number of dummy groups in “B” - 10 10 10 

𝜀 Average “C”→“R” progression rate 1/day 0.01 1.0 0.5253e 

𝑁𝑔𝐶  The number of dummy groups in “C” - 10 10 10 

𝑁 Population size pers. 763 763 763 

𝑅𝑡=0 Initial number of immune persons at 𝑡 = 0 pers. 0 251-
𝐸𝑡=0 

248.74e 

∆𝑡 Time-shift for data (the first day in the 
original data corresponds to day ∆𝑡, and the 
model’s initial state is at day 𝑡 = 0)  

day 3 3 3 

ℛ0 Basic reproduction number - - - 8.14 

𝐴𝑅 Attack rate pers. - - 512.07 

𝑅𝑀𝑆𝐸𝐵 Root-mean-square error in B pers. - - 3.3543 

𝑅𝐵
2  Coefficient of determination in B - - - 99.8783% 

𝑅𝑀𝑆𝐸𝐶  Root-mean-square error in C pers. - - 7.0878 

𝑅𝐶
2 Coefficient of determination in C - - - 98.6743% 
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Fitting to data 
The model was fitted to data by minimising the weighted sum of squared residuals (𝑓) for B, C, and 

the attack rate (note that the model attack rate is calculated as 𝑆(𝑡 = 0) − 𝑆(𝑡 = end) + 𝐸(𝑡 = 0), 

and 𝑟𝐴𝑅
2  is the squared residual in attack rate): 

𝑓 = [𝑟𝐵
2 + 𝑤𝐶𝑟𝐶

2 + 𝑤𝐴𝑅𝑟𝐴𝑅
2 ] → min  

𝑟𝐵
2 = ∑ ((∑ 𝐵𝑗(𝑡)

𝑁𝑔𝐵

𝑗=1

) − 𝐵𝑑𝑎𝑡𝑎(𝑡))

2

𝑡

 

𝑟𝐶
2 = ∑ ((∑ 𝐶𝑗(𝑡)

𝑁𝑔𝐶

𝑗=1

) − 𝐶𝑑𝑎𝑡𝑎(𝑡))

2

𝑡

 

𝑟𝐴𝑅
2 = (𝑆(𝑡 = 0) − 𝑆(𝑡 = end) + 𝐸(𝑡 = 0) − 𝐴𝑅𝑑𝑎𝑡𝑎)2 

(2) 

𝐵𝑑𝑎𝑡𝑎(𝑡) and 𝐶𝑑𝑎𝑡𝑎(𝑡) are the curves shown in Fig.1, but shifted ∆𝑡 days to the right in order to 

have the first cases of infection at 𝑡 = 0 exactly ∆𝑡 days before the first B-cases in the data. 

𝐴𝑅𝑑𝑎𝑡𝑎 = 512 pers. is the target attack rate. Weights in the target function (2) were heuristically 

chosen to be 𝑤𝐶 = 0.4 and 𝑤𝐴𝑅 = 10. (See the Appendix Section 4 for alternative variants and 

discussion, including 𝑤𝐴𝑅 = 0). 

We used a library BFGS gradient descent method for numerical optimisation. To alleviate the 

problem of local minima, each fit was repeated 50 times from random initial points within the 

permitted range of parameters and the solution with the best fit to the data was chosen. 

Sensitivity and variability analyses 
Three sensitivity analyses were performed: 

1. An analysis of variability in the model-generation process: we studied how stable the 

features predicted by the flexible discrete-time model were when a small random noise was 

applied to the boarding school data. In other words, it was an analysis of the stability of the 

final model’s structure. 

2. An analysis of the “plausible set” of the parameters of the final DDE model, i.e., the range of 

parameters that do not contradict the observed data too much (equivalently, the goodness-

of-fit of the model with these parameters is within reasonable limits). To achieve this, we 

created a lattice over the initial number of immune individuals (𝑅𝑡=0) and the infectivity 

coefficient (𝛽𝐼) and re-optimised all other “free” parameters at each node of the lattice with 

𝑅𝑡=0 and 𝛽𝐼 fixed at their lattice values. 

3. A Bayesian analysis of a simplified discrete-time model analogous in structure to our final 

DDE model. This analysis was carried out with the Stan statistical package [23, 24]. The goal 

was to determine the limits of identifiability of the model’s parameters. 

Simplified discrete-time model 
The simplified discrete-time model (eq. (3) below) was built for and used in the Bayesian analysis. 

Model (3) operated on 1-day time-steps, but was similar to the DDE model (1) in the main features: 

groups S, E, I, B, C, and R, Dirac-δ-distributed residence times in groups E and I (𝑇𝐸 = 3 days, 𝑇𝐼 = 2 

days; implemented with dummy “memory” subgroups 𝐸1, 𝐸2, 𝐸3, 𝐼1, 𝐼2 that “remember” the 

preceding values of 𝐸 and 𝐼), and Erlang-like residence times in groups B and C (implemented with 
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𝑁𝑔𝐵 = 𝑁𝑔𝐶 = 2 consecutive dummy subgroups in each group). In the type of equations, the 

simplified model was similar to the flexible discrete-time model (A2) (Appendix, Section 3). The 

parameters are described in Table 2. The model equations are as follows: 

𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑(𝑡) = 𝑆(𝑡) (1 − (1 −
1

𝑁
)

𝛽𝐼(𝐼1(𝑡)+𝐼2(𝑡))

) 

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑(𝑡) 
𝐸1(𝑡 + 1) = (1 − 𝑝𝑛𝑜𝐸)𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑(𝑡) 
𝐸2(𝑡 + 1) = 𝐸1(𝑡) 
𝐸3(𝑡 + 1) = 𝐸2(𝑡) 
𝐼1(𝑡 + 1) = 𝑝𝑛𝑜𝐸𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑(𝑡) + 𝐸3(𝑡) 
𝐼2(𝑡 + 1) = 𝐼1(𝑡) 
𝐵1(𝑡 + 1) = 𝐵1(𝑡) + 𝐼2(𝑡) − 𝛿∗𝐵1(𝑡) 

𝐵𝑎(𝑡 + 1) = 𝐵𝑎(𝑡) + 𝛿∗(𝐵𝑎−1(𝑡) − 𝐵𝑎(𝑡)),   𝑎 = 2, … , 𝑁𝑔𝐵 

𝐶1(𝑡 + 1) = 𝐶1(𝑡) + 𝛿∗𝐵𝑁𝑔𝐵
(𝑡) − ε∗𝐶1(𝑡) 

𝐶𝑎(𝑡 + 1) = 𝐶𝑎(𝑡) + ε∗(𝐶𝑎−1(𝑡) − 𝐶𝑎(𝑡)),   𝑎 = 2, … , 𝑁𝑔𝐶  

𝑅(𝑡 + 1) = 𝑅(𝑡) + ε∗𝐶𝑁𝑔𝐶
(𝑡) 

𝑆(𝑡 = 0) = 𝑆𝑡=0 
𝐸1(𝑡 = 0) = (1 − 𝑝𝑛𝑜𝐸)𝐸𝑡=0 
𝐸2(𝑡 = 0) = 𝐸3(𝑡 = 0) = 0 
𝐼1(𝑡 = 0) = 𝑝𝑛𝑜𝐸𝐸𝑡=0 
𝐼2(𝑡 = 0) = 0 
𝐵𝑎(𝑡 = 0) = 0,   𝑎 = 1, … , 𝑁𝑔𝐵 

𝐶𝑎(𝑡 = 0) = 0,   𝑎 = 1, … , 𝑁𝑔𝐶 

𝑅(𝑡 = 0) = 𝑁 − 𝑆𝑡=0 − 𝐸𝑡=0 

(3) 

Numerical solutions of the discrete-time model (3) (just as of the flexible model (A2)) can be 

calculated much faster than solutions of ODE or DDE models with adaptive time-lattices. Model (3) 

may be easier to interpret than the DDE model (1). 

Results 
Flexible discrete-time model 
The full results of the flexible discrete-time model’s fitting are presented in the Appendix, Section 3. 

The estimates so obtained gave rise to the final form of the DDE model (1). The goodness-of-fit of 

the flexible model was expectedly very high (𝑅𝑀𝑆𝐸𝐵 = 3.3 pers., 𝑅𝑀𝑆𝐸𝐶 = 6.8 pers., 𝐴𝑅 = 511.9 

pers.), but it was an overfitting due to the high number of free parameters. 

Basic fitting of the DDE model 
The results of fitting the DDE model (1) are shown in Table 1 and Figure 2. The fit was extremely 

good in the B-curve (𝑅𝑀𝑆𝐸𝐵 = 3.4 pers.), quite reasonable in the C-curve (𝑅𝑀𝑆𝐸𝐶 = 7.1 pers.), 

and the attack rate was reproduced very well (𝐴𝑅 = 512.07 pers., 𝐴𝑅𝑑𝑎𝑡𝑎 = 512 pers.). 

The underlying “epidemiologic mechanism” was not the “typical” one: the infection was estimated 

to be highly contagious (ℛ0 = 8.14), the initial number of immune schoolboys was high (𝑅𝑡=0 ≈

249 pers.), and the outbreak was stopped by a total exhaustion of all susceptibles.  

The “typical” mechanism followed in previous studies would imply a lower ℛ0 (typically, ℛ0=1–4 

for pandemic influenza in general populations [2, 25]), zero or very low 𝑅𝑡=0, and the outbreak 
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would be stopped by the effective reproduction number dropping below 1, with some susceptibles 

still remaining. 

The mean generation time was 𝐺𝑇 = (1 − 𝑝𝑛𝑜𝐸)𝑇𝐸 + 𝑇𝐼/2 = 1.888 days. 

The unusual profile in the I curve (Fig.2, I-pane) was created by most infections taking place almost 

simultaneously and then, due to some infectees bypassing the E group, arriving in the I state in two 

bursts – one immediate, and one with the 𝑇𝐸 lag. 

Additional variants of model (1)’s fittings are shown in the Appendix, Section 4. These include 

scenarios without AR targeting (𝑤𝐴𝑅 = 0) and without the “E-bypass” mechanism (𝑝𝑛𝑜𝐸 = 0). 
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Figure 2. DDE model (1) variables and fit to the data in variables 𝐵 and 𝐶 (in brown) with the initial 

number of immune individuals (𝑅𝑡=0) being esimated. Variables 𝐵 and 𝐶 are sums of the relevant 

dummy variables 𝐵𝑗 and 𝐶𝑗 respectively.  
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Sensitivity 
The analysis of the stability of features predicted by the flexible model is presented in the 

Appendix, Section 5. All the main qualitative features of the final continuous model (1) remained 

unchanged except for the shape of the distribution of residence time in group C. 

The estimation of the “plausible set” of parameters of the DDE model (1) is presented in the 

Appendix, Section 6. The best-fitting variant was with a high 𝑅𝑡=0 value and moderate ℛ0, but there 

were alternative variants with no initial immunity (𝑅𝑡=0 = 0) and with a still reasonable fit to the 

data. 

The Bayesian fitting and analysis of the simplified discrete-time model (3) were carried out with the 

Stan package [23, 24]. We chose to use model (3) rather than the DDE model (1) to avoid the use of 

DDE solvers (which are absent in Stan). The key features of model (1) were preserved in model (3).  

The simplified model (3) was fitted to the boarding school data using the Bayesian procedure. There 

were three fitting scenarios: 

1. with fixed 𝑆𝑡=0 = 512 pers. (which is equivalent to fixing 𝑅𝑡=0 in other our models), 

2. with estimated 𝑆𝑡=0 (hence, 𝑅𝑡=0 is effectively estimated too), 

3. with fixed 𝑆𝑡=0 = 𝑁 − 𝐸𝑡=0 (which means 𝑅𝑡=0 = 0, 𝑆𝑡=0 ≈ 𝑁). 

The prior distributions of parameters were relatively non-informative: 

𝛽𝐼 ~ Normal(μ = 5, 𝜎2 = 22) ∈  [0, 30]; 

𝑝𝑛𝑜𝐸  ~ Uniform([0, 1]); 

δ∗ ~ Uniform([0.01, 1]); 

ε∗ ~ Uniform([0.01, 1]); 

𝐸𝑡=0 ~ Normal(μ = 1, 𝜎2 = 1) ∈  [0.01, 5]; 

𝑆𝑡=0 ~ Uniform([0, 763]). 

The model’s likelihood function was a product of two likelihood functions (for B and C) based on 

two statistical assumptions: 

𝐵𝑑𝑎𝑡𝑎(𝑡)~NegativeBinomial(𝜇𝐵(𝑡), Φ𝐵 ), 

𝜇𝐵(𝑡) = 𝐵𝑚𝑜𝑑𝑒𝑙(𝑡) = 𝔼(𝐵𝑑𝑎𝑡𝑎(𝑡)), 

Var(𝐵𝑑𝑎𝑡𝑎(𝑡)) = 𝜇𝐵(𝑡) +
(𝜇𝐵(𝑡))

𝟐

Φ𝐵
, 

Φ𝐵~Normal(μ = 0, 𝜎2 = 52) ∈  [0, ∞) 

and 

𝐶𝑑𝑎𝑡𝑎(𝑡)~NegativeBinomial(𝜇𝐶(𝑡), Φ𝐶  ), 

𝜇𝐶(𝑡) = 𝐶𝑚𝑜𝑑𝑒𝑙(𝑡) = 𝔼(𝐶𝑑𝑎𝑡𝑎(𝑡)), 

Var(𝐶𝑑𝑎𝑡𝑎(𝑡)) = 𝜇𝐶(𝑡) +
(𝜇𝐶(𝑡))

𝟐

Φ𝐶
, 

Φ𝐶~Normal(μ = 0, 𝜎2 = 52) ∈  [0, ∞). 
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In this model, the attack rate data was not directly targeted. 
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Table 2. Variables, parameters, and fitting results of the simplified discrete-time SEIBCR model (3). 

Parameters that were estimated in the fitting process are marked with “e”. Values with posterior 

distributions are reported as “mean (95% Bayesian Credible Interval)”. 

Symb. Description Dim. Scenario 1,  
fixed 𝑆𝑡=0 

Scenario 2,  
estimated 𝑆𝑡=0 

Scenario 3,  
fixed 𝑆𝑡=0 =
𝑁 − 𝐸𝑡=0 

𝑆(𝑡) Number of susceptibles on day 𝑡 pers. Variable variable variable 

𝐸𝑖(𝑡) Number of exposed/infected boys 
on their 𝑖-th day of infection on day 
𝑡 

pers. Variable variable variable 

𝐼𝑖(𝑡) Number of infectious boys on their 
𝑖-th day of the state on day 𝑡 

pers. Variable variable variable 

𝐵𝑎(𝑡) Number of “confined to bed” boys 
on day 𝑡, 𝑎-th dummy subgroup 

pers. Variable variable variable 

𝐶𝑎(𝑡) Number of convalescent boys on 
day 𝑡, 𝑎-th dummy subgroup 

pers. Variable variable variable 

𝑅(𝑡) Number of recovered/immune boys 
on calendar day 𝑡 

pers. Variable variable variable 

𝑆𝑡=0 Initial number of susceptible 
persons at 𝑡 = 0 

pers. 512 573.26(453.18-
718.66) e 

762.19(761.16
-762.75) e 

𝛽𝐼 Infectivity coefficient for “I” state 1/day 6.72 
(4.54-9.29) e 

6.20 
(3.85-9.05) e 

4.82 
(2.93-7.72) e 

𝑝𝑛𝑜𝐸 Probability for an infected person 
to bypass the “E” state 

- 0.66 
(0.49-0.85) e 

0.65 
(0.47-0.85) e 

0.64 
(0.41-0.86) e 

𝐸𝑡=0 Initial number of infected at 𝑡 = 0 pers. 0.70 
(0.27-1.51) e 

0.72 
(0.27-1.56) e 

0.81 
(0.25-1.84) e 

δ∗ Progression rate for B-group 1/day 0.75 
(0.67-0.83) e 

0.76 
(0.67-0.86) e 

0.82 
(0.73-0.94) e 

ε∗ Progression rate for C-group 1/day 0.97 
(0.88-0.99) e 

0.97 
(0.88-1.00) e 

0.96 
(0.87-1.00) e 

𝑁 Population size pers. 763 763 763 

∆𝑡 Time-shift for the data day 3 3 3 

𝐴𝑅 Attack rate pers. 512.5 (511.6-
513.4) 

573.8 (453.5-
719.0) 

762.7 (760.8-
763.0) 

𝑅𝑀𝑆𝐸�̃� Root-mean-square error in B of the 
median solution 

pers. 14.366 8.101 25.756 

𝑅�̃�
2  Coefficient of determination in B of 

the median solution 
- 97.68% 99.26% 92.54% 

𝑅𝑀𝑆𝐸�̃�  Root-mean-square error in C of the 
median solution 

pers. 10.160 16.141 44.925 

𝑅�̃�
2 Coefficient of determination in C of 

the median solution 
- 97.17% 92.85% 44.61% 
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We confirmed the posterior calibration of the simplified model’s posterior distributions using Talts 

et al.’s simulation-based calibration approach [26] (Appendix, Section 7). Therefore, since the 95% 

CIs are expected to contain the true parameter 95% of the time, the widths of 95% CIs are reliable 

for drawing inferences on the corresponding parameters.  

The results of fitting of the simplified model (3) are shown in Table 2 and Figure AF20 (Appendix, 

Section 7). 

With model (3)’s median solutions, the goodness-of-fit measures (RMSE and R2) were worse than 

those for the DDE model (1), but still acceptable in scenarios 1 and 2 (Scenario 1: 𝑅𝑀𝑆𝐸𝐵 = 14.4 

pers., 𝑅𝑀𝑆𝐸𝐶 = 10.2 pers., 𝐴𝑅 = 512.5 pers.; Scenario 2: 𝑅𝑀𝑆𝐸𝐵 = 8.1 pers., 𝑅𝑀𝑆𝐸𝐶 = 16.1 

pers., 𝐴𝑅 = 573.8 pers.). Scenario 3 (with, effectively, 𝑅𝑡=0 = 0) did not yield an acceptable fit to 

the data (𝑅𝑀𝑆𝐸𝐵 = 25.8 pers., 𝑅𝑀𝑆𝐸𝐶 = 44.9 pers., 𝐴𝑅 = 762.7 pers.).  

Although the attack rate (AR) was not directly fitted in this model, it was reproduced well in 

scenario 1 (by indirectly controlling it by setting 𝑆𝑡=0 ≈ 𝐴𝑅). In scenario 2, AR was still close to the 

real one – just because of the structure of the model. In scenario 3, AR was unacceptably high 

(nearly 100%). 

The estimated 95% CIs of the parameters (Table 2) showed that none of the parameters of the 

simplified model (3) could be identified with high precision, yet most of them had moderately wide 

CIs: about ±42% of the mean value in 𝛽𝐼; about ±30% in 𝑝𝑛𝑜𝐸; about ±92% in 𝐸𝑡=0; about ±12% 

in 𝛿∗; about ±6% in 𝜀∗. With such a small dataset (14 data-points), precise identifiability was not 

expected. 

 

Reproduction number estimation 
We used EpiEstim method and R package [27, 28] to estimate the time-dependent effective 

reproduction number ℛ𝑡 (note that ℛ𝑡 = ℛ0𝑆(𝑡)/𝑁) for the given outbreak independently of our 

models (Appendix, Section 8).  

The EpiEstim’s results confirmed that the basic reproduction number ℛ0 of about 10 (which was 

attained in our model’s best scenario) is plausible, as opposed to ℛ0 = 1– 4 estimates for the 

general population [2, 25]. 

 

Discussion 
General modelling 

The classical 1978 boarding school dataset was extensively used as an example in various textbooks 

and in R packages to illustrate the beauty of the SEIR equations in application to real data. It is a 

well-known example to most mathematical epidemiologists. However, previous works, including 

Kalachev et al. [16], did not include the total number of schoolboys who fell ill (attack rate, 

𝐴𝑅𝑑𝑎𝑡𝑎 = 512 pers.) as given in the original document [5]. Most mathematical epidemiologists 

focused on fitting the B-curve, or both the B-curve and C-curve, as if this key information of 𝐴𝑅 had 

not existed. This is unfortunate, as pointed out by Prof. Michael Li [15] who was the first to attempt 
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to fit both the B-curve and the 𝐴𝑅. To the best of our knowledge, before our study, it was still an 

open question whether a biologically reasonable model can be fitted to both the B-curve and the 

𝐴𝑅 simultaneously. 

Our modelling has shown that the 1978 English boarding school data can be fitted quite well (with 

good fits in both the B- and C-curves and in the attack rate) if a model with an appropriate structure 

is used. The key structural features of our final DDE model (1) were: 

1. the actual infectious state (I) preceded the observed B- and C-states of the disease, 

2. disease-related groups had non-exponential residence times (Dirac-δ-distributed times in E 

and I, Erlang-distributed times in B- and C-states), 

3. some individuals bypassed the E-state after infection. 

All these features look biologically plausible, although the last one is a more unusual one. They 

were derived from the given dataset, and so there is no guarantee that they work equally well with 

other influenza A datasets. Still, we can produce hypotheses that support our interpretation of the 

features as "plausible": 

• The ability of many infectious respiratory diseases to start infectivity before the 

development of major symptoms is well-known, including for influenza [29, 30]. So, the 

assumption of existence of the infectious stage I that precedes the observed (and, hence, 

symptomatic) stage B appears to be natural. 

• Non-exponential disease stage residence time distributions are well-known to be more 

realistic than exponential ones [31]. The latter are used mostly because of their 

mathematical simplicity. 

Erlang (Gamma) distributions are “strongly preferred on theoretical grounds” [31]. Dirac-δ-

distributed residence time (implemented with DDEs) can be viewed as an extreme case of 

the Erlang distribution. 

The exact shape of the residence time distribution is likely not critical: any unimodal 

distribution concentrated around its mean and having very low density near zero will likely 

work as good as the Erlang distribution does. 

• The “E-bypass” mechanism (when a newly infected person skips the exposed stage and 

develops infectiousness instantly) can be biologically interpreted as an extremely short 

exposed state. Influenza is known to have a very short generation time [32], and there are 

case-reports of extremely quick infectiousness development (i.e., very short latent 

period) [33]. So, for a given highly selected population (schoolboys) and some given strain of 

influenza A/H1N1 that infected them all, there is no reason to deny a possibility of a quite 

common (𝑝𝑛𝑜𝐸 = 67.9%) fast development of infectiousness that, in our model, is 

interpreted as the “E-bypass”. The boys who did not progress to infectiousness quickly, can 

be hypothesised to have been more resistant or having partial immunity. 

On the other hand, there is still the possibility that the “E-bypass” we have identified is just 

an artefact of fitting the given dataset, although we think this unlikely. Technically, the “E-

bypass” was justified by the survival function in E obtained in the flexible model (A2) 

(Fig. AF5). 
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Some parameters of our model (1) differed from the usual ones: 

• The initial number of immune individuals (𝑅𝑡=0) was substantially non-zero (discussed in 

“Final DDE model”), although we found reasonably well-fitting parameter sets with 𝑅𝑡=0 =

0 (Appendix, Section 6). 

• The residence time in the infectious I-state was 𝑇𝐼 = 1.86 days, which is shorter than the 

typical reported viral shedding period for influenza A/H1N1 (4.5 days in [33]). This could be 

explained by a possible virus variation and host population very different from the general 

population. But also, the model I-group is “infectious individuals before being detected as 

influenza cases and confined to bed”. Thus, the I-state ends not with an actual cessation of 

infectiousness, but with quarantining; and some B-individuals can biologically be still 

somewhat infectious, but the quarantine measures make them effectively non-infectious for 

the remaining susceptibles. So, 𝑇𝐼 can be shorter than “infectiousness time” observed in 

practical influenza A/H1N1 studies. 

The feature of the 1978 boarding school data is that the outbreak was very quick (14 days) and 

almost all infections must have taken place within a few days. It made the disease progression 

“schedules” of all infectees mostly synchronised in time. Thus, the observed B- and C-curves 

represent much more the dynamics of progression of the disease (i.e., its natural history), rather 

than the dynamics of new infections. This is the likely reason why our epidemiologic models (either 

with an extremely flexible description of disease stage progression, or with a custom-tailored 

disease progression part) were able to fit the data so well. 

The classic SEIR models with exponentially-distributed residence times were very successful in 

explaining large-scale dynamic transitions [34] and were successfully fitted to epidemic curves in 

large populations [1, 2]. But the classic SIR/SEIR models are ineffective in approximating the 1978 

boarding school dataset [15]. Presumably, this is because in slower, non-synchronised, and many-

generation processes, only the mean residence times matter. Yet, the school outbreak is different 

(fast, synchronised, few generations of infections), and the classic SEIR models cannot conform to 

its features. 

 

Flexible model approach 

Initially, we found that standard SEIR-type models gave poor fits to the data (Appendix, Section 2). 

So, some “deformation” of the models was needed. It was possible to introduce a time-dependent 

infectivity 𝛽𝐼(𝑡), but we considered it as a less plausible assumption, given such a short time-

interval. Our aim in this work was to find a biologically reasonable explanation, and we did not 

attempt to rule other possibilities out. 

Thus, we proposed a flexible model approach: we constructed an intentionally overly flexible 

discrete-time model (A2) that made practically no assumptions about the distribution of the 

residence times in the model groups (Appendix, Section 3), fitted the flexible model to the data, 

and, by reviewing the fitted survival functions, determined what distributions should be used in the 

simpler final model (1). Those distributions of residence times turned out to be Dirac delta 

distribution (unit impulse) for E and I (i.e., constant residence time in E and I), and Erlang (Gamma) 
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for B and C. Hence, the DDE framework and dummy groups mechanism were used in the final 

model (1). 

To show the wider applicability of the model-generation approach, we used it to build an optimised 

SEIR-like model for COVID-19 outbreak in Hong Kong in 2022 – see the Appendix, Section 10. 

 

Generality 

We expect the model-generation approach (i.e., the “flexible model” approach) to be applicable in 

many situations when a better-fitting, yet simple candidate model is needed. The generated simple 

model is expected to work well with the given dataset (that was used in the model generation) and 

to reveal some hypotheses about the underlying biological processes – this is why it is only a 

candidate model. Confirmation or rejection of the hypotheses requires further research and bigger 

datasets. 

Obviously, the candidate model is likely to fit well only datasets of the similar nature (in our case, 

quick outbreaks in tightly connected small populations), and it cannot replace the classic SEIR 

model everywhere. The alternative example of the 2022’s COVID-19 outbreak in Hong Kong 

(Appendix, Section 10) produced an optimised model somewhat different from the boarding 

school’s one, but still quite close in the general principles: separated-from-zero distribution of 

residence times in E, E-bypass, short infectiousness time. 

 

Reproduction numbers 
Our “central” estimate of the basic reproduction number for the influenza A/H1N1 boarding school 

outbreak is ℛ0 = 8.14, which is much higher than typical estimates of ℛ0 = 1–4. The difference 

can be explained by higher contact rates between schoolchildren than between the average 

members of the general population and by the boarding school setting increasing the contact rates 

even more as compared to “average schoolchildren” who are not confined to in-school-only 

contacts (Appendix, Section 8). 

The independent estimation of ℛ0 with the EpiEstim method [27, 28] supported the possibility of 

high ℛ0 (ℛ0 = 5–10) – see the Appendix, Section 8.  

 

Goodness of fit comparison 
A summary table and plot of goodness-of-fit of all models dealing with the 1978 boarding school 

data are presented in Section 11 of the Appendix.  

The final DDE model (1) approximated the B-curve with almost 5 times smaller RMSE (root-mean-

square error) than the SIR and SEIR models that reproduced AR (RMSE 3.3543 versus 16.5250 and 

16.0462). For the SIR and SEIR models targeting only the B-curve and having AR near 100%, the 

difference was about 3.5 times (RMSE 3.3543 versus 12.3329 and 11.0997). 

The flexible discrete-time model (A2) was expectedly better in goodness-of-fit than the DDE 

model (1), but the difference was under 5% in RMSE (𝑅𝑀𝑆𝐸𝐵
(𝐴2)

= 3.2842, 𝑅𝑀𝑆𝐸𝐵
(1)

= 3.3543, 
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𝑅𝑀𝑆𝐸𝐶
(𝐴2)

= 6.7813, 𝑅𝑀𝑆𝐸𝐶
(1)

= 7.0878). This means that the DDE model (1) is practically as 

effective in approximating the dataset as the flexible model (A2), while it has only a few free 

parameters more than the standard SEIR model (with the C-group added). 

The simplified discrete-time model (3) was considerably worse than the DDE model (1) in goodness-

of-fit: in the “forced correct AR” Scenario 1, it was 4.3 times worse in B (𝑅𝑀𝑆𝐸𝐵
(3)

= 14.366) and 

1.4 times worse in C (𝑅𝑀𝑆𝐸𝐶
(3)

= 10.160) than model (1); in the “no AR targeting” Scenario 2, there 

was a significant difference in AR (𝐴𝑅(3) = 573.8, 𝐴𝑅𝑑𝑎𝑡𝑎 = 512) and the fits in B and C were 

about 2.3 times worse than in model (1) (𝑅𝑀𝑆𝐸𝐵
(3)

= 8.101, 𝑅𝑀𝑆𝐸𝐶
(3)

= 16.141). This was 

expected because model (3) was limited by design to fixed integer residence times in E and I. 

Nevertheless, even in this limited form, it performed slightly better than SIR/SEIR models. 

 

Model fitting and identifiability 
The DDE model (1) fitted the boarding school data well. Yet, it technically depended on the 

heuristically chosen weights 𝑤𝐶  and 𝑤𝐴𝑅 (eq. (2)). In fact, the exact values of these weights were 

not critical, and the model produced quite similar fits with different weights. 

𝑤𝐶 = 0.4 reflected the notion that fitting in the C-curve was not as important as the one in the B-

curve. 

𝑤𝐴𝑅 and AR-targeting were introduced as one of the main features of our modelling process that, 

unlike other studies, tried to reproduce the observed attack rate together with the B- and C-curves. 

Yet, the numerical experiments showed that much lower values of 𝑤𝐴𝑅 produced practically the 

same fits. And even if AR-targeting was switched off (𝑤𝐴𝑅 = 0), the adapted model (1) produced AR 

quite close to the observed one (518 vs. 512 pers., see the Appendix, Section 4). 

Naturally, there is a question of identifiability. It splits into several parts: 

1. The identifiability of the structure of the optimised model, i.e., how stable the qualitative 

results of the flexible discrete-time model are. As shown in the Appendix Section 5, this 

qualitative model-generation process is fairly stable to a reasonable random noise in the 

observed data. 

2. The identifiability of the parameters of the final DDE model (1). This question is, in our 

opinion, less important because we do not claim our DDE model to be universally applicable. 

Furthermore, the small size of the 1978 boarding school dataset (14 actual data-points) is 

not conducive to precise technical identifiability of the parameters. 

Nevertheless, we carried out two analyses regarding the issue: 

a. An estimation of the “plausible set” of parameters – in the sense of “what parameter 

values permit a still acceptable fit to the data” (Appendix, Section 6). It revealed that 

the DDE model is capable of reasonable fits to the data in different “modes” having 

different biological interpretations. In the “optimal” mode, the AR is controlled 

mostly with the suitable initial number of immune individuals (𝑅𝑡=0 ≈ 𝑁 − 𝐴𝑅𝑑𝑎𝑡𝑎); 

but there exists a mode with 𝑅𝑡=0 = 0, well-reproduced AR, and goodness-of-fit 

measures considerably better than those of the standard SIR and SEIR models. This 

shows the potential of model structure being “custom-tailored” to a given dataset. 
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b. A formal Bayesian fitting procedure of a simplified discrete-time model (3) that 

replicated the main features of the DDE model (1) (“Sensitivity” section above and 

the Appendix, Section 7). The widths of obtained posterior credible intervals were 

expectedly not small, but still could be named “moderate”. As shown by a 

quantitative calibration analysis in Section 7 of the Appendix, the model’s posterior 

distributions were well-calibrated in scenarios 1 and 2, and so its CIs captured the 

data without any impact from the priors. This indirectly supported the practical 

identifiability of the DDE model (1). 

The analysis was not suitable for a pinpoint estimation of the parameters, but 

showed that the general modus operandi of the model remained stable. 

 

Drawbacks 

Due to the nature of the “resulting” models (1) and (3), there are numerous “weak points”: 

1. Biological assumptions: 

1.1. “E-bypass”: not a typical assumption for SEIR-type models, but see its discussion in 

“General modelling” above. 

1.2. Significant amount of initially immune individuals (𝑅𝑡=0): this feature definitely improves 

the fit in AR both in SIR/SEIR models and in our models, albeit 𝑅𝑡=0 = 0 is traditionally 

assumed in outbreaks models. See the discussion of this point in “Final DDE model”. 

1.3. Dirac-δ-distributed residence times in groups E and I: these are a simplifying idealisation. 

But the same could be said for the “standard” constant progression rates of a SEIR model 

(that result in the exponential distribution of residence times). Both are one-parameter 

distributions with an easily controlled mean value. Both have distribution shapes that are 

“biologically questionable”. 

1.4. Semi-arbitrary shapes of the Erlang residence time distribution in B and C (controlled by the 

number of dummy stages 𝑁𝑔𝐵 = 𝑁𝑔𝐶 = 10). 

2. The fitting procedure depended on heuristically chosen weights in the target function (2). 

Despite our analysis had shown that changing the weights within sensible limits did not change 

the qualitative results, the weights still affect the exact numerical estimations of model 

parameters. 

3. Identifiability: due to a small size of the dataset (14 points), the parameters of either model 

cannot be precisely identified. Furthermore, our sensitivity analysis for model (1) revealed that 

it can have satisfactory fits to the data with structurally very different parameters (and, hence, 

modi operandi of the model). 

4. Model (3) had pre-fixed residence times in E and I, and those were not optimised (just chosen as 

close to the parameters of model (1) as possible). 

5. The Bayesian fitting of model (3) depended on the choice of prior distributions – just as any 

Bayesian fitting. We tried to choose as uninformative priors as possible.  

6. Our models are still Markovian with regard to disease stages: the residence time in each stage is 

independent of the previous or subsequent stages. Likely, it is not so in reality. Furthermore, 

the original paper [5] mentioned that the time in bed and in the convalescent state depended 

on disease severity and, hence, were correlated. 
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7. Our final model (1) may be not unique: there might exist other models that have slightly more 

parameters than the SEIR model and give a good fit to the dataset. 

 

Conclusion 
Our primary objective was to resolve the puzzle of whether a biologically sound model can fit the 

classical textbook 1978’s boarding school influenza A/H1N1 outbreak data. We successfully built 

such a model – the DDE model (1). 

Our model (1) reproduced the observed attack rate very well, while the previous “textbook 

solutions” usually had 100% or near-100% attack rate. The quality of fit in the B- and C-curves was 

also 3-5 times better in our model than in many textbook models. 

Our model (1) differed by having non-standard, narrow distributions of residence times in the 

disease-related groups. Most infections in the outbreak were “synchronised” (occurred within a few 

days), and this permitted the non-standard disease-progression model to fit the data well. Model 

(1) was built as a simplification or conceptualisation of an intentionally overly flexible model fitted 

to the same data. The resulting model might have been a mild overfitting, but it was indirectly 

supported by plausible results of fits without targeting the attack rate (simulated 𝐴𝑅 = 518, while 

𝐴𝑅𝑑𝑎𝑡𝑎 = 512). The final delay differential equation model (1) with multi-stage groups may look 

complex, but the actual number of free parameters is practically the same as for one-stage models. 

The final model (1) might be considered as “biologically plausible” and possibly more realistic – for 

the given dataset – than the standard SEIR model. The residence time distributions and other 

biological assumptions were chosen on the basis of fitting the overall outbreak curve and general 

biological speculations (see “General modelling”). The small size of the dataset did not permit a 

precise formal identification of model’s parameters. The fit to the data depended on heuristically 

chosen weights. 

The overall approach of custom-tuning the structure of a model (especially the distributions of 

residence times) to a given dataset is likely not new, but it still can be useful for producing 

“hypothetical models” or candidate models in other studies. 

We see the main merit of our study and its final DDE model (1) not in the estimated epidemiological 

parameters, but in the overall model structure (including residence time parameters) and insights 

that it has provided. 
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