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Graph collaborative filtering (GCF) has emerged as a prominent method in recommendation 
systems, leveraging the power of graph learning to enhance traditional collaborative filtering 
(CF). One common approach in GCF involves employing Graph Convolutional Networks (GCN) to 
learn user and item embeddings and utilize these embeddings to optimize CF models. However, 
existing GCN-based methods often fall short of generating satisfactory embeddings, mainly 
due to their limitations in capturing node dependencies and variable dependencies within the 
graph. Consequently, the learned embeddings are fragile in uncovering the root causes of user 
preferences, leading to sub-optimal performance of GCF models. In this work, we propose 
integrating causal modeling with the learning process of GCN-based GCF models, leveraging 
causality-aware graph embeddings to capture complex dependencies in recommendations. Our 
methodology encompasses three key designs: 1) Causal Graph conceptualization, 2) Neural Causal 
Model parameterization, and 3) Variational inference for the Neural Causal Model. We define 
a Causal Graph to model genuine dependencies in GCF models and utilize this Causal Graph 
to parameterize a Neural Causal Model. The proposed framework, termed Neural Causal Graph 
Collaborative Filtering (NCGCF), uses variational inference to approximate neural networks under 
the Neural Causal Model. As a result, NCGCF is able to leverage the expressive causal effects from 
the Causal Graph to enhance graph representation learning. Extensive experimentation on four 
datasets demonstrates NCGCF’s ability to deliver precise recommendations consistent with user 
preferences.

1. Introduction

Collaborative Filtering (CF) [1] as an effective remedy has dominated recommendation research for years. Recently, Graph 
Collaborative Filtering (GCF) has been studied extensively and has become an emerging CF paradigm [2]. GCF enhances traditional 
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CF methods by modeling complex user-item interactions in a graph as well as auxiliary information, e.g., user and item attributes. 
Thus, GCF has shown great potential in deriving knowledge (e.g., user behavior patterns) embedded in graphs.

Generally, GCF models utilize graph representation learning techniques to derive useful information for downstream CFs. These 
models use graph neural networks to analyze graph connections and create embeddings, thereby improving CF model optimization. 
Graph Convolutional Networks (GCN) is one of the most widely adopted graph neural networks in GCF models, primarily due to its 
well-established performance in learning local and global information from large-scale graphs. As evidenced by several studies [3–

6], GCN advances from other graph neural networks in capturing graph structural information. This is because GCN leverages 
convolutional operations to aggregate both local information from direct neighboring nodes and global information from higher-

hop neighbors. Besides, the parameter sharing of GCN allows it to generalize well to unseen nodes during training and efficiently 
adapt to large-scale graphs. GCN-based GCF models aim to acquire vectorized user and item embeddings using a GCN and then use 
these embeddings to optimize a CF model. For instance, NGCF [3] exploits a GCN to propagate neighboring node messages in the 
interaction graph to obtain user and item embeddings. The learned embeddings capture user collaborative behavior and are used to 
predict preference scores for CF optimization. HGCF [4] combines GCN with hyperbolic learning to learn embeddings in hyperbolic 
space. Benefiting from the exponential neighborhood growth in hyperbolic space, HGCF facilitates learning higher-order user and 
item relations from the interaction graph.

Though promising results are witnessed, leveraging graph learning techniques in GCF models presents severe challenges. Com-

pared to traditional methods, such as matrix factorization on pure user-item interactions, graph learning seeks to model complex, 
multi-hop relationships propagated across graph entities. The complexity of relation modeling increases as the graph becomes more 
sophisticated by including various types of nodes, e.g., user gender [7], item brands [8]. For example, consider a social network 
where users are connected based on their friendships, following lists and followers [9]. Graph learning techniques must not only 
capture these diverse relationships but also consider other potential factors, such as user conformity impacts [10] on social content 
recommendations.

However, existing GCN-based GCF methods often fall short of capturing complex graph relationships due to two fundamental 
drawbacks. Firstly, they ignore distinguishable node dependencies between neighboring nodes and the target node. Most GCN-based GCF 
methods treat all messages from the neighborhood equally, which inevitably overlooks the varying dependencies of neighboring 
nodes to the target node. However, a user node might have different relations with other neighboring nodes, e.g., item brands. 
These different relations reflect distinct user preferences, which is the essence of personalized recommendations [11]. By ignoring 
the difference in relations, the learned user and item embeddings eventually lose expressive power in the recommendation task, i.e., 
we cannot know which node is the root cause of user interests. Secondly, they lack an explicit encoding of complex relations between 
variables in the recommendation. Most GCN-based GCF methods assume the co-occurrence of users and items is independent. However, 
user preferences are influenced by various variables in real-world recommendations, such as user conformity [12] caused by user 
social networks. Discarding these relations leads to the learned embeddings being unable to capture such structural complexity.

Causal modeling sheds light on solving the above drawbacks. On the one hand, causal modeling identifies intrinsic cause-effect 
relations between nodes and true user preferences [13]. For example, we might treat each neighboring node as the cause (e.g., an 
item brand) and the user preference as the effect in a Causal Graph [14]. By estimating the causal effect, we could encode the crucial 
node dependencies into user and item embeddings to uncover the root causes of user interests. On the other hand, the Causal Graph 
is able to model genuine causal relations among the variables in GCFs, capturing variable dependencies inherent in the GCF-based 
methods. Those causal relations represent the underlying mechanisms driving the recommendation and can be utilized to guide 
graph learning toward complex user behaviors.

Given the compelling nature of casual modeling in GCN-based GCFs, this paper aims to integrate GCNs and causal models to 
facilitate causality-aware GCF learning. Motivated by Neural-Causal Connection [15], this paper proposes to connect GCN learning 
with the Structural Causal Model (SCM) [16]. Since the SCM is induced from a Causal Graph and the GCN works on graph-structured 
data, the integration of the two models becomes practical. In particular, we first conceptualize the Causal Graph for the SCM, which is 
built by revisiting existing CFs and padding their limitations in user preference modeling. Then, we formulate the SCM into a Neural 
Causal Model, called Neural Causal Graph Collaborative Filtering (NCGCF). Our NCGCF uses variational inference to approximate 
structural equations as trainable neural networks, making the learned graph embeddings equally expressive as the causal effects 
modeled by the SCM. The integration of causal modeling and graph representation learning offers a novel perspective to facilitate 
accurate recommendations. The contributions of this work are:

• We complete the Neural-Causal Connection for causal modeling of graph convolutional network in recommendations.

• Our proposed NCGCF is the first Neural Causal Model for graph collaborative filtering, which generates causality-aware graph 
embeddings for enhanced recommendations.

• We validate the effectiveness of our proposed framework through extensive experiments. Our experimental results demonstrate 
that our approach outperforms existing methods in achieving satisfactory recommendation performance.

2. Notations and formulation

We first provide the notations used throughout the paper and our motivations for defining our Causal Graph. We then give our 
task formulation, which covers detailed steps toward connecting GCN with the Structural Causal Model.

Notations. We use uppercase letters such as 𝑈 to denote a set of variables. In particular, we use 𝑈, 𝑉 , 𝐸, 𝑌 to represent user, item, 
2

preference representation and recommendation variables. We use lowercase letters such as 𝑢 to represent a random variable. In 
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Table 1

Key notations and descriptions.

Notation Description

𝐺 A Causal Graph

 A Structural Causal Model

(𝜃) A Neural Causal Model

 = {𝑈,𝑉 ,𝐸,𝑌 } Endogenous variables in 𝐺

 = {𝑓𝑈 ,𝑓𝑉 , 𝑓𝐸 , 𝑓𝑌 } Structural equations for 𝐺

𝑈 , 𝑓𝑈 User variable and its structural equation

𝑉 , 𝑓𝑉 Item variable and its structural equation

𝐸, 𝑓𝐸 Preference representation variable and its structural equation

𝑌 , 𝑓𝑌 Recommendation result variable and its structural equation

𝑍 Exogenous variables in 𝐺

𝐙𝑢, 𝐙𝑣 Latent vectors of exogenous variables for a user variable 𝑢 and an item variable 𝑣

𝐀𝑢, 𝐀𝑣 Causal adjacency vector for a user variable 𝑢 and an item variable 𝑣

𝐝𝑢, 𝐝𝑣 Feature vectors for a user variable 𝑢 and an item variable 𝑣

𝐮, 𝐯 Latent factors for a user 𝑢 and an item 𝑣

𝐞, 𝐲 A user preference vector and a user interaction vector

𝐡𝑢, 𝐡𝑣 Hidden factors for a user 𝑢 and an item 𝑣 from the semi-implicit generative model

𝐦𝑢𝑣 Neighbor message from a node 𝑣 for a user 𝑢

𝜃1, 𝜃2, 𝜃3 Network parameters for the user encoder, the item encoder and the collaborative filtering decoder

𝜙1, 𝜙2 Network parameters for the aggregation operators

𝜑1, 𝜑2 Network parameters for the causality-aware message passing operators

𝑙 A graph learning layer

𝑑𝑜(𝑖 = 𝑥) The do-operator that forces a variable 𝑖 to take the value 𝑥

Fig. 1. Paradigms of user preference modeling in a class of CFs: (a) Early CF, (b) GCF, and (c) Our causality-aware GCF. 𝑍𝑢 represents hidden exogenous variables 
for users, e.g., user conformity; 𝑍𝑣 are hidden exogenous variables for items, e.g., item exposure. 𝑈 and 𝑉 denote user and item, respectively. 𝐸 denotes preference 
representations from graph representation learning. 𝑌 represents users’ predicted recommendations.

particular, we use 𝑢, 𝑣, 𝑒, 𝑦 to represent a specific user, item, preference and recommendation variable. Moreover, we use bold font 
lowercase to represent the latent vector embeddings, such as 𝐮, 𝐯, 𝐞, 𝐲 ∈ℝ𝑑 , where 𝑑 is the dimension of the embedding vectors. The 
weight matrix and bias vector are denoted as 𝐖 and 𝐛, respectively. Primary notations are also complemented in Table 1.

2.1. Motivation

Definition 2.1 (Causal Graph). A Causal Graph [14] is a directed acyclic graph (DAG) 𝐺 = ({ , 𝑍}, ) represents causal relations 
among endogenous and exogenous variables.  is a set of endogenous variables of interest, e.g., user and item nodes in graph 
learning. 𝑍 is a set of exogenous variables outside the model, e.g., item exposure.  is edge set denoting causal relations among 𝐺.

Following Definition 2.1, we start by providing the causal graphs of a class of CF methods, including early CF methods in Fig. 1

(a) and existing GCF methods in Fig. 1 (b). Specifically, we aim to show the fundamental drawback shared by these two types of 
methods: they are fragile in capturing complex user-item relations by assuming the co-occurrence of users and items is independent. 
We put forward our defined causal graph in Fig. 1 (c), which considers user-item dependencies for better user preference modeling.

Early CFs largely resort to user-item associative matching [17] and follow the causal graph shown in Fig. 1 (a), where user node 
𝑈 and item node 𝑉 constitute a collider to affect the recommendation result 𝑌 . For example, matrix factorization typically assumes 
𝑃 (𝑌 = 1 ∣ 𝑢, 𝑣) ∝ 𝐮⊤𝐯, where 𝐮 and 𝐯 are user and item IDs and the probability of recommendations 𝑌 is estimated from matching 
the inner product between 𝐮 and 𝐯. Latent factor-based methods assume 𝑃 (𝑌 = 1 ∣ 𝑢, 𝑣) ∝ LFM(𝑢)⊤ LFM(𝑣), where LFM is a latent 
factor model that learns the user and item latent vectors, and a simple inner product is used for similarity matching to determine 
3

recommendations.
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As shown in Fig. 1 (b), GCF works on graph-structure data to consider auxiliary information, e.g., user/item attributes, which 
potentially captures exogenous variables 𝑍𝑢 and 𝑍𝑣, e.g., user conformity, item exposure. Besides, as user-user and item-item rela-

tions are propagated through multi-hop neighbors within the graph, GCF can capture the inner connections of users and items to 
model more complex user behavior patterns, e.g., user collaborative behavior [3]. However, existing GCF methods still assume the 
independence between users and items. This is because user and item embeddings are learned separately from the graph represen-

tation learning and then subsequently applied to a CF model for user-item associative matching. For example, NGCF [3] assumes 
𝑃 (𝑌 = 1 ∣ 𝑢, 𝑣) ∝ 𝐸 = CF

(
agg

(
𝑢, 𝑧𝑢,msg

(
𝑁𝑢

))
, agg

(
𝑣, 𝑧𝑣,msg

(
𝑁𝑣

)))
, where CF is a CF model for user-item associative matching. 

𝑁𝑢 and 𝑁𝑣 are neighbor sets for users and items; agg and msg are the aggregation and message passing operations, respectively.

In summary, both Fig. 1 (a) and (b) assume the co-occurrence of users and items is independent in the observational data, i.e., 
there is no edge 𝑈 → 𝑉 or 𝑉 →𝑈 . However, this assumption is unrealistic in the real world because user behaviors are influenced by 
the recommended items for various reasons. For instance, users may be more likely to click the items if they are recommended [18], 
which is also known as the item exposure bias problem. Besides, the exposure of items is determined by user preferences estimated 
from the recommendation model, which is the essence of the personalized recommendation. Therefore, we conceptualize the causal 
relations under GCN-based GCF as the Causal Graph in Fig. 1 (c). Our Causal Graph includes the modeling of 𝑈 ⟷ 𝑉 , such that 
user-item relations can be captured for better user preference modeling. By given the Causal Graph in Fig. 1 (c), the directed edge 
(𝑢→ 𝑣) ∈  captures the causal relation from a user 𝑢 to an item 𝑣, where 𝑢 ∈𝑈 and 𝑣 ∈ 𝑉 and 𝑢 is a parent node of 𝑣, i.e., 𝑢 ∈ 𝑝𝑎 (𝑣). 
𝐺 induces a set of causal adjacency vectors 𝐀𝑢 and 𝐀𝑣, which specify the neighbors of a user node 𝑢 and an item node 𝑣, respectively. 
Each element 𝐀𝑣

𝑢
= 1 if 𝑣 ∈ 𝑝𝑎(𝑢), otherwise, 𝐀𝑣

𝑢
= 0. Similarly, 𝐀𝑢

𝑣
= 1 if 𝑢 ∈ 𝑝𝑎(𝑣).

2.2. Task formulation

The key innovation of this work is to integrate causal modeling into the learning process of a GCN-based GCF model. The problem 
can be formulated as follows:

Definition 2.2 (Task formulation). Establish the connection between the GCN-based GCF model and the Causal Graph depicted in 
Fig. 1 (c). Motivated by Neural-Causal Connection [15], the goal is to approximate a Neural Causal Model (NCM) based on the 
provided Causal Graph.

To achieve this goal, we first convert the Causal Graph into a Structural Causal Model (SCM) (Section 3.1). Subsequently, the NCM 
is defined based on the SCM, with each structural equation in the SCM corresponding to a neural network in the NCM (Section 3.2). 
To approximate the trainable neural networks in the NCM, we employ a unified framework described in Section 4. This framework 
enables causal modeling, making the learned graph embeddings as expressive as the causal effects modeled by the SCM. Overall, 
through the integration with causal modeling, our approach offers a novel perspective on graph representation learning, leveraging 
the expressive power of the causality-aware graph embeddings to capture complex causal relations in the recommendation.

3. Neural Causal Model

This section evokes the concept of the Structural Causal Model (SCM) and the Neural Causal Model (NCM). The SCM converts 
causal relations among the Causal Graph in Fig. 1 (c) as structural equations; The NCM defines each of the structural equations as a 
parameterized neural network.

3.1. Structural Causal Model

The Causal Graph in Fig. 1 (c) has four variables of interest (i.e., endogenous variables): 𝑈 (user), 𝑉 (item), 𝐸 (preference 
representation) and 𝑌 (recommendation). Besides, two exogenous variables 𝑍𝑢 and 𝑍𝑣 are also involved, representing hidden 
impacts such as user conformity and item exposure. The causal mechanism of modeling the four endogenous variables {𝑈, 𝑉 , 𝐸, 𝑌 }
is done by a SCM [16].

Definition 3.1 (Structural Causal Model). A Structural Causal Model [16]  = ⟨ , 𝑍,  , 𝑃 (𝑍)⟩ is the mathematical form of the Causal 
Graph 𝐺 that includes a collection of structural equations  on endogenous variables  and a distribution 𝑃 (𝑍) over exogenous 
variables 𝑍 . A structural equation 𝑓𝑈 ∈  for a variable 𝑢 ∈ 𝑈 ⊆  is a mapping from 𝑢’s parents and exogenous variables of 𝑢:

𝑢← 𝑓𝑈
(
𝑝𝑎(𝑢),𝑍𝑢

)
,𝑍𝑢 ∼ 𝑃 (𝑍) (1)

where 𝑝𝑎(𝑢) ⊆ ∖𝑢 is 𝑢’s parents from the Causal Graph 𝐺. 𝑍𝑢 ∈𝑍 is a set of exogenous variables connected with 𝑢.

Following Definition 3.1 and the causal relations in Fig. 1 (c), endogenous variables {𝑈, 𝑉 , 𝐸, 𝑌 } =  are modeled by structural 
equations {𝑓𝑈 , 𝑓𝑉 , 𝑓𝐸, 𝑓𝑌 } =  . Formally,

 ( ,𝑍) ∶=
⎧⎪⎨
𝑈 ← 𝑓𝑈

(
𝑈,𝑉 ,𝑍𝑢

)
𝑉 ← 𝑓𝑉

(
𝑈,𝑉 ,𝑍𝑣

)
𝐸 ← 𝑓𝐸 (𝑈,𝑉 ) (2)
4

⎪⎩ 𝑌 ← 𝑓𝑌 (𝐸)
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Fig. 2. NCGCF framework: causal graph conceptualization prepossesses a user-item interaction graph by using the causal relations under our defined Causal Graph; 
causal graph encoder models the causal relations under the graph-structured data using a semi-implicit generative model, and outputs user and item representations 
with a user encoder and an item encoder; collaborative filtering (CF) decoder uses CF to construct preference vectors based on user and item representations. Finally, 
NCGCF is optimized through a counterfactual instance-aware ELBO to capture user preference shifts.

These structural equations model the direct causal relation from a set of causes (e.g., 𝑝𝑎(𝑢)) to a variable (e.g., 𝑢 ∈𝑈 ) accounting 
for the impact of exogenous variables (e.g., 𝑍𝑢).

3.2. Neural network for Causal Model

We now formally introduce Neural-Causal Connection [15], i.e., the connection between deep neural networks (e.g., GCNs) and 
causal models is done by establishing an NCM.

Definition 3.2 (Neural-Causal Connection). A Neural Causal Model [15] is defined as (𝜃) and is parameterized for the SCM 
in Definition 3.1. Each structural equation in  is defined as a feedforward neural network in (𝜃), e.g., Multi-layer perceptron 
(MLP). Exogenous variables 𝑍 are mapped into hidden vectors 𝐙 that follow the Gaussian distribution 

(
0, 𝐈𝐾

)
.

The NCM (𝜃) is expressive [15], such that it generates distributions associated with the Pearl Causal Hierarchy (PCH) [19], 
i.e., modeling “observational” (layer 1), “interventional” (layer 2) and “counterfactual” (layer 3) distributions.

In accordance with Definition 3.2, we aim to build an NCM (𝜃) that models structural equations defined in Eq. (2) as parame-

terized feedforward neural networks. Formally,

(𝜃) ≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐙𝑢 ∼
(
0, 𝐈𝐾

)
,𝐙𝑣 ∼

(
0, 𝐈𝐾

)
,

𝐮 ∝ 𝑓𝑈 = 𝑞𝜃1
(𝑓𝜙1

(
𝐙𝑢, 𝑓𝜑1

(𝑈 ∣𝑈,𝑉 )
)
),

𝐯 ∝ 𝑓𝑉 = 𝑞𝜃2
(𝑓𝜙2

(
𝐙𝑣, 𝑓𝜑2

(𝑉 ∣𝑈,𝑉 )
)
),

𝐞 ∝ 𝑓𝐸 = 𝑝𝜃3
(𝐮,𝐯) ,

𝐲 ∼ 𝑓𝑌 =Multinomial (𝑁, 𝐞)

(3)

• 𝑍𝑢, 𝑍𝑣 are mapped into low-dimensional hidden vectors 𝐙𝑢 and 𝐙𝑣 using Gaussian distribution 
(
0, 𝐈𝐾

)
.

• 𝐮 ∝ 𝑓𝑈 : user representation 𝐮 is calculated by a user encoder 𝑞𝜃1 . The user encoder takes as input the aggregated (i.e., 𝑓𝜙1 ) 
information of user exogenous variables 𝐙𝑢 and user’s causality-aware neighbor messages 𝑓𝜑1

.

• 𝐯 ∝ 𝑓𝑉 : item representation 𝐯 is given by an item encoder 𝑞𝜃2 . The item encoder uses aggregated (i.e., 𝑓𝜙2 ) information of item 
exogenous variables 𝐙𝑣 and item’s causality-aware neighbor messages 𝑓𝜑2

.

• 𝐞 ∝ 𝑓𝐸 : user preference probability 𝐞 is produced by a collaborative filtering decoder 𝑝𝜃3 by using latent representations 𝐮 and 
𝐯.

• 𝐲 ∼ 𝑓𝑌 : user interaction 𝐲 is sampled from a multinomial distribution with the probability 𝐞. 𝑁 is the user’s total interaction 
5

number.
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4. Variational inference for NCGCF

We now introduce our framework, namely, Neural Causal Graph Collaborative Filtering (NCGCF). We show the NCGCF framework 
in Fig. 2, which includes three major components based on the variational autoencoder structure:

• Causal Graph Encoder: approximates 𝑓𝑈 and 𝑓𝑉 . The causal graph encoder includes a user encoder, an item encoder and a 
semi-implicit generative model. The semi-implicit generative model calculates causal relations between nodes as causality-aware 
messages. The user encoder and item encoder then use these causality-aware messages to output user representation and item 
representation, respectively.

• Collaborative Filtering (CF) Decoder: approximates 𝑓𝐸 using a CF method to estimate user preference.

• Counterfactual Instances-based Optimization: optimizes model parameters by implementing 𝑓𝑌 with counterfactual instances 
to capture user preference shifts.

4.1. Causal graph encoder

The causal graph encoder aims to model 𝑓𝑈 and 𝑓𝑉 in Eq. (3). However, this is not a trivial task as the true posteriors of 𝑓𝑈 and 
𝑓𝑉 do not follow standard Gaussian distributions due to the existence of causal relations between node pairs. Besides, these causal 
relations should be modeled into causality-aware messages using neural networks. Thus, traditional variational inference [20] that 
approximates posteriors to simple, tractable Gaussian vectors is not applicable.

Semi-implicit variational inference (SIVI) [21] that models complex distributions through implicit posteriors proves to be an 
effective alternative. Inspired by SIVI, we devise a semi-implicit generative model on top of the user and item encoder to model 
implicit posteriors. In particular, the semi-implicit generative model calculates causal relations between nodes as causality-aware 
messages. Those causality-aware messages are encoded into user and item hidden factors 𝐡𝑢 and 𝐡𝑣. Then, the user encoder takes 𝐡𝑢
as the input to output the user representation 𝐮. Analogously, the item encoder uses 𝐡𝑣 to calculate item representation.

4.1.1. Semi-implicit generative model

Our semi-implicit generative model contains two operators: causality-aware message passing and aggregation. The causality-aware 
message passing uses learnable neural networks to model each of the dependency terms for a node and its neighbors within a structural 
equation. For example, 𝑓𝜑1

(𝑢, 𝑣) models the dependency between a user node 𝑢 and his/her neighbor item node 𝑣, such that the 
learned message becomes a descriptor of the causal relation 𝑢 → 𝑣. The aggregation uses weighted-sum aggregators to aggregate 
user/item exogenous variables and the calculated causality-aware neighbor messages. Finally, user and item hidden factors 𝐡𝑢 and 
𝐡𝑣 are output for latter user and item encoder learning.

• Causality-aware message passing: For the user encoder, given user 𝑢’s features 𝐝𝑢 and its causal adjacency vector 𝐀𝑢, the messages 
from 𝑢’s neighbor 𝑣 is given by:

𝐦(𝑙−1)
𝑢𝑣

= 𝑓𝜑1
(𝑢, 𝑣) = MLP(𝑙)

(
𝐡(𝑙−1)
𝑢

‖𝐡(𝑙−1)
𝑣

)
= ReLU

(
𝐖(𝑙)

𝜑1

(
𝐡(𝑙−1)
𝑢

‖𝐡(𝑙−1)
𝑣

))
, for 𝑙 ∈ {1,⋯ ,𝐿}

(4)

where 𝐦(𝑙−1)
𝑢𝑣 is the neighbor message at the 𝑙 − 1-th graph learning layer.2 𝑣 is a neighbor for 𝑢 and 𝑣 ∈𝑁𝑢 ∝ 𝐀𝑢. 𝐡

(𝑙−1)
𝑣 and 

𝐡(𝑙−1)𝑢 are hidden factors for the neighbor 𝑣 and the user 𝑢 at the 𝑙−1-th layer.3 𝐖(𝑙)
𝜑1

is the weight matrix for 𝑓𝜑1
at the 𝑙-th layer 

and ‖ denotes column-wise concatenation. Analogously, for the item encoder, we can calculate the neighbor message 𝐦(𝑙−1)
𝑣𝑢 for 

an item 𝑣 by replacing 𝑓𝜑1
with 𝑓𝜑2

in Eq. (4).

• Aggregation: For the user encoder, at each graph learning layer 𝑙, we perform aggregation operation on the messages 𝐦(𝑙−1)
𝑢𝑣 from 

𝑢’s neighbors and the user exogenous variables 𝐙𝑢 to obtain the hidden factor 𝐡(𝑙)𝑢 :

𝐡(𝑙)
𝑢

=
(
𝐡(𝑙−1)
𝑢

‖𝑓𝜙1 ({𝐖(𝑙)
𝜙1
𝐦(𝑙−1)

𝑢𝑣
∶ 𝑣 ∈𝑁𝑢

})‖𝐙𝑢

)
(5)

where 𝐡(𝑙)𝑢 is the learned hidden factor for 𝑢 at the 𝑙-th graph learning layer. 𝑓𝜙1 is the aggregation operator chosen as weighted-

sum, following [22]. 𝐖(𝑙)
𝜙1

is the weight for 𝑓𝜙1 that specifies the different contributions of neighbor messages to the target node 
at the 𝑙-th layer. ‖ is the column-wise concatenation. 𝐙𝑢 is low-dimensional latent factors for user exogenous variables given by 
Gaussian distribution 

(
0, 𝐈𝐾

)
. Similarly, for the item encoder, we calculate item 𝑣’s hidden factors 𝐡(𝑙)𝑣 by using 𝑓𝜙2 with 𝐖𝜙2

in Eq. (5).

2 The neighbor message at the 0-th layer, i.e., 𝐦(0)
𝑢𝑣

, is initialized from a normal distribution.
6

3 𝐡(0)
𝑣

and 𝐡(0)
𝑢

are initialized as node features 𝐝𝑣 and 𝐝𝑢 .
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Having obtained the hidden factors 𝐡(𝑙)𝑢 for user 𝑢 and 𝐡(𝑙)𝑣 for item 𝑣 at each graph learning layer 𝑙 ∈ {1, ⋯ , 𝐿}, we adopt 
layer-aggregation to concatenate vectors at all layers into a single vector:

𝐡𝑢 = 𝐡(1)
𝑢

+⋯+ 𝐡(𝐿)
𝑢

, 𝐡𝑣 = 𝐡(1)
𝑣

+⋯+ 𝐡(𝐿)
𝑣

(6)

By performing layer aggregation, we capture higher-order connectivities of node pairs across different graph learning layers. 
Finally, our semi-implicit generative model outputs 𝐡𝑢 and 𝐡𝑣 as hidden factors of users and items.

4.1.2. User and item encoder

Given hidden factors 𝐡𝑢 for a user 𝑢, the user encoder outputs mean and variance in 
(
𝜇𝑢,diag

(
𝜎2
𝑢

))
, from which user embedding 

𝐮 is sampled:

𝑞𝜃1

(
𝐮 ∣ 𝐡𝑢

)
=

(
𝐮 ∣ 𝜇𝑢,diag

(
𝜎2
𝑢

))
(7)

where 𝜇𝑢 and diag
(
𝜎2
𝑢

)
are the mean and variance for user 𝑢, which are obtained by sending 𝑢’s hidden factors 𝐡𝑢 to a one-layer 

neural network with the activation function ReLU(𝑥) =max(0, 𝑥):

𝜇𝑢 = ReLU
(
𝐖𝜇𝑢

𝜃1
𝐡𝑢 + 𝐛

)
, 𝜎2

𝑢
= exp

(
ReLU

(
𝐖𝜎𝑢

𝜃1
𝐡𝑢 + 𝐛

))
(8)

where 𝐖𝜃1
= {𝐖𝜇𝑢

𝜃1
, 𝐖𝜎𝑢

𝜃1
} is a hidden-to-output weight matrix for the user encoder 𝑞𝜃1 ; 𝐛 is the bias vector. Analogously, the item 

encoder follows the same paradigm as the user encoder to generate the mean and variance for item 𝑣 based on 𝑣’s hidden factors 𝐡𝑣:

𝑞𝜃2

(
𝐯 ∣ 𝐡𝑣

)
=

(
𝐯 ∣ 𝜇𝑣,diag

(
𝜎2
𝑣

))
,

𝜇𝑣 = ReLU
(
𝐖𝜇𝑣

𝜃2
𝐡𝑣 + 𝐛

)
, 𝜎2

𝑣
= exp

(
ReLU

(
𝐖𝜇𝑣

𝜃2
𝐡𝑣 + 𝐛

)) (9)

where 𝐖𝜃2
= {𝐖𝜇𝑣

𝜃2
, 𝐖𝜎𝑣

𝜃2
} is the weight matrix for the item encoder 𝑞𝜃2 .

4.2. Collaborative filtering decoder

Collaborative filtering is largely developed based on latent factors. These models involve mapping users and items into latent 
factors in order to estimate the preference scores of users towards items. We use latent factor-based collaborative filtering in our 
decoder for modeling the user preference 𝐞, which is a probability vector over the entire item set for recommendations. The predicted 
user interaction vector 𝐲 is assumed to be sampled from a multinomial distribution with probability 𝐞.

Formally, we define a generative function 𝑓𝜃3 (𝐮, 𝐯) recovering classical latent factor-based CF to approximate user preference 
vector 𝐞:

𝐞 = sof tmax(𝑓𝜃3 (𝐮,𝐯)) = sof tmax(𝐮⊤𝐯) (10)

where 𝐮 and 𝐯 are latent factors for a user 𝑣 and an item 𝑣 drawn from Eq. (7) and Eq. (9), respectively. The sof tmax function 
transforms the calculated preference scores to probability vector 𝐞 over the item corpus.

Then, the decoder 𝑝𝜃3 (𝐞 ∣ 𝐮,𝐯) produces interaction probability 𝐲 by approximating a logistic log-likelihood:

log𝑝𝜃3 (𝐲 ∣ 𝐞) =
∑
𝑣

𝑦𝑢𝑣 log𝜎 (𝐞) +
(
1 − 𝑦𝑢𝑣

)
log (1 − 𝜎 (𝐞)) (11)

where 𝑦𝑢𝑣 is the historical interaction between 𝑢 and 𝑣, e.g., click. 𝜎(𝐞) = 1∕(1 + exp(−𝐞)) is the logistic function.

4.3. Counterfactual instances-based optimization

We wish our NCGCF to be robust to unseen (unknown) user preference shifts to further enhance the recommendation robustness. 
Catching user preferences is at the core of any recommendation model; however, user preferences may change over time [11,23]. 
For example, a user may once love items with the brand Nike but change his taste for liking Adidas. Such a user preference shift can 
be captured by actively manipulating user preferences, i.e., manipulating 𝐞.

Since our NCGCF is a Neural Causal Model and is capable of generating “interventional” distributions (cf. Section 3.2) within 
the Pearl Causal Hierarchy, the manipulations can be done by performing interventions [14] on the user preference vector 𝐞 using 
a do-operator 𝑑𝑜(⋅), i.e., 𝑑𝑜(𝐞 = 𝐞′). The data after interventions are called counterfactual instances that, if augmented to original 
training instances, increase the model robustness to unseen interventions (i.e., user preference shifts). Inspired by [24], we optimize 
NCGCF by considering two data scenarios, i.e., the clean data scenario in which our NCGCF accesses the data without interventions, 
and the counterfactual data scenario in which the data is generated by known interventions on user preference vectors.

Formally, for the clean data scenario, assuming that NCGCF observes only clean data 𝐃 during training. In this case, we re-

tain the original value 𝐨 of user preference 𝐞 by using 𝑑𝑜(𝐞 = 𝐨). Then, NCGCF is trained by maximizing the likelihood function 
log𝑝𝜃3 (𝐲 ∣ 𝑑𝑜(𝐞 = 𝐨)). Since this marginal distribution is intractable [20,25], we instead maximize the intervention evidence lower-
7

bound (ELBO) with 𝑑𝑜(𝐞 = 𝐨), i.e. max𝜃1 ,𝜃2 ,𝜃3 ELBO(𝐃, 𝑑𝑜(𝐞 = 𝐨)). In particular,
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ELBO(𝐃, 𝑑𝑜(𝐞 = 𝐨)) =

𝔼𝜃

[
log

𝑝𝜃3
(𝐲 ∣ 𝑑𝑜(𝐞 = 𝐨))𝑝(𝐮)𝑝(𝐯)

𝑞𝜃1
(𝐮 ∣ Ξ, 𝑑𝑜(𝐞 = 𝐨)) 𝑞𝜃2 (𝐯 ∣ Ξ, 𝑑𝑜(𝐞 = 𝐨))

]
=𝔼𝜃

[
log𝑝𝜃3 (𝐲 ∣ 𝑑𝑜(𝐞 = 𝐨))

]
−KL

(
𝑞𝜃1

(𝐮 ∣ Ξ)‖𝑝 (𝐮) , 𝑞𝜃2 (𝐯 ∣ Ξ)‖𝑝 (𝐯))
(12)

where Ξ represents required parameters for the conditional probability distributions of 𝑞𝜃1 , 𝑞𝜃2 and 𝑝𝜃3 , i.e., Ξ = {𝐙𝑢, 𝐝𝑢, 𝐀𝑢} for 𝑞𝜃1 , 
Ξ = {𝐙𝑣, 𝐝𝑣, 𝐀𝑣} for 𝑞𝜃2 and Ξ = {𝐮, 𝐯} for 𝑝𝜃3 . 𝜃 = {𝜃1, 𝜃2, 𝜃3} is a set of model parameters and KL(⋅) is KL-divergence between two 
distributions.

For the counterfactual data scenario, we assume NCGCF accesses counterfactual data 𝐃′ generated by known interventions 
𝑑𝑜(𝐞 = 𝐞′) on user preference vectors. The counterfactual vectors 𝐞′ hold the same dimension with 𝐞 and are drawn from a random 
distribution. Then, the ELBO of NCGCF with the counterfactual data is,

ELBO(𝐃′, 𝑑𝑜(𝐞 = 𝐞′)) = 𝔼𝜃
[
log𝑝𝜃3

(
𝐲 ∣ 𝑑𝑜(𝐞 = 𝐞′

)
)
]

−KL
(
𝑞𝜃1

(𝐮 ∣ Ξ)‖𝑝 (𝐮) , 𝑞𝜃2 (𝐯 ∣ Ξ)‖𝑝 (𝐯)) (13)

Inspired by data augmentation and adversarial training, we augment the clean data with counterfactual instances to enhance the 
robustness of our NCGCF meanwhile capturing user preference shifts. In particular, the total loss function after augmentation is as 
below,

aug (Θ) = 𝜆(ELBO(𝐃, 𝑑𝑜(𝐞 = 𝐨))

+ (1 − 𝜆)(ELBO(𝐃′, 𝑑𝑜(𝐞 = 𝐞′))
(14)

where aug (Θ) is the loss function for training our NCGCF and Θ are model parameters. 𝜆 is the trade-off parameter between the 
clean and the counterfactual data scenario. During the training stage, the loss function is calculated by averaging the ELBO over all 
users.

5. Experiments

We thoroughly evaluate the proposed NCGCF for the recommendation task to answer the following research questions:

• RQ1: How does NCGCF perform as compared with state-of-the-art recommendation methods?

• RQ2: How do different components impact NCGCF’s performance?

• RQ3: How do parameters in the causal graph encoder affect NCGCF?

5.1. Experimental settings

5.1.1. Datasets

We conduct experiments on one synthetic dataset and three real-world datasets to evaluate NCGCF. The synthetic dataset is 
constructed in accordance with the Causal Graph depicted in Fig. 1(c). The construction process follows a series of assumptions 
that reflect causal relations between users and items. For instance, we assume the causal relation between user features and user 
preferences based on prior knowledge, such as the positive effect of high income on preference over high price. Similar assumptions 
also apply to item features to user preferences, e.g., the positive effect of the brand “Apple” on the preference for high-priced items. 
In particular, the Synthetic dataset construction is under the following four steps:

1. Feature generation: We simulate |𝑈 | = 1, 000 users and |𝐼| = 1, 000 items, where each user has one discrete feature (gender) and 
one continuous feature (income), while each item has three discrete features, i.e., type, brand and price. For discrete features, 
their values in {0, 1} are sampled from Bernoulli distributions. We sample continuous features from random sampling, in which 
random feature values are chosen from the minimum (i.e., 0) and the maximum (i.e., 1000) feature values. For both users and 
items, we assume two exogenous variables (i.e., 𝑍𝑢 and 𝑍𝑣) drawn from the Gaussian distribution.

2. Causal neighbor sampling: We synthesize the causal relations 𝑈 → 𝑈 and 𝑉 → 𝑉 by creating user/item causal neighbors. In 
particular, we set the causal neighbor number 𝑁𝑐 = 10. We assume a user 𝑢’s causal neighbors (i.e., 𝑈 →𝑈 ) are those who have 
interacted with the same item with the user 𝑢. In other words, users who have shown interest in similar items are considered 
causal neighbors for each other. For item causal neighbor sampling (i.e., 𝑉 → 𝑉 ), we first convert items with their features into 
dense vectors through item2vec [26], then calculate the Euclidean distances between two items. We assume those items that 
have the 𝑁𝑐 smallest distances from the target item are causal neighbors for the target item.

3. User preference estimation: For each user 𝑢 and item 𝑣, the user preference 𝐮 ∈ℝ𝑑 towards item property 𝐯 ∈ ℝ𝑑 is generated 
from a multi-variable Gaussian distribution  (0, 𝐈). Then, the preference score 𝑦𝑢𝑣 between user 𝑢 and item 𝑣 is calculated by 
8

the inner product of 𝐮 and 𝐯. Besides, we assume the fine-grained causal relations from user/item features to the preference 
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Table 2

Statistics of the datasets.

Dataset Synthetic Amazon-Beauty Amazon-Appliances Epinions

# Users 1,000 271,036 446,774 116,260

# Items 1,000 29,735 27,888 41,269

# Interactions 12,813 311,791 522,416 181,394

# Density 0.0128 0.0039 0.0041 0.0038

score based on prior knowledge. For example, we assume a positive effect of the “high” income on the preference over “high” 
price, thus tuning the preference score to prefer items with high prices. Besides, a user should have similar preference scores 
toward an item and the item’s causal neighbors.

4. User interaction sampling: Once we obtain a user 𝑢’s preference scores for all items (i.e., 𝐼), we normalize preference scores by 
exp

(
𝑟𝑖
)∑

𝑖′∈𝐼 exp
(
𝑟𝑖′

) . We select items with 𝑘-top scores as the interactions for the user 𝑢 ∈ 𝑈 , where 𝑘 is a constant chosen randomly 
from range [20, 100].

Apart from the synthetic dataset, we also use three benchmark datasets to test our performance in real-world scenarios. We also 
assume fine-grained causal relations in these real-world datasets to ensure users interact with items causally.

• Amazon-Beauty and Amazon-Appliances: two sub-datasets from Amazon Product Reviews4 [27], which record large crawls of 
user reviews and product metadata (e.g., brand). Following [28], we use brand and price to build item features since other features 
(e.g., category) are too sparse and contain noisy information. We use co-purchased information from the product metadata to 
build item-item causal relations, i.e., 𝑉 → 𝑉 . The co-purchased information records item-to-item relationships, i.e., a user who 
bought item 𝑣 also bought item 𝑖. We assume an item’s causal neighbors are those items that are co-purchased together. For 
user-user causal relation (i.e., 𝑈 → 𝑈 ), we assume a user’s causal neighbors are those who have similar interactions, i.e., users 
who reviewed the same item are neighbors for each other.

• Epinions5 [29]: a social dataset recording social relations between users. We convert user/item features from the dataset into 
one-hot embeddings. We use social relations to build user causal neighbors, i.e., a user’s social friends are the neighbors of the 
user. Besides, items bought by the same user are causal neighbors to each other.

For the three real-world datasets, we regard user interactions with overall ratings above 3.0 as positive interactions. For the 
synthetic dataset, we regard all user-item interactions as positive as they are top items selected based on users’ preferences. The 
statistics of the four datasets are shown in Table 2. For model training, we randomly split samples in both datasets into training, 
validation, and test sets by the ratio of 70%, 10%, and 20%.

5.1.2. Baselines

We compare NCGCF with eight competitive recommendation methods.

• BPR [30]: a well-known matrix factorization-based model with a pairwise ranking loss to enable recommendation learning from 
implicit feedback.

• NCF [17]: extends CF to neural network architecture. It maps users and items into dense vectors and feeds user and item vectors 
into an MLP to predict user preferences.

• MultiVAE [25]: extends CF to variational autoencoder (VAE) structure for implicit feedback modeling. It formulates CF learning 
as a generative model and uses variational inference to model the posterior distributions.

• NGCF [3]: a GCF that incorporates two GCNs to learn user and item embeddings. The learned embeddings are passed to a matrix 
factorization to capture the collaborative signal for recommendations.

• VGAE [20]: a graph learning method that extends VAE to handle graph-structured data. We use VGAE to obtain user and item 
embeddings and inner product those embeddings to predict user preference scores.

• GC-MC [5]: a graph-based auto-encoder framework for matrix completion. The encoder is a GCN that produces user and item 
embeddings. The learned embeddings reconstruct the rating links through a bilinear decoder.

• LightGCN [6]: a SOTA graph-based recommendation model that simplifies the GCN component. It includes the essential part in 
GCNs, i.e., neighbor aggregation, to learn user and item embeddings for collaborative filtering.

• CACF [31]: a method that learns attention scores from individual treatment effect estimation. The attention scores are used as 
user and item weights to enhance the CF.

4 https://nijianmo .github .io /amazon /index .html.
9

5 http://www .cse .msu .edu /~tangjili /trust .html.

https://nijianmo.github.io/amazon/index.html
http://www.cse.msu.edu/~tangjili/trust.html
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5.1.3. Evaluation metrics

We use three Top-𝐾 recommendation evaluation metrics, i.e., Precision@𝐾 , Recall@𝐾 and Normalized Discounted Cumula-

tive Gain(NDCG)@𝐾 . The three evaluation metrics measure whether the recommended Top-𝐾 items are consistent with users’ 
preferences in their historical interactions. We report the average results with respect to the metrics over all users. The Wilcoxon 
signed-rank test is used to evaluate whether the improvements against baselines are significant.

5.1.4. Parameter settings

We implement our NCGCF using Pytorch. The code and datasets are released in https://github .com /Chrystalii /CNGCF. The latent 
embedding sizes of neural networks for all neural-based methods are fixed as 𝑑 = 64. The in-dimension and out-dimension of the 
graph convolutional layer in NCGCF, NGCF, VGAE, GC-MC and LightGCN are set as 32 and 64, respectively. We apply a dropout layer 
on top of the graph convolutional layer to prevent model overfitting for all GCN-based methods. The hyper-parameters of all methods 
are chosen by the grid search, including the learning rate 𝑙𝑟 in {0.0001, 0.0005, 0.001, 0.005}, 𝐿2 norm in 

{
10−5,10−4,⋯ ,101,102

}
, 

and the dropout ratio 𝑝 in {0.0, 0.1, ⋯ , 0.8}. The Adam optimizer is applied to all methods for model optimization, where the batch 
size is fixed as 1024. We set the maximum epoch for all methods as 400 and use the early stopping strategy, i.e., terminate model 
training when the validation Precision@10 value does not increase for 20 epochs. To ensure a fair comparison, all baseline methods 
are trained using the same data used in our NCGCF. This includes using causality-enhanced node features and causal relations, such 
as item-item and user-user relationships, in the training process for all models.

5.2. Recommendation performance (RQ1)

We show the recommendation performance of our NCGCF and all baselines on the four datasets in Table 3. By analyzing Table 3, 
we have the following findings.

• NCGCF consistently outperforms the strongest baselines on both synthetic and real-world datasets, achieving the best recom-

mendation performance across all three evaluation metrics. In particular, NCGCF outperforms the strongest baselines by 23.4%, 
7.0%, 34.3% and 5.7% w.r.t Precision@10 on Synthetic, Amazon-Beauty, Amazon-Appliances and Epinions, respectively. Ad-

ditionally, NCGCF improves 2.5%/3.8%, 8.4%/22.1%, 13.3%/35.9% and 10.6%/2.8% for Recall@10/NDCG@10 on the four 
datasets, respectively. The superiority of NCGCF can be attributed to two factors: the power of neural graph learning and the 
modeling of causality. Firstly, graph learning explicitly models the interactions between users and items as a graph, and uses 
graph convolutional networks to capture the non-linear relations from neighboring nodes. This allows graph learning to capture 
more complex user behavior patterns. Secondly, modeling causal relations allows us to identify the causal effects of different 
items on users, thus capturing true user preferences on items. By injecting causal modeling into graph representation learning, 
our NCGCF captures more precise user preferences to produce robust recommendations against baselines.

• NCGCF achieves the most notable improvements (e.g., 35.9% NDCG@10 and 43.8% NDCG@20) on the Amazon-Appliances 
dataset. Amazon-Appliances dataset is a large-scale dataset with a considerable amount of user behavior data that may be noisy 
and challenging to model. Nevertheless, NCGCF still outperforms all baselines. We consider the reason is that NCGCF injects 
causality into graph learning, enabling the model to surpass merely capturing spurious correlations among noisy data. This 
results in more accurate and reliable modeling of true user preferences.

• NGCF that uses graph representation learning outperforms NCF without graph learning. This is because NGCF models user-

item interactions as a graph, and uses graph convolutional networks to capture more complex user-user collaborative behavior 
to enhance recommendations. In contrast, NCF uses a multi-layer perception to learn user and item similarities, which cap-

tures only linear user-item correlations from the interaction matrix. Moreover, GC-MC and LightGCN outperform other graph 
learning-based baselines (i.e., NGCF, VGAE) in most cases. This is because GC-MC and LightGCN aggregate multiple embed-

ding propagation layers to capture higher-order connectivity within the interaction graph. Similarly, our NCGCF incorporates 
layer aggregation within our causal graph encoder, enabling us to capture higher-order connectivity and produce better graph 
representations for improved recommendation performance.

• NCGCF outperforms all graph learning-based baselines, including NGCF, VGAE, GC-MC and LightGCN. This is because NCGCF 
models causal relations within the graph learning process. Guided by the causal recommendation generation process, NCGCF is 
able to inject causal relations under the Structural Causal Model into the learning process of the graph convolutional network. 
This allows NCGCF to uncover the causal effect of items on users and capture user behavior patterns more accurately.

5.3. Study of NCGCF (RQ2)

We start by exploring how replacing our causal graph encoder with other graph representation learning methods, i.e., naive 
GCN [32], Graphsage [33] and Pinsage [34], impact NCGCF’s performance. We then analyze the influences of core components, 
including causality-aware message passing and counterfactual instance-aware ELBO.

5.3.1. Effect of causal graph encoder

The causal graph encoder plays a pivotal role in NCGCF by modeling the causal relations of nodes. To investigate its effectiveness, 
we replace our causal graph encoder with different encoders built by other graph learning methods. In particular, we use GCN [32], 
10

Graphsage [33] and Pinsage [34] to produce user and item embedding vectors for the decoder learning phase, and compare the 

https://github.com/Chrystalii/CNGCF
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ond-best results are significant at 𝑝 < 0.01.

Epinions

DCG@10 Precision@10 Recall@10 NDCG@10

0.4356 0.3022 0.2895 0.4889

0.4771 0.3551 0.3364 0.5432

0.5998 0.4229 0.3888 0.5331

0.5555 0.4018 0.3912 0.5012

0.5019 0.3590 0.3460 0.4913

0.5677 0.4666 0.4218 0.5112

0.6028 0.4717 0.4544 0.5436

0.4215 0.2899 0.2765 0.3445

0.8193 0.4990 0.5030 0.5589

35.9% +5.7% +10.6% +2.8%

NDCG@20 Precision@20 Recall@20 NDCG@20

0.4322 0.3332 0.3232 0.4689

0.4519 0.3719 0.3614 0.5255

0.5911 0.4465 0.4055 0.5133

0.5499 0.4223 0.4210 0.4811

0.4761 0.3667 0.3598 0.4781

0.5514 0.4815 0.4451 0.4999

0.5613 0.4915 0.4718 0.5221

0.4103 0.2747 0.2910 0.3368

0.8501 0.5002 0.5034 0.5667

43.8% +1.7% +6.6% +7.8%
Table 3

Recommendation performance comparison: The best results are highlighted in bold, while the second-best ones are underlined. All improvements against the sec

Dataset Synthetic Amazon-Beauty Amazon-Appliances

Method Precision@10 Recall@10 NDCG@10 Precision@10 Recall@10 NDCG@10 Precision@10 Recall@10 N

BPR 0.5214 0.4913 0.6446 0.3555 0.3319 0.4111 0.3720 0.3574

NCF 0.6120 0.6293 0.7124 0.3618 0.3659 0.4459 0.3871 0.3789

MultiVAE 0.6248 0.5999 0.8101 0.4418 0.4112 0.4616 0.4544 0.4428

NGCF 0.5990 0.5681 0.7477 0.4512 0.4003 0.5188 0.4271 0.3778

VGAE 0.5446 0.5572 0.7778 0.3499 0.3812 0.4466 0.3681 0.4014

GC-MC 0.6115 0.6226 0.8116 0.4666 0.4615 0.5612 0.4718 0.4518

LightGCN 0.6439 0.6719 0.8223 0.4810 0.4778 0.5501 0.4844 0.4652

CACF 0.4482 0.4158 0.5555 0.3101 0.3005 0.3888 0.3222 0.3188

NCGCF 0.7952 0.6889 0.8538 0.5148 0.5183 0.6855 0.6510 0.5271

Improv.% +23.4% +2.5% +3.8% +7.0% +8.4% +22.1% +34.3% +13.3% +

Precision@20 Recall@20 NDCG@20 Precision@20 Recall@20 NDCG@20 Precision@20 Recall@20

BPR 0.6111 0.5536 0.6338 0.3561 0.3420 0.4062 0.3941 0.3599

NCF 0.6678 0.6446 0.7003 0.3699 0.3691 0.4330 0.3999 0.4033

MultiVAE 0.6779 0.6136 0.8006 0.4496 0.4200 0.4555 0.4819 0.4716

NGCF 0.6233 0.5999 0.7312 0.4612 0.4112 0.5081 0.4666 0.4258

VGAE 0.5847 0.5687 0.7613 0.3551 0.3999 0.4410 0.3771 0.4228

GC-MC 0.6665 0.6317 0.8091 0.4781 0.4771 0.5582 0.4892 0.4881

LightGCN 0.6904 0.6819 0.8108 0.5023 0.4869 0.5306 0.4919 0.4781

CACF 0.4567 0.4266 0.5348 0.3186 0.3211 0.3678 0.3418 0.3271

NCGCF 0.8081 0.6844 0.8603 0.5153 0.5106 0.7123 0.6367 0.5055

Improv.% +17.0% +0.3% +6.1% +2.5% +4.8% +27.6% +29.4% +3.5% +
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Table 4

Recommendation performance after replacing the causal graph encoder with different 
graph representation learning methods. The percentage after + or − indicates the 
increase (+) or decrease (−) percentage of the variant’s performance compared with 
the original NCGCF.

Variants Precision@10 Recall@10 NDCG@10

Synthetic

NCGCF 0.7952 0.6889 0.8538

NCGCF-GCN 0.5358(-32.7%) 0.5182(-24.7%) 0.7025( -17.7%)

NCGCF-Graphsage 0.5038(-36.8%) 0.5005(-27.4%) 0.7022(17.8%)

NCGCF-Pinsage 0.5819(-26.8%) 0.5498(-20.2%) 0.7446( -12.8%)

Amazon-Beauty

NCGCF 0.5148 0.5183 0.6855

NCGCF-GCN 0.4991(-3.04%) 0.5029(-2.97%) 0.4886(-28.68%)

NCGCF-Graphsage 0.5011(-2.67%) 0.5039(-2.78%) 0.5243(-23.55%)

NCGCF-Pinsage 0.5008(-2.72%) 0.5043(-2.70%) 0.5143(-25.01%)

Amazon-Appliances

NCGCF 0.6510 0.5271 0.8193

NCGCF-GCN 0.5067(-3.04%) 0.5167(-2.97%) 0.6614(-28.68%)

NCGCF-Graphsage 0.5085(-2.67%) 0.5184(2.78%) 0.6670(- 23.55%)

NCGCF-Pinsage 0.5083(-2.72%) 0.5178(-2.70%) 0.6631(-25.01%)

Epinions

NCGCF 0.4990 0.5030 0.5589

NCGCF-GCN 0.4812(-3.55%) 0.4990(-0.79%) 0.5013(-10.28%)

NCGCF-Graphsage 0.4809(-3.62%) 0.4989(-0.81%) 0.4999(-10.52%)

NCGCF-Pinsage 0.4871(-2.38%) 0.4994(-0.71%) 0.4930(-11.74%)

performance of NCGCF before and after the replacements. We present the experimental results in Table 4. We find that both GCN, 
Graphsage and Pinsage-based encoders downgrade the performance of NCGCF compared to NCGCF equipped with our proposed 
causal graph encoder. For instance, NCGCF with a GCN-based encoder downgrades the NDCG@10 by 28.68% on the Amazon-

Beauty. This is because GCN, Graphsage and Pinsage cannot capture the causal relations of nodes in the interaction graph, leading 
to insufficient representations of users and items. On the contrary, our causal graph encoder captures the intrinsic causal relations 
between nodes using the causality-aware message passing; thus, it learns causality-aware user and item representations to better serve 
the later decoder learning. Moreover, the GCN-based encoder downgrades the NCGCF performance most severely compared with 
GraphSage and Pinsage-based encoders. This is because naive GCN performs transductive learning requiring full graph Laplacian, 
whereas GraphSage and Pinsage perform inductive learning without requiring full graph Laplacian to handle large-scale graph data 
well. We thus conclude that an inductive learning setting is more desired for our NCGCF, especially when facing large-scale graph 
data.

5.3.2. Effect of causality-aware message passing

The causality-aware message passing models the dependency terms between each of the structural equations as the causal relations 
between nodes. We present NCGCF’s performance after removing the causality-aware message passing in Table 5. We observe 
that removing the component downgrades NCGCF’s performance, indicating the importance of causality-aware message passing 
in helping NCGCF achieve favorable recommendation performance. We thus conclude that modeling the causal relations between 
nodes within the graph-structured data is essential for graph learning-based models to uncover true user preferences for improved 
recommendations.

5.3.3. Effect of counterfactual instance-aware ELBO

The counterfactual instance-aware ELBO augments counterfactual instances for NCGCF optimization. We present NCGCF’s perfor-

mance after removing the counterfactual instance-aware ELBO in Table 5. Apparently, removing the counterfactual instance-aware 
ELBO leads to the downgraded performance of NCGCF on both datasets. This is because our counterfactual instance-aware ELBO 
augments counterfactual instances, i.e., the intervened data on user preference vectors, thus facilitating better model optimization to 
capture user preference shifts.

5.4. Parameter analysis of causal graph encoder (RQ3)

We analyze NCGCF’s performance under different embedding sizes 𝑛 of the semi-implicit generative model in the causal graph 
12

encoder. We also investigate the node dropout ratios 𝑝 of the dropout layer applied in the causal graph encoder.
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Fig. 3. Parameter analysis on causal graph encoder.
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Table 5

Ablation Study on NCGCF. ¬ CM represents causality-aware message pass-

ing is removed. ¬ CI represents counterfactual instance-aware ELBO is 
removed. The percentage after + or − indicates the increase (+) or de-

crease (−) percentage of the variant’s performance compared with the 
original NCGCF.

Variants Precision@10 Recall@10 NDCG@10

Synthetic

NCGCF 0.7952 0.6889 0.8538

¬ CM 0.5806(−31.9%) 0.5491(−20.3%) 0.7179(−16.0%)

¬ CI 0.7781(−2.1%) 0.6654(−3.4%) 0.7573(−11.2%)

Amazon-Beauty

NCGCF 0.5148 0.5183 0.6855

¬ CM 0.5007(−2.7%) 0.5060(−2.3%) 0.5383(−20.7%)

¬ CI 0.5101(−0.9%) 0.5081(−2.0%) 0.5738(−15.9%)

Amazon-Appliances

NCGCF 0.6510 0.5271 0.8193

¬ CM 0.6357(−2.4%) 0.5050(−4.2%) 0.6864(−16.2%)

¬ CI 0.6445(−1.0%) 0.5143(−2.4%) 0.7956(−2.9%)

Epinions

NCGCF 0.4990 0.5030 0.5589

¬ CM 0.4695(−6.0%) 0.4936(−1.9%) 0.4647(−16.9%)

¬ CI 0.4794(−3.9%) 0.5018(−0.2%) 0.5139(−8.1%)

5.4.1. Effect of embedding size

Fig. 3 (a) (b) (c) report the parameter sensitivity of our NCGCF w.r.t. embedding size 𝑛 with 𝑛 = {16, 32, 64, 128, 256, 512, 1024, 2048}
Apparently, the performance of NCGCF on Amazon-Beauty, Amazon-Appliances and Epinions demonstrates increasing trends from 
𝑛 = 16, then reaches the peak when 𝑛 = 512, 𝑛 = 64 and 𝑛 = 256, respectively. This is reasonable since 𝑛 controls the number of 
latent vectors of users and items from the semi-implicit generative model, and low-dimensional latent vectors cannot retain enough 
information for the encoder learning phrase. After reaching the peaks, the performance of NCGCF degrades slightly and then becomes 
stable. The decrease in performance is due to the introduction of redundant information as the embedding size becomes too large, 
which can affect the model. Additionally, we observe the largest Amazon-Appliances dataset requires the smallest embedding size of 
𝑛 = 64 to reach its peak performance compared to the other two datasets. This is because a larger embedding size brings large-scale 
datasets a higher computational burden, thus limiting the model’s performance.

5.4.2. Effect of dropout ratio

We employ a node dropout layer in the causal graph encoder to prevent model overfitting. We show the influence of node 
dropout ratio 𝑝 on the three datasets in Fig. 3 (d) (e) (f). We observe that the performance of NCGCF on both Amazon-Beauty, 
Amazon-Appliances and Epinions exhibits a decreasing trend as we increase the node dropout ratio 𝑝 from 0.0 to 0.3, but recovers at 
𝑝 = 0.4. After 𝑝 = 0.4, the performance of NCGCF decreases as the dropout ratio increases. We believe that the reduced performance 
could be attributed to the removal of crucial information that the model needs to learn from the data, thus impairing the NCGCF’s 
performance. Nevertheless, the recovered performance at 𝑝 = 0.4 indicates that NCGCF is robust to balance the loss of information 
and overfitting.

6. Related work

6.1. Graph collaborative filtering

Collaborative filtering (CF) [1] dominates recommendation research due to its simplicity and effectiveness. Early CF models are 
largely latent factor models. They use descriptive features (e.g., IDs) to calculate user similarities, assuming that users with similar 
historical behaviors have similar future preferences. For example, Bayesian personalized ranking (BPR) [30] learns user and item 
latent vectors from the interaction matrix built by implicit user feedback, e.g., clicks. The inner products between latent vectors are 
used as user-item similarities to predict user preference scores.

With the burgeoning of neural models [35,36], various neural networks are used for better user preference modeling. Neural 
collaborative filtering (NCF) [17] uses a Multi-layer perceptron (MLP) to learn a user behavior similarity function based on simple 
user/item one-hot encodings. Recently, benefiting from the capability to learn from relational graphs, graph CF (GCF) leverages 
advances in graph learning [37] to model user-item interaction graphs as well as rich auxiliary data, e.g., text and image. Those 
auxiliary data have demonstrated their ability to capture valuable domain knowledge [38] and intricate semantics within user-item 
interactions [13], thereby enhancing recommendation performance. Early GCF relies on random walk models to calculate similarities 
14

among users and items from the given graph. With the rise of graph neural networks, recent GCF methods have shifted towards 
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graph representation learning. Graph Convolutional Network (GCN) is one of the most widely adopted graph neural networks for 
scrutinizing complex graph relations as user and item embeddings. Neural graph collaborative filtering (NGCF) [3] incorporates 
two GCNs to learn the collaborative signal of user interactions from a user-item interaction graph. Hyperbolic Graph Collaborative 
Filtering (HGCF) [4] offers a compelling solution by integrating GCN with hyperbolic learning techniques to acquire user and item 
embeddings within the hyperbolic space. By leveraging the exponential neighborhood expansion inherent in the hyperbolic space, 
HGCF effectively captures higher-order relationships among users and items, enhancing the learning capabilities for downstream 
CF models. GC-MC [5] uses a GCN-based auto-encoder to learn latent features of users and items from an interaction graph and 
reconstructs the rating links for matrix completion. Later, LightGCN [6] simplifies the GCN in the recommendation task by only 
including neighborhood aggregation for calculating user and item representations, which further boosts the efficiency of subsequent 
GCF approaches, e.g., [39–41].

Existing GCN-based GCF methods only capture correlation signals of user behaviors by modeling neighboring node messages, 
regardless of complex node and variable dependencies. This would result in the limited ability of GCF models to capture the true user 
preferences in the presence of spurious correlations. On the contrary, we abandon the modeling of spurious correlations to pursue 
the intrinsic causal relations between nodes, which estimate the causal effect of a specific item on user preferences to uncover true 
user interests.

6.2. Causal modeling for recommendation

Recent recommendation research has largely favored causality-enhanced methods. A burst of relevant papers is proposed to 
address critical issues in RS, such as data bias and model explainability with causal learning. Among them, the Structural Causal 
Model (SCM) from Pearl et al. [42] has been intensively investigated. SCM-based recommendation builds a graphical Causal Graph 
by extracting structural equations on causal relations between deterministic variables in recommendations. It aims to use the Causal 
Graph to conduct causal reasoning for causal effect estimation. Using the Causal Graph, a large strand of relevant approaches 
pursue mitigating the bad effects of different data biases, e.g., exposure bias [18,43,44], popularity bias [45]. For instance, Wang 
et al. [18] mitigate exposure bias in the partially observed user-item interactions by regarding the bias as the confounder in the 
Causal Graph. They propose a deconfounded model that performs Poisson factorization on substitute confounders (i.e., an exposure 
matrix) and partially observed user ratings. Other approaches also achieve explainable recommendations [46,47]. Wang et al. [46]

define a Causal Graph that shows how users’ true intents are related to item semantics, i.e., attributes. They propose a framework 
that produces disentangled semantics-aware user intent embeddings, in which each model component corresponds to a specific node 
in the Causal Graph. The learned embeddings are able to disentangle users’ true intents towards specific item semantics, which 
explains which item attributes are favored by users. Our work differs from existing SCM-based recommendation models by two key 
points: 1) In terms of problem definition, existing works do not consider leveraging SCMs to refine the learning process of graph 
representations. Our method offers a novel perspective on SCM-boosted graph representation learning, leveraging the expressive 
power of causality-aware graph embeddings to capture complex causal relations in recommendations. 2) In terms of technique, 
we build the first Neural Causal Model to parameterize each structural equation under the SCM as trainable neural networks for 
recommendations.

7. Discussion

7.1. Potential limitations

Our research would potentially have the following limitations: 1) Reliance on domain knowledge: The Causal Graph builds the 
foundation of the proposed framework, which uses causal relations to reconstruct the user-item interaction graph as a causality-

oriented graph. Thus, the effectiveness of the proposed framework could hinge on the quality of the Causal Graph conceptualization. 
However, conceptualizing a Causal Graph necessitates domain expertise within the recommendation system domain. Therefore, 
the rationality of domain knowledge could influence the performance of our model. The complexity could involve understanding 
the recommendation mechanism and tuning Causal Graph for specific recommendation scenarios, e.g., out-of-distribution (OOD) 
recommendations. 2) Generalization to diverse domains: The effectiveness of the proposed framework may vary across different 
domains, e.g., e-commerce, social networks, or content platforms. While it is impractical to build a one-fits-all framework for different 
recommendation domains, enhancing the generalization ability of our proposed framework remains crucial. This can be achieved by 
considering techniques such as transfer learning [48], domain adaptation [49], or meta-learning [50].

7.2. Future direction

For our future work, we intend to integrate transfer learning into our proposed framework to enhance its generalization across 
a broader range of recommendation domains. Our plan includes exploring pre-trained models or knowledge learned from related 
recommendation domains and adapting them to improve the performance of our framework across diverse recommendation sce-

narios. We also plan to explore how user feedback and interaction can further enhance our proposed framework’s performance. 
While NCGCF improves recommendation accuracy, it is trained on one-round recommendation data without incorporating real-time 
user feedback. User feedback and interaction with the recommendation system are crucial factors for real-world deployment. Future 
15

studies could explore user-centric recommendations to expand the utility of NCGCF from a user experience perspective.
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8. Conclusion

In this work, we propose Neural Causal Graph Collaborative Filtering (NCGCF), the first causality-aware graph representation 
learning framework for graph collaborative filtering. In particular, NCGCF injects causal relations between nodes into the graph 
representation learning process. The integration of causal modeling and graph representation learning offers a novel perspective 
to facilitate accurate recommendations. In the proposed method, we first craft a Causal Graph to describe the learning process of 
causality-aware graph representations. Our causal graph abandons the strong assumption of user and item independence in current 
recommendation models. We then construct a Neural Causal Model to parameterize each of the structural equations under the Causal 
Graph as trainable neural networks. The proposed Neural Causal Model completes the first Neural-Causal Connection for the causal 
modeling of graph convolutional networks in recommendations. Finally, we approximate the Neural Causal Model using variational 
inference, with a semi-implicit generative model enabling causality-aware message passing for graph learning. As a result, NCGCF 
effectively models complex node and variable dependencies under structural equations. Extensive evaluations of recommendation 
performance highlight NCGCF’s ability to produce precise recommendations.
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