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A B S T R A C T

Human-Robot Collaboration (HRC) has emerged as a pivot in contemporary human-centric smart manufacturing
scenarios. However, the fulfilment of HRC tasks in unstructured scenes brings many challenges to be overcome.
In this work, mixed reality head-mounted display is modelled as an effective data collection, communication, and
state representation interface/tool for HRC task settings. By integrating vision-language cues with large language
model, a vision-language-guided HRC task planning approach is firstly proposed. Then, a deep reinforcement
learning-enabled mobile manipulator motion control policy is generated to fulfil HRC task primitives. Its feasibil-
ity is demonstrated in several HRC unstructured manufacturing tasks with comparative results.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

In line with the evolving human-centricity trend for Industry 5.0, Human-
Robot Collaboration (HRC) has emerged as a prevailing manufacturing paradigm.
It simultaneously takes the advantages of human cognitive flexibility and robotic
automation capability to achieve better production efficiency [1]. Nevertheless,
existing robotic cells have encountered a significant hurdle in their ability to han-
dle unstructured manufacturing tasks, which require a high level of cognition in
mass personalization. These tasks typically encompass intricate product assembly,
disassembly, and inspection processes, characterized by the absence of pre-
defined structures or instructions necessitating swift adaptation. As a result, extant
HRC systems face difficulties in performing effectively in such unstructured sce-
narios, leading to inefficiencies and limitations in executing tailored manufactur-
ing tasks.

On one hand, to strengthen robotic cognition capabilities, multimodal intel-
ligence based HRC approaches have been widely investigated in the
manufacturing domain. Among them, vision-based ones often serve as the
main perception channel, owing to its cost-effectiveness [2]. Meanwhile, the
very recent breakthrough of large language models (LLMs) has also attracted
great interest in the natural language guided HRC applications. Nevertheless, as
an emerging topic, how to align the visual and linguistic cues, and comprehend
the underlying semantics via LLMs to jointly facilitate HRC in the manufactur-
ing scenarios is yet to be much explored.

On the other hand, robot skills (e.g., tasks, working steps, trajectories) are nor-
mally pre-programmed in a fixed workstation for automation efficiency. However,
when it comes to an unstructured manufacturing scene and/or unpredictable
human interventions, existing solutions fail to adapt effectively. To meet such
demand, next-generation robot manipulators should be well-equipped with
human-guided learning capabilities to collaborate and even co-evolve with human
operators effectively.
To address these two issues, this work introduces a vision-language-guided
deep reinforcement learning (DRL)-enabled planning approach for unstructured
HRC manufacturing task fulfilment via Mixed-Reality Head-Mounted Display (MR-
HMD). Firstly, the potential of MR-HMD is thoroughly explored, transforming it
into an efficient tool for data collection, communication, and state representation
in HRC. This involves capturing structured scene information, language guidance
instructions, and raw image streams. Secondly, a vision-language understanding
model is developed based on acquired language and image data, enabling adaptive
HRC task planning. Specifically, a vision-language-guided target object segmenta-
tion model is devised to localize robotic action goals, while an LLM-based robotic
task planning module generates action plans using language commands. Finally, a
time-aware DRL-based whole-body motion planning policy is proposed, utilizing
planned tasks, acquired vectors, and image sequences to successfully complete
diverse HRC tasks, while ensuring human safety. The rest of this paper is organized
as follows: Section 2 gives an overall systematic methodology encompassing the
vision-language guidance and DRL-based whole-body motion planning via MR-
HMD. Section 3 provides a demonstrative case study to validate its feasibility with
comparative analysis. At last, Section 4 summarizes the major findings and high-
lights the potential future works.
2. Methodology

To fulfil various HRC manufacturing tasks in unstructured scenes, the proposed
system framework is depicted in Fig. 1.When completing various HRC tasks, human
operators wearing MR-HMD play a crucial role in twofold. On the human operator
side, natural language-based task prompt instructions are given and collected from
operators wearing MR-HMD at the initial phase of the HRC task. These prompts are
then fed into LLMs for adaptive task planning, aligning with the MR-HMD’s vision
perception module to extract scene information and specify HRC task settings in
detail. On the mobile manipulator side, the human operator utilizes the MR-HMD to
extract data streams that aid in the accomplishment of HRC tasks. These data
streams consist of the first-person view RGB scene image sequences stream and the
semantic vector stream. The semantic vector stream includes information about
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Fig. 1. System framework of the proposed human vision-language-guided DRL-
enabled approach for unstructured HRC task fulfilment via MR-HMD.
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pose and distance information among humans, robots, and goals detected with the
device’s own-built spatial functions, sensors, and detectors. Compared to conven-
tional vision system settings, MR-HMDs are portable and mobile perception tools,
that can perceive the scene flexibly on demand. Also, it brings the information of
human and spatial information by nature without much extra computation cost.
These dual data streams are processed and fed into a DRL-based whole-body
robotic motion planning module. Consequently, it facilitates the optimization of the
synergistic relationship between humans and robots during task execution, foster-
ing a safe and efficient HRC in the unstructured environment.

2.1. Human vision-language-guided task planning

The ability to understand natural form of human vision-language commands
and deduce a feasible robotic action plan is of tremendous importance for on-site
HRC. Our preliminary works have introduced spatial-temporal neural networks
[3] and multi-granularity scene segmentation strategy [4], to achieve HRC scene
understanding. However, unlike explicit language communications, they rely
solely on visual information, which can exhibit certain vagueness. Recent research
endeavours, such as Venkatesh et al. [5] and Valente et al. [6] have leveraged
human language cues to complement vision data for robotic task fulfilment. How-
ever, the language comprehension ability is still quite limited by the rather small-
scale Long Short-Term Memory (LSTM) model. To address those issues, a vision-
language-guided adaptive HRC task planning approach is introduced in Fig. 2,
Fig. 2. Vision-language model-based adaptive HRC task planning approach.
which consists of two parts: 1) vision-language-guided target object segmenta-
tion, and 2) LLM-based zero-shot robotic task plan generation.

Vision-language-guided target object segmentation. It aims to segment a
certain object from the visual observation based on the specification underlying the
language command. Concretely, the input to the model consists of an RGB image of
the HRC scene and a natural language command. The RGB image will first be proc-
essed by a visual encoder, such as a ResNet-50 backbone, owing to its wide adop-
tion and great generalization ability, of which the result is the extracted visual
feature Fv 2ℝ H�Wð Þ�C . H, W, C are the height, width, channels of the feature map,
respectively, and ℝ denotes that the elements are real-valued. The language data
will be exploited by a pretrained language encoder BERT and transformed into a
language feature fl 2ℝC . The vision and language features are then fused into the
multi-modal feature Fm 2ℝ H�Wð Þ�C by Hadamard product. A standard Transformer
[7] encoder is then adopted to process Fm: Then a Transformer decoder predicts the
coordinates of the target object contour points in an auto-regressive manner, with
a multi-layered perceptron and a final softmax function. The coordinate sequence
can be further easily converted to the final segmentation mask via basic image
processing. Sine positional encoding is added to the input sequence for permutation
invariance. The training loss function is formulated as a cross-entropy loss over the
sequence:

L ¼ �
X2N
i¼1

wilogP ŷl jFm; y1:i�1ð Þ; ð1Þ

where w is the per-token weight, y and by are the input and target sequences
associated with Fm , and P stands for the estimated probability measuring
the similarity between the estimation and ground truth. The primary advan-
tage of this formulation over binary mask prediction works is that one can
transform the 2D mask prediction task into a point sequence (mask contour
point coordinates) prediction task. This is more aligned with sequential pre-
diction nature of Transformer architectures. The target object segmentation
model serves as the fundamental implementation of the get_pos(x) primitive
skill, which is the most crucial functionality for further adaptive task
planning.

LLM-based zero-shot robotic task plan generation. To achieve a zero-shot
task planning, an LLM-based task plan generation approach is shown in Fig. 2, with
an example of a human-guided robot pick-and-place task. Based on the derived seg-
mentation information from the previous step, the LLMmakes a parse of the human
instructions and performs task planning. It divides the task into six steps corre-
sponding to the order of movements as well as the locations indicated by the
instruction. Then, code generation LLM is utilized to complete the robotic task by
calling primitives according to the task steps.

Specifically, Generative Pre-trained Transformer (GPT-3.5) is leveraged to inter-
pret natural language instructions and decompose them into subgoals for task plan-
ning. Additionally, we employ the Codex code generation model, which is
pretrained on billions of code lines from GitHub, to synthesize executable Python
robot code. This enables accurate invocation and composition of parameterized
action primitives and execution of arithmetic operations when needed. The robot
code is expressive of function or logic structures, and allows for parameterized
Application Programming Interface (API) calls, such as robot.move_to(object). Some
other primitive robotic skills are shown in Fig. 2 aswell. With the primitives in place,
the model can receive new instructions and automatically combine API calls to gen-
erate new robot codes. Through the adaptation of LLMs and the integration of primi-
tive skills, the approach demonstrates great potential for adaptive HRC task
planning. The sequential primitive tasks will be further transmitted to the DRLmod-
ule for the concrete planning and control of the mobile manipulator for task fulfil-
ment.
2.2. DRL-based mobile manipulator task completion

With the planned tasks and segmented scene information from the previous
section, the mobile manipulator is employed to fulfil the specific manufacturing
tasks. Compared to fixed-base robots, the mobile manipulator exhibits significant
potential for broader applications in HRC, owing to its extended range of move-
ments and high flexibility in completing unstructured manufacturing tasks [8].
Constrained by factors such as control complexity, task execution safety, and pro-
gramming costs, the predominant approach to mobile manipulation in HRC
involves the sequential execution of movements of the mobile base and the
robotic arm. However, such simplification compromises efficiency, impacting both
control performance and productivity [9]. Inspired by [10], this research further
adopted DRL in generating an end-to-end whole-body motion planning policy,
facilitating the completion of HRC tasks in unstructured manufacturing scenarios
via MR-HMD.

Problem formulation: DRL is an optimization approach that enables agents
to self-optimize via autonomously interacting with the environment [11]. In this
work, the mobile manipulation is formulated as Markov Decision Processes to
generate the control policy pðat jstÞ and optimized by DRL of generating action at
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2A regarding state st 2 S to gain the largest cumulated reward (i.e. better perfor-
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gt rt

� �
. Under this circumstance, with the previous assigned

task primitive settings, the DRL module collects both the first-person/third-per-
son view RGB image flow and the semantic state vectors via MR-HMD to predicts
the actions at for the robotic moving base and robotic upper arm to fulfil the task
primitives. The workflow of the proposed DRL-based planning policy is shown in
Fig. 3. In which, the policy is trained by the Proximal Policy Optimization (PPO)
algorithm [12]. PPO is widely recognized in the field of robotics [13] and it uti-
lizes an actor-critic framework with an update clip function and importance
sampling, to ensure efficiency and promote stable learning performance. The
loss function of PPO is shown in Eq. (2):

Lclip uð Þ ¼ Et
XT
t¼0

min rt uð ÞÂt ; clip rt uð Þ;1� e;1þ eð Þ
� �

Ât

" #
ð2Þ
Fig. 3. Workflow of the proposed DRL-based mobile-manipulator whole-body motion
planning approach.

Fig. 4. Demonstrative HRC unstructured scenes in simulation and practice.

Table 1
Experimental results of the target object segmentation model.

Method Components mIoU

Yu et al. [14] ResNet-101; Bi-LSTM 65.36
Luo et al. [15] DarkNet-53; GRU 72.76
Ours ResNet-50; BERT; Transformer decoder 77.89

Table 2
Experimental results of the LLM-based task planning strategy.

Task 1 Task 2 Task 3 Average success rate

17/20 19/20 15/20 85 %
The clip function is applied element-wise to each component of the ratio rtðuÞ
¼ puupdate

ðat jst Þ
puold

ðat jst Þ : If the ratio falls outside the range ½1� �; 1þ ��, it is clipped to the

nearest bound. � is a hyperparameter that controls the range within the ratio rtðuÞ
clipped. This effectively limits the extent to which the policy can change at each

update step. bAt is the advantage function that measures howmuch better an action
is, compared to the average action at that state. Hereby, PPO achieves a balance
between exploration and exploitation, preventing large policy changes while still
allowing an effective learning and adaptation process.

In the context of DRL algorithms-based mobile manipulator control, the algo-
rithm settings pertaining to the state, action, and reward spaces play a pivotal role.
Unlike fixed-base robot control, mobile robot manipulation introduces additional
complexities of collaboration between the base and actuator that requires careful
consideration before its practical implementation. To ease the process, detailed algo-
rithm settings are outlined below:

Observation state (S) serves as a representation of the human-robot work-
ing scene and its associated conditions. Unlike conventional observation
approaches, the MR-HMD not only captures visual pixel signals as inputs for
control policy, but also provides rich semantic vectors such as robots, human
operators, and environment relevant information. The mixed state representa-
tion could significantly contribute to the learning process, and further improve
the efficiency and performance in control policy for HRC activities. Meanwhile,
the internal sensing system of the mobile manipulator is only adopted for
emergency safety assurance purposes. Followed by the proposed approach, the
MR-HMD collected state representation consists of two parts: 1) the visual
input part Si , which is from the MR-HMD first-person view camera and an
external third-person view fixed camera, and 2) the state vector detected by
MR-HMD devices Svect, which consists of the robot (e.g., joint states, end effec-
tor), human (e.g., hand, body, head), scene (e.g., layout, obstacles) and relative
properties (e.g., object-relevant distance information). Moreover, especially in
an unstructured manufacturing scene, the temporal information, including
obstacles and robot trajectories are important references for control policy gen-
eration. Thus, the temporal information of the past 2 frames’ state vectors are
concatenated and stored in the buffer to fit the policy learning with MR-HMD, i:
e:; St ¼ ½½simgt ;⋯; simgt�2

�; ½svectt ;⋯; svectt�2 ��.
Action space (A) is a joint space of discrete and continuous actions A ¼ ½

adisc; aconti� for the whole-body motion control to handle the mobile manipula-
tor geometry purpose. The discrete part maps to the robotic arm’s end effector
movement, in which the inverse kinematics solver is utilized to transform the
robot’s joint space into the Cartesian coordinates of fixed-oriented
adisc ¼ ðDx;Dy;DzÞ. The continuous one aconti is the mobile robot base’s two-
dimensional actions for relative position control, including one dimension for
forward/backward control and the other dimension to control the orientation
of the mobile robot base, where aconti ¼ ðDx; DuÞ. With such a mixed action
space, the DRL algorithm outputs the action of robotic arm and mobile base to
collaboratively explore the feasible trajectories.
Reward space (R) incorporates multiple criteria to reflect task performance.
In DRL-based robot manipulations, the most intuitive approach to formulating
reward configuration is solely based on the task target. However, due to sparse
feedback, this approach results in a large search space. To accelerate policy conver-
gence and improving performance, additional constraints are introduced in the
form of reward terms. Hereby, the reward signals can be decomposed into discrete
task goal state, safety, and a continuous distance-based task progress indicator. It
combines multiple tolerance settings, like success rate (e.g., target reaching devia-
tion � 5 mm), safety (e.g., human-robot distance � 50 mm), time tolerance (�
40 s), and task progress (e.g., robot-target/end effector-target distance), denoted
as R = (rtask , rsafe, rprogress).
3. Case study

To demonstrate the performance of our proposed approach in handling
unstructured HRC manufacturing tasks, comparative experiments are con-
ducted on HRC assembly tasks in the lab environment. The experimental setup
includes visual sensors (e.g., Azure Kinect), a HoloLens2 MR-HMD, a GPU server
(RTX 3080), and a mobile robot (UR5E + MIR100), as shown in Fig. 4.
3.1. Vision-language reasoning for HRC task planning

To demonstrate the performance of the proposed vision-language-guided HRC
task planning approach, the target object segmentation model is first evaluated on
a dataset collected in our scenario. The dataset contains 463 pairs of image-text
data with 370 for training and others for testing. Each pair of data consists of an
RGB image and a reference expression text indicating a target object in the associ-
ated image. The input image size is 640 £ 640, extracting feature size H and W at
1/32 the original size. The transformer has a 256-dimensional hidden feature, 6
encoders, and 3 decoders. The Adam optimizer with an initial learning rate of 5e-4
and batch size of 32 are used to train the model. The evaluationmetric we adopted
for the target object segmentation model is mean Intersection over Union (mIoU),
which is widely used in segmentation tasks to measure the segmentation accu-
racy. Comparative experimental results are shown in Table 1, which demonstrates
an obvious improvement of our proposed method against previous approaches.
Meanwhile, the LLM-based task planning strategy is evaluated in an empirical
way by asking human experts to check the feasibility and correctness of the LLM-
generated task plan. The evaluation is performed for three pre-defined tasks
abstracted from the HRC working process: 1) Fetch a specific part from the storage
area, 2) place a gear into the case, and 3) pick a case cover and put it onto themod-
ule. Each task will be repeated 20 times, and the corresponding success rate is cal-
culated and listed in Table 2, which demonstrates the ability of the proposed
method to facilitate HRC task fulfilment. In case of failure, human inspection can
help prompt the LLM for an adjusted plan, guided by explanations of the prior
plan’s shortcomings.
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3.2. DRL experiments for mobile manipulator task fulfilment

To demonstrate the effectiveness of the proposed MR-HMD-based DRL
approach, Table 3 shows the DRL training parameters of 1000 different targets in
the simulated working scene, based on the real HRC task settings, and the success
rates of different algorithm settings are presented in Table 4. Notably, our time-
based approach performs best, whereas the purely visual one fails to complete any
task. Moreover, the remaining results highlight the MR-HMD’s ability to enhance
the control policy for unstructured HRC tasks meeting the demands of scenarios.
Table 4
Experimental results of the MR-assisted DRL motion planning.

Algorithm settings Average success rate Reward Episode length

Visual Vector � �11.76 62.49 Steps
MR-assisted Vector 54.4 % �7.397 103.1 Steps
Visual + MR-assisted
Vector

86.6 % �3.814 95.13 Steps

Time-based
Visual + MR-assisted
Vector

90.2 % �2.939 89.01 Steps

Table 3
Training parameters of the proposed DRL-based approach.

DRL training
parameters

Batch
size

MLP
hidden
units

CNN
hidden
units

Learning
rate

Training
steps

Value 5000 512:512:
512

32:64:
64

0.0003 1M
3.3. Experimental result discussions

From the HRC task planning results, one can observe: 1) a considerable
improvement of the vision-language-guided object segmentation performance,
and 2) the feasibility of leveraging LLM as the HRC task planner. However, practical
issues of LLMs still require further investigation, such as computational and net-
work latency, due to the reliance on cloud-run GPT models. Meanwhile, from the
motion planning results based on add-on information stream by MR-HMD, two
major advantages can be observed: 1) the robot learning process becamemore effi-
cient and interpretable, and 2) the uncertainties of the control strategy have been
largely reduced. However, as a trade-off, the proposed DRL method requires more
prior expert knowledge and consumes higher computational resources. Addition-
ally, to ensure the scalability and adaptability of the MR-HMD system in various
manufacturing scenarios will result in a higher overall expense.

4. Conclusions and future work

This work proposes a vision-language-guided DRL-enabled task planning
approach for unstructured HRC in manufacturing. The main scientific contribu-
tions of it include: 1) MR-HMD modelling as an effective tool for data collection,
communication, and state representation in HRC task settings; 2) a vision-lan-
guage-guided target object segmentation model to provide localization
information for robotic action goals, along with an LLM-based robotic task plan-
ning module; and 3) an MR-assisted time-aware DRL-based whole-body motion
planning policy for mobile robot manipulators to fulfil various unstructured
manufacturing tasks. Their performance has been evaluated via comparative
experimental results. In future, both multi-modality large models-based robot
learning, and advanced human-in-the-loop learning mechanisms will be
explored for more intuitive and effective HRC.
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