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As the scale of urban rail transit (URT) networks expands, the study of URT resilience is essential for safe
and efficient operations. This paper presents a comprehensive review of URT resilience and highlights
potential trends and directions for future research. First, URT resilience is defined by three primary abil-
ities: absorption, resistance, and recovery, and four properties: robustness, vulnerability, rapidity, and
redundancy. Then, the metrics and assessment approaches for URT resilience were summarized. The met-
rics are divided into three categories: topology-based, characteristic-based, and performance-based, and
the assessment methods are divided into four categories: topological, simulation, optimization, and data-
driven. Comparisons of various metrics and assessment approaches revealed that the current research
trend in URT resilience is increasingly favoring the integration of traditional methods, such as conven-
tional complex network analysis and operations optimization theory, with new techniques like big data
and intelligent computing technology, to accurately assess URT resilience. Finally, five potential trends
and directions for future research were identified: analyzing resilience based on multisource data, opti-
mizing train diagram in multiple scenarios, accurate response to passenger demand through new tech-
nologies, coupling and optimizing passenger and traffic flows, and optimal line design.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an essential component of the urban public transport sys-
tem, urban rail transit (URT) has the characteristics of safety, high
efficiency, large volume, punctuality, energy savings, and environ-
mental protection. It plays a highly crucial role in alleviating traffic
congestion in big cities [1–3]. Therefore, they have developed
rapidly in recent years. As of June 30, 2023, 57 cities in the main-
land of China have opened 295 URT lines, with an operating mile-
age of 10566.55 km. These rail transit lines have a total passenger
volume of 17.59 billion people. Megacities, such as Beijing and
Shanghai, have more than 800 km of URT lines in operation, with
an average daily passenger flow of over ten million. However, with
the expansion of the network scale and increasing traffic intensity,
the URT system in operation under the condition of disturbance
will experience many delays, regional passenger flow suddenly
increases, passenger flow and train connections are inadequate,
part of the line section congestion, and a series of problems [4,5],
which will have a significant influence on the entire urban traffic
system [6–8]. Therefore, studying the resilience of URT systems
is essential, as it not only enhances the understanding of the inher-
ent operational mechanisms but also provides new research direc-
tions to improve future resilience in URT, ensuring the normal
functioning of mega-cities and preventing large-scale transport
disruptions.

To address these issues better, researchers have conducted
many studies in the field of URT resilience. The main contents
are as follows:① enhancing the ability of the URT system to absorb
disturbances; ② rapidly recovering the ability of the URT system
after its performance decreases; ③ reducing the vulnerability of
the URT system in case of disruptions; and④ improving the redun-
dancy of the URT system. Big data technology is widely used in
resilience research [9,10]. The above research work is meaningful
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for the progress of URT resilience research, but it is still difficult for
current technologies to cover all the content. For example, the opti-
mization of the train operation diagram under multiple disruption
scenarios and the optimization of passenger and vehicle flow cou-
pling need to be further promoted.

Several review papers are related to this work. A comprehensive
reviewof the resilience of various transportationmodes is presented
in Ref. [11]. A review of the vulnerability and resilience of trans-
portation systems is presented in Ref. [12]. These reviews focus on
a wide range of aspects and encompass the resilience of various
modes of transportation. There are few studies on mode-specific
resilience. A systematic review of railway resilience was conducted
in Ref. [13]. However, few relevant reviews have limited the topic to
the URT field. This review aims to establish a definition of resilience
in the URT field and provide a comprehensive and integrated sum-
mary of the current state of research and research methodologies.

This study provided a taxonomy and reviewed the metrics and
approaches for URT resilience assessment. The main contributions
of this study are as follows. First, a comprehensive definition of
URT resiliencewas established, considering the properties of robust-
ness, vulnerability, rapidity, and redundancy. Second, the resilience
metrics are divided into topological, characteristic, and system per-
formance metrics, and the evaluation approaches are classified as
topology, simulation, optimization, and data-driven. Finally, various
research methods in the field of URT resilience were summarized,
and several future research directions were highlighted.

The remainder of this paper is organized as follows. Section 2
provides definitions and four characteristics of URT resilience. Sec-
tion 3 provides a comprehensive review of resilience assessment
metrics and approaches and offers several future research direc-
tions based on the shortcomings of existing studies. A summary
and conclusions of this study are presented in Section 4.
2. How to define the URT resilience

Resilience originates from the Latin ‘‘resilire,” which means to
spring back or rebound to its original state after being compressed
or destroyed [14]. Later, the study of resilience was widely applied
in many fields, such as ecology, engineering, and economics. For
example, Holling [15] regarded the persistence of natural systems
in response to natural or anthropogenic causes as ecosystem resi-
lience. Mostert and Von Solms [16] proposed a technique for iden-
tifying and specifying computer security and resilience
requirements. Farber [17] examines the impact of national policies
and climate change on the sustainability of economic resilience.

With the extension of resilience, scholars have begun to apply
resilience-based thinking to complex ecosystems and cities. It pri-
marily addresses issues related to climate change and disaster risks
by emphasizing prevention and mitigation measures [18]. Urban
resilience refers to the ability of cities to withstand disasters, mit-
igate losses, and deploy resources wisely to recover quickly. In the
long run, cities can learn from past disasters and improve their
resilience to disasters [19].

Transportation resilience belongs to the field of engineering.
According to the research and practice of various national traffic
management departments, transportation resilience can be
defined as a transportation infrastructure that can predict and
adapt to a changing natural environment, has high reliability and
necessary redundancy, can withstand and respond to emergencies,
and can achieve rapid recovery [12].

A widely accepted definition of resilience is that the ability of a
society, economy, or environment to respond to and organize
resources promptly when harmful scenarios or disruptions occur,
allowing the system to maintain essential functions and structures
and continuously adapt, learn, and transform [20]. In summary,
8

when defining the resilience of each field, the core elements are
the resistance and recovery of the system [21,22]. At different dis-
ruption stages, the system must exhibit diverse abilities to main-
tain resilience. Therefore, these abilities are essential and should
be considered components of resilience.

2.1. Concept

URT resilience is defined as the ability of a system to react
immediately, absorb disturbances (e.g., daily variations in opera-
tions), mitigate disruption losses (e.g., natural disasters, facility
failures, or terrorist attacks), and recover quickly through reason-
able deployment of resources [23]. When the additional resources
are sufficient, they can be restored to a supernormal state.

Fig. 1 shows the elastic demand required by the URT system for
resilience. The resilient URT system is mainly manifested in three
aspects: ① The URT system has a strong absorption ability for
internal and external interference; namely, the system can main-
tain a certain level of operation under the condition of disturbance
impact. ② The URT system has a solid resistance to damage and
operational disruptions, resulting in the lowest degree of destruc-
tion. ③ The URT system has a strong recovery ability after ruin;
that is, the system can quickly recover to the primary or regular
operation state after being disrupted by an emergency or operation
disturbance or even to the supernormal operation state under the
condition of additional resources [24–26].

In the first aspect, the URT network tends to rely on the redun-
dancy of the system to absorb perturbations. For instance, trains
cannot run precisely according to the operating diagram. Thus, a
certain amount of redundancy is often set aside when the operating
diagram is drawn, which is a strategic way to ensure the resilience
of the URT system. The second aspect corresponds to situations in
which a significant disturbance or accident occurs, causing a sud-
den and significant reduction or even disruption of the URT system
performance. It is often necessary to implement emergency mea-
sures in the short term to regulate traffic and passenger flows. This
reduces the impact on passengers and ensures the resilience of the
URT system. The last aspect is resilience after a disaster; for exam-
ple, if the URT system is damaged by an earthquake, all parts of the
system must be overhauled before it can be opened to the public,
and the cost of time and resources required for this overhaul is often
an important factor in measuring the resilience of the system,
which is a tactical way to ensure the resilience of the URT system.

2.2. Resilience properties

Based on the previously proposed definition of URT resilience,
the resilience properties are summarized into four aspects: robust-
ness, vulnerability, rapidity, and redundancy [27–29]:

� Robustness: The ability of the URT system to absorb distur-
bances during operation based on its capacity, that is, the
extent to which the system can maintain operation when a
disturbance occurs.

� Vulnerability: The sensitivity of the URT system to distur-
bances is characterized by the degree of consequence or per-
formance degradation due to risk.

� Rapidity: The rapid recovery ability after a disturbance
occurs. Through reasonable allocation of resources, the URT
system can quickly recover to a particular functional level
after disruptions and even to a super level when additional
resources are sufficient.

� Redundancy: The key facilities in the URT system have spare
modules. When a disturbance occurs, and some functions of
the facilities are damaged, spare modules can be supple-
mented in time, and the entire system can still perform a cer-
tain level of function without complete paralysis.



Fig. 1. Concept of the URT resilience.
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3. How to study the URT resilience

This section is divided into two main parts: a summary of pre-
vious work and an outlook for future research. How can resilience
be studied? First, it is necessary to understand how to measure the
resilience of URT systems, focusing on both the evaluation metrics
and approaches employed. Consequently, identifying the methods
that can enhance resilience, particularly in relation to the critical
system components of passengers, trains, and networks, is essen-
tial. The general framework for studying URT resilience is shown
in Fig. 2. The symbols are listed in Table 1 for convenience in for-
mulating the problem under consideration.

3.1. What has been done

In this section, existing methods for measuring the resilience of
URT systems are summarized. Initially, the metrics proposed for
measuring URT resilience are reviewed. Subsequently, representa-
tive evaluation approaches for calculating these metrics are
discussed.

3.1.1. Resilience metrics of the URT system
The existing metrics of URT network resilience studies can be

broadly classified into three categories: topological, characteristic,
and system performance.

(1) Topological metrics, such as the degree, betweenness, and
size of the giant component, are mainly used to measure the static
structural properties and reflect the connectivity of the transporta-
tion network in the case of disruption. Topological analysis is
derived from the complex network theory, which can provide an
effective logical basis for characterizing the resilience of URT sys-
tems [30]. Meng et al. [31] constructed a Space-L model of a URT
network and quantified the impact of different failure strategies
on network resilience by calculating various topological statistical
indicators. The URT network has clear scale-free features. Zhang
et al. [32] proposed a general framework for assessing the resili-
9

ence of large and complex URT networks and proposed a method
for the optimal recovery sequence. The optimal repair time for dis-
rupted stations in the Shanghai URT system was calculated quan-
titatively. The proposed resilience assessment metric is expressed
in Eq. (1), where PðtÞ represents the system performance at time
t. Table 2 [31�34] lists common network topology metrics and
their definitions.

R ¼
R th
t0
½PðtÞ�dt

ðth � t0ÞP0
ð1Þ

Although topological metrics can represent the size and change
in the transportation network under disruption to a certain extent,
they have certain one-sidedness and limitations. For example, it
ignores the actual supply capacity affected by transportation
demand, such as passenger flow and travel time [35]. Therefore,
in follow-up research, topology is often used as the fundamental
element of the network, and the diversity and richness of the eval-
uation indicators are further improved.

(2) Characteristic metrics focus on measuring the specific ability
of resilience representation. Each of these attributes corresponds to
a measure of resilience over time, such as robustness, rapidity, or
redundancy. For example, Derrible and Kennedy [36] defined
robustness as the ability to provide alternative routes in the event
of failure. After an in-depth study of 33 metro networks, it was
found that creating new transfer stations at the periphery of the
URT network core helped cluster the network and further improve
its resilience. Zhang et al. [37] proposed a double-weighted vulner-
ability model that considered path distance and passenger flow.
The proposed resilience metric is represented by Eq. (2).

C ¼ 1
nðn� 1Þ

X

i2V

sij
dij

; i–j ð2Þ

This is a modification of the traditional network efficiency
formulation, where C is the network connectivity. They found
that there were significant differences in the changes in network



Fig. 2. A general framework for studying URT resilience.

Table 1
Summary of symbols.

Symbols Description

V Set of all stations
Kij Set of effective travel paths from stations i to j
X Set of all origin–destination (OD) pairs
W Set of all trains
R Network resilience
P System performance
P0 Initial performance in the presence of no disruption
t0 Start time point of the disruption
th End time point of the disruption
C Network connectivity
n Number of rail stations
dij Shortest path length from stations i to j
sij Normalized connection strength of stations i to j
qi Passenger flow for station i
q̂ Sum of the passenger flow of all stations
pi Performance of station i
v ij Total number of passenger trips from stations i to j
wij Travel importance from stations i to j

pkij Probability of path k being selected from stations i to j

tkij Tavel time on path k from stations i to j

qij Minimum generalized travel time from stations i to j
e Coupling coefficient
L Relative size of the largest component
E Normal operational efficiency

E
� Network operational efficiency when there are failed stations

qxi Passenger flow with OD pair x queueing at station i

lxv Passenger flow with OD pair x on-board in train v

Table 2
Topology metrics for URT resilience.

Metric Definition Ref.

Average node degree Average value of degrees of all nodes in
the network

[32]

Characteristic path length Average value of the shortest path
length of all node pairs

[33]

Betweenness centrality The ratio of the shortest path through a
node to all shortest paths

[31]

Size of giant component Subnetworks with the maximum
number of nodes

[34]

Network efficiency Average of the inverse of the shortest
paths length between all network
nodes

[32]
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resilience for different failure sizes and failure modes. Moreover
stations that are most critical for maintaining network accessibility
do not necessarily coincide with those having the highest passen-
ger throughput or the greatest structural connectivity [38]. In eval-
uating the network recovery ability, Li et al. [39] combined the
parallel scheduling algorithm and user equilibrium algorithm to
10
design a two-layer optimization model. The resilience of the URT
system is measured from both the recovery result and the recovery
process, which can be represented in Eq. (3).

P ¼
X

i2V

qi

q̂
pi ð3Þ

In addition, it is common to improve the resilience of URT sys-
tems to help damaged networks recover their basic operation via
integration with bus services [40–42]. Table 3 [36,37,39�47] sum-
marizes the commonly used feature-based URT resilience assess-
ment metrics.

(3) The system performance metrics, such as delay time, pas-
senger flow loss, and travel costs, mainly respond to changes in
URT performance under a disruption scenario. From a supply per-
spective, studies based on performance metrics have focused on
train delays and the economic costs of the relevant departments.
Zhang and Lo [48] established a mathematical model to minimize
the cost of initiating substitute bus services based on the probabil-
ity distribution of the metro disruption duration. Li et al. [49]



Table 3
Characteristic metrics for URT resilience.

Metric Simple connotation Refs.

Robustness Ability to absorb disturbance during the
disturbance

[36,43]

Rapidity Speed and ability to recover after the disruption [39–42]
Redundancy Ability to provide alternative resources in case of

the disruption
[44,45]

Vulnerability The extent of performance degradation after the
disruption

[37,46]

Adaptability Ability to self-learn and adjust to the disruption [47]
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simulated the passenger flow congestion propagation process in a
train delay scenario and proposed trip betweenness centrality
(TBC) to measure network resilience. In a comprehensive assess-
ment of resilience, the authors incorporated the TBC in conjunction
with delay time and other factors.

Based on the disaster-spreading theory, Huang et al. [50]
explored the relationship between the self-recovery capability
and the number of final failed stations under different accident
scenarios. More studies focus on the demand side and explore
the resilience metrics of passenger-oriented travel services. Among
them, passenger flow loss over time [51] and the travel cost of pas-
senger delay [52] after a disruption are the most common resili-
ence evaluation metrics.

Chen et al. [53] proposed a system resilience metric that can
reflect passengers’ route choice behavior and travel time, which
can be represented by Eq. (4).

R ¼ 1
nðn� 1Þ

X

i2V

X

j2V

v ijwijP
k2Kij

pk
ijt

k
ij

; i–j ð4Þ

This metric is used to depict the performance curve of the URT
system during attack and repair. It is referred to as the resilience
triangle to measure the cumulative performance loss. The resili-
ence triangle was first proposed by Bruneau et al. [54], as shown
in Fig. 1, where the system performance decreases to a minimum
when a disruption occurs and is gradually restored under certain
conditions. It can effectively describe the comprehensive ability
of infrastructure networks to deal with disaster events, and this
theory has also been used to measure the passenger flow recovery
level after metro disruptions [55]. Cong et al. [56] identified pas-
sengers affected by passenger tap-in time in unplanned URT dis-
ruptions and evaluated different rescue measures based on
passenger delay time. Additionally, route accessibility and diver-
sity of options are essential metrics of URT network resilience dur-
ing the epidemic [57,58]. Table 4 [48�53,55�58] lists some
common system performance metrics from the literature.

Compared to topological and characteristic metrics, system per-
formance metrics are more closely matched with the resilience
connotation; thus, they are also widely adopted. However, in an
actual application process, reasonably quantifying the performance
variation is the key to ensuring scientific results. Nagurney and
Qiang [59] separately developed generalized cost indices that
incorporated multiple factors to assess the impact of disturbances
on the robustness of transportation systems under both user-
Table 4
System performance metrics for URT resilience.

Category Metric Refs.

Supply side Economic costs [48]
Train delays [49,50]

Demand side Generalized travel costs [52,53]
Route accessibility [57,58]
Affected passenger flow [51,55,56]
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optimal and system-optimal conditions. Zimmerman et al. [60]
evaluated the resilience of urban transportation networks under
weather conditions by considering various practical factors. How-
ever, in practice, it is often necessary to assess the changes in resi-
lience under different extreme weather or disaster scenarios using
different evaluation indicators.

3.1.2. Measurement approaches for URT system
In this subsection, several measurement approaches for calcu-

lating resilience metrics are discussed. For this study, the evalua-
tion approaches were divided into four categories: topology,
simulation, optimization, and data-driven.

(1) Topological approach: stepping stone. The topology, which
is based on graph theory and developed from complex network
theory, is one of the first widely used approaches to assess URT
resilience. The topology construction methods for the URT network
include Space-L and Space-P. The meanings and characteristics of
different construction methods differ, as shown in Fig. 3 [31]. These
models were established based on a complex network model to
analyze URT network characteristics. This measurement approach
is mainly based on the static structure of the URT network and cal-
culates the topology metrics of the network to assess its robustness
[36,61], vulnerability [62], resilience [32], and efficiency [63]. In
some studies, it has been used to study node degree distribution
and URT network evolution [23,64,65].

However, modern views usually consider that the pure topology
approach of a static network can hardly reflect the real state of a
URT network, and its calculated resilience metrics deviate signifi-
cantly from the actual situation. Therefore, to better reflect the
URT network state and calculate the URT network resilience, many
recent studies have used a combination of topology and other mea-
surement approaches; for example, to evaluate the efficiency of the
URT network in both random failure and malicious attacks, topol-
ogy, and simulation analysis are combined to evaluate the varia-
tions in network performance [66]. A network topology-based
route diversity index and a solution algorithm were proposed to
evaluate the vulnerability of stations [67]. A modified topology vul-
nerability analysis that considers generalized travel time based on
the traditional topology approach was proposed to evaluate URT
network resilience, as shown in Eq. (5) [68].
Fig. 3. Common topology network construction methods in Ref. [31].
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R ¼ 1
nðnþ 1Þ

X

i;j2V

1
qij

; i–j ð5Þ

In addition, to describe the states within the URT system more
precisely, many studies have proposed more refined descriptions
based on topology. For example, a topological heterogeneity and
vulnerability analysis of URT networks considering transit con-
straints has been proposed to determine URT system vulnerability
[69], the simulation of different types of failure scenarios on sta-
tions or lines has been analyzed [70], an integrated coupled map
lattice has been proposed to evaluate the station state and vulner-
ability of weighted URT network [71].

(2) Simulation approach: collision of thoughts. Based on the lit-
erature review, it was found that evaluating URT network resili-
ence independently is often challenging, and attribute- or
performance-based network evaluation metrics are usually
employed. To measure the resilience of a system, a series of attacks
must be simulated. The most common attack patterns are inten-
tional and random. If extreme weather events such as floods or
hurricanes are encountered, regional damage will also occur. The
common simulation patterns are shown in Fig. 4. In general, inten-
tional and area attacks have a much worse impact on networks
than random attacks.

D’Lima and Medda [51] investigated shock diffusion using a
stochastic model for underground London. Zhu et al. [72] verified
the effectiveness of their breadth tree coefficient strategy for
enhancing URT network robustness through simulations. Huang
et al. [50] analyzed the cascading failure in the Chengdu URT net-
work using five evaluation factors and simulation methods. Cong
et al. [56] developed a multiagent simulation system to estimate
the impact of unplanned disruptions on passenger travel behavior
in URT systems.

In addition, simulations have been combined with other meth-
ods in some studies. For example, Hassannayebi et al. [73] inte-
grated simulation methods with optimization techniques, aiming
to minimize passenger waiting time as the optimization objective.
They assessed even-headway timetables through simulations and
derived disturbance-resistant train schedules. Fan et al. [74] simu-
lated the evolution of a dynamic temporal subway network by
using a linear threshold model. The robustness metric is given by
Eq. (6).

RðtÞ ¼ e � Lþ ð1� eÞ EðtÞ � E
�
ðtÞ

max
T2½t1 ;t2 ;t3 ;:::�

fEðTÞg ð6Þ
Fig. 4. Examples of patterns under attack.
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where maxfEðTÞg is the maximum operational efficiency at differ-
ent times T. They considered not only the static network structure
but also passenger flow as essential factors and finally evaluated
the robustness of the network.

(3) Optimization approach: a critical part. Optimization
approaches typically focus on URT system resilience enhancement
or system capacity recovery in specific disaster scenarios [75].

The goal of optimization models that enhance the resilience of
URT systems is to enhance the resilience of the entire system. Jin
et al. [76] developed a two-stage stochastic programming model
to evaluate the URT network resilience and optimize local bus ser-
vice integration with URT. Chen et al. [77] proposed a bilevel pro-
gramming model that minimizes network accessibility using Eq.
(7) and maximizes the network efficiency of the URT network
using Eq. (8).

min Z1 ¼
X

i2V

X

j2V
tijwij; i–j ð7Þ

max Z2 ¼
P

i2V
P

j2V
P

k2Kij
minð1=tkijÞ

nðnþ 1Þ ; i–j ð8Þ

On the other hand, many scholars have studied the problem of
restoring the capacity of URT systems under specific disaster sce-
narios; for example, the URT system recovery time is uncertain
(service may not be available for an extended period), and it is crit-
ical to enable bus service instead of URT at the right time. There-
fore, an optimization model for URT system breakdown was
proposed to solve this problem [48]. In the event of a station crash,
passenger redistribution is usually problematic, and a flow distri-
bution method is used to enhance the ability of the URT network
to withstand disruptions [78]. To recover URT capability as soon
as possible, a new repair strategy called the simulation repair strat-
egy was proposed to enhance network resilience after being dis-
turbed [77]. Additionally, the problem of optimal passenger flow
allocation under multiple disruptions was investigated in Ref.
[55] and is represented by Eq. (9).

min Z ¼
P

x2X
P

i2Vq
x
i þP

x2X
P

v2Wl
x
v

� �

th � t0
ð9Þ

In addition, optimization methods have been used to study the
alignment of new URT lines [52]. Table 5 summarizes the afore-
mentioned optimization models.

(4) Data-driven approach. With the continuous development of
bigdata technology, the capabilities shown by data-driven
approaches have become increasingly powerful. Therefore, it has
been applied to the study of URT system resilience. The data-
driven approach is based on a large amount of historical passenger
and traffic flow data [43], and different metrics are calculated to
determine the changes in system performance under different sce-
narios [79], thereby helping people evaluate the URT system state
and develop reasonable methods to improve URT system
resilience.

In many studies of transportation networks, the network com-
posed of passenger or vehicle flows is usually referred to as a
dynamic traffic network [80–82]. In the URT field, the most com-
monly used dynamic traffic network is passenger flow data, typi-
cally from automatic fare collection (AFC), whereas train
operation information can be obtained from management. In this
literature review, numerous studies were identified that utilized
passenger flow data to examine the vulnerability of URT systems.
For example, the vulnerable segments of the San Francisco URT
system were estimated in Ref. [83]. Using a large amount of pas-
senger flow data from the Shanghai URT system, Sun et al. [46]
analyzed the vulnerability of a network under attack. Sun et al.
[84] combined the network topology and passenger flow data to



Table 5
The optimization model mentioned above contains the objective function and constraints.

Objective Constraints Ref.

Minimize total costs and operational disruptions Timetabling; passengers; rolling stock [75]
Maximize travel demand fulfillment rate Budget; number of plans; travel demand; line capacity; station capacity [76]
Maximize network accessibility and efficiency Travel time; line capacity; network scale; station connectivity [77]
Minimize total costs Substitute bus service initiation time; URT service recovery time; substitute bus service

capacity
[48]

Minimize passenger delays Flow balance; capacity limit; accessibility; train operation [55]
Minimize network vulnerability and maximize new ridership

utility
Total construction costs [52]
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assess the vulnerability of the Beijing URT system. Using passenger
flow data, Lu and Lin [38] analyzed the vulnerability of a multi-
modal public transport network in Shenzhen when URT stations
were disrupted. Deng et al. [85] also obtained quantitative data
on the Nanjing Metro through interviews to assess the vulnerabil-
ity of the URT network.

In addition, a data-driven approach has been applied to
research on URT network reliability analysis, assessing network
resilience [86,87], identifying critical stations [57], and evaluating
the resilience of URT network infrastructure [88]. The data sources
used in these studies are listed in Table 6. As shown in Table 6, the
researchers’ primary sources of data are URT operators, govern-
ment statistics, and AFC data.

The data-driven approach enables the exploration of inherently
diverse characteristics within big data, thereby aiding in the
enhancement of the understanding of complex nonlinear relation-
ships among factors such as train operations, passenger travel, and
disruptive events within URT systems [73,89]. This offers a novel
perspective and methodology for assessing or enhancing the resili-
ence of urban rail transportation. However, a data-driven approach
can further advance the development of URT resilience research if
multiple data sources are available.

3.2. What should be done

The existing URT network resilience research is primarily based
on the physical topology of a network. It rarely considers multi-
source data, such as train operation and passenger flow informa-
tion [90,91]. In terms of optimization, the existing research is
mainly based on a large number of assumptions and the traditional
operations research method is applied to build a phased decision
optimization model, which ignores many practical factors in the
research process. Moreover, obtaining a globally optimal solution
that considers passenger and train flows is difficult [92]. Therefore,
it is crucial to use new technologies such as artificial intelligence,
big data, and distributed computing in combination with tradi-
tional optimization methods of operations research [93,94]. More-
Table 6
Information about the data used in the data-driven approaches paper mentioned above.

Data used

Between 5:00 a.m. and 9:00 a.m., 256 958 passengers flow data
Daily commuting data
Average daily OD trip matrix
Unexpected events in the Beijing URT network from 2013 to 2018
Passenger flow data from 06:00 a.m. to 01:00 a.m. (+1 day)
Between 7:45 a.m. and 8:00 p.m., within 8 weeks, passenger flow data
The OD matrix of 16 September 2013, from 7:30 a.m. to 8:30 a.m., a total of 370 414
Weekday morning peak (7:30 a.m.–9:30 a.m.) within a week in August 2016
Peak hour OD data
Data of constructing rail transit network, passenger flow of rail transit station, OD pa

distribution data of epidemic
Face-to-face interviews in June 2015 and a special meeting held on July 2, 2015
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over, building precise coupled optimization models and designing
effective algorithms for large-scale problems play crucial roles in
improving network resilience. Here, the five directions for enhanc-
ing the resilience of URT systems are summarized. Figs. 5 and 6
show the technical roadmap and specific implementation methods,
respectively.

(1) Resilience analysis of URT systems based on multisource
data. Starting from the multisource data of the URT network topol-
ogy, passenger flow, train diagram, and vehicle parameters, Zhan
et al. [95] constructed a multidimensional URT network resilience
evaluation system that considered the absorption capacity before
interference, ability to resist damage during interference, and abil-
ity to recover after interference. The impact of events on the oper-
ational efficiency of a URT network has also been studied [96].
Using considerable traffic data-related methods to determine the
different operating states of URT under different disruptions. A
multi-state resilience curve for the rail transit system was estab-
lished, considering changes in disruption factors, to examine the
correlation and computation method of resilience across different
scenarios and periods in the network. The performance of the
URT system under multiple scenarios and periods was analyzed
and evaluated.

(2) Combined control of passenger flow in the URT network
based on multidemand. The deep neural network learning method
was used to analyze various passenger flow entry scenarios and the
characteristics of points, lines, and networks during congestion
periods [93,97]. Combined with the transport capacity and person-
alized travel demands of passengers under different congestion
scenarios, Lu et al. [98] built a URT passenger flow control opti-
mization model under various demand responses. Based on this,
an efficient and intelligent solution algorithm based on distributed
computing was designed. Finally, a unique and refined joint net-
work traffic control optimal solution is generated for each station.
In addition, the intelligent linkage of the passenger flow control
strategy of multiple lines and stations in the network [99] achieves
rapid passenger flow dissipation and improves network affordabil-
ity [100] to ensure the smooth operation of the URT network and
Data source Ref.

Provided by the operator or
government

[43]
[83]
[38]
[87]
[88]

AFC data [79]
raw records [46]

[84]
[86]

ssenger flow, and the spatial [57]

Interview and meeting [85]



Fig. 5. The technology roadmap for resilience enhancement in future research.

Fig. 6. Specific implementation methods for different research directions.
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stations, and enhances the ability of the URT system to resist pas-
senger flow interference in a variety of demand periods.

(3) Optimization of URT train diagrams in multiple scenarios.
Based on the dynamic evolution characteristics of passenger flow
demand and the uncertainty of train operation delay, a robust opti-
mization model of the train diagram under peak scenarios was
established [101,102]. Considering factors such as the URT network
passenger flow demand during the operation period of the last
train, accessibility of the last train connection network, and wait-
ing time of passengers for transfer, an optimization model of the
last train diagram considering random disruptions was estab-
lished. In this manner, the anti-disruption and recovery ability of
the URT system under multiple scenarios and periods can be
enhanced, and an overall improvement in train operation and pas-
senger travel efficiencies can be realized [21,57,103].

(4) Optimization of URT line guided by resilience. The structure
and characteristics of existing urban transportation complex net-
works were analyzed, and the coupling direction between URT
and other transportation modes was explored [76]. Build resilience
metrics to quantitatively evaluate the changes in network passen-
ger transport performance and design an emergency feeder bus
scheduling model under URT accidents [104]. Enhancing network
resilience by quickly evacuating stranded passengers affected by
disruptions. Reconstructing the transportation network to reason-
ably allocate vehicle resources, ensure transportation succession,
and improve the system recovery ability. Improve the URT network
function and design heuristic algorithms to solve the construction
scheme for new lines with the best resilience [65]. Promote the
cross-line operation of URT networks, improve the travel efficiency
of passengers, and reduce travel costs. These additional links and
lines help improve travel path redundancy during disruptions.

(5) Coupling optimization of passenger and vehicle flows at the
URT network level for resilience improvement. Based on an accu-
rate analysis of the URT line network passenger flow in a high-
density strong space-time correlation environment, combined
with the multiscale passenger flow travel law, line-network associ-
ation rules, and the complexity and uncertainty of the train opera-
tion process, the dynamics of passenger flow demand are
comprehensively considered. Then, the internal coupling relation-
ship between traffic and passenger flows in a multi-scenario, high-
complexity operating environment was established [105]. Clarify
the dissipation and evolution mechanism of passenger flow in
the rail transit network and study the modeling method of static
cohesion organization and dynamic cooperative operation of the
URT network. Subsequently, a cooperative management mecha-
nism for passenger–vehicle flow under uncertain disruption sce-
narios was proposed, which breaks through the inherent mode of
separate management of passenger–vehicle flow [106]. This
ensures that the train flow has a strong absorption capacity, dam-
age resistance, and recovery capacity in a highly complex operating
environment to enhance the resilience of the system to cope with
operational disturbances.
4. Conclusions

This paper presents a systematic and comprehensive review of
research on URT resilience. It starts with the origin of the definition
of resilience, introduces an understanding of resilience in different
fields, and then provides the meaning of resilience in the field of
URT. In this study, URT resilience was divided into three aspects:
① the ability of the URT system to absorb disturbances,② the abil-
ity of the URT system to resist disruptions, and ③ the ability of the
URT system to recover after disruptions. Based on these three
points, combined with previous research results on URT system
resilience, the four properties of URT system resilience can be sum-
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marized as robustness, vulnerability, rapidity, and redundancy.
Next, the metrics and calculation approaches for URT resilience
are reviewed and classified into three categories: topological, char-
acteristic, and system performance. Furthermore, the calculation
approaches of these metrics are categorized into four distinct
types: topological, simulation, optimization, and data-driven.
Finally, five directions for future research are proposed. The sum-
mary provides a research map for researchers in this field and a
reference for future work related to the resilience of URT systems.
For similar areas of research, our work provides some experiences
that can be considered, such as road and railroad network resili-
ence [107].

Existing research findings and ongoing research trends indicate
that the conventional practice of utilizing static network data to
calculate topological metrics for evaluating network resilience is
no longer sufficient to accurately capture the impact of dynamic
factors, such as passenger and traffic flow, on URT systems. Conse-
quently, numerous studies have amalgamated the topological
approach with other methodologies to analyze resilience, thereby
facilitating the transition from a static to a dynamic topology.
Simulation-based techniques that offer diverse methods have been
employed to study URT resilience under various scenarios, includ-
ing disruption simulations and post-disruption recovery strategy
simulations. However, the optimization approach, which is more
mature and rapidly advancing, has proven effective in addressing
highly complex issues in the realm of URT resilience. Notably,
the optimization approach has been extensively applied to train
operation diagram optimization, optimal strategies for post-
disaster recovery [108,109], integration optimization of public
transportation systems, and passenger flow distribution optimiza-
tion. Furthermore, the advent of information technology has pro-
vided researchers with access to increasing volumes of historical
data related to URT system operations, leading to the growing
application of data-driven approaches in URT resilience research.
Typically, data-driven approaches are combined with other
research methods, such as topology, simulation, and optimization,
to yield more precise assessments of network resilience, enhance
model accuracy in real-world scenarios, and lend greater credibil-
ity to optimization outcomes [110–112].

Enhancing the resilience of URT is a comprehensive engineering
endeavor that encompasses the assessment of resilience [113],
simulation of practical scenarios [114], and optimization of system
resilience [115], which are intricately interconnected. A precise
evaluation of the system resilience often necessitates more refined
and diverse data sources. Accurately assessing the resilience of URT
plays a vital role in identifying critical stations and sections within
the network and serves as a crucial step in establishing goals for
subsequent resilience enhancement [116]. The optimization of net-
work resilience can effectively mitigate the losses incurred during
disturbances in URT systems, reduce passengers’ perceived disrup-
tions, and enhance their satisfaction. Throughout this process, the
simulation of practical scenarios remains integral, as it not only
ensures the accuracy of resilience assessment methods but also
verifies the effectiveness of resilience enhancement strategies. In
essence, it is imperative to refine disturbance scenarios and
employ various measures, such as flow control and station closure,
in accordance with pre-established emergency plans to minimize
the impact of disturbances on URT systems [117].

URT resilience has become an increasingly important research
direction, attracting the attention of many researchers. This study
not only refines the optimization theory of URT operation but also
provides significant instructions for the actual operation and rapid
disposal of URT systems under disruption. Current metrics for resi-
lience are as realistic as possible; however, inevitably, there is still
a gap in reality. New methodologies and techniques are being pro-
posed, and existing technical approaches are maturing. In the
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future, combining various approaches may promote an effective
study of URT resilience.
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