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A B S T R A C T

Point cloud segmentation is one of the most important tasks in LiDAR remote sensing with widespread
scientific, industrial, and commercial applications. The research thereof has resulted in many breakthroughs
in 3D object and scene understanding. Existing methods typically utilize hierarchical architectures for feature
representation. However, the commonly used sampling and grouping methods in hierarchical networks are not
only time-consuming but also limited to point-wise 3D coordinates, ignoring the local semantic homogeneity
of point clusters. To address these issues, we propose a novel 3D point cloud representation network, called
Dynamic Clustering Transformer Network (DCTNet). It has an encoder–decoder architecture, allowing for
both local and global feature learning. Specifically, the encoder consists of a series of dynamic clustering-
based Local Feature Aggregating (LFA) blocks and Transformer-based Global Feature Learning (GFL) blocks.
In the LFA block, we propose novel semantic feature-based dynamic sampling and clustering methods, which
enable the model to be aware of local semantic homogeneity for local feature aggregation. Furthermore,
instead of traditional interpolation approaches, we propose a new semantic feature-guided upsampling method
in the decoder for dense prediction. To our knowledge, DCTNet is the first work to introduce semantic
information-based dynamic clustering into 3D Transformers. Extensive experiments on an object-based dataset
(ShapeNet), and an airborne multispectral LiDAR dataset demonstrate the State-of-the-Art (SOTA) segmentation
performance of DCTNet in terms of both accuracy and efficiency. Our code will be made publicly available.
1. Introduction

Semantic segmentation of 3D point clouds in LiDAR remote sensing
is pivotal for creating highly detailed models of the Earth’s surface,
facilitating precise terrain analysis and vegetation characterization (Qin
et al., 2023; Chen et al., 2023; Wei et al., 2023; Bui and Glennie,
2023; Tao et al., 2022). It plays a crucial role in diverse applications,
ranging from urban planning, disaster response, and environmental
monitoring to infrastructure management, offering invaluable insights
through enhanced spatial visualization and analysis (Xiao et al., 2023;
Chen and Cho, 2022; Zováthi et al., 2022; Li et al., 2022; Lin and
Habib, 2022). Existing methods for 3D point cloud segmentation can
be generally divided into three categories: view-based (Kundu et al.,
2020; Robert et al., 2022; Mascaro et al., 2021; Antonello et al., 2018;
Dai and Nießner, 2018), voxel-based (Maturana and Scherer, Sep. 2015;
Riegler et al., 2017; Zhou and Tuzel, 2018; Zhang et al., 2022b),
and point-based (Charles et al., 2017; Qi et al., 2017; Wang et al.,
2019b; Thomas et al., 2019; Zhao et al., 2021b; Guo et al., 2021; Lai
et al., 2022). Most of them utilized hierarchical structures for point
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cloud processing, focusing on local feature extraction but often ignoring
long-range context dependency modeling (Lai et al., 2022).

The hierarchical structure typically involves two key steps: point
cloud sampling and grouping. Currently, most hierarchical point cloud
processing methods use the Farthest Point Sampling (FPS) (Qi et al.,
2017) algorithm, sampling points evenly across the geometric space.
However, FPS only focuses on the geometric properties of point clouds,
ignoring their semantic features. This causes neural networks to de-
emphasize some fine-level object parts with significant semantic in-
formation. Moreover, FPS is very time-consuming, often causing a
computational bottleneck. Additionally, after downsampling, 𝑘-Nearest
Neighborhood (𝑘NN) and ball query (Qi et al., 2017) are widely used
for the point cloud grouping. However, such grouping methods are still
strictly based on the geometric properties of points. In this situation,
the local feature aggregation tends to be disturbed by semantic hetero-
geneity in local neighborhoods, especially for points at the boundaries
of adjacent parts. The aforementioned deficiencies are particularly
pronounced when dealing with large-scale LiDAR datasets comprising
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millions of points, resulting in exceedingly high computational and
memory costs. Recently, similar to superpixel in image processing,
there have been many superpoint-based methods (Landrieu and Si-
monovsky, 2018; Sun et al., 2022; Robert et al., 2023) proposed for
clustering semantically homogeneous points into the same group. They
are able to describe in detail the relationship between adjacent objects.
However, as a pre-processing step before the deep learning network,
these methods fail to perform dynamic sampling and clustering for
hierarchically extracted semantic features at different stages in the
network, limiting their performance.

To address the aforementioned issues, we propose a novel hier-
archical point cloud representation framework for 3D semantic seg-
mentation. It combines both dynamic clustering-based Local Feature
Aggregating (LFA) blocks and Transformer-based Global Feature Learn-
ing (GFL) blocks. We introduce novel semantic feature-based dynamic
sampling and clustering methods to LFA blocks, focusing on the local
semantic homogeneity of point clusters belonging to any particular
object and improving algorithm efficiency. For GFL blocks, we use the
dual-attention Transformer to capture long-range context dependen-
cies.

The main contributions of our work can be summarized as follows:

• We design a Transformer-based hierarchical 3D representation
framework (named DCTNet) for point cloud segmentation, where
the encoder–decoder architecture is highly efficient in captur-
ing local–global information due to its dynamic token genera-
tion mechanism in Local Feature Aggregation (LFA) blocks and
dual-attention mechanism in Transformer-based Global Feature
Learning (GFL) blocks.

• In the encoder, we propose the novel Semantic feature-based Dy-
namic Sampling (SDS) and Clustering (SDC) methods for dynamic
token generation and local feature aggregation. The proposed
approaches can not only better identify local semantic homo-
geneity of 3D objects for improved semantic segmentation, but
also greatly improve the computational efficiency compared to
traditional sampling and grouping approaches.

• In the decoder, we proposed an efficient semantic feature-guided
upsampling method, ensuring a simple yet highly accurate upsam-
pling operation.

The remainder of our paper is organized as follows. Section 2 reviews
existing point cloud segmentation methods and summarizes the limi-
tations. Section 3 shows the details of DCTNet. Section 4 presents and
discusses the experimental results. Section 5 concludes the paper.

2. Related work

In this section, we first review existing Convolutional Neural Net-
work (CNN)- and Transformer-based point cloud segmentation meth-
ods. Then we summarize their limitations and highlight the main
contributions of our method.

2.1. Point CNNs

Point CNN-based segmentation methods perform convolution oper-
ations directly on the points. Inspired by 2D CNN in image processing,
PCNN (Atzmon et al., 2018) defined the convolution of functions
over point clouds. It performed the volumetric convolution to arbi-
trary point clouds by proposing extension and restriction operators.
SpiderCNN (Xu et al., 2018) aimed to capture both local and global
geometric relationships within point clouds, by employing a set of
parameterized convolutional filters. The filters were designed as a prod-
uct of a simple step function that captures local geodesic information
and a Taylor polynomial that ensures expressiveness. PointCNN (Li
et al., 2018) proposed a novel 𝜒-transformation strategy to dynamically
align local point neighborhoods. It facilitated subsequent convolu-
tional operations, allowing the network to better capture local features.
2
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PointConv (Wu et al., 2019) dynamically adjusted its receptive field
based on the local point distribution, which allowed the network to
effectively capture multi-scale features within irregularly sampled point
clouds. Extensive experiments of PointConv demonstrated its robust-
ness to variations in point densities and complex geometric structures.
RS-CNN (Liu et al., 2019b) focused on utilizing geometric topology
relationships among points to optimize convolutional weights, which
allowed the network to obtain discriminative shape awareness.

Besides, the Graph Convolution Network (GCN) is also widely used
in point cloud segmentation. It performs convolution operations on
points connected with a graph structure, which is beneficial to the
local feature aggregation. Based on PointNet (Charles et al., 2017),
DGCNN (Wang et al., 2019b) proposed dynamic edge convolution
(named EdgeConv) operated on local neighborhoods. EdgeConv cap-
tured edge-wise relationships between points, enabling the network to
understand local structures and their variations. ResMRGCN (Li et al.,
2023a) combined both the advantages of CNNs and GCNs, introducing
the residual/dense connections and dilated convolutions of CNNs to
the GCN architecture. It made GCNs deeper and proved the positive
effect of such a combination. Despite the great success achieved by
point CNNs, it is still challenging for them to capture long-range depen-
dencies and global context efficiently. Point CNNs typically operate in
local neighborhoods, and while hierarchical structures can help capture
some global features, they might not handle contextual relationships as
effectively as Transformers.

2.2. Point transformers

The application of Transformers in 3D point cloud segmentation has
achieved great success. They can be broadly categorized into two main
groups: global Transformer-based methods and local Transformer-based
methods.

Global Point Transformers. The global Transformer methods (Guo
t al., 2021; Hui et al., 2021; Zhang et al., 2022a; Sun et al., 2023;
obert et al., 2023; Guo et al., 2023; Li et al., 2023c) focus on learning

ong-range dependency relationships across the entire point cloud,
hich is the most straightforward in 3D Transformer designing. Point
loud Transformer (PCT) (Guo et al., 2021) is a representative work. It

ed neighborhood-embedded points into a series of stacked Transformer
locks for global feature learning. The main drawback of the global
ransformer is the high computational cost, which is caused by its
(𝑁2𝐷) complexity, where 𝑁 is the number of input points, and 𝐷

s the feature dimension. The runtime of global Transformer methods
rows quadratically as the number of input points grows (Liu et al.,
023). Therefore, it is challenging for global Transformer methods
o process large-scale scenes for remote sensing. Recently, there have
een many efficient global Transformer methods (Hui et al., 2021;
hang et al., 2022a; Sun et al., 2023; Robert et al., 2023) proposed
or point cloud segmentation. PPT-Net (Hui et al., 2021) proposed

hierarchical encoder–decoder framework to reduce the number of
oints gradually. Instead of using a pure Transformer architecture, it
ntroduced graph convolution-based (Wang et al., 2019b) embedding
or local feature aggregation, which not only enhances long-term de-
endencies of the point clouds but also reduces the computational cost.
atchFromer (Zhang et al., 2022a), SPFormer (Sun et al., 2023), and
PT (Robert et al., 2023) all used Transformer blocks to capture global
eatures from aggregated superpoint-based local features. However, the
tatic point clustering strategy they used cannot adaptively serve the
emantic features extracted at different stages of the network, limiting
heir performance.
Local Point Transformers. The local Transformer methods (Zhao

t al., 2021b; Lai et al., 2022; Gao et al., 2022; Liu et al., 2023)
ocus on extracting local information on a group of subsets of the
arget point cloud, which could be generally divided into two cate-
ories: neighborhood-based and window-based strategy. Point Trans-
ormer (Zhao et al., 2021b) is a representative work of neighborhood-
ased local Transformers. It has a hierarchical encoder–decoder frame-

ork, applying the Transformer blocks to the neighborhood conducted
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Fig. 1. Hierarchical encoder–decoder structure of DCTNet for point cloud segmentation. Dynamic clustering-based LFA blocks and Transformer-based GFL blocks are designed for
local–global feature representation. The airplane model is taken as an example to illustrate the details of the method. For the six subfigures corresponding to six stages, the top
three show the hierarchically sampled points in the encoder, and the bottom three show the semantic information of upsampling points in the decoder.
Fig. 2. Pipeline of the dynamic clustering-based LFA block. Semantic feature-based Dynamic Sampling (SDS) and Clustering (SDC) are proposed to ensure local semantic homogeneity
in clusters, facilitating local feature aggregating. The non-gray points in (b) are the selected sampling points. (c) shows that we build a cluster for each sampling point. Due to
the semantic feature-based dynamic clustering, the number of points in each cluster is different.
by 𝑘NN searching for each sampling point. FlatFormer (Liu et al.,
2023) used Transformer blocks to extract window-based local features
and designed a window shift strategy to achieve global feature learn-
ing. However, such indirect global feature learning methods limit the
performance of 3D Transformers in long-range context dependency
modeling.

To address the aforementioned drawbacks of existing 3D Trans-
formers in point cloud segmentation, we propose a novel hierarchical
Transformer-based point cloud representation framework, DCTNet. Dif-
ferent from static point clustering, the proposed dynamic sampling
and clustering method not only adaptively aggregates local features to
ensure homogeneity in local neighborhoods, but also greatly reduces
the computational costs. Given the dynamically aggregated local fea-
tures, we use the dual-attention Transformer to capture global features.
Finally, instead of using trilinear interpolation for point upsampling
in the decoder, we propose an efficient semantic feature-guided up-
sampling method, ensuring a simple yet highly accurate upsampling
operation.

3. Dynamic clustering transformer network

This section shows the details of DCTNet. We first present the over-
all pipeline, then introduce its main blocks: dynamic clustering-based
3

LFA block, Transformer-based GFL block, and semantic feature-guided
upsampling block.

3.1. Overview

The overall pipeline of DCTNet is shown in Fig. 1, taking the
airplane model as an example to illustrate the details of the method.
The original point cloud with/without normal is taken as input to the
encoder. Firstly, a stem MLP block (Qian et al., 2022) is designed to
project the input data into a higher-dimension space. Secondly, the pro-
jected features are fed into several stages in a hierarchical manner for
local and global feature extraction. Each stage in the encoder consists of
two blocks: a dynamic clustering-based LFA block and a Transformer-
based GFL block. Thirdly, the extracted features by the aforementioned
stages are taken as input to the decoder. Specifically, the decoder
follows the U-Net design, symmetric to the encoder structure described
above. As shown in Fig. 1, each stage in the decoder consists of two
blocks: a semantic feature-guided upsampling block and a Transformer-
based GFL block which is exactly the same as the corresponding block
in the encoder. Lastly, an MLP head layer is used to get the final
prediction for each point, which consists of two linear layers with batch
normalization and ReLU.
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Fig. 3. Comparison of sampling results (downsampling from 2048 to 512 points).
Compared with FPS, our SDS focuses on key discriminative geometric areas, retaining
fewer points in the flat areas but more points in the nose, tail, and wing contours.
Additionally, it is more efficient, nearly 80× faster than FPS.

3.2. Dynamic clustering-based LFA block

The dynamic clustering-based LFA block is designed to achieve
discriminative local feature extraction. Our LFA block consists of three
key steps: point cloud dynamic clustering, local feature aggregating,
and feature enhancement. The pipeline of the LFA block is shown in
Fig. 2. The first step is to achieve point cloud sampling and generate
semantically homogeneous clusters for sampling points. The second
step is to aggregate the point features in the same cluster. The last
step is to establish the connection between the aggregated sampling
points and input features, enhancing the sampling point features and
mitigating feature loss caused by aggregating.

Point Cloud Dynamic Clustering. We propose SDS and SDC meth-
ods for point cloud sampling and clustering. For our implementation
of SDS, given an input point set 𝑃 =

{

𝑝𝑖
}𝑁
𝑖=1 ∈ 𝑅𝑁×𝐷, where 𝐷 is the

dimension of the input feature, we first compute the local density 𝑑𝑖 of
each point 𝑝𝑖 according to its 𝑘-nearest neighborhood 𝛷𝑖 in the feature
space:

𝑑𝑖 = 𝑒𝑥𝑝
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According to 𝑃 =
{

𝑝𝑖
}𝑁
𝑖=1, we denote 𝛤 =

{

𝑑𝑖
}𝑁
𝑖=1. Secondly, we

calculate a distance indicator 𝛿𝑖 for 𝑝𝑖, which can be expressed as:
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(2)

where 𝛺𝑖 =
{

𝑑𝑗 ∈ 𝛤 |∀𝑑𝑗 > 𝑑𝑖
}

. According to this equation, 𝛿𝑖 can be
understood as the minimal feature distance between 𝑝𝑖 and any other
points with higher local density. For the point with the highest local
density, its distance indicator is defined as the maximal feature distance
between it and any other points. Given 𝑑𝑖 and 𝛿𝑖, we combine them
to get the score of each point, which can be expressed as 𝛿𝑖 × 𝑑𝑖. A
higher score means this point has a more representative feature and
then is more suitable to be selected as the sampling point. Therefore,
according to the sampling rate, we choose the points with the highest
scores as sampling points. Based on semantic features, the sampling
points are dynamically updated in each stage of the network. The
computational complexity of SDS is (𝑁2𝐷). As shown in Fig. 3,
compared with FPS, our SDS retains fewer points in the flat areas but
more points in the key areas, such as the nose, tail, and wing contours
of the airplane. This could provide more useful information for network
learning. Additionally, it is more efficient, about 80× faster than FPS.

Thirdly, given the sampling point set S =
{

𝑠𝑖
}𝑆
𝑖=1 ∈ 𝑅𝑆×𝐷, we

design the SDC method to construct a cluster for each 𝑠𝑖. Specifically,
in the feature space, small feature distances mean similar semantic
information. Therefore, we assign every point in 𝑃 to the nearest
sampling point in S based on the feature distances. As such, each 𝑠𝑖 has
a cluster 𝐶 with local semantic homogeneity, facilitating local feature
4

𝑖

Fig. 4. Grouping results of different methods. Compared with 𝑘NN, our SDC is able to
cluster points with similar semantic information, ensuring local semantic homogeneity
within the same group. The fuselage and wings are colored blue and green respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

aggregating. According to dynamically generated sampling points, the
clustering process is also dynamically updated in each stage based on
semantic features. As shown in Fig. 4, for points at the boundaries of
fuselage and wings, 𝑘NN grouping tends to include points from two
different parts into the same group, which may disturb the local feature
aggregating. However, our SDC method is able to cluster points with
similar semantic information, ensuring local semantic homogeneity
within the same group. The computational complexity of SDC is (𝑁𝑆).

Local Feature Aggregating. Given clusters C =
{

𝐶𝑖
}𝑆
𝑖=1, we utilize

a learning-based weighted average algorithm to achieve the local fea-
ture aggregating. Since the cluster points in 𝐶𝑖 have similar semantic
features, an intuitive method is to average them directly, obtaining the
aggregated 𝑠𝑖 with local information, which can be expressed as:

𝑠𝑖 = average
𝑗∈𝐶𝑖

(𝐶𝑖𝑗 ), (3)

where 𝐶𝑖𝑗 denotes the 𝑗th cluster point in 𝐶𝑖. However, it is still hard
for points in the same cluster to have the same importance for the
network. This simple average may lead to information loss. Therefore,
we implement a learnable attention score set 𝐴 =

{

𝑎𝑖
}𝑁
𝑖=1 for all points

in 𝑃 . Then for the cluster 𝐶𝑖, the aggregated 𝑠𝑖 can be expressed as:

𝑠𝑖 =

∑

𝑗∈𝐶𝑖
exp(𝑎𝑗 )𝐶𝑖𝑗

∑

𝑗∈𝐶𝑖
exp(𝑎𝑗 )

, (4)

where 𝑎𝑗 is the learnable attention score of the point 𝐶𝑖𝑗 . As such, the
aggregated 𝑠𝑖 is able to describe the local semantic information more
accurately. As such, the aggregated sampling point set S =

{

𝑠𝑖
}𝑆
𝑖=1

is obtained. The relationship between the sampling points and cluster
points is also stored for the point cloud upsampling in the decoder.

Feature Enhancement. Given the sampling point set S, we design
a cross-attention Transformer to establish the connection between S
and input features 𝑃 , enhancing sampling point features and mitigating
information loss caused by the aggregating process.

Specifically, as shown in Fig. 2, we first generate 𝑄𝑢𝑒𝑟𝑦 matrix based
on S, and 𝐾𝑒𝑦, 𝑉 𝑎𝑙𝑢𝑒 matrices based on 𝑃 :

𝑄 = S𝑊𝑄,

𝐾 = 𝑃𝑊𝐾 ,

𝑉 = 𝑃𝑊𝑉 ,

(5)

where 𝑄,𝐾, 𝑉 denote 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦, and 𝑉 𝑎𝑙𝑢𝑒 matrices. 𝑊𝑄,𝑊𝐾 ,𝑊𝑉
are learnable weight matrices. Then, the attention map 𝑀 can be
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formulated as:

𝑀 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝐷
+ 𝐴). (6)

The size of 𝑄𝐾𝑇 is 𝑆 ×𝑁 , where each element 𝑚𝑖,𝑗 ∈ 𝑅𝑆×𝑁 represents
the feature similarity between 𝑖th sampling point in S and 𝑗th input
point in 𝑃 . Additionally, 𝐴 is defined in the process of Local Feature
Aggregating, representing the importance of each point for network
decision-making. In implementation, the size of 𝐴 is 1 × 𝑁 , which is
inconsistent with 𝑄𝐾𝑇 . Therefore, for our implementation, we repeat

along rows, extending its size to 𝑆×𝑁 . The element addition between
𝑄𝐾𝑇 and 𝐴 means that both feature similarity and point importance are
considered in our cross-attention Transformer. Finally, the enhanced
sampling point set S can be generated by multiplying 𝑀 and 𝑉 , with
the size of 𝑆 ×𝐷.

3.3. Transformer-based GFL block

We use the Transformer to achieve global feature learning, thanks to
its remarkable ability of long-range context dependency modeling. The
dual-attention Transformer (Han et al., 2021; Lu et al., 2022) has been
proven more effective in global feature learning than vanilla point-wise
or channel-wise Transformers. Therefore, we use the dual-attention
Transformer in our GFL block. The Point-wise Self-Attention (PSA) in
the dual-attention Transformer is used to build the spatial relationship
between points, achieving long-range context dependency modeling.
Similarly, the Channel-wise Self-Attention (CSA) in the dual-attention
Transformer is used to explore the difference between feature channels,
highlighting the role of interaction across various channels (Han et al.,
2021). By combining these two kinds of self-attention mechanisms, our
GFL block is able to capture global features from multiple perspectives.

PSA and CSA have similar algorithm flows. Specifically, taking the
sampling point set S as input, we first project it into three different
feature spaces to generate 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦, and 𝑉 𝑎𝑙𝑢𝑒 matrices:

𝑄𝑢𝑒𝑟𝑦 = S𝑊𝑄,

𝐾𝑒𝑦 = S𝑊𝐾 ,

𝑉 𝑎𝑙𝑢𝑒 = S𝑊𝑉 ,

(7)

where 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 are learnable weight matrices. Secondly, for the
PSA, the attention map 𝑀𝑃 ∈ 𝑅𝑆×𝑆 can be formulated as:

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝐷
+ 𝐵), (8)

here 𝑄,𝐾 denote the 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦 matrices, and 𝐵 is a learnable
osition encoding matrix defined by Zhao et al. (2021b). 𝑀𝑃 and 𝑉 𝑎𝑙𝑢𝑒
atrices are multiplied to generate the new feature map 𝐹𝑃 as the

utput of PSA, of the same size as S. Thirdly, for the CSA, the attention
ap 𝑀𝐶 ∈ 𝑅𝐷×𝐷 can be formulated as:

𝐶 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐾
𝑇𝑄

√

𝐷
). (9)

𝑎𝑙𝑢𝑒 and 𝑀𝐶 matrices are multiplied to generate the new feature map
𝐶 as the output of CSA, of the same size as S.

Given global feature maps 𝐹𝑃 and 𝐹𝐶 , we combine them by the
lement-wise addition:

𝐺 = 𝐹𝑃 + 𝐹𝐶 . (10)

astly, we apply a skip connection between 𝐹𝐺 and the input feature
et S:

𝐺 = S + 𝐿𝐵𝑅(𝐹𝐺), (11)

here 𝐹𝐺 is the final global feature map, and 𝐿𝐵𝑅 denotes the combi-
5

ation of 𝐿𝑖𝑛𝑒𝑎𝑟, 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚, and 𝑅𝑒𝐿𝑈 .
Table 1
The network configurations of DCTNet on the ShapeNet part segmen-
tation dataset, including the network depth, sampling rate (denoted as
𝑆𝑟), neighborhood size in SDS (denoted as 𝑘), and network width.

Network depth 𝑆𝑟 𝑘 Network width

Encoder

Stage-1 4 ↓ 16 128
Stage-2 4 ↓ 16 256
Stage-3 4 ↓ 16 512

Decoder

Stage-1 4 ↑ – 256
Stage-2 4 ↑ – 128
Stage-3 4 ↑ – 128

3.4. Semantic feature-guided upsampling block

As shown in Fig. 1, since the relationship between sampling points
and cluster points has been stored in the encoder, point cloud up-
sampling can be easily achieved by assigning the semantic features
of sampling points to corresponding cluster points. Since the relation-
ship is obtained by semantic feature-based clustering, the upsampling
process is named semantic feature-guided upsampling.

As such, compared with commonly used point cloud interpolation
methods (Qi et al., 2017; Zhao et al., 2021b; Hui et al., 2021), the effi-
ciency of our semantic feature-guided upsampling process is improved
while ensuring that the semantic features of upsampling points are not
easily smoothed out.

4. Experiments

In this section, we first present the implementation details of our
method, including hardware configuration, training strategy, and hy-
perparameter settings. Secondly, we present the performance of our
network on two public segmentation datasets (ShapeNet (Wu et al.,
2015) and Airborne MultiSpectral LiDAR (MS-LiDAR) dataset (Zhao
et al., 2021a), which are synthetic and real-scanned datasets respec-
tively). We also compared our method with SOTA works in point
cloud segmentation. Lastly, we conducted ablation studies to verify the
effectiveness of each main component in our framework.

4.1. Implementation details

The specific network configurations of DCTNet on different datasets
are shown in Tables 1 and 2. We implemented DCTNet with PyTorch
and trained it on an NVIDIA GeForce RTX 3090 GPU. The network
was trained with the SGD Optimizer, with a momentum of 0.9 and
weight decay of 0.0001. The initial learning rate was set to 0.001, with
a cosine annealing schedule to adjust the learning rate at every epoch.
The network was trained for 250 epochs. The batch size was set as 16
for the ShapeNet part segmentation dataset (Wu et al., 2015), and 8
for the airborne MultiSpectral LiDAR (MS-LiDAR) dataset (Zhao et al.,
2021a).

4.2. Part segmentation

Datasets and Metrics. The ShapeNet dataset contains 16872 syn-
thetic models with 16 shape categories. They were split into 13998
samples for training and 2874 samples for testing, following Point
Transformer (Zhao et al., 2021b). This dataset has 50 part labels,
and each object has at least two parts. For a fair comparison, each
input point cloud was downsampled to 2048 points. For the evaluation
metrics, we used the instance-wise mean Intersection over Union (re-
ferred to as mIoU in this paper) and Frame Per Second to measure the

accuracy and inference efficiency of algorithms respectively.
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Fig. 5. Part segmentation results from the ShapeNet dataset. As can be seen, our segmentation predictions are faithful to ground truth.
Fig. 6. Airplane segmentation results from different methods on the ShapeNet dataset. Our method achieves the best results at the boundaries of adjacent parts. The fuselage,
wings, engines, and tail are colored blue, green, red, and yellow respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 2
The network configurations of DCTNet on the airborne MS-LiDAR
dataset, including the network depth, sampling rate (denoted as 𝑆𝑟),
neighborhood size in SDS (denoted as 𝑘), and network width.

Network depth 𝑆𝑟 𝑘 Network width

Encoder

Stage-1 4 ↓ 16 128
Stage-2 4 ↓ 16 256
Stage-3 4 ↓ 16 512
Stage-4 4 ↓ 16 1024

Decoder

Stage-1 4 ↑ – 512
Stage-2 4 ↑ – 256
Stage-3 4 ↑ – 128
Stage-4 4 ↑ – 128

Table 3
Part segmentation results on the ShapeNet dataset.

Methods mIoU (%) Frame Per Sec.

PointNet++ (Qi et al., 2017) 85.1 6.8
PCNN (Atzmon et al., 2018) 85.1 –
SpiderCNN (Xu et al., 2018) 85.3 13.9
SGPN (Wang et al., 2018) 85.8 –
DGCNN (Wang et al., 2019b) 85.2 19.7
PointConv (Wu et al., 2019) 85.7 15.9
RS-CNN (Liu et al., 2019b) 86.2 9.4
InterpCNN (Mao et al., 2019) 86.3 –
DensePoint (Liu et al., 2019a) 86.4 –
PCT (Guo et al., 2021) 86.4 –
PT (Zhao et al., 2021b) 86.6 7.8
PVT (Zhang et al., 2022b) 86.5 9.7
ST (Lai et al., 2022) 86.6 2.2
PatchFormer (Zhang et al., 2022a) 86.5 27.8
APES (Wu et al., 2023) 85.8 –
Li et al. (2023b) 86.0 –
Hassan et al. (2023) 86.3 –

Ours 86.6 37.0
6

Performance Comparison. We compared our DCTNet with SOTA
segmentation methods. As shown in Table 3, DCTNet achieves the
competitive mIoU (86.6%) with existing SOTA methods. As for the
inference efficiency, compared with those algorithms (Point Trans-
former (Zhao et al., 2021b), Stratified Transformer (Lai et al., 2022),
etc.) that used FPS for downsampling, our method achieves a higher
Frame Per Second (37.0). These results indicate our DCTNet greatly
improves processing efficiency while maintaining accuracy. Several
visual results of part segmentation are shown in Fig. 5. As can be seen,
segmentation predictions from DCTNet are faithful to the ground truth.
Moreover, Fig. 6 shows the airplane segmentation results of different
methods. DCTNet achieves the best segmentation at the boundaries of
adjacent parts (fuselage and wings).

4.3. Airborne MS-LiDAR segmentation

Datasets and Metrics. Most recently, a large-scale airborne Mul-
tiSpectral LiDAR (MS-LiDAR) dataset was introduced in Zhao et al.
(2021a). We tested DCTNet on this dataset to explore its performance
in practical remote sensing applications. The MS-LiDAR dataset was
captured by a Teledyne Optech Titan MS-LiDAR system (Zhao et al.,
2021a). In addition to three-dimensional coordinates, each point also
has three channels with wavelengths of 1, 550 nm (MIR), 1, 064 nm
(NIR), and 532 nm (Green). There are six categories in the dataset: Road,
Building, Grass, Tree, Soil, and Powerline. The dataset was divided into
13 subsets, where subsets 1-10 were taken as training data, while subsets
11-13 were taken as testing data. For fair comparison, we took the same
data pre-processing (data fusion, normalization, and training/testing
sample generation) methods described in Zhao et al. (2021a). Each
subset is partitioned to a series of local blocks as training/test samples,
and each of them contains 4096 points with six channels. We used
Overall Accuracy (OA), mIoU, and average 𝐹1 score for performance
evaluation, and provided the 𝐹1 score for each category.

Performance Comparison. The semantic segmentation results of
airborne MS-LiDAR data are shown in Table 4, in the form of a confu-
sion matrix. Our DCTNet achieves excellent 𝐹1 scores of over 85% for
all categories except soil. Most of the misclassification points are found
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Table 4
Confusion matrix (%) of DCTNet on the airborne MS-LiDAR dataset. The numbers in the last three rows represent
the precision, recall, and 𝐹1 score for each class.

Categories True label

Road Building Grass Tree Soil Powerline

Prediction label

Road 85.9 3.0 0.0 0.1 9.9 0.0
Building 11.5 92.9 0.8 0.6 32.8 0.0
Grass 0.2 0.9 98.8 1.3 0.2 26.8
Tree 0.1 0.7 0.3 97.9 0.9 0.1
Soil 2.4 2.6 0.0 0.1 56.2 0.0
Powerline 0.0 0.0 0.0 0.0 0.0 73.1

Precision 87.8 90.0 99.2 92.2 68.2 93.3
Recall 85.9 92.9 98.8 97.9 56.2 73.1
𝐹1 86.8 91.4 99.0 95.0 61.6 82.0
Table 5
Quantitative comparison (%) of semantic segmentation performance on the airborne MS-LiDAR dataset. The highest evaluation
score is shown in bold type.

Methods Average 𝐹1 score mIoU OA Frame Per Sec.

PointNet++ (Qi et al., 2017) 72.1 58.6 90.1 3.1
DGCNN (Wang et al., 2019b) 71.6 51.0 91.4 11.6
RSCNN (Liu et al., 2019b) 73.9 56.1 91.0 6.3
GACNet (Wang et al., 2019a) 67.7 51.0 90.0 3.6
AGConv (Zhou et al., 2021) 76.9 71.2 93.3 3.2
SE-PointNet++ (Jing et al., 2021) 75.9 60.2 91.2 –
FR-GCNet (Zhao et al., 2021a) 78.6 65.8 93.6 –
PT (Zhao et al., 2021b) 80.5 73.6 93.1 3.5
PPT-Net (Hui et al., 2021) 80.1 73.6 92.7 23.1
Xiao et al. (Xiao et al., 2022) 83.3 79.3 94.0 –
PatchFormer (Zhang et al., 2022a) 82.4 77.8 93.1 15.9
ResMRGCN-28 (Li et al., 2023a) 81.1 74.0 93.3 21.9

Ours 86.0 80.2 95.0 23.3
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in areas of soil and roads. This is because the geometric characteristics
of the soil are very similar to roads, which tends to confuse the network.
More feature discrimination approaches are planned in our future work
to improve the ability of the model to distinguish the soil.

The comparison results are shown in Table 5. Our DCTNet outper-
forms all benchmarked methods, achieving the best results in terms
of both OA (95.0%), average 𝐹1 score (86.0%), and mIoU (80.2%). In
terms of inference efficiency, we also surpass the efficient Transformer
methods such as PPT-Net (Hui et al., 2021) and PatchFormer (Zhang
et al., 2022a). Visualization of comparison results are shown in Fig. 7.
These results show that our DCTNet has an excellent performance
in MS-LiDAR point cloud segmentation, exceeding that of previous
methods.

4.4. Network ablation

Ablation studies were conducted on the airborne MS-LiDAR dataset,
to verify the effectiveness of key blocks in DCTNet.

Dynamic Clustering-based LFA Block. In the LFA block (Sec-
tion 3.2) of DCTNet, we propose SDS and SDC methods for local fea-
ture aggregating, then use the cross-attention Transformer for feature
enhancement.

To evaluate their effectiveness, we first replaced the SDS method
with FPS. As shown in Table 6 (Row 2), the DCTNet network with FPS
obtains a lower average 𝐹1 score (85.2%) than with the SDS method
(86.0%). Additionally, FPS is also very time-consuming, which reduces
the inference efficiency of the network. As shown in Table 6 (Row 2),
we can see the DCTNet with FPS has a much lower Frame Per Second1

(2.7) than the original one (23.3).
Secondly, we used the ‘‘𝑘-Nearest Neighborhood (𝑘NN) + Mul-

iLayer Perceptron (MLP) + Maxpooling’’ to replace the proposed

1 Given that we partitioned the large-scale airborne MS-LiDAR dataset into
group of local samples for processing, the Frame Per Second metric here

ctually means Sample Per Second.
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SDC method, following the local feature extraction process in Point-
Net++ (Qi et al., 2017). Correspondingly, the point cloud upsam-
pling method in the decoder was also replaced with the trilinear-
interpolation upsampling. As shown in Table 6 (Row 3), after replace-
ment, the average 𝐹1 score of the network is reduced to 85.0% from
6.0%, which highlights the importance of the SDC method. The main
eason is that the 𝑘NN method achieves feature grouping only based on
hree-dimensional coordinates, ignoring local semantic homogeneity. In
erms of inference efficiency, Table 6 (Row 3) shows that the Frame Per
econd (16.5) of the network after the replacement is also lower than
he original one (23.3). These results demonstrate that the proposed
DC method is able to improve local feature aggregation.

Thirdly, we also conducted detailed ablation studies for the learn-
ble score set 𝐴 defined in Section 3.2. As shown in Table 6 (Row 4
nd 5), we firstly remove 𝐴 from both Eqs. (4) and (6), which actually
akes our local feature aggregation process degenerate to Eq. (3).
lthough the points in the same cluster have similar semantic features,

t is still hard for them to have the same importance for the network.
his simple average may lead to information loss. The drops in all three
etrics in Table 6 (Row 4) have confirmed it. Besides, we also explored

o only remove 𝐴 from the cross-attention Transformer layer of feature
nhancement which is defined in Eq. (6). We also observed slight drops
n all metrics in Table 6 (Row 5), which demonstrates that the learnable
core set 𝐴 is beneficial to local feature enhancement.

Finally, we removed the cross-attention Transformer in the LFA
block. As shown in Table 6 (Row 6), without the cross-attention Trans-
former, the average 𝐹1 score is reduced from 86.0% to 84.7%.

Dual-attention Transformer-based GFL Block. Dual-attention
Transformers (Section 3.3) have been proven effective by previous
works (Han et al., 2021; Lu et al., 2022). We conducted ablation
studies to verify that dual-attention Transformers outperformed vanilla
Transformers with only point-wise or channel-wise self-attention mech-
anisms. As shown in Table 6 (Row 7), when the channel-wise self-
attention is removed, the average 𝐹1 score of DCTNet drops from 86.0%
o 85.4%. Similarly, when the point-wise self-attention is removed (
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Fig. 7. Comparison results from different methods on the airborne MS-LiDAR dataset.
Table 6
Ablation study results (%) of key blocks in DCTNet.

Ablation Average 𝐹1 mIoU OA Frame Per Sec.

LFA
SDS →FPS 85.2 78.7 93.6 2.7
SDC → 𝑘NN + MLP 85.0 78.1 94.2 16.5
−𝐴 in both Eq. (4) and Eq. (6) 85.5 78.0 94.1 23.5
−𝐴 in Eq. (6) 85.7 78.9 94.5 23.3
− Cross-attention Transformer 84.7 77.3 92.7 29.0

GFL − CSA 85.4 79.2 93.9 24.9
− PSA 83.4 76.1 91.8 33.0

Upsampling Trilinear interpolation 85.5 77.9 94.0 20.8
Nearest neighbor interpolation 85.7 79.2 94.2 22.5

DCTNet 86.0 80.2 95.0 23.3
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Table 7
Ablation study results (%) for various neighborhood sizes.

k Airborne MS-LiDAR dataset ShapeNet dataset

Average 𝐹1 mIoU OA mIoU

4 83.1 78.3 90.9 85.8
8 85.5 79.8 94.4 86.6
16 86.0 80.2 95.0 86.6
32 85.9 80.0 94.5 86.3

Table 6, Row 8), there is a similar drop in terms of average 𝐹1 score
from 86.0% to 83.4%).
Point Cloud Upsampling Block. We compared the proposed se-

antic feature-guided upsampling (Section 3.4) in the decoder with
everal commonly used upsampling methods, such as trilinear interpo-
ation and nearest neighbor interpolation. The results are shown in Ta-
le 6 (Row 9, 10). According to the results, our semantic feature-guided
psampling method outperforms the aforementioned two interpolation
ethods in terms of all three metrics. This is because our upsampling
ethod assigns the features of the sampling points to the corresponding

luster points, according to the relationship stored in the encoder. This
nsures that the semantic features of upsampled points are not easily
moothed out and slightly improves upsampling efficiency.
Sensitivities of Parameters. Since we conduct 𝑘-nearest neighbor-

ood for each input point in the process of SDS to compute the local
ensity, we explored the impact of the neighbor point number 𝑘 on the

segmentation performance of DCTNet. A series of 𝑘 values are selected:
4, 8, 16, 32. In the case of taking both the airborne MS-LiDAR point
clouds with 4096 points and ShapeNet point clouds with 2048 points
as input, the segmentation performance of DCTNet with different 𝑘
alues is shown in Table 7. From the results, we can see that DCTNet
chieves similar results on both datasets in terms of the ablation studies
n 𝑘. Specifically, the model performance is close when 𝑘 equals 8, 16,
nd 32, which means that our model is robust to the neighborhood
ize 𝑘, with the best performance when 𝑘 is set to 16. However, the
erformance drops significantly when 𝑘 equals 4. This may be because
he 4-size neighborhood is too small to accurately represent the local
ensity of the point. Overall, the values of 𝑘 greater than 1/512 of input
oints work well in our experiments. These ablation studies could help
uide users to set appropriate parameters for local density computation
or unknown datasets.

. Conclusion

In this paper, we propose DCTNet, a novel Transformer-based 3D
oint cloud processing framework that is highly suited for segmenting
iDAR-remote sensing point cloud scenes, as well as general-purpose
oint cloud segmentation. DCTNet has a hierarchical encoder–decoder
tructure. For local feature learning, we propose the new Semantic
eature-based Dynamic Sampling and Clustering algorithms, acronymed
s SDS and SDC respectively. Compared with prevalent sampling and
rouping methods, our SDS and SDC are more suitable for semantic
nformation learning, while also facilitating the point cloud upsampling
rocess. For global feature learning, we utilize dual-attention Trans-
ormer blocks which excel at modeling long-range dependencies. Our
ecoder is symmetric to the encoder but contains our newly designed
emantic feature-guided upsampling method which improves efficiency
nd ensures that the semantic features of upsampling points are not
asily smoothed out. To our knowledge, DCTNet is the first work
o introduce semantic information-based dynamic clustering into 3D
ransformers. Extensive experiments on the ShapeNet (Wu et al., 2015)
nd Airborne MS-LiDAR datasets (Zhao et al., 2021a) demonstrate
hat DCTNet outperforms previous methods. In terms of algorithm effi-
iency, the inference speed of DCTNet is 3.8–16.8× faster than existing
OTA models on the ShapeNet dataset, while achieving a competitive
IoU top score of 86.6%. These results show that DCTNet has achieved
9

tate-of-the-Art status in point cloud segmentation.
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