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Abstract
The late ProfessorM. J. D. Powell devised five trust-regionmethods for derivative-free
optimization, namely COBYLA, UOBYQA, NEWUOA, BOBYQA, and LINCOA.
He carefully implemented them into publicly available solvers, renowned for their
robustness and efficiency. However, the solvers were implemented in Fortran 77 and
hence may not be easily accessible to some users. We introduce the PDFO package,
which provides user-friendly Python and MATLAB interfaces to Powell’s code. With
PDFO, users of such languages can call Powell’s Fortran solvers easilywithout dealing
with the Fortran code. Moreover, PDFO includes bug fixes and improvements, which
are particularly important for handling problems that suffer from ill-conditioning or
failures of function evaluations. In addition to the PDFO package, we provide an
overview of Powell’s methods, sketching them from a uniform perspective, summa-
rizing theirmain features, and highlighting the similarities and interconnections among
them. We also present experiments on PDFO to demonstrate its stability under noise,
tolerance of failures in function evaluations, and potential to solve certain hyperpa-
rameter optimization problems.
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1 Introduction

Most optimization algorithms rely on classical or generalized derivative information
of the objective and constraint functions. However, in many applications, such infor-
mation is not available. This is the case, for example, if the objective function does not
have an explicit formulation but can only be evaluated through complex simulations or
experiments. Such problemsmotivate the development of optimization algorithms that
use only function values but not derivatives, also known as derivative-free optimization
(DFO) algorithms.

Powell devised five algorithms to tackle unconstrained and constrained problems
without using derivatives, namely COBYLA [50], UOBYQA [53], NEWUOA [56],
BOBYQA [58], and LINCOA. Not only did he propose these algorithms but he also
implemented them into publicly available solvers, paying great attention to the stability
and complexity of their numerical linear algebra computations. Renowned for their
robustness and efficiency, these solvers are used in a wide spectrum of applications,
for instance, aeronautical engineering [25], astronomy [39], computer vision [33],
robotics [40], and statistics [5].

However, Powell implemented the solvers in Fortran 77, an old-fashioned language
that damps the enthusiasm of many users to exploit these solvers in their projects.
There has been a continued demand from both researchers and practitioners for the
availability of Powell’s solvers in more user-friendly languages such as Python and
MATLAB.

Responding to such a demand, this paper presents a package named PDFO, an
acronym for “Powell’s Derivative-Free Optimization solvers.” PDFO interfaces Pow-
ell’s Fortran solvers with other languages, enabling users of such languages to call
Powell’s solvers without dealing with the Fortran code. For each supported language,
PDFO provides a simple function that can invoke one of Powell’s solvers according to
the user’s request (if any) or according to the type of the problem to solve. The current
release (Version 2.2.0) of PDFO supports Python andMATLAB, with more languages
to be covered in the future. The signature of the Python function is consistent with the
minimize function of the SciPy optimization library, and that of theMATLAB func-
tion is consistent with the fmincon function of theMATLABOptimization Toolbox.
PDFO is cross-platform, available on Linux, macOS, and Windows at

https://www.pdfo.net and https://github.com/pdfo/pdfo,

with the DOI 10.5281/zenodo.3887568. It has been downloaded more than 120,000
times as of June 2024, mirror downloads excluded.Moreover, it is one of the optimiza-
tion engines in GEMSEO [25],1 an industrial software package for multidisciplinary
design optimization (MDO).

PDFO is not the first attempt to facilitate the usage of Powell’s solvers in languages
other than Fortran. Various efforts have been made in this direction. Py-BOBYQA [9,
10] provides a Python implementation of BOBYQA (although it is not meant to be
a faithful re-implementation of Powell’s version); NLopt includes multi-language
interfaces for COBYLA, NEWUOA, and BOBYQA;2 minqa wraps UOBYQA,

1 https://gemseo.readthedocs.io.
2 https://github.com/stevengj/nlopt.
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NEWUOA, and BOBYQA in R;3 SciPy makes COBYLA available in Python under
its optimization library.4 However, PDFO has several features that distinguish it from
others.

1. Comprehensiveness. To the best of our knowledge, PDFO is the only package that
provides all of COBYLA, UOBYQA, NEWUOA, BOBYQA, and LINCOA with
a uniform interface.

2. Solver selection. PDFO can automatically select a solver for a given problem. The
selection takes into account the performance of the solvers on the CUTEst [28]
problem set.

3. Problem preprocessing. PDFO preprocesses the inputs to simplify the problem and
reformulate it to meet the requirements of Powell’s solvers.

4. Code patching. PDFO patches several bugs in the Fortran code. Such bugs can lead
to serious problems such as infinite cycling or memory errors.

5. Fault tolerance. PDFO tolerates failures of function evaluations. In case of such
failures, PDFO will not exit but try to progress.

6. Additional options. PDFO includes options for the user to control the solvers in
some manners that are useful in practice. For example, the user can request PDFO
to scale the problem according to bound constraints on the variables before solving.

In addition to the PDFO package, this paper also provides an overview of Powell’s
DFO methods. We will not repeat Powell’s description of these methods but summa-
rize them from a uniform viewpoint, aiming at easing the understanding of Powell’s
methods and paving the way for further development based on them.

The analysis of Powell’s DFO methods is not within the scope of this paper. Under
some assumptions, adapted versions of Powell’s algorithms may be covered by exist-
ing theory for trust-region DFO methods [18, Chapter 10]. However, it will still be
interesting to pursue a tailored theory for Powell’s algorithms.

The remaining part of this paper is organized as follows. Section2 briefly reviews
DFO methods in order to provide the context of PDFO. We then present an overview
of Powell’s DFOmethods in Section3, including a sketch of the algorithms and a sum-
mary of their main features. A detailed exposition of PDFO is given in Section4, high-
lighting its solver selection, problempreprocessing, bug fixes, and handling of function
evaluation failures. Section5 presents some experiments on PDFO, demonstrating its
stability under noise, tolerance of function evaluation failures, and potential in hyper-
parameter optimization. We conclude the paper with some remarks in Section6.

2 A brief review of DFOmethods

Consider a nonlinear optimization problem

min
x∈�

f (x), (1)

3 https://cran.r-project.org/package=minqa.
4 https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html.
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where f : Rn → R is the objective function and� ⊆ R
n represents the feasible region.

As summarized in [18], two strategies have been developed to tackle problem (1)
without using derivatives, which we will introduce in the following.

The first strategy, known as direct search,5 samples the objective function f
and chooses iterates by simple comparisons of function values, examples includ-
ing the Nelder-Mead algorithm [44], the MADS methods [2, 37], and BFO [46, 47].
See [35], [18, Chapters 7 and 8], [3, Part 3], and [36, § 2.1] for more discussions
on this paradigm, and we refer to [29, 30] for recent developments of randomized
methods in this category.

The second strategy approximates the original problem (1) by relatively simple
models and locates the iterates according to these models. Algorithms applying this
strategy are referred to as model-based methods. They often make use of the models
within a trust-region framework [17] or a line-search framework [6]. Interpolation
and regression are two common ways of establishing the models [4, 7, 15, 16, 52,
65, 74]. Algorithms using finite-difference gradients can also be regarded as model-
based methods because such gradients essentially come from linear (for the forward
and backward differences) or quadratic (for the central difference) interpolation of the
function under consideration over rather special interpolation sets [62, § 1.4.3]. Most
model-based DFO methods employ linear or quadratic models, examples including
Powell’s algorithms [50, 53, 56, 58] in PDFO, MNH [73], DFLS [76], DFO-TR [4],
and DFO-LS [9, 32], but there are also methods exploiting radial basis functions
(RBFs), such as ORBIT [74], CONORBIT [65], and BOOSTERS [45].

Hybrids between direct search and model-based approaches exist, for instance,
Implicit Filtering [34, Algorithm 4.7] and MADS with quadratic models [12]. Theo-
ries of global convergence and convergence rate have been established for both direct
search [22, 29, 35, 71, 72] and model-based methods [13, 17, 26, 59]. Since the objec-
tive and constraint functions in DFO problems are commonly expensive to evaluate,
theworst-case complexity in terms of function evaluations is amajor theoretical aspect
of DFO algorithms. Examples of such complexity analysis can be found in [22, 26,
29, 72]. For more extensive discussions on DFO methods and theory, see the mono-
graphs [3, 18], the survey papers [20, 36, 66], the recent thesis [62], and the references
therein.

5 In some early papers (e.g., [50, 51]) Powell and many other authors used “direct search” to mean what is
known as “derivative-free optimization” today. Powell rarely used the word “derivative-free optimization.”
The only exceptions known to us are his last paper [61] and his distinguished lecture titled “A parsimonious
way of constructing quadratic models from values of the objective function in derivative-free optimization”
at the National Center for Mathematics and Interdisciplinary Sciences, Beijing on November 4, 2011 [8].
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3 Powell’s derivative-free algorithms

Powell published in 1964 his first DFO algorithm based on conjugate directions [48].6

His code for this algorithm is contained in the HSL Mathematical Software Library
as subroutine VA24.7 It is not included in PDFO because the code is not in the public
domain, although open-source implementations are available (see [14, Footnote 4]).

From the 1990s to the final years of his career, Powell developed five model-based
DFO algorithms to solve (1), namely COBYLA [50] (for nonlinearly constrained
problems), UOBYQA [53] (for unconstrained problems), NEWUOA [56] (for
unconstrained problems), BOBYQA [58] (for bound-constrained problems), and
LINCOA (for linearly constrained problems). Moreover, Powell implemented these
algorithms into Fortran solvers and made the code publicly available. They are the
cornerstones of PDFO. This section provides an overview of these five algorithms,
starting with a sketch in Subsection3.1 and then presenting more details afterward.

3.1 A sketch of the algorithms

Powell’s model-based DFO algorithms are trust-region methods. At iteration k, the
algorithms construct a linear (for COBYLA) or quadratic (for the other methods)
model fk for the objective function f according to the interpolation condition

fk(y) = f (y), y ∈ Yk, (2)

where Yk ⊆ R
n is a finite interpolation set updated along the iterations. COBYLA

models the constraints by linear interpolants on Yk as well. Instead of repeating Pow-
ell’s description of these algorithms, we outline them in the sequel, emphasizing the
trust-region subproblem, the interpolation problem, and the management of the inter-
polation set.

3.1.1 The trust-region subproblem

In all five algorithms, iteration k places the trust-region center xk at the “best” point
where the objective function and constraints have been evaluated so far. Such a point is
selected according to the objective function or amerit function that takes the constraints
into account. After choosing the trust-region center xk , with the trust-region model fk
constructed according to (2), a trial point x tk is then obtained by solving approximately
the trust-region subproblem

min
x∈�k

fk(x) s.t. ‖x − xk‖ ≤ �k, (3)

6 According to Google Scholar, this is Powell’s second paper and also the second most cited work. The
earliest and most cited one is his paper on the DFP method [23] co-authored with Fletcher and published
in 1963. DFP is not a DFO algorithm but the first quasi-Newton method. The least-change property [21] of
quasi-Newtonmethods is amajormotivation for Powell to investigate the least Frobenius normupdating [54]
of quadratic models in DFO, which is the backbone of NEWUOA, BOBYQA, and LINCOA.
7 https://www.hsl.rl.ac.uk.
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where�k is the trust-region radius, and‖·‖ is the �2-norm inRn . In this subproblem, the
set �k ⊆ R

n is a local approximation of the feasible region �. COBYLA defines �k

by linear interpolants of the constraint functions over the set Yk , whereas the other
four algorithms take �k = �.

3.1.2 The interpolation problem

Fully determined interpolation.The interpolation condition (2) is essentially a linear
system. Given a base point yb ∈ R

n , which may depend on k, a linear model fk takes
the form of fk(x) = f (yb) + (x − yb)T∇ fk(yb), and hence (2) is equivalent to

fk(y
b) + (y − yb)T∇ fk(y

b) = f (y), y ∈ Yk, (4)

which is a linear system with respect to fk(yb) ∈ R and ∇ fk(yb) ∈ R
n , the degrees

of freedom being n + 1. COBYLA builds linear models by the system (4), with Yk

being an interpolation set of n + 1 points updated along the iterations. Similarly, if fk
is a quadratic model, then (2) is equivalent to

fk(y
b) + (y − yb)T∇ fk(y

b) + 1

2
(y − yb)T∇2 fk(y

b)(y − yb) = f (y), y ∈ Yk, (5)

a linear system with unknowns fk(yb)∈R, ∇ fk(yb)∈R
n , and ∇2 fk(yb)∈R

n×n , the
degrees of freedombeing (n+1)(n+2)/2due to the symmetry of∇2 fk(yb).UOBYQA
constructs quadratic models by the system (5). To decide a quadratic model fk com-
pletely by this system alone, UOBYQA requires that Yk contains (n + 1)(n + 2)/2
points, and f should have been evaluated at all these points before the system can be
formed. Even though most of these points will be reused at the subsequent iterations
so that the number of function evaluations needed per iteration is tiny (see Subsec-
tion3.1.3), wemust perform (n+1)(n+2)/2 function evaluations during the very first
iteration. This is impracticable unless n is small, whichmotivates the underdetermined
quadratic interpolation.
Underdetermined quadratic interpolation. In this case, models are established
according to the interpolation condition (2) with |Yk | being less than or equal
to (n + 1)(n + 2)/2, the remaining degrees of freedom being taken up by mini-
mizing a certain functional Fk to promote the regularity of the quadratic model. More
specifically, this means building fk by solving

min
Q∈Qn

Fk(Q) s.t. Q(y) = f (y), y ∈ Yk, (6)

where Qn is the space of polynomials on R
n of degree at most 2. NEWUOA,

BOBYQA, and LINCOA construct quadratic models in this way, with

Fk(Q) = ∥
∥∇2Q − ∇2 fk−1

∥
∥2
F, (7)

which is inspired by the least-change property of quasi-Newton updates [21], although
other functionals are possible (see, e.g., [4, 19, 60, 75, 78]). The first model f1 is
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obtained by setting f0 = 0. Powell [60] referred to his approach as the symmetric Broy-
den updateof quadraticmodels (see also [77, § 3.6] and [62, § 2.4.2]). It can be regarded
as a derivative-free version of Powell’s symmetric Broyden (PSB) quasi-Newton
update [49], which minimizes the functional Fk among all quadratic polynomials that
fulfill Q(xk) = f (xk), ∇Q(xk) = ∇ f (xk), and ∇Q(xk−1) = ∇ f (xk−1) (see [21,
Theorem 4.2]), with xk and xk−1 being the current and the previous iterates, respec-
tively. The interpolation problem (6)–(7) is a convex quadratic programming problem
with respect to the coefficients of the quadratic model.
Solving the interpolationproblem. Powell’s algorithmsdonot solve the interpolation
problems (4), (5), and (6)–(7) from scratch. COBYLA maintains the inverse of the
coefficient matrix for (4) and updates it along the iterations. Since each iteration of
COBYLA alters the interpolation set Yk by only one point (see Subsection 3.1.3),
the coefficient matrix is modified by a rank-1 update, and hence its inverse can be
updated according to the Sherman-Morrison-Woodbury formula [31]. UOBYQAdoes
the same for (5), except that [53, § 4] describes the update in terms of the Lagrange
functions of the interpolation problem (5), the coefficients of a Lagrange function
corresponding precisely to a column of the inverse matrix. For the underdetermined
quadratic interpolation (6)–(7), NEWUOA, BOBYQA, and LINCOA maintain and
update the inverse of the coefficientmatrix for theKKTsystemof (6)–(7). Theupdate is
also done by the Sherman-Morrison-Woodbury formula as detailed in [55, § 2]. In this
case, each iterationmodifies the coefficient matrix and its inverse by rank-2 updates. In
addition, the columns of this inversematrix readily provide the coefficients ofLagrange
functions that make the interpolation problem (6)–(7) easy to solve (see [54, § 3]).
The base point. The choice of the base point yb is also worth mentioning. COBYLA
sets yb to the center xk of the current trust region. In contrast, the other four algorithms
initiate yb to the starting point provided by the user and keep it unchanged except for
occasionally updating yb to xk , without which the distance ‖yb − xk‖ may become
unfavorably large for the numerical solution of the interpolation problem. See [54,
§ 5] and [56, § 7] for more elaboration.

3.1.3 The interpolation set

The strategy to update Yk is crucial. It should reuse points from previous iterations,
at which the objective and constraint functions have been evaluated. Meanwhile, it
needs to maintain the geometry of the interpolation set so that it is well poised, or
equivalently, the interpolation problem is well conditioned [18].

At a normal iteration, Powell’s methods compute a point x tk ∈ R
n by solving the

trust-region subproblem (3), and update the interpolation set as

Yk+1 = (

Yk ∪ {x tk}
) \ {ydk }, (8)

where ydk ∈ Yk is selected after obtaining x tk , aiming to maintain the well-poisedness
of Yk+1. As mentioned, Powell’s methods update the inverse of the coefficient matrix
for either the interpolation system or the corresponding KKT system by the Sherman-
Morrison-Woodbury formula. To keep the interpolation problem well-conditioned, ydk
is chosen to enlarge the magnitude of the denominator in this formula, which is also
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the ratio between the determinants of the old and new coefficient matrices.8 In the fully
determined interpolation, this denominator is �dk(x

t
k), where �dk is the Lagrange func-

tion associated withYk corresponding to ydk (see Eqs. (10)–(13) and § 2 of [52]). In the
underdetermined case, the denominator is lower bounded by [�dk(x tk)]2 (see Eq. (2.12),
Lemma 1, and § 2 of [55], where the denominator is denoted by σ , and �dk(x

t
k) by τ ).

However, Powell’smethods donot choose the point ydk merely according to this denom-
inator, but also take into account its distance to the trust-region center, giving a higher
priority to farther points, as we can see in [53, Eq. (56)] and [56, Eqs. (7.4)–(7.5)], for
example.

An alternative update of the interpolation set takes place when the methods detect
that fk does not represent f well enough, attempting to improve the geometry of the
interpolation set. In this case, the methods first select a point ydk ∈ Yk to drop from Yk ,
and then set

Yk+1 = (

Yk \ {ydk }
) ∪ {xgk }, (9)

where xgk ∈ R
n is chosen to improve the well-poisedness of Yk+1. In COBYLA, the

choice of ydk and xgk is guided by the fact that the interpolation set forms a simplex
in R

n , trying to keep Yk+1 away from falling into an (n − 1)-dimensional subspace,
as is detailed in [50, Eqs. (15)–(17)]. The other four methods select ydk from Yk by
maximizing its distance to the current trust-region center xk , and then obtain xgk by
solving

max
x∈�

|�dk(x)| s.t. ‖x − xk‖ ≤ �̃k (10)

for some �̃k ∈ (0,�k]. The motivation for this problem is again to enlarge the
magnitude of the aforementioned denominator in the Sherman-Morrison-Woodbury
updating formula: for UOBYQA, the denominator is �dk(x), while for NEWUOA,
BOBYQA, and LINCOA, the denominator is lower bounded by [�dk(x)]2. In addition,
NEWUOA maximizes this denominator directly if (10) fails to make its magnitude
large enough, which rarely happens [56, § 6].

Given the two possible updates (8) and (9) of the interpolation set, it is clear that the
number of interpolation points remains constant. As mentioned earlier, this number
is n + 1 in COBYLA and (n + 1)(n + 2)/2 in UOBYQA. NEWUOA, BOBYQA,
and LINCOA set it to an integer in [n + 2, (n + 1)(n + 2)/2], with the default value
being 2n + 1, which is proved optimal in terms of the well-poisedness of the initial
interpolation set chosen by Powell for NEWUOA [63].

3.2 COBYLA

Published in 1994, COBYLA was the first model-based DFO solver by Powell. The
solver is named after “Constrained Optimization BY Linear Approximations.” It aims
to solve problem (1) with the feasible region

8 Suppose that W is a square matrix and consider W̃ = W + UV T , where U and V are two matrices
of the same size and UV T has the same size as W . Then det(W̃ ) = det(W ) det(I + V TW−1U ), and the
Sherman-Morrison-Woodbury formula is W̃−1 = W−1 − W−1U (I + V TW−1U )−1V TW−1, assuming
that both W and I + V TW−1U are nonsingular. The number det(I + V TW−1U ) is the only denominator
involved in the numerical computation of the formula.
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�
def= {x ∈ R

n : ci (x) ≥ 0, i = 1, . . . ,m},

where ci : Rn → R denotes the i th constraint function for each i ∈ {1, . . . ,m}.
The same as the objective function, all constraints are assumed to be accessible only
through function values.

As mentioned before, iteration k of COBYLA models the objective and the con-
straint functions with linear interpolants on the interpolation set Yk of n + 1 points.
Once the linear models ck,i of ci are built for i ∈ {1, . . . ,m}, the trust-region sub-
problem (3) is formed with

�k
def= {x ∈ R

n : ck,i (x) ≥ 0, i = 1, . . . ,m}. (11)

This subproblem may not be feasible, as the trust region and the region (11) may not
intersect. COBYLA handles the trust-region subproblem in two stages. In the first
stage, it solves

min
x∈Rn

max
1≤i≤m

[ck,i (x)]− s.t. ‖x − xk‖ ≤ �k,

where [t]− = max{0,−t} for any t ∈ R. In doing so, the method attempts to reduce
the �∞-violation of the linearized constraints within the trust region. If the first stage
finds a point in the interior of the trust region, then the second stage uses the resultant
freedom in x to minimize the linearized objective function fk within the trust region
subject to no increase in any greatest violation of the linearized constraints.

COBYLA assesses the quality of points and updates the trust-region radius accord-
ing to an �∞-merit function and a reduction ratio based on it (see [50, Eqs. (5), (9),
and (10)]). It never increases the trust-region radius and reduces it if the geometry
of Yk is acceptable but the trust-region trial point x tk is too close to xk or does not
render a big enough reduction ratio [50, Eq. (11)].

3.3 UOBYQA

In 2002, Powell published UOBYQA [53], named after “Unconstrained Optimization
BY Quadratic Approximation.” It aims at solving the nonlinear optimization prob-
lem (1) in the unconstrained case, i.e., when � = R

n .
At iteration k, UOBYQA constructs the model fk for the objective function f by

the fully determined quadratic interpolation on the interpolation set Yk containing
(n + 1)(n + 2)/2 points. The trust-region subproblem (3) is solved with the Moré-
Sorensen algorithm [41]. For the geometry-improving subproblem (10), Powell
developed an inexact algorithm that requires only O(n2) operations. See [53, § 2]
for more details.

UOBYQA updates the trust-region radius �k in a noteworthy way. The update is
typical for trust-region methods, except that a lower bound ρk is imposed on �k . The
value of ρk can be regarded as an indicator for the current accuracy of the algorithm.
Without imposing �k ≥ ρk , the trust-region radius �k may be reduced to a value
that is too small for the current accuracy, making the interpolation points concentrate
too much. The value of ρk is never increased and is decreased when the UOBYQA
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decides that the work for the current value of ρk is finished. It decides so if�k reaches
its lower bound ρk , the current trust-region trial step does not perform well, and the
current interpolation set seems adequate for the current accuracy. See [53, § 3] for
more information on the updates of �k and ρk .

3.4 NEWUOA, BOBYQA, and LINCOA

Later on, based on the underdetermined quadratic interpolation introduced in Sub-
section 3.1.2, Powell developed his last three DFO solvers, namely NEWUOA [56,
57], BOBYQA [58], and LINCOA. BOBYQA and LINCOA are named respec-
tively after “Bound Optimization BY Quadratic Approximation” and “LINearly
Constrained Optimization Algorithm,” but Powell [56, 57] did not specify the mean-
ing of NEWUOA, which is likely an acronym for “NEWUnconstrained Optimization
Algorithm.” It is worth mentioning that Powell never published a paper to introduce
LINCOA, and [61] discusses only how to solve its trust-region subproblem.

NEWUOA, BOBYQA, and LINCOA aim at solving unconstrained, bound-
constrained, and linearly constrained problems, respectively. They all set �k in the
trust-region subproblem (3) to be�, corresponding to the whole space for NEWUOA,
a box for BOBYQA, and a polyhedron for LINCOA.

To solve the trust-region subproblem (3), NEWUOA employs the Steihaug-Toint
truncated conjugate gradient (TCG) algorithm [69, 70]; if the boundary of the trust
region is reached, then NEWUOA may make further changes to the trust-region step,
each one obtained by searching in the two-dimensional space spanned by the current
step and the corresponding gradient of the trust-region model [56, § 5]. BOBYQA
solves (3) by an active-set variant of the TCG algorithm, and it may also improve the
TCG step by two-dimensional searches if it reaches the trust-region boundary [58,
§ 3]. LINCOA uses another active-set variant of TCG to solve the trust-region sub-
problem (3) with linear constraints [61, § 3 and § 5]. An accessible description of the
TCG algorithms employed by BOBYQA and LINCOA can be found in [62, § 6.2.1–
6.2.2]. NEWUOA, BOBYQA, and LINCOA manage the trust-region radius in a way
similar to UOBYQA, imposing a lower bound ρk on �k when updating �k .

When solving the geometry-improving subproblem (10), NEWUOA first takes
xk ± �̃k(ydk − xk)/‖ydk − xk‖, with the sign that provides the larger value of �dk , and
then revises it by a procedure similar to the two-dimensional searches that improve
the TCG step for (3) (see [56, § 6]). BOBYQA computes two approximate solutions
to (10) and chooses the better one: the first one solves (10) with an additional constraint
that x is located on the straight lines through xk and another point inYk , and the second
is obtained by a Cauchy step for (10) (see [58, § 3]). The geometry-improving step of
LINCOA is more complex, as it is chosen from three approximate solutions to (10):

1. The point that maximizes |�dk | within the trust region on the lines through xk and
another point in Yk ,

2. a point obtained by a gradient step that maximizes |�dk | within the trust region, and
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3. a point obtained by a projected gradient step that maximizes |�dk | within the trust
region, the projection being made onto the null space of the constraints that are
considered active at xk .

Note that the first two cases disregard the linear constraints (i.e. x ∈ �k = �), while
the third case considers only the active constraints. LINCOA first selects the point
among the first two alternatives for a larger value of |�dk |; further, this point is replaced
with the third alternative if the latter nearly satisfies the linear constraints x ∈ �while
rendering a value of |�dk | that is not too small compared with the above one.

BOBYQA respects the bound constraints x ∈ � when solving the trust-region
subproblem (3) and the geometry-improving subproblem (10), even though these
problems are solved approximately. It also chooses the initial interpolation set Y1
within the bounds. Therefore, BOBYQA is a feasible method. In contrast, LINCOA
may violate the linear constraints when solving the geometry-improving subproblem
and when setting up the initial interpolation set. Consequently, LINCOA is an infea-
sible method, which requires f to be defined even when the linear constraints are not
satisfied.

4 The PDFO package

This section details the main features of PDFO, in particular the signature of the main
function, solver selection, problems preprocessing, bug fixes, and handling failures of
function evaluations. For more features of PDFO, we refer to its homepage at https://
www.pdfo.net.

Before starting, we emphasize that PDFO does not re-implement Powell’s solvers
but rather enables Python and MATLAB to call Powell’s Fortran implementation. At
a low level, it uses F2PY9 to interface Python with Fortran, and MEX to interface
MATLAB with Fortran, although users never need such knowledge to employ PDFO.

4.1 Signature of themain function

The philosophy of PDFO is simple: providing a single function named pdfo to solve
DFO problems with or without constraints, calling Powell’s Fortran solvers in the
backend. It takes for input an optimization problem of the form

min
x∈Rn

f (x) (12a)

s.t. l ≤ x ≤ u, (12b)

AIx ≤ bI, AEx = bE, (12c)

cI(x) ≤ 0, cE(x) = 0, (12d)

where f a real-valued objective function, while cE and cI are vector-valued constraint
functions. The bound constraints are given by n-dimensional vectors l and u, which

9 https://numpy.org/doc/stable/f2py.
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may take infinite values. The linear constraints are formulated by real matrices AE

and AI together with real vectors bE and bI of proper sizes. We allow one or more of
the constraints (12b)–(12d) to be absent. Being a specialization of (1), problem (12)
is broad enough to cover numerous applications of DFO.

In the Python version of PDFO, the signature of the pdfo function is compatible
with the minimize function available in the scipy.optimize module of SciPy.
It can be invoked in exactly the same way as minimize except that pdfo does not
accept derivative arguments. The MATLAB version of PDFO designs the pdfo func-
tion following the signature of the fmincon function available in the Optimization
Toolbox of MATLAB. In both Python and MATLAB, users can check the detailed
syntax of pdfo by the standard help command.

4.2 Automatic selection of the solver

When invoking the pdfo function, the user may specify which solver to call in the
backend. In the Python and MATLAB versions, this can be done by setting the
argument method and the option solver, respectively. These names are consistent
with those used in scipy.optimize.minimize and fmincon. However, if the
user does not specify a solver or chooses a solver that is incapable of solving the
problem (e.g., UOBYQA cannot solve constrained problems), then pdfo selects the
solver as follows.

1. If the problem is unconstrained, then UOBYQA is selected when 2 ≤ n ≤ 8, and
NEWUOA is selected when n = 1 or n > 8.

2. If the problem is bound-constrained, then BOBYQA is selected.
3. If the problem is linearly constrained, then LINCOA is selected.
4. Otherwise, COBYLA is selected.

The problem type is detected automatically according to the input. In the unconstrained
case, we select UOBYQA for small problems because it is more efficient, and the
number 8 is set according to our experiments on the CUTEst [28] problems. Note
that Powell’s implementation of UOBYQA cannot handle univariate unconstrained
problems, for which NEWUOA is chosen.

In addition to the pdfo function, PDFO provides functions named cobyla,
uobyqa, newuoa, bobyqa, and lincoa, which invoke the corresponding solvers
directly, but it is highly recommended to call the solvers via the pdfo function.

4.3 Problem preprocessing

PDFO preprocesses the input of the user in order to fit the data structure expected by
Powell’s Fortran code.

For example, LINCOA needs a feasible starting point to work properly unless
the problem is infeasible. If the starting point is not feasible, then LINCOA would
modify the right-hand sides of the linear constraints to make it feasible and then solve
the modified problem. Therefore, for linearly constrained problems, PDFO attempts
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to project the user-provided starting point onto the feasible region before passing the
problem to theFortran code so that a feasible problemwill not bemodifiedbyLINCOA.

Another noticeable preprocessing of the constraints made by PDFO is the treatment
of the linear equality constraints in (12c). As long as these constraints are consistent,
we eliminate them and reduce (12) to an (n − rank AE)-dimensional problem. This is
done using a QR factorization of AE. The main motivation for this reduction comes
again from LINCOA, which accepts only linear inequality constraints. An alternative
approach is to write a linear equality constraint as two inequalities, but our approach
reduces the dimension of the problem, which is beneficial for the efficiency of DFO
solvers in general.

4.4 Bug fixes in the Fortran source code

The current version of PDFO patches several bugs in the original Fortran source code,
particularly the following ones.

1. The solvers may encounter infinite loops. This happens when the exit conditions
of a loop can never be met because variables involved in these conditions become
NaN due to floating point exceptions. The user’s program will never end if this
occurs.

2. The Fortran code may encounter memory errors due to uninitialized indices. This
is because some indices are initialized according to conditions that can never be
met due to NaN, similar to the previous case. The user’s program will crash if this
occurs.

In our extensive tests based on the CUTEst problems, these bugs take effect from
time to time but not often. They are activated only when the problem is rather ill-
conditioned or the inputs are rather extreme. This has been observed, for instance, on
the CUTEst problems DANWOODLS, GAUSS1LS, and LAKES with some pertur-
bation and randomization.

Even though these bugs are rarely observed in our tests, it is vital to patch them for
two reasons. First, their consequences are severe once they occur. Second, application
problems are often more irregular and savage than the testing problems we use, and
hence the bugs may be triggered more often than we expect. Nevertheless, PDFO
allows the users to call Powell’s original Fortran code without these patches by setting
the option classical to true, which is highly discouraged.

4.5 Handling failures of function evaluations

PDFO tolerates NaN values returned by function evaluations. Such a value can be
used to indicate failures of function evaluations, which are common in applications
of DFO.

To cope with NaN values, PDFO applies a moderated extreme barrier. Suppose
that f (x̃) is evaluated to NaN at a certain x̃ ∈ R

n . PDFO takes the view that x̃
violates a hidden constraint [1, 38]. Hence it replaces NaN with a large but finite
number HUGEFUN (e.g., 1030) before passing f (x̃) to the Fortran solver, so that the

123



548 T. M. Ragonneau, Z. Zhang

solver can continue to progress while penalizing x̃ . Indeed, since Powell’s solvers
construct trust-region models by interpolation, all points that are close to x̃ will be
penalized. Similar things are done when the constraint functions return NaN. A caveat
is that setting f (x̃) to HUGEFUN may lead to extreme values or even NaN in the
coefficients of the interpolation models, but Powell’s solvers turn out to be quite
tolerant of such values.

The original extreme barrier approach [18, Eq. (13.2)] sets HUGEFUN to ∞, which
is inappropriate for methods based on interpolation. In fact, we also moderate f (x̃)
to HUGEFUN if it is actually evaluated to ∞. Our approach is clearly naive, but it is
better than terminating the solver once the function evaluation fails. In our experiments,
this simple approach significantly improves the robustness of PDFO with respect to
failures of function evaluation, as will be demonstrated in Subsection 5.2. There do
exist other more sophisticated approaches [1], which will be explored in the future.

5 Numerical results

This section presents numerical experiments on PDFO. Since Powell’s solvers are
widely used as benchmarks inDFO, extensive comparisonswith standardDFO solvers
are already available in the literature [42, 66]. Instead of repeating such comparisons,
the purpose of our experiments is the following.

1. Demonstrate the fact the PDFO is capable of adapting to noise without fine-tuning
according to the noise, in contrast to methods based on finite differences. This is
done in Subsection 5.1 by comparing PDFO with finite-difference CG and BFGS
on unconstrained CUTEst problems.

2. Verify the effectiveness of the moderated extreme barrier mentioned in Subsec-
tion 4.5 for handling failures of function evaluations. This is done in Subsection 5.2
by testing PDFOwith and without the barrier on unconstrained CUTEst problems.

3. Illustrate the potential of PDFO in hyperparameter optimization problems from
machine learning, echoing the observations made in [27] about trust-region DFO
methods for such problems. This is done in Subsection 5.3 by comparing PDFO
with two solvers from the Python package hyperopt.10

Our experiments are carried out in double precision based on the Python version of
PDFO 2.2.0. The finite-difference CG and BFGS are provided by SciPy 1.11.3. The
version of hyperopt is 0.2.7. All these packages are tested with the latest stable
version at the time of writing. We conduct the test on a ThinkStation P620 with an
AMD Ryzen Threadripper PRO 3975WX CPU and 64 GB of memory, the operating
system being Ubuntu 22.04, and the Python version being 3.10.12.

5.1 Stability under noise

We first compare PDFO with finite-difference CG and BFGS on unconstrained prob-
lems with multiplicative Gaussian noise. We take the view that multiplicative noise

10 https://hyperopt.github.io/hyperopt.
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makes more sense if the scale of the objective function changes widely, as is often the
case in applications.

SciPy provides both CG and BFGS under the minimize function in the
scipy.optimize module. These methods rely on the gradient of the objective
function. If we do not provide such information, SciPy approximates it by finite dif-
ferences, and we do the same in our experiments.

For PDFO, we specify NEWUOA as the solver, while setting all the other options to
the default ones. In particular, the initial trust-region radius is 1, the final trust-region
radius is 10−6, and the number of interpolation points is 2n+1, where n is the dimen-
sion of the problem being solved. We perform the comparison on 166 unconstrained
problems with n ≤ 50 from the CUTEst [28] problem set using PyCUTEst 1.5.1 [24].
For each testing problem, the starting point is set to the one provided by CUTEst, and
the maximal number of function evaluations is 500n.

Let σ ≥ 0 be the noise level to test. For a testing problem with the objective
function f , we define

f̃σ (x) = [1 + σ R(x)] f (x), (13)

with R(x) ∼ N(0, 1) being independent and identically distributed when x varies.
If σ = 0, then f̃σ = f , corresponding to the noise-free case. In general, σ is the
standard deviation of the noise. The function f̃σ is the one received by the optimization
solvers. In particular, theCGandBFGSmethods of SciPy approximate the components
of ∇ f̃σ (x) by the finite difference

∂ f̃σ
∂[x]i (x) ≈ f̃σ (x + hei ) − f̃σ (x)

h
,

where [x]i denotes the i th component of x , ei ∈ R
n is the i th standard coordinate

vector, and h > 0 is the difference parameter

h = sign([x]i )max{|[x]i |, 1}√u, (14)

where u ≈ 2.2× 10−16 is the unit roundoff. When there is noise (σ > 0), we also test
another value of h, namely

h =
√

σ max
{∣
∣ f̃σ (x)

∣
∣, 1

}

. (15)

This adaptive difference parameter is inspired by the optimal choice that depends on
the second-order information of f (see, e.g., [43] and [67, Eq. (2.2)]). However, it
relies on the knowledge of the noise level σ . In contrast, PDFO does not require the
knowledge of σ and as we will see, provides better performance.

Given a noise level σ ≥ 0 and a convergence tolerance τ ∈ (0, 1), we will plot
the performance profiles [42] of the solvers on the testing problems. We run all the
solvers on all the problems, every objective function being evaluated by its contam-
inated version (13). For each solver, the performance profile displays the proportion
of problems solved with respect to the normalized cost to solve the problem up to
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the convergence tolerance τ . For each problem, the cost to solve the problem is the
number of function evaluations needed to achieve

f (x0) − f (xk) ≥ (1 − τ)[ f (x0) − f∗], (16)

and the normalized cost is this number divided by the minimum cost of this problem
among all solvers; we define the normalized cost as infinity if the solver fails to
achieve (16) on this problem. Here, x0 represents the starting point, and [42, § 2.1]
suggests that the value f∗ should be the least value of f obtained by all solvers. Note
that the convergence test (16) uses the values of f and not those of f̃σ . This means
that we assess the solvers according to the true objective function values, even though
the objective function fed to the solvers is f̃σ , which is contaminated unless σ = 0.

To make our results more reliable, when σ > 0, the final performance profile is
obtained by averaging the profiles obtained via the above procedure over ten indepen-
dent runs. In addition, the value f∗ in the convergence test (16) is set to the least value
of f obtained by all solvers during all these ten runs plus a run with σ = 0. Finally,
for better scaling of the profiles, we plot the binary logarithm of the normalized cost
on the horizontal axis, instead of the normalized cost itself.

Figure 1 shows the performance profiles of the solvers for the noise levels σ = 0,
σ = 10−10, and σ = 10−8. Two profiles are included for each noise level, with the
convergence tolerance being τ = 10−2 and τ = 10−4 respectively. In the legends,
“CG” and “BFGS” denote the finite-difference methods using (14), whereas “CG
adaptive” and “BFGS adaptive” are their counterparts with h given by (15). Note that
the subfigures corresponding to σ = 0 do not include “CG adaptive” and “BFGS
adaptive” because these methods are designed to tackle noisy problems.

In the noise-free case (σ = 0), PDFO ismore efficient than finite-difference CG and
BFGS, although the distinction is less visible when τ is smaller, and BFGS can solve
slightly more problems than PDFO. When there is noise (σ > 0), the advantage of
PDFO becomes significant. The performances of CG and BFGS using (14) deteriorate
considerably under noise, even though the noise level is not high and the convergence
tolerance is not demanding. As expected, the adaptive difference parameter (15)
improves the performance of CG and BFGS by a large margin, but they are still
inferior to PDFO. This shows the advantage of PDFO in noisy settings, even when
compared tomethods that explicitly use themagnitude of the noise.Wehave conducted
similar experiments with larger values of σ . The results are similar to those shown in
Fig. 1, except that the advantage of PDFO over CG and BFGS with (15) is even more
visible, and the other two methods barely solve any problem. For conciseness, we do
not include these results.

It is not surprising that CG and BFGS perform unfavorably when using (14). As
mentioned in [43, 67, 68], the difference parameter should be adapted according to
the noise level, as we do in the adaptive versions. In contrast, PDFO does not need
such adaptation when handling noisy problems.

To summarize, the performance of finite-difference CG and BFGS is encouraging
when there is no noise, yet much more care is needed when the problems are noisy. In
contrast, PDFO adapts to noise automatically in our experiment, demonstrating good
stability under noisewithout requiring knowledge about the noise level. This is because
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Fig. 1 Performance profiles of PDFO, CG, and BFGS on unconstrained problems with the objective func-
tions evaluated by f̃σ in (13)

Powell’s methods (NEWUOA in this experiment) gradually adjust the geometry of
the interpolation set during the iterations, making progress until the interpolation
points are too close to distinguish noise from true objective function values. This is
not specific to Powell’s methods but also applies to other algorithms that sample the
objective function on a set of points with adaptively controlled geometry, including
finite-difference methods with well-chosen difference parameters [67].
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5.2 Robustness with respect to failures of function evaluations

We now test the robustness of the solvers when function evaluations fail from time to
time. We assume that the objective function returns NaN if the evaluation fails, which
occurs randomly with a certain probability. As mentioned in Subsection4.5, PDFO
uses a moderated extreme barrier to handle such failures. To verify the effectiveness
of this approach, we compare PDFO with its variant that does not apply the barrier.
To make the experiment more informative, we also include the finite-difference CG
and BFGS tested before, which do not handle evaluation failures particularly. The
solvers are set up in the same way as in the previous experiment, and we still employ
the 166 unconstrained CUTEst problems used previously.

Let p ∈ [0, 1] be the failure probability of function evaluations. For a testing
problem with the objective function f , we define

f̂ p(x) =
{

f (x) if U (x) ≥ p,

NaN otherwise,
(17)

where U (x) follows the uniform distribution on [0, 1], being independent and identi-
cally distributed when x varies. Note that f̂0 = f . In the experiment, the solvers can
evaluate f only via f̂ p. We plot the performance profiles of the solvers in a way that is
similar to the previous experiment. The profiles are also averaged over ten independent
runs. For each problem, the value f∗ in the convergence test (16) is set to the least
value of f obtained by all solvers during these ten runs plus a run with p = 0.

Figure 2 shows the performance profiles of the solvers with p = 0.01 and p = 0.05.
Two profiles are included for each p, with the convergence tolerance being τ = 10−2

and τ = 10−4 respectively.
The contrast is clear. Compared with finite-difference CG and BFGS, PDFO is

more efficient and solves significantly more problems given the same convergence
tolerance. Moreover, comparing PDFO and its no-barrier counterpart, we see that the
moderated extreme barrier improves evidently the robustness of PDFOwith respect to
failures of function evaluations, even though it is a quite naive approach. When p =
0.05, the function evaluation fails roughly once every 20 times, but PDFO can still
solve almost 55% of the problems up to the convergence tolerance τ = 10−4 in the
sense of (16), whereas all its competitors solve less than 25%. We speculate that
the moderated extreme barrier will also benefit other model-based DFO methods,
including those based on finite differences. It deserves further investigation in the
future.

5.3 An illustration of hyperparameter optimization with PDFO

We now consider a hyperparameter optimization problem from machine learning and
illustrate the potential of PDFO for such problems. We compare PDFO with Random
Search (RS) and Tree-Structured Parzen Estimator (TPE), two solvers from the Python
package hyperopt for hyperparameter optimization.
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Fig. 2 Performance profiles of PDFO, CG, BFGS, and PDFO without barrier on unconstrained problems
with the objective functions evaluated by f̂ p in (17)

Our experiment is inspired by [27, § 5.3], which investigates the application of
trust-region DFO methods to hyperparameter optimization. Similar to [27, § 5.3],
we tune the C-SVC model detailed in [11, § 2.1] for binary classifications. This
model relies on two hyperparameters: a penalty parameter C ∈ (0,∞) and a kernel
parameter γ ∈ (0,∞). As suggested by [11, § 9], we tuneC and γ for the performance
of the C-SVC. We model this process as solving the problem

max P(C, γ ) s.t. C > 0, γ > 0, (18)

where P(C, γ )measures the performance corresponding to parameters (C, γ ). In our
experiment, we define P based on the AUC score [27, § 3], which lies in [0, 1] and
measures the quality of a classifier on a dataset, the higher the better. More precisely,
P(C, γ ) is set to a five-fold cross-validation AUC score as follows. Split the training
dataset S into five folds, and train the C-SVC five times, each time on a union of four
distinct folds. After each training, calculate the AUC score of the resulting classifier
on the fold not involved in the training, leading to five scores, the average of which
is P(C, γ ).
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Table 1 Datasets from LIBSVM

Dataset Number of features Size of S Size of T

splice 60 1000 2175

svmguide1 4 3088 4000

ijcnn1 22 49990 91701

Our experiment is based on binary classification problems from LIBSVM,11 where
we adopt three datasets detailed in Table 1. LIBSVM divides each dataset D into two
disjoint subsets, namely a training dataset S and a testing dataset T . The training in the
evaluation of P is done using the SVC class of the Python package scikit-learn.12 We
solve (18) by PDFO, RS, and TPE to obtain the tuned parameters (C̄, γ̄ ). As in [27,
§ 5.3], we modify the constraints of (18) toC ∈ [10−6, 1] and γ ∈ [1, 103]. For better
scalingof the problem,weperform themaximizationwith respect to (log10 C, log10 γ )

instead of (C, γ ), the initial guess being chosen randomly from [−6, 0] × [0, 3]. The
solver of PDFO is BOBYQA, for which we set the maximal number of function
evaluations to 100. For RS and TPE, we try both 100 and 300 for the maximal number
of function evaluations, and they do not terminate until this number is reached.

To assess the quality of the tuned parameters (C̄, γ̄ ), we train our model on S
with (C, γ ) = (C̄, γ̄ ), and calculate both the AUC score and accuracy of the resulting
classifier on T , the latter being the fraction of correctly classified data points. Note
that T is not involved in the tuning process. Table 2 presents the results for this
experiment, where #P denotes the number of evaluations of the function P and “Time”
is the computing time for obtaining (C̄, γ̄ ).

In terms of the AUC score and accuracy, PDFO achieves a clearly better result than
RS and TPE on the “splice” dataset, and they all attain comparable results on the other
datasets. However, PDFO always uses much fewer function evaluations, and hence,
much less computing time. The difference in the computing time is particularly visible
on the “ijcnn1” dataset, as each evaluation of P takes much time due to the large data
size.

Note that our intention is not to manifest that PDFO outperforms existing
approaches for hyperparameter tuning in general, which is unlikely the case. Indeed,
PDFO has limitations in handling hyperparameter tuning problems, as many such
problems contain discrete variables and cannot be handled by PDFO directly. Our
objective is rather to provide an example that shows the possibility of applying Pow-
ell’s methods to hyperparameter optimization, which is not well studied up to now. In
doing so, we also hope to call for more investigation on DFO methods for machine
learning problems in general, as is suggested in [27].

11 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
12 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


PDFO: Powell’s Derivative-Free Optimization solvers 555

Table 2 Hyperparameter tuning using PDFO, RS, and TPE

Dataset Solver AUC score Accuracy #P Time (s)

splice PDFO 0.927 0.737 33 6.56

RS 0.500 0.520 100 9.16

0.500 0.520 300 2.74 × 101

TPE 0.500 0.520 100 8.89

0.500 0.520 300 2.64 × 101

svmguide1 PDFO 0.995 0.966 51 3.45

RS 0.994 0.961 100 1.13 × 101

0.995 0.968 300 3.40 × 101

TPE 0.995 0.965 100 9.53

0.995 0.968 300 2.53 × 101

ijcnn1 PDFO 0.997 0.980 44 2.44 × 103

RS 0.997 0.982 100 3.94 × 103

0.997 0.976 300 1.14 × 10

TPE 0.998 0.979 100 3.39 × 101

0.998 0.979 300 8.36 × 101

6 Concluding remarks

We have presented the PDFO package, which aims at simplifying the use of Powell’s
DFO solvers by providing user-friendly interfaces. More information about the pack-
age can be found on the homepage of the package at https://www.pdfo.net, including
the detailed syntax of the interfaces, extensive documentation of the options, and
several examples to illustrate the usage.

In addition, we have provided an overview of Powell’s methods behind PDFO. The
overview does not intend to repeat Powell’s description of the methods, but rather to
provide a summary of the main features and structures of the methods, highlighting
the intrinsic connections and similarities among them. We hope that the overview will
ease the understanding of Powell’s methods, in the same way as the PDFO package
eases the use of these methods.

Besides Powell’s solvers, PDFO also provides a unified interface for DFO solvers.
Such an interface can facilitate the development and comparison of different DFO
solvers. The interface can readily accommodate solvers other than those by Powell, for
example, the COBYQA (Constrained Optimization BY Quadratic Approximations)
solver for general nonlinearly constrained DFO problems (see [62, Chapters 5–7]
and [64]).

Finally, we stress that PDFO does not implement Powell’s DFO solvers in Python
or MATLAB, but only interfaces Powell’s implementation with such languages. The
implementation of these solvers in Python, MATLAB, and other languages is a project
in progress under the name of PRIMA (Reference Implementation for Powell’s meth-
ods with Modernization and Amelioration) [79].

123

https://www.pdfo.net


556 T. M. Ragonneau, Z. Zhang

Acknowledgements This paper corresponds to Chapter 3 of the PhD thesis of TomM. Ragonneau [62], co-
supervised byZaikunZhang andProfessorXiaojunChen fromTheHongKongPolytechnicUniversity. Both
authors are very grateful to Professor Chen for her support, encouragement, and guidance during the PhD
studies. Also, the authors would like to thank Professor Ya-xiang Yuan for his everlasting encouragement
and support. Finally, the authors thank the editors and referees for their suggestions, which have substantially
improved the software and manuscript.

Funding Open access funding provided by The Hong Kong Polytechnic University. This work was funded
by the University Grants Committee of Hong Kong under the projects PF18-24698 (Hong Kong PhD
Fellowship Scheme), PolyU 253012/17P, PolyU 153054/20P, and PolyU 153066/21P. It was also supported
by The Hong Kong Polytechnic University under project P0009767, P0038928, P004559, and the CAS-
Croucher Funding Scheme for “CAS AMSS-PolyU Joint Laboratory of Applied Mathematics: Nonlinear
Optimization Theory, Algorithms and Applications.”

Code and Data Availability Statement The code and documentation of PDFO are available at https://www.
pdfo.net. The source code of the numerical experiments is available at https://www.github.com/pdfo/paper/
blob/main/experiments.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Audet, C., Caporossi, G., Jacquet, S.: Binary, unrelaxable and hidden constraints in blackbox opti-
mization. Oper. Res. Lett. 48, 467–471 (2020). https://doi.org/10.1016/j.orl.2020.05.011

2. Audet, C., Dennis, J.E., Jr.:Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17, 188–217 (2006). https://doi.org/10.1137/040603371

3. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations
Research and Financial Engineering, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68913-5

4. Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Computation of sparse low degree interpolating poly-
nomials and their application to derivative-free optimization. Math. Program. 134, 223–257 (2012).
https://doi.org/10.1007/s10107-012-0578-z

5. Bates, D., Mächler, M., Bolker, B.M., Walker, S.C.: Fitting linear mixed-effects models using lme4. J.
Stat. Softw. 67, 1–48 (2015). https://doi.org/10.18637/jss.v067.i01

6. Berahas, A.S., Byrd, R.H., Nocedal, J.: Derivative-free optimization of noisy functions via quasi-
Newton methods. SIAM J. Optim. 29, 965–993 (2019). https://doi.org/10.1137/18M1177718

7. Billups, S.C., Larson, J., Graf, P.: Derivative-free optimization of expensive functions with compu-
tational error using weighted regression. SIAM J. Optim. 23, 27–53 (2013). https://doi.org/10.1137/
100814688

8. Buhmann, M.D., Fletcher, R., Iserles, A., Toint, P.: Michael J. D. Powell. 29 July 1936–19 April 2015.
Biogr. Mems Fell. R. Soc. 64, 341–366 (2018). https://doi.org/10.1098/rsbm.2017.0023

9. Cartis, C., Fiala, J., Marteau, B., Roberts, L.: Improving the flexibility and robustness of model-based
derivative-free optimization solvers. ACM Trans. Math. Softw. 45, 32 (2019). https://doi.org/10.1145/
3338517

123

https://www.pdfo.net
https://www.pdfo.net
https://www.github.com/pdfo/paper/blob/main/experiments
https://www.github.com/pdfo/paper/blob/main/experiments
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.orl.2020.05.011
https://doi.org/10.1137/040603371
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/s10107-012-0578-z
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1137/18M1177718
https://doi.org/10.1137/100814688
https://doi.org/10.1137/100814688
https://doi.org/10.1098/rsbm.2017.0023
https://doi.org/10.1145/3338517
https://doi.org/10.1145/3338517


PDFO: Powell’s Derivative-Free Optimization solvers 557

10. Cartis, C., Roberts, L., Sheridan-Methven, O.: Escaping local minima with local derivative-free meth-
ods: a numerical investigation.Optimization 71, 2343–2373 (2022). https://doi.org/10.1080/02331934.
2021.1883015

11. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 27 (2011). https://doi.org/10.1145/1961189.1961199

12. Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for con-
strained black box optimization. Optim. Methods Softw. 28, 139–158 (2013). https://doi.org/10.1080/
10556788.2011.623162

13. Conn, A.R., Scheinberg, K., Toint, Ph.L.: On the convergence of derivative-free methods for uncon-
strained optimization. In: Buhmann, M.D., Iserles, A. (eds.) Approximation Theory and Optimization:
Tributes to M. J. D. Powell, pp. 83–108. Cambridge University Press, Cambridge (1997)

14. Conn, A.R., Scheinberg, K., Toint, Ph.L.: Recent progress in unconstrained nonlinear optimization
without derivatives. Math. Program. 79, 397–414 (1997). https://doi.org/10.1007/BF02614326

15. Conn, A.R., Scheinberg, K., Vicente, L.N.: Geometry of interpolation sets in derivative free optimiza-
tion. Math. Program. 111, 141–172 (2008). https://doi.org/10.1007/s10107-006-0073-5

16. Conn, A.R., Scheinberg, K., Vicente, L.N.: Geometry of sample sets in derivative-free optimization:
polynomial regression and underdetermined interpolation. IMA J. Numer. Anal. 28, 721–748 (2008).
https://doi.org/10.1093/imanum/drn046

17. Conn, A.R., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region
algorithms to first- and second-order critical points. SIAM J. Optim. 20, 387–415 (2009). https://doi.
org/10.1137/060673424

18. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM
Series on Optimization, SIAM, Philadelphia (2009). https://doi.org/10.1137/1.9780898718768

19. Conn, A.R., Toint, Ph.L.: An algorithm using quadratic interpolation for unconstrained derivative free
optimization. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 27–47.
Springer, Boston (1996). https://doi.org/10.1007/978-1-4899-0289-4_3

20. Custódio, A.L., Scheinberg, K., Vicente, L.N.: Methodologies and software for derivative-free opti-
mization. In: Terlaky, T., Anjos, M.F., Ahmed, S. (eds.) Advances and Trends in Optimization
with Engineering Applications, pp. 495–506. SIAM, Philadelphia (2017). https://doi.org/10.1137/
1.9781611974683.ch37

21. Dennis, J.E., Jr., Schnabel, R.B.: Least change secant updates for quasi-Newton methods. SIAM Rev.
21, 443–459 (1979). https://doi.org/10.1137/1021091

22. Dodangeh, M., Vicente, L.N.: Worst case complexity of direct search under convexity. Math. Program.
155, 307–332 (2016). https://doi.org/10.1007/s10107-014-0847-0

23. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6,
163–168 (1963). https://doi.org/10.1093/comjnl/6.2.163
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