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A B S T R A C T   

The surge in e-commerce has led to an increased demand for urban express services, requiring the strategic 
development of delivery networks that are both efficient and cost-effective. This study addresses a practical 
vehicle routing problem (VRP) in an urban express delivery network to minimize transportation costs. Specif-
ically, it considers the implementation of backhaul discounts, a factor disregarded in the existing literature. This 
VRP is further complicated by various realistic constraints, including pickup and delivery, time windows, mul-
tiple trips, heterogeneous fleets, and docking capacity limitations, which make most general VRP solvers inap-
plicable. This study proposes a trip-based formulation to overcome this challenge and develop a tailored branch- 
and-price algorithm. Feasible trips are classified into four types to simplify the computation of backhaul dis-
counts, thereby enhancing solution efficiency. Validation with real-world data from SF Express substantiates the 
efficacy of our method and yields insights for sustainable city logistics management. Moreover, our simplified 
column generation algorithm exhibits competitive performance, achieving optimal solutions expeditiously for 
the tested instances.   

1. Introduction 

1.1. Background 

The rapid growth of e-commerce has greatly contributed to 
expanding urban express services. The surge in demand volumes, as well 
as customer expectations for high quality and efficiency, emphasize the 
critical role of advanced city logistics management (Gupta et al., 2022). 
In this context, transportation network optimization as a significant 
undertaking aims not just at reacting to market needs but as a proactive 
effort to improve customer satisfaction (Hesse, 2020). 

Fig. 1 illustrates that a tri-level network topology is commonly used 

in inter-city logistics. The logistics procedure for goods within this 
structure is as follows: Couriers pick up the items from the customer and 
carry them to a local hub (LH). The express company schedules periodic 
goods transfers from multiple LHs throughout the city to a centralized 
Gateway Hub (GH). The goods are categorized and packaged at the GH 
according to their destination and mode of transportation before being 
shipped via road, water, or air to the GH of the destination city. Finally, 
the goods are delivered to the customer in reverse order during collec-
tion. The urban express delivery segment manages the movement of 
goods between LHs and GHs in a city, acting as a bottleneck for service 
quality and operational cost-efficiency (Contreras and O’Kelly, 2019). 
Optimizing this segment has important economic and societal effects, as 
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it enables service quality, reduces carbon emissions, and contributes to 
the sustainable management of city logistics. 

Despite the emergence of specialized urban networks for same-day 
delivery (Wu et al., 2023), the dominance of inter-city operations 
highlights the importance of urban express delivery. Typically, express 
delivery companies delegate transportation tasks of the urban express 
delivery segment to third-party logistics (3PL) providers, a practice that 
streamlines operational management (Govindan et al., 2016). These 
service providers handle specific pickup and delivery routes, allowing 
express companies to focus on trip optimization rather than vehicle 
allocation and scheduling. So, this study looks at how to make an urban 
express delivery network work better by organizing tasks strategically 
during trip formation. The goal is to lower the costs of 3PL contracts. A 
simplistic understanding suggests that a round-trip, encompassing 
pickup, subsequent delivery, and return to the origin, is often more cost- 
effective than one-way trips. This economic advantage is reflected in the 
3PL’s pricing structure as backhaul discounts, which are based on 
empirical operational data and determined after a thorough evaluation 
of vehicle depreciation, driver wages, opportunity costs, and other 
factors. 

The challenge of our problem is multifaceted. Firstly, the system is 
subject to stringent time constraints, primarily due to its interaction 
with last-mile delivery and line-haul transportation. Logistical opera-
tions must adhere to strict schedules dictated by incoming and outgoing 
shipments’ arrival and departure times. Secondly, logistical hubs 
encounter capacity constraints in loading, unloading, and sorting, 
necessitating the implementation of multi-shift operations. The opera-
tional task involves transferring goods from LHs to a GH and redis-
tributing them from the GH back to the LHs. Furthermore, fleets with 
varying load capacities are required to be deployed. Lastly, the cost- 
effectiveness of operations differs by trip type, with backhauling trips 
offering cost savings in round-trip scenarios. 

To tackle these challenges, we model the problem as a rich vehicle 
routing problem (RVRP) and propose a trip-based formulation. This 
RVRP integrates various operational constraints, such as pickup and 
delivery, time windows, multiple trips, a heterogeneous fleet, docking 
capacity limitations, and backhaul discounts, as detailed in Section 2 
and Section 3. The intricacy of these constraints makes it impossible to 
use existing general solvers such as OR-tools (Didier et al., 2023), and 
VRPSolver (Pessoa et al., 2020). To solve this problem efficiently, we 
develop a decomposition-based branch-and-price algorithm and 
conduct empirical experiments using real-world data obtained from SF 
Express. Additionally, we have provided a comprehensive analysis of 
operational management insights. 

1.2. Literature review 

The problem in this study is a specialized subclass of vehicle routing 
problems (VRP). This section provides a succinct review of pertinent 
VRP literature, emphasizing variants that align closely with the scope of 

our study. 
The rich vehicle routing problems (RVRP) have garnered increasing 

attention from the academic community due to their relevance in 
addressing the multifaceted challenges of real-world scenarios (Ropke 
and Pisinger, 2006; Lahyani et al., 2015). The seminal work of Golden 
and Assad established VRP as critical in optimizing logistics and trans-
portation systems (Golden and Assad, 1986). However, as Ropke and 
Pisinger pointed out, basic VRP models frequently cannot account for 
the various constraints present in real-world applications (Ropke and 
Pisinger, 2006). This limitation has led to the evolution of RVRP, which 
expands the traditional VRP framework to include complex constraints 
like time windows, backhauls, and heterogeneous fleets, as elaborated 
by Lahyani et al. and Penna et al. (Lahyani et al., 2015; Penna et al., 
2017). Goel and Gruhn highlight the impracticality of exact algorithms 
for complex RVRP instances due to their computational intensity, paving 
the way for heuristic methods to produce high-quality solutions within 
manageable timeframes (Goel and Maini, 2017). 

Multi-trip VRP and VRP with backhaul have considerable relevance 
for real-world applications, particularly in enhancing the robustness and 
flexibility of transportation networks. Cattaruzza et al. and Kim et al. 
demonstrate the benefits of assigning multiple trips to each vehicle to 
increase network resilience (Cattaruzza et al., 2014; Kim et al., 2015). 
Toth and Vigo extend the VRP framework to encompass both delivery 
and collection of goods, catering to reverse logistics (Toth et al., 2014). 
While the literature on integrating these two VRP variants is limited, 
recent works by Ni et al. and Schneider et al. identify this approach as a 
promising direction for future research and application (Ni and Tang, 
2023; Schneider et al., 2014). 

Current VRP literature often assumes instantaneous or fixed service 
times at delivery and pickup points. Contrary to these assumptions, Lam 
et al. and Grangier et al. suggest that such simplifications are often 
unrealistic in scenarios with capacity constraints, necessitating intricate 
route planning to manage both routing and resource-constrained 
scheduling problems (Lam and Hentenryck, 2016; Grangier et al., 2019). 

Recent studies are expanding the scope of cost considerations in VRP 
research. Roselli et al. introduced limited road segment capacity in the 
Electric Conflict-Free Vehicle Routing Problem (Roselli et al., 2021), 
while Bespalov et al. examined the impact of toll collection points on 
service levels and traffic metrics (Bespalov et al., 2023). Kulikov et al. 
emphasized the significance of loading and unloading points in opti-
mizing multimodal systems (Kulikov et al., 2023), and Mandi et al. 
explored subjective routing factors like driver familiarity (Mandi et al., 
2021). Our research differs by introducing a new route factor: backhaul 
discounts. We explicitly consider the cost efficiencies of round trips, an 
aspect that previous research has missed. 

Despite extensive research on VRP in urban express delivery, many 
studies focus narrowly on specific aspects, such as solely pickup or de-
livery operations (Yan et al., 2013; Pei et al., 2021), or address both 
without considering the potential for multiple-trip routes (Hof and 
Schneider, 2019; Chang and Yen, 2012). Bettinelli et al. explored 

Fig. 1. Tri-level network topology of inter-city logistics.  
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separate pickup and delivery and multi-trip routes but did not consider 
other features like heterogeneous fleets, docking capacity, and backhaul 
discounts (Bettinelli et al., 2019). 

Our research makes several contributions to the fields of urban ex-
press delivery and RVRP, as outlined below:  

• Introduced a practical vehicle routing problem considering backhaul 
discounts, reflecting the economic benefits of round-trip efficiencies 
in urban express delivery networks, a concept not extensively 
explored in the existing literature.  

• Developed a tailored branch-and-price algorithm that employs a trip- 
based formulation and decomposes the pricing subproblem, simpli-
fying the calculation of backhaul discounts and significantly 
improving the efficiency and effectiveness of solving complex 
RVRPs.  

• Validated the proposed method’s efficacy and provided practical 
insights from real-world data analysis, demonstrating the impact of 
the upper limit of waiting time (ULWT) on operational costs, trip 
distribution, and vehicle utilization, helping companies optimize 
urban logistics networks and improve operational efficiency. 

The paper’s structure is as follows: Section 2 describes the problem 
and its mathematical formulation. Section 3 details the design of the 
branch-and-price algorithm. Section 4 discusses and interprets the re-
sults from extensive computational studies. Finally, Section 5 offers 
concluding remarks and explores potential avenues for future research 
in this domain. 

2. Modeling 

2.1. Problem description 

This study focuses on two types of transportation tasks in urban ex-
press delivery: delivery tasks from the Gateway Hub (GH) to local hubs 
(LHs) and pickup tasks from LHs to GH. These tasks are illustrated in 
Fig. 2, which are characterized by attributes such as weight wi, vehicle 
type vi, ready time ei, and deadline li. The problem is represented using a 
graph-based representation G = (N,A), where the set of nodes N =

{
0} ∪

Np ∪ Nd represents tasks at various hubs rather than the hub entity itself, 

accommodating multiple shifts. Specifically, {0} represents any opera-
tion at GH, Np represents pickup at LHs, and Nd represents delivery at 
LHs. The set A contains directed arcs, signifying adjacency between 
tasks. We denote the LH for task i as hi, where i ∈ Np ∪ Nd, and the set of 
all hubs is defined as H = {hi|i ∈ N}. The travel metrics between hubs hi 

and hj are positive real numbers, denoted as tij ∈ R+ for time and dij ∈

R+ for distance. Notably, intra-hub metrics are zero (tij = 0 and dij = 0 
when i = j). 

A heterogeneous fleet comprising |M| types of vehicles is available 
for task assignment. Each vehicle type, specified as m ∈ M, is charac-
terized by three key parameters: maximum weight capacity Qm, per-unit 
travel cost cm, and loading/unloading durations t0

m and t1
m at GH and LHs, 

respectively. Notably, we assume that there are an unlimited number of 
each type of vehicle. Constraints are imposed on vehicle types at both 
LHs and road sections; while all accommodate the smallest vehicle type, 
not all permit the largest. We use Vi, i ∈ Np ∪ Nd to denote the biggest 

vehicle type allowable at LH hi, and Ltl1tl
2

ij , (i, j
)
∈ A to indicate the cor-

responding limitations for road sections between LH hi and hj during 
time intervals 

(
tl1, tl2

)
. Each hub further constrains operations via a pre- 

defined number of docks, denoted as θh,h ∈ H. 
A solution is formulated as a set of trips on graph G, each executed by 

a designated vehicle type. Trips start and terminate at the LH or the GH, 
prioritizing delivery tasks over pickup tasks. It should be noted that the 
nodes in G represent loading and unloading tasks, and each node can 
only appear once during a trip, although multiple visits to the same LH 
are permissible. A discount of γ is applicable for round trips that involve 
both task types. Based on empirical data, 3PL providers determine this 
discount. It considers the direct inefficiency of routing empty vehicles 
and the opportunity cost of reducing other transportation operations, as 
more vehicles may be needed. 

The objective function targets the minimization of total operational 
costs while ensuring the completion of all daily tasks. Cost calculations 
incorporate the aggregate distance across all travel arcs and are adjusted 
for each vehicle’s per-unit cost and any cost discounts. 

2.2. Trip-based formulation 

In addressing the complexities of our RVRP, this study adopts the 

Fig. 2. Representation of urban express delivery.  
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Dantzig-Wolfe decomposition approach, which is renowned for its pre-
cision in generating exact solutions. Initially, we construct a trip-based 
model for the Dantzig-Wolfe decomposition master problem (MP). 
Subsequent sections will elaborate on the subproblem models and 
expound on a branch-and-price algorithm tailored to this 
decomposition. 

Let R denote the set of all feasible trips, with each trip r ∈ R incurring 
an operational cost pr. The calculation of these costs includes round-trip 
discounts, which are crucial to our pricing problem, as explained in 
Section 3.1. To specify the execution of delivery or pickup tasks within 
these trips, we introduce ari, a binary indicator such that ari ∈ {0,1} for 
each task i ∈ Np ∪ Nd. Here, ari = 1 signifies the inclusion of task i in trip 
r, while ari = 0 denotes its exclusion. 

Moreover, to accurately model the dynamics of concurrent opera-
tions at the same hub, we introduce bh

r1r2
, another binary indicator. This 

parameter is set to 1 when there is a temporal overlap in the operations 
of trips r1 and r2 at hub h, thus capturing the essence of concurrent hub 
visits. The transitive nature of bh

r1r2 
is proposed based on considerations 

of short operating time, suggesting that if bh
r1r2

= bh
r1r3

= 1, it logically 

follows that bh
r2r3

= 1. Determining bh
r1r2 

values relies on analyzing trip 
schedules, notwithstanding our model’s absence of explicit schedule 
representations. 

Additionally, we define zr as a binary decision variable, where zr = 1 
indicates the selection of trip r, and zr = 0 denotes its exclusion. Oper-
ational constraints, including adherence to dock capacity limits at all 
hubs, govern the selection process. 

A trip r is deemed feasible if it fulfils the following criteria: (i) each 
transportation task is performed precisely once; (ii) all schedules, 
including departures and deadlines, are strictly adhered to; (iii) vehicle 
type specifications are respected at hubs and along roadways, and (iv) 
vehicle load capacities are not exceeded. Employing the definitions 
above, we formulate the MP as follows: 

min
∑

r∈R
przr (1)  

∑

r∈R
arizr = 1, ∀i ∈ N (2)  

∑

r1 ,r2∈R,r1<r2

zr1zr2 bh
r1r2

⩽
(

θh
2

)

, ∀h ∈ H (3)  

zr ∈ {0,1}, ∀r ∈ R (4) 

The objective function (1) minimizes the total cost of selected trips. 
Constraints (2) ensure the unique execution of each task. The constraints 
(3) limit the number of vehicles that can operate simultaneously at each 
hub. A critical component of these constraints involves the simultaneous 
visit between pairs of trips (r1 and r2) at hub h. Here, the condition 
zr1zr2 bh

r1r2
= 1 signifies that both trips are selected and that simultaneous 

visits to hub h occur. The combinatorial term 
(

θh
2

)

=
θh(θh − 1)

2 , which 

delineates the upper bound of 
∑

r1 ,r2∈R,r1<r2
bh

r1r2
, counts on θh docks being 

operational at hub h concurrently. By introducing auxiliary binary 
variables with corresponding constraints, 

{
κr1 ,r2 = zr1zr2

⃒
⃒κr1 ,r2 ⩽zr1 ,κr1 ,r2 ⩽ 

zr2 ,κr1 ,r2 ⩽zr1 + zr2 − 1,∀r1 ∕= r2
}
, these nonlinear expressions (3) can be 

replaced linearly. Lastly, constraints (4) define the domains of variables. 

3. Branch-and-price algorithm 

Due to the enormous amount of the set R, it is computationally 
impractical to enumerate all feasible trips using a brute-force approach 
exhaustively. The Branch-and-Price (B&P) algorithm is a comprehensive 
framework that incorporates the Column Generation (CG) and the 
Branch-and-Bound (B&B) algorithms. It is particularly effective in 

solving VRPs that involve complicated delivery restrictions and strict 
time limitations. Additionally, the framework offers the potential to 
integrate advanced heuristics, labelling algorithms, and diverse speedup 
techniques to enhance both the computational efficiency and the quality 
of solutions. 

The CG method in the B&P framework solves a restricted master 
problem (RMP) of the linear relaxation problem (LRP) for a subset 
Ŕ ⊆ R. The subset Ŕ  is initially created by assigning tasks to a unique 
vehicle. The outputs obtained from the RMP serve as a guide for solving 
future pricing subproblems (SPv), where v represents different sub-
problems. The subproblems aim to identify and include columns that 
have negative reduced costs in the subset Ŕ . The RMP is re-optimised 
after the enrichment of Ŕ . This iterative process continues until no 
more columns with negative reduced costs can be found. Achieving an 
optimum and integral solution to the LRP updates the upper bound and 
the criteria for terminating the procedure. On the other hand, a frac-
tional solution will result in a branching process, which will update the 
lower bound and go on to the next node for more exploration. The 
framework of our B&P algorithm is shown in Fig. 3. 

3.1. The pricing problem 

The pricing problem aims to identify trips with negative reduced 
costs. Let λi,∀i ∈ N represent the dual variables corresponding to con-
straints (2). The reduced cost cr of a trip r ∈ R is then defined as follows: 

cr = pr −
∑

i∈N
ariλi (5)  

3.1.1. Formulation 
We define the following decision variables (represented by bold 

letters) for the pricing problem:  

• ui: a binary variable that is 1 if the trip r completes transport task 
i ∈ N, 0 otherwise; thus, for trip r,ari = ui.  

• xij: a binary variable that is 1 if the trip paths arc (i, j) ∈ A, 
0 otherwise;  

• ym: a binary variable that is 1 if the trip uses type m ∈ M of vehicle, 
0 otherwise;  

• Λ: a binary variable that is 1 if the cost discount for round trip can 
apply, 0 otherwise;  

• Td
i ,T

l
i: continuous variables representing the arrival time and leave 

time of a vehicle at LH hi, respectively;  
• qd

i ,ql
i: continuous variables representing the weight of goods on the 

vehicle when it arrives or departs LH hi, respectively. 

In our approach to managing the diverse feasible trip configurations 
within the problem, ranging from simple paths with distinct origin-
–destination pairs to intricate cycles including backhauls, we introduce a 
strategic adaptation in the graph G. This involves incorporating a 
dummy node, represented as |N| + 1. This node is crucial in turning 
open-circuit paths into closed cycles by establishing connections with all 
other nodes at no cost and for no duration. This adjustment in the graph 
structure significantly streamlines the model formulation. 

Following this modification in the graph G, we proceed to develop 
the Mixed-Integer Programming (MIP) model for the pricing problem. 
This model, denoted as SP0, is formulated to efficiently address the 
transformed problem structure, accommodating the integration of the 
dummy node and the resultant changes in trip configurations. 

min pr −
∑

i∈N
λiui (6)  

pr = (1 − γΛ)
∑

m∈M
cmym

∑

(i,j)∈A

(

xijdi,j

)

(7) 
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Λ⩽
∑

i∈Nd

ui, Λ⩽
∑

i∈Np

ui (8) 

The objective function aims to minimize the reduced cost of a trip, as 
detailed in Expression (6). This minimization is crucial for identifying 
the most cost-effective trip configurations under constraints. To 
compute the operational cost of a trip, we employ the constraint Eq. (7). 
This equation accounts for complex cost factors, including those repre-
sented by cubic terms Λxy. The non-linearity of these terms is managed 
through auxiliary variables, allowing for linearization in the context of 
our model. Constraints (8) are designed to manage the application of 
cost discounts. The variable Λ within these constraints is controlled to 
ensure that discounts are applied appropriately and consistent with the 
model’s logic. 

In addition to these primary constraints, the model includes several 
other constraints, categorized into distinct groups. These groups cover 
various aspects of the routing problem and are crucial in shaping the 
feasible solution space of the algorithm. They ensure that the solutions 
generated not only minimize cost but also adhere to urban express 
delivery’s practical and operational requirements.  

• Routing constraints 

∑

(i,j)∈A

xij =
∑

(i,j)∈A

xji, ∀j ∈ N (9)  

∑

(i,j)∈A

xij = uj, ∀j ∈ N (10)  

∑

i∈Nd∪{|N|+1 }

x0,i = 1,
∑

i∈Np∪{|N|+1 }

xi,0 = 1 (11)  

∑

i∈Nd

x|N|+1,i +
∑

i∈Np

xi,|N|+1 = 0 (12)  

∑

i∈Nd
j∈Np

xij⩽1,
∑

i∈Np
j∈Nd

xij = 0 (13)  

∑

i∈Nd

hixi,|N|+1 −
∑

i∈Np

hix|N|+1,i⩽M
(
x0,|N|+1 + x|N|+1,0

)
(14)  

∑

i∈Nd

hixi,|N|+1 −
∑

i∈Np

hix|N|+1,i⩾ − M
(
x0,|N|+1 + x|N|+1,0

)
(15)  

Constraint (9) is designed to enforce flow conservation at each 
node. Following this, Constraint (10) explicitly mandates that each 

Fig. 3. The flowchart of the B&P algorithm.  
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task can be executed at most once. Constraints (11) define the 
allowable subsequent and preceding nodes for GH, specifying that 
the subsequent node must be a delivery task and the preceding node 
a pickup task. Constraint (12) forbids the dummy node from coming 
directly after a delivery task or before a pickup task to improve the 
task sequencing. Constraints (13) limit connections between delivery 
and pickup tasks and prioritize delivery tasks by restricting certain 
linkages. Lastly, constraints (14)–(15) ensure that if neither adjacent 
node to the dummy node is GH, both must be the same LH to adhere 
to cost discount conditions. Here, M , which stands for a sufficiently 
large number, is used to make sure that these conditional constraints 
are followed, which is known as the “big-M”.  

• Loading constraints 

q+1a
|N| = 0, q+1l

|N| = 0 (16)  

qa
0⩽
∑

m∈M
Qmym, ql

0⩽
∑

m∈M
Qmym (17)  

qa
0 =

∑

i∈Np

wiui, ql
0 =

∑

i∈Nd

wiui (18)  

qa
j ⩾qa

i +wi − M
(
1 − xij

)
, ∀

(
i, j
)
∈ A, i ∕= 0 (19)  

ql
j⩽q

l
i − wj +M

(
1 − xi,j

)
, ∀

(
i, j
)
∈ A, j ∕= 0 (20)  

Constraints (16) stipulate that the vehicle’s cargo weight must be 
zero at the dummy node upon arrival and departure. Constraints 
(17)–(18) set upper bounds on the total weight of goods handled 
during a trip, distinguishing between pickup and delivery tasks. 
Constraints (19)–(20) maintain the continuity of the weight of goods 
on the vehicle throughout the trip.  

• Timing constraints 

Tl
0⩾uiei, Td

i ⩽uili +M
(
1 − ui

)
, ∀i ∈ Nd (21)  

Tl
i⩾uiei, Td

0⩽uili +M
(
1 − ui

)
, ∀i ∈ Np (22)  

Td
i ⩾Tl

0, ∀i ∈ Nd (23)  

Tl
i + tij − Td

j − M
(
1 − xij

)
≤ 0, Tl

i + tij − Td
j +M

(
1 − xij

)
⩾0, ∀

(
i, j
)

∈ A, hi ∕= hj

(24)  

Td
i − T

d
j − M

(
1 − xij

)
≤ 0, Td

i − T
d
j +M

(
1 − xij

)
⩾0, ∀

(
i, j
)
∈ A, hi

= hj

(25)  

Tl
i⩾T

d
i +

∑

m∈M
ymt1

m, Tl
i⩽T

d
i +

∑

m∈M
ymt1

m + Γ, ∀i ∈ N (26)  

Constraints (21)–(22) impose temporal constraints on delivery and 
pickup tasks to ensure compliance with predefined time windows. 
Constraint (21) stipulates that the departure time from GH must not 
be earlier than the latest ready time for any delivery task and 

guarantees the completion of each delivery task within its deadline. 
Eq. (22) requires that the departure time for each pickup task be later 
than its designated ready time and ensures that all pickup tasks are 
delivered within their minimum deadline requirements. Following 
this, Constraint (23) mandates that delivery tasks are undertaken 
only after a vehicle has visited GH. Constraints (24) ensure the 
temporal continuity of vehicle hub visits, facilitating orderly opera-
tions. Constraints (25) define the temporal interdependencies of 
adjacent tasks at the same hub. Finally, Constraints (26)–(27) set an 
Upper Limit of Waiting Time (ULWT) Γ > 0 at both LH and GH, 
further delineating the model’s temporal limitation.  

• Limiting constraints 
∑

m∈M
ym = 1 (28)  

∑

m∈M
mym⩽Viui +M (1 − ui), i ∈ N (29)  

∑

m∈M
Qmym⩽Ltl1 ,t

l
2

ij xij +M ⋅

(

1 − xij

)

+M ⋅max
{(

tl
1

− Td
j

)
, 0
}
+M ⋅max

{(
Tl

i − tl
2
)
, 0
}
, ∀

(

i, j

)

∈ A (30)  

Constraints (28)–(29) govern the selection of vehicle type and 
ensure compliance with maximum vehicle size limitations at LHs. 
Subsequently, Constraint (30) addresses road restrictions by 
employing the max{⋅} function, which can be linearized through the 
introduction of intermediate variables. 

Although the model, as defined by Eqs. (6)–(30), can be linearized 
into a Mixed-Integer Linear Programming (MILP) formulation suitable 
for solution with standard solvers such as CPLEX and Gurobi, it faces two 
significant computational challenges. Firstly, the linearization process 
increases the variable space, making the model more complex and 
difficult to solve. Secondly, the extensive use of “big-M” constraints 
within the model poses known computational difficulties in MILP con-
texts, particularly for medium- to large-scale instances. These con-
straints can significantly reduce the efficiency of MILP solvers, leading 
to prohibitive computational costs for larger problems. To address these 
issues, we introduce a decomposition strategy for the pricing problem, 
aimed at reducing the model’s dimensionality and reliance on “big-M” 
constraints. This approach is designed to enhance the solvability of the 
model, particularly for larger-scale applications, by simplifying the 
computational task and making it more manageable for standard MILP 
solvers. 

3.1.2. Decomposition 
In our approach, we classify all feasible trips into four distinct cat-

egories: Pickup Trips (PT), Delivery Trips (DT), First Pickup then De-
livery Trips (FPD), and First Delivery then Pickup Trips (FDP), as 
illustrated in Fig. 4. PT and DT are characterized by their singular focus 

on either pickup or delivery tasks, respectively, representing one-way 
trips. Conversely, FPD and FDP are round trips that incorporate 
pickup and delivery tasks, with FPD starting at a LH, travelling to GH 
after pickups, followed by deliveries, and finally returning to the 

Tl
0⩾Td

0 +
∑

m∈M
ymt0

m − M

(

2 − u|N|+1 − Λ

)

, Tl
0⩽Td

0 +
∑

m∈M
ymt0

m +w+M

(

2 − u|N|+1 − Λ

)

(27)   
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original LH. FDP, on the other hand, begins at the GH, performs delivery 
tasks, followed by pickups, and returns to the GH. Notably, cost dis-
counts apply exclusively to FPD and FDP trips, predicated on the 
completion of the trip at the location of origin. When a trip involves 
pickups followed by deliveries but does not return to the departure LH, 
cost discounts are inapplicable, necessitating the decomposition of such 
trips into separate PT and DT segments. 

Building upon this classification, we delineate the feasible region of 
SP0 into four distinct, mutually exclusive, and collectively exhaustive 
regions, each corresponding to one of the trip types. This segmentation 
facilitates the formulation of four independent subproblems: SP1, SP2,

SP3, and SP4. The minimum of the optimal solutions c*
r1
, c*

r2
, c*

r3
, and c*

r4 

obtained from these subproblems, respectively, determines the optimal 

solution for SP0, denoted as (c*
r0

= min
{

c*
r1
,c*

r2
, c*

r3
, c*

r4

}
). 

For detailed constraints on these subproblems, we refer to the 
equations from SP0 to avoid repetition, as many constraints overlap 
between SP0 and the subproblems. The primary distinctions among 
these subproblems lie in the variation of nodes and edges within the 
graph G. Specifically, SP1 focuses on pickup tasks, with the graph G 
including nodes N =

{
0} ∪ Np and task set N = Np. Conversely, SP2 is 

dedicated to delivery tasks, featuring nodes N = {0} ∪ Nd and task sets 
N = Nd in the graph G. For SP3 and SP4, both the nodes N and the task set 
N in graph G align with those defined in SP0.  

• SP1 subject to: 

pr =
∑

m∈M
cmym

∑

(i,j)∈A

(

xijdi,j

)

(31)  

x0,|N|+1 = 1 (32)  

(9)–(10), (17)–(19), (22), (24), (28)–(30) 
In SP1, Constraints (31) is utilized to simplify the trip cost in 

comparison to Eq. (7) from SP0, considering that cost discounts do 
not apply to Pickup Trips (PT). Constraint (32) delineates the posi-
tion of the dummy node, effectively replacing the routing constraints 
(11)–(15) in SP0. Additionally, only constraints relevant to pickup 
tasks are considered for loading and timing constraints.  

• SP2 subject to: 

pr =
∑

m∈M
cmym

∑

(i,j)∈A

(

xijdi,j

)

(33)  

x|N|+1,0 = 1 (34)  

(9)–(10), (17)–(18), (20), (21), (23), (28)–(30) 
Similarly, SP2 closely mirrors SP1 in structure. Constraint (34) 

within the routing constraints sets the position of the dummy node, 
and the remaining constraints are specifically tailored for delivery 

tasks.  
• SP3 subject to: 

pr =

(

1 − γ

)
∑

m∈M
cmym

∑

(i,j)∈A

(

xijdi,j

)

(35)  

∑

i∈Nd

xi,|N+1| = 1,
∑

i∈Np

x|N+1|,i = 1 (36)  

∑

i∈Nd ,j∈Np

xi,j = 0 (37)  

Tl
0⩾Td

0 +
∑

m∈M
ymt0

m, Tl
0⩽Td

0 +
∑

m∈M
ymt0

m +w (38)  

(9)–(11), (14)–(26), (28)–(30). 
For SP3, Constraints (35) calculates the cost with a discount 

mechanism. Routing constraints are defined by Constraints (36)– 
(37) to specify the dummy node’s position. Timing constraints, 
particularly the waiting time at GH, are managed by Constraints 
(38), thus eliminating the “big-M” coefficients found in Constraints 
(27) of SP0. All other constraints align with those in SP0.  

• SP4 subject to: 

pr =

(

1 − γ

)
∑

m∈M
cmym

∑

(i,j)∈A

(

xijdi,j

)

(39)  

∑

i∈N
xi,|N+1| = 0,

∑

i∈Nd ,j∈Np

xi,j = 1 (40)  

(9)–(11), (16)–(26), (28)–(30) 
SP4 adopts a cost calculation approach similar to SP3. However, 

since FDP trips do not require a dummy node, Constraints(40) 
manages this, negating the need for additional dummy node-related 
constraints. Furthermore, the waiting time constraints at GH, rep-
resented by Constraints (27), are no longer necessary. The remaining 
constraints are consistent with SP0. 

Despite using the same methodology as SP0 for solving the sub-
problems, namely employing off-the-shelf MIP solvers, this decomposi-
tion strategy presents three key advantages. First, it significantly reduces 
the number of “big-M” constraints and removes the cubic term Λxy in 
the cost calculations, leading to a more compact model. Second, it allows 
for incorporating type-specific effective inequalities to expedite the so-
lution process. Third, it lets the subproblems control the generation of 
trip types, which lowers the risk of degeneracy in column generation 
algorithms (see Section 4.2). This strategy effectively tackles the 
computational complexities inherent in SP0, as demonstrated by the 
efficiency analysis in Section 4.2. 

Fig. 4. Illustration of the four types of trips.  
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3.2. Branching strategy 

In the traversal of the B&B tree, we adopt a best-first strategy, 
focusing on nodes with the smallest lower bound inherited from their 
parent nodes. This approach aligns with classical VRP methodologies, 
where branching on arcs is a common practice (Desaulniers et al., 2006; 
Muter et al., 2014). This strategy simplifies modifications in the RMP by 
adjusting arc weights in the graph governing the pricing problem rather 
than introducing new constraints. To illustrate, consider x̂ij =
∑

r∈Rxr
ij ẑr, representing the aggregate flow between nodes i and j. Here, 

xr
ij indicates whether trip r traverses arc (i, j). The arc selected for 

branching, (i*, j*), is the one where x̂ij is closest to 0.5. Two child nodes 

are then created by adding the constraints 
∑

r∈Rxr
ijzr⩽

⌊
x̂ij

⌋
and 

∑
r∈Rxr

ijzr⩾
⌈
x̂ij

⌉
. 

3.3. Acceleration techniques 

In the CG process, the exact solution is only required at the last 
iteration to verify optimality, while preceding iterations focused on 
generating columns with negative reduced costs. By taking advantage of 
this, the subproblems SP4, SP3, SP2, and SP1 are dealt with one after 
another, stopping the current iteration when a solution with a negative 
reduced cost is found. The exclusive applicability of FPD and FDP trips 
for cost discounts informs the sequential resolution of these sub-
problems, beginning with SP4 and SP3, followed by SP2 and SP1. This 
priority enables the early iterations to focus on these low-cost trip types, 
incorporating PT and DT in later iterations to expand the diversity of Ŕ . 
Additionally, SP4 has priority above SP3 due to the round-trip require-
ment for FPD trips in SP3, which requires that the last delivery task 
location be the same as the initial pickup task node, making it signifi-
cantly more challenging to fulfill. The findings in Section 4.1, which 
show a noticeably lower probability of FPD being feasible than FDP, 
support this. On the other hand, the order in which SP2 and SP1 are 
solved is not important, as they have similar chances of being obtained 
successfully. 

Moreover, introducing multiple columns per CG iteration accelerates 
dual variable updates and RMP expansion. We obtain multiple feasible 
solutions for each subproblem using the PoolSolutions parameter. As 
each solution includes trip paths xij and vehicle types ym, we add 
constraint (41) to the subproblems to make sure that each trip path is 
linked to the best vehicle type based on cost per unit and weight 
capacity. 

∑

m∈M,m⩾1
Qm− 1ym < max

{

qa
0, q

l
0

}

(41) 

We employ a dual stabilization technique described in (Pessoa et al., 
2018) to address convergence issues in later CG iterations. The pricing 

problem uses a smoothed dual vector λ = αλ
̆
+ (1 − α

)
λ, where λ is the 

current dual solution, λ
̆ 

the stable center, and α the smoothing factor. 
Columns generated under this technique fall into three scenarios: 1) 
Both λ and λ produce columns with negative reduced costs; 2) only 
λ-based columns have negative reduced costs, so α needs to go down; 
and 3) no λ-based columns have negative reduced costs, so α goes down 
and λ is updated. 

4. Numerical experiments 

This section presents numerical experiments conducted using real- 
world scenarios to evaluate the effectiveness of our proposed solution 
and derive managerial insights. Initially, we detail the case data 
employed for experimental assessment. We then compare the 

performance of the enhanced Branch-and-Price algorithm with sub-
problem decomposition (denoted as DBP) and a column generation 
heuristic (denoted as CG) against a traditional non-decomposed B&P 
algorithm (denoted as NBP). Lastly, an exhaustive analysis is conducted 
to examine the impact of parameter variations. These computational 
experiments are performed on a 64-bit Apple Silicon M1 Pro processor 
with 16 GB RAM, running MacOS 13. The algorithms are implemented 
in Python, utilizing Gurobi 10.0 as the optimization solver. 

4.1. Case data and solution schema 

The case data derives from SF Express’s operational zone, encom-
passing one GH and 15 LHs. The average and standard deviation for 
inter-hub travel distance are 72.7km and 37.1km, respectively, while 
travel time metrics are 80.2minutes and 33.8minutes. Vehicle attri-
butes, including maximum weight capacity Qm, per-unit travel cost cm, 
and loading/unloading durations t0

m and t1m, are detailed in Table 1. 
Daily operations consist of 60 pickup and delivery tasks between 

7:00 a.m. and 10:10 p.m. Each LH manages one to three transport shifts 
to handle these tasks. We conduct experiments with 10 test instances of 
specific transport task parameters derived from 10 non-consecutive 
days. According to the statistical result, the average weight of cargo 
per task is 768kg, with a standard deviation of 305kg. Fig. 5 displays an 
optimal solution schema for one of the typical operational days, cate-
gorized by trip type. Predominantly, the solution comprises FDP trips, 
supplemented by FPD trips, with other trip types occurring less 
frequently. This distribution aligns with the initial goal of implementing 
cost discounts. 

4.2. Algorithm performance 

This section presents the outcomes of numerical experiments con-
ducted on 10 instances to evaluate the effectiveness of the proposed 
Branch-and-Price (B&P) algorithm and a column generation heuristic 
(CG). Table 2 outlines the results, where the column “Obj.” displays the 
optimal objective values achieved by the B&P algorithm, irrespective of 
the NBP or DBP variant. The “Time” columns indicate the computational 
time in seconds required for solving each instance using NBP, DBP, or 
CG. “UB,” “LB,” and “Gap” represent the best upper and lower bounds 
and the percentage gap between them upon CG termination. The column 
“Δ” measures the deviation of the CG algorithm’s best upper bound from 
the optimal objective value, offering insight into the CG algorithm’s 
quality. 

Table 2 shows a comparison between NBP and DBP. Both algorithms 
can find the best solution, but DBP is faster than NBP, finding the best 
solution in most cases in just 5 min and making computations 20 times 
more efficient. The CG algorithm demonstrates a marginally faster 
average computational time than DBP, clocking in just over 2 min. While 
CG does not assure optimality, the “Gap” column shows high-quality 
solutions, with a maximum gap of only 0.61%. Notably, three in-
stances recorded a gap of 0.00%, indicating highly effective solutions. 
The “Δ” column reveals that CG, despite not always confirming opti-
mality (Gap > 0), practically achieved optimal solutions in most cases 
(Δ = 0), except for instances 2 and 9, where the deviation was a mere 
0.01% and 0.04%, respectively. The CG algorithm probably works better 
because of the decomposition strategy used in the pricing subproblem. 
This strategy speeds up computations and gives the Restricted Master 

Table 1 
Vehicle types and cost.  

Vehicle Type Qm (kg) cm (CNY/(km ⋅kg)) t0m (min) t1m (min) 

Type A 1000 5 10 15 
Type B 1500 6 10 15 
Type C 2000 7 10 15 
Type D 3000 8 15 20  

J. Zhao et al.                                                                                                                                                                                                                                     



Cleaner Logistics and Supply Chain 11 (2024) 100157

9

Problem (RMP) a wider range of trip types. 

4.3. Sensitivity analysis and discussion of ULWT 

In our model, the concept of ULWT is incorporated as a critical fac-
tor. ULWT is a trade-off between the optimality and practicability of the 
resulting transportation scheme. Without imposing any constraints on 
ULWT, we can achieve a theoretically optimal solution (as in Section 
4.2). However, this solution may be overly idealistic and impractical. 
For example, the driver may need to wait at an LH for more than 6 h to 
arrange a round trip and save on transportation costs. As a result, 

transportation resources will be wasted, potential expenses for drivers 
will rise, and the entail scheme may fail. This section investigates the 
impact of ULWT on transportation schemes, specifically the operational 
cost, driver waiting time, trip type distribution, and frequency of used 
vehicle types. 

4.3.1. Operational cost 
First, the impact of ULWT on the transportation scheme’s operational 

costs is evaluated. Based on practical operational experience, we present 
our results graphically in Fig. 6 by setting the ULWT within 0 to 120 min. 
The x-axis represents the ULWT, and the left y-axis represents the 

Fig. 5. An optimal solution schema.  

Table 2 
Performance comparison of NBP, DBP and CG on different instances.  

Instance NBP DBP CG  

Obj. Time (sec.) Time (sec.) UB LB Time (sec.) Gap (%) Δ (%) 

1 9699.0 1363 49 9699.0 9699.0 49 0.00 0.00 
2 9367.7 1723 102 9368.9 9342.9 72 0.28 0.01 
3 9385.9 1632 228 9385.9 9369.1 163 0.18 0.00 
4 9292.2 7163 289 9292.2 9262.3 175 0.32 0.00 
5 9736.4 4877 152 9736.4 9736.4 151 0.00 0.00 
6 10126.2 2666 236 10126.2 10064.7 134 0.61 0.00 
7 9357.1 8641 597 9357.1 9330.4 404 0.29 0.00 
8 9895.8 1618 141 9895.8 9893.9 95 0.02 0.00 
9 9546.6 1539 93 9550.7 9538.1 55 0.13 0.04 
10 9434.8 6375 186 9434.8 9434.8 186 0.00 0.00 

Average  3760 207   148   

Gap = (UB − LB)/LB× 100 %. 
Δ = (UB − Obj.)/Obj.× 100 %.  
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optimal operational costs. 
Fig. 6 depicts the relationship between the ULWT and the decreasing 

optimal operational cost across ten instances. According to the findings, 
a ULWT of less than 20 min results in negligible cost savings. However, 
as ULWT increases to 40 min, there is a significant reduction in optimal 
costs, then a nearly linear decline. The relaxation of waiting time re-
strictions, which enables the grouping of tasks into more economical 
trips, has caused this trend. Enlarging the ULWT within feasible limits, 
under vehicle availability and driver shift patterns, is advantageous in 
producing lower-cost transportation schemes. While the study focused 
on the ULWT value for a maximum of 120 min, based on the operational 
impracticality of requiring drivers to endure waiting periods of more 
than two hours, it is reasonable to infer that beyond a certain threshold, 

additional increases in ULWT will not result in significant cost savings. 
This trend results from practical constraints, such as limitations in 
vehicle capacity and the time required to complete tasks. 

4.3.2. Waiting time 
The analysis that followed quantified waiting times at each hub 

under optimal schemes. To ensure comparability across different ULWT 
values and standardize measurements, the metric of choice is relative 
waiting time, defined as the percentage of planned waiting time to 
ULWT. The maximum waiting time for one trip of any LH cannot exceed 
1.0. As depicted in Fig. 7, the heatmaps illustrate waiting time distri-
butions across different hubs. LHs primarily encounter significant 
waiting times, while the GH has a minimal waiting period. The 

Fig. 6. Impact of ULWT on the optimal operation cost.  

Fig. 7. Waiting-time distributions.  
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difference arises from GH’s large number of tasks, which allows it to 
avoid vehicle waiting through careful planning. In contrast, the smaller 
task density at LHs requires more waiting to meet strict task timelines. 
The waiting characteristics differ significantly among LHs. For example, 
LH8 shows the most frequent waiting occurrence, with 140 times 
observed in ten instances. While LH1’s waiting frequency is not un-
usually high, its waiting time usually reaches the ULWT. 

In practice, the environmental and locational constraints of LHs, 
such as a lack of parking space, necessitate a careful determination of the 
optimal ULWT for each LH while accounting for these factors. Further-
more, conducting a thorough analysis of hubs with higher waiting fre-
quencies and longer relative waiting times may yield beneficial findings. 
Changing or relaxing the time constraints for these transportation hubs 
may result in significant improvements in their operations. 

4.3.3. Trip types 
The optimal schemes are then used to statistically analyze the fre-

quency of the selection of four trip types and the distribution of the 
number of transpiration tasks. Fig. 8 shows that as ULWT increases, the 
total number of trips in the optimal scheme decreases. This reduction is 
linked to increased task aggregation per trip under a bigger ULWT, 
which leads to an increase in FPD and FDP trips, thereby improving cost 
efficiency. When the ULWT is less than 20 min, the selection frequencies 
of PT and DT trips remain relatively consistent, with each accounting for 
roughly half of the total number of trips. With the rise in ULWT, the 
numbers of both PT and DT decrease, reducing their share of the total 
trip number. In contrast, as the ULWT gets bigger, the number and share 
of FDP trips grow. Notably, when the ULWT reaches 20 min, the share of 
FDP trips exceeds 50% of the total. However, at a ULWT of 40 min, the 
number of FPD trips increases from 0 to 7, then gradually decreases. This 
pattern may indicate an ULWT threshold above which an increase re-
sults in more FDP trips, replacing a part of the FPD trips. 

Fig. 9 depicts the total number of tasks performed across four 
different types of trips and the average number of tasks done per trip. As 
shown in Fig. 8, the relationship between the total number of tasks and 
the ULWT is consistent with changes in the number of each trip type. 
This relationship is obvious, as having more of a specific trip type 
naturally leads to a higher workload. It is worth noting that, regardless 

of the ULWT values, the average number of tasks per trip remains 
relatively stable for all four trip types. The fluctuations are minimal 
except when transitioning from the absence to the presence of FPD and 
FDP trips when ULWT is less than 20 min. These findings suggest that 
ULWT is not the most important factor in determining task aggregation 
in a single trip. Instead, the location of LHs and the time constraints of 
tasks may be deciding factors. Furthermore, the average number of tasks 
per PT trip is 1.5, greater than 1.0 for DT trips, which implies stricter 
time constraints for delivery tasks in the current schedule. The corre-
lation between the typical number of tasks completed per trip for FPD 
and FDP further supports this conclusion. The strict timing requirements 
for the delivery tasks may limit the preceding pick-up tasks during FPD 
trips. In contrast, the earlier delivery tasks do not affect the pick-up tasks 
in FDP trips, resulting in more task aggregation. 

4.3.4. Vehicle types 
The utilization frequencies of four vehicle types in optimal schemes 

with different ULWT settings are depicted in Fig. 10. The most common 
vehicles are lightweight vehicles (Types A and B). On average, Type A 
vehicles are utilized more than 30 times when the ULWT is less than 20 
min. As the ULWT increases, the frequency decreases. Conversely, the 
frequencies of vehicle usage for Types B, C, and D exhibit minimal 
fluctuations in response to changes in ULWT. On average, medium-sized 
vehicles (Type B) are utilized 14 times, whereas larger vehicles (Types C 
and D) have lower usage rates, with Type C being utilized 2 to 3 times 
and Type D being utilized less than once. Based on the trip number 
trends depicted in Fig. 8, it is not difficult to infer that larger ULWT 
settings merge more Type A trips. Particularly, Type A vehicles can still 
transport the majority of merged trips, eliminating the need for extra- 
medium and large vehicles. The finding implies that, when the park-
ing conditions of LHs permit, more efficient and practical transportation 
schemes can be achieved by simply modifying ULWT settings without 
upgrading the current hardware. However, if a company aims to take 
full advantage of the economic benefits of scale transportation with 
larger vehicles (Types C and D), simply modifying the ULWT settings 
and considering road and regional restrictions may be insufficient. An 
elaborated task schedule may also be necessary, considering hub loca-
tions, cargo weight distribution, and time limitations. These findings are 

Fig. 8. Trip type distribution for the best schemes under various ULWTs.  
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helpful for companies to develop strategies for fleet composition. 

4.4. Practical insights 

Using real-world data from SF Express, our numerical experiments 
have revealed several practical insights for optimizing urban express 
delivery networks. 

Backhaul discounts significantly reduce operating costs in urban 
express delivery network design. Companies can leverage these dis-
counts by strategically planning delivery and pickup routes to maximize 

round-trip usage. Our customized branch-and-price algorithm out-
performs conventional solvers because it effectively manages intricate 
constraints. The trip-type-based subproblem decomposition simplifies 
the calculation of backhaul discounts, which is crucial for improving 
solution efficiency. 

The analysis of the ULWT has shown that increasing its value can 
lead to significant cost savings by enabling the aggregation of more trips. 
However, there is a crucial threshold at which the cost savings become 
negligible. Striking a balance between operational efficiency and prac-
tical considerations, such as the driver’s schedule, is paramount. 

Fig. 9. Distribution of the number of tasks allocated to each trip type under various ULWTs.  

Fig. 10. Vehicle type frequency.  
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Furthermore, the difference in waiting times enables each hub to 
determine the most favorable ULWT independently. Managers can make 
informed decisions on fleet investments and management by under-
standing the impact of ULWT on operational costs, trip distribution, and 
vehicle utilization. 

To summarize, our research provides valuable practical insights for 
logistics companies, enabling them to optimize their delivery networks. 
The company could achieve cost-effective and practical operations by 
implementing carefully designed models and algorithms and efficiently 
managing delivery schedules and fleets. 

5. Conclusions 

This study addresses optimising urban express delivery networks, 
modeled as an RVRP with various constraints including pickup and 
delivery services, time windows, multiple trips, a heterogeneous fleet, 
and docking capacity. Furthermore, we present a practical cost objective 
function that draws inspiration from discounts offered by 3PL providers 
for round trips. To tackle this complex RVRP, we introduce a trip-based 
formulation and propose a corresponding branch-and-price algorithm, 
an exact method rarely applied to such practical VRPs. Our approach 
decomposes the pricing subproblem by trip type, significantly 
improving the resolution efficiency. 

Numerical experiments with real-world data demonstrate the supe-
riority of our DBP algorithm over the NBP method, solving most in-
stances optimally within five minutes and improving computational 
efficiency by nearly 20 times. The simplified column generation algo-
rithm also shows its competitiveness by quickly finding optimal solu-
tions across different instances. Using the solution, we thoroughly 
analyse the effects of ULWT from multiple aspects, including operating 
cost, driver waiting time, distribution of trip types, and frequency of 
vehicle type usage. We also comprehensively discuss the operational 
management principles underlying it and acquire several valuable 
insights. 

In our model, the ULWT is a critical parameter affecting solution 
quality. Determining the optimal ULWT setting poses a challenge and 
significantly impacts the robustness of the solution. Currently, the so-
lution relies on commercial solvers. However, future enhancements 
could include effective dominance rules, label filtering, and a heuristic 
dynamic programming algorithm specifically designed for the four trip 
types in the subproblems. Future research will explore extensions of the 
urban express delivery model to encompass more real-world features 
and stochastic elements like customer demand and route-time 
uncertainties. 
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