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A B S T R A C T   

Scholars, stakeholders, and the government have given significant attention to the development of renewable 
energy in recent times. However, previous research has failed to acknowledge the potential impact of artificial 
intelligence on advancing renewable energy development. Drawing insights from a global dataset encompassing 
63 countries over the period 2000–2019, this paper provides significant observations regarding the influence of 
artificial intelligence on the progress of renewable energy, by using the Instrumental Variable Generalized 
Method of Moments model. We also explore their asymmetric nexus, and the potential mediation effect. 
Moreover, this study explores the moderating role of climate finance and highlights the following interesting 
findings. First, artificial intelligence contributes significantly to the enhanced development of renewable energy, 
and this primary finding holds after two robustness tests of changing independent and dependent variables. 
Second, artificial intelligence has an asymmetric effect on renewable energy development, and their nexus is 
closer in countries with lower levels of renewable energy development. Thid, artificial intelligence works on 
renewable energy development through technology effect and innovation effect. Fourth, climate finance also 
presents direct benefits to renewable energy development; simultaneously, climate finance plays an effective 
moderating role in the relationship between artificial intelligence and renewable energy development. These 
findings inspire us to propose policy implications to promote the enhanced development of renewable energy.   

1. Introduction 

The escalating levels of greenhouse gas emissions, particularly car-
bon emissions, have resulted in severe climate change and global 
warming (Khan et al., 2021; Zhao et al., 2022d). These phenomena have 
triggered catastrophic consequences for both ecosystems’ sustainability 
and human beings (Bidwell and Sovacool, 2023; Zhao et al., 2022a). 
Furthermore, the deterioration of the climate system and the occurrence 
of climate-related disasters have hindered sustainable development on 
various fronts (Esperon-Rodriguez et al., 2022; Zhao et al., 2023b). For 
instance, extreme weather events such as hurricanes, floods, and 
droughts have inflicted immense damage on infrastructure, agriculture, 
and livelihoods (Halpern et al., 2022). Vulnerable communities, 
including those in low-lying coastal areas or arid regions, are particu-
larly susceptible to the adverse effects of these climate hazards 

(Goodwin et al., 2023; Logan et al., 2023). Recognizing the critical 
importance of mitigating climate change, countries worldwide have 
increasingly acknowledged the need to address this pressing issue. One 
significant approach is the development of renewable energy (Naeem 
et al., 2023; Taghizadeh-Hesary et al., 2023). As mentioned in World 
Energy Outlook, in 2022, the share of power generation capacity from 
renewable energy sources was 41%, and the goal is to increase the 
proportion to 50% by 2030. Alongside this, there is also a target of 
achieving 500 gigawatts (GW) of renewable energy capacity by the year 
2030.1 Transitioning to renewable energy offers a pivotal solution for 
mitigating carbon emissions and promoting sustainable economic and 
social development (Zhao et al., 2023c). Thus, it is urgent and necessary 
to explore how to promote renewable energy development (RED). 

As climate change continues to unfold, technological advancements 
are simultaneously progressing on a global scale. One significant 
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development in this regard is the emergence of Industry 4.0, which has 
also propelled the growth of artificial intelligence (AI) (Lei et al., 2023). 
The Industry 4.0 revolution signifies a fundamental change in industrial 
processes, propelled by the incorporation of digital technologies into 
manufacturing and associated sectors (Olabi et al., 2023; Saheb et al., 
2022). In particular, industrial robots play a pivotal role as a key 
enabling technology within industry 4.0 and the AI revolution, facili-
tating the intelligent and environmentally friendly transformation of 
traditional industries (Soori et al., 2023). The International Federation 
of Robotics (IFR) declares that industrial robots are versatile, reprog-
rammable machines that operate under automatic control, serving 
various purposes within industrial automation (IFR, 2023). World Ro-
botics report reveals that in 2021, a record-breaking number of 517,385 
new industrial robots were deployed in factories worldwide, marking a 
31% surge from the previous year. As a result, the total number of 
operational robots worldwide has reached an unprecedented level of 
approximately 3.5 million units.2 Moreover, industrial robots represent 
a distinct advancement in technology, setting them apart from early 
automation and conventional information and communication tech-
nologies (Li et al., 2023b; Sayed et al., 2023). Their extensive imple-
mentation in manufacturing and other domains has the potential to yield 
significant benefits for sustainable development (Yao et al., 2023; 
Delanoë et al., 2023). By leveraging automation, industrial robots 
contribute to reduced resource waste, shorter production cycles, and 
lower energy consumption (Entezari et al., 2023; Hossin et al., 2023). 
These outcomes hold immense significance in the pursuit of sustainable 
development goals. 

Literatures have focused on the topic of AI and revealed its positive 
role in social, economic, and environmental improvement. Existing 
research has indicated that the development of AI technology, repre-
sented by industrial robots, helps to reduce inequality between devel-
oped and developing countries (Yang and Wang, 2023), improve the 
quality of trade products (Lin et al., 2022), promote green innovation 
(Lee et al., 2022b), and reduce carbon emissions (Li et al., 2022; Wang 
et al., 2023b; Yu et al., 2023). Furthermore, considering that AI is closely 
related to energy efficiency and innovation in renewable energy tech-
nology, it may also have the potential to accelerate RED. However, few 
studies have linked AI with sustainable energy development, which is 
also the objectivity of this study. 

Since the adoption of the Kyoto Protocol in 1997, developed nations 
have provided financial support to developing countries to assist them in 
both mitigating and adapting to the impacts of climate change. Climate 
finance (CF) has emerged as a crucial mechanism for aiding developing 
countries in their efforts to tackle climate change, and has gained 
prominence in international climate negotiations (Anantharajah and 
Setyowati, 2022; Bhandary et al., 2021). The rationale behind the 
establishment of CF stems from the recognition that many developing 
countries face substantial challenges in addressing environmental sus-
tainability issues due to limited resources and capacities (Carè and 
Weber, 2023; Stroebel and Wurgler, 2021). Consequently, CF is 
conceived as a crucial stride towards mitigating global emissions 
(Alharbi et al., 2023; Aquilas and Atemnkeng, 2022; Lee et al., 2022a; 
Sinha et al., 2023). It serves to assist developing nations in striking a 
delicate balance between sustaining economic growth and reducing 
GHG emissions, offering fresh incentives for the adoption of low-carbon 
pathways (Zhao et al., 2022c). Through CF, donor countries distribute 
versatile aid to recipient developing nations, enabling them to finance 
projects and programs focused on reducing emissions and safeguarding 
the environment (Alharbi et al., 2023; Biagini et al., 2014; Xu et al., 
2023). In essence, CF acts as a catalyst for change by bridging the 
financial gap and supporting developing countries in their pursuit of 
sustainable development (Qi et al., 2023). It plays a pivotal role in 

facilitating the transition towards a low-carbon economy and enhancing 
climate resilience in vulnerable regions. By channeling financial re-
sources towards initiatives such as renewable energy investments or 
initiatives aimed at combating deforestation (Tang and Zhou, 2023), CF 
contributes to global efforts aimed at tackling environmental degrada-
tion (Umar and Safi, 2023). Moreover, it fosters cooperation and part-
nership between developed and developing nations, recognizing the 
shared responsibility in addressing the climate crises and achieving 
collective climate goals (Yu et al., 2022). Scholars stress that in addition 
to CF’s positive energy and environmental effects, it plays an important 
role in reducing economic risks (Zhao et al., 2022e), narrowing 
inequality (Kafle et al., 2022), and achieving the nationally determined 
contribution (NDC) target (Abi Suroso et al., 2022). In the nexus be-
tween AI and RED, it is also vital to consider the role of CF. 

Based on the above background introduction, we are concerned with 
the following questions. (1) Can AI development facilitate RED? And 
will their nexus be asymmetric? (2) If AI leads to better RED, how does 
AI realize this positive RED effect? What are the impact mechanisms? (3) 
Will CF also have a positive impact on RED? And what is the role of CF in 
the AI-RED nexus? To this end, we utilize a global panel dataset of 63 
countries for the period 2000–2019 to empirically investigate the impact 
of AI on RED by taking industrial robot installation as a proxy variable 
for AI. We also use the panel quantile regressions model to detect the 
asymmetric relationship between AI and RED. Also, we explore the 
impact mechanisms, as well as the mediation role of CF. 

This paper makes several noteworthy contributions. First, unlike 
previous literature that has focused on the social and environmental 
impacts of AI, this study explores the relationship between AI and RED. 
Our empirical investigation is the first to examine the potential of AI in 
promoting RED, bridging a research gap and providing a fresh 
perspective on achieving RED through AI. Second, in terms of research 
design, we not only explore the linear nexus between AI and RED, but 
also document their nonlinear relationship, namely the asymmetric 
impact of AI on RED. Third, we meticulously examine the impact 
mechanisms of technology and innovation effects, considering energy 
efficiency and R&D as mediating variables. This contribution broadens 
the scope of research in this field. Fourth, we construct an integrated 
framework encompassing AI, CF, and RED, emphasize the positive in-
fluence of CF on RED, and further explore how CF amplifies the RED 
promotion effect of AI. Consequently, CF is identified as a moderating 
variable that synergistically works with AI to achieve enhanced RED 
outcomes. 

In this study, we review the literature and summarize existing 
literature gaps. Afterward, we present the estimation model and data. 
Then, we deliver the estimation results and discuss further analysis. 
Finally, we conclude the paper and tender some policy suggestions. 

2. Review of literature 

2.1. Empirical studies on artificial intelligence and its nexus with energy 

In recent decades, some scholars have investigated the development 
of AI, especially its effects on installing industrial robots and the 
consequent social-environmental implications. For example, Yang and 
Wang (2023) verify that industrial robot applications have positive ef-
fects enabling trapped countries to cross the middle-income trap, based 
on a dataset of 37 leapfrogged countries and 24 trapped economies 
during the period 1993–2019. The authors also maintain that techno-
logical innovation, industrial structure, and FDI are three mediators. Lin 
et al. (2022) find that industrial robot application also positively affects 
the quality of export trade because AI leads to higher labor productivity 
and human capital accumulation, and the role of AI is more effective in 
high-tech industries. Meanwhile, based on global panel data of 34 
countries between 1993 and 2019, Lee et al. (2022b) show that indus-
trial robot development has positive effects on green technology inno-
vation, and environmental regulation can reinforce the technology 

2 For details, please see https://ec.europa.eu/newsroom/rtd/items/771175/ 
en. 
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innovation promotion effect of AI. Thus, AI development is crucial for 
social, equal, and sustainable development. 

In addition to AI’s social impact, the literature also points out that it 
has positive environmental effects, such as promoting energy efficiency 
and inhibiting carbon emissions. For instance, Wang et al. (2023b) 
investigate the detailed relationship among industrial robot develop-
ment, carbon emissions, and energy rebound. They declare that AI 
development induced by industrial robot applications can help reduce 
carbon emissions. Yu et al. (2023) also pay attention to the role of in-
dustrial robots in low-carbon city development in China and verify the 
carbon emissions mitigation effect of industrial robot application, and 
the impact mechanisms are energy efficiency and green technology. This 
conclusion is supported by Yao et al. (2023) who also find that AI in 
energy sector is helpful for enhancing energy efficiency. Li et al. (2022) 
find that industrial robot application drives the reduction of carbon in-
tensity, and the carbon intensity reduction effect of AI is more prominent 
in some sectors such as manufacturing, electricity, and gas, which is 
similar to the conclusion of Olabi et al. (2023). Moreover, Liu et al. 
(2022) and Chen et al. (2021) also confirm the significance of AI in 
promoting energy efficiency. In addition, Li et al. (2023b) verify the 
positive effect of AI on energy and resource efficiency based on firm- 
level data in China between 2005 and 2014. And Sayed et al. (2023) 
show that AI can lead to the advancement and perfection of energy 
systems. The energy sustainable development effect of AI is also 
mentioned by Delanoë et al. (2023), Entezari et al. (2023), Hossin et al. 
(2023), and Lei et al. (2023). 

2.2. Empirical studies on climate finance and its nexus with energy 

In recent years, some studies have documented the impact of CF on 
RED. Specifically, Aquilas and Atemnkeng (2022) take the Congo basin 
as a case study to explore the role of CF for the period 2002–2020, and 
find that the enhancement in climate-related mitigation finance accel-
erates RED, which further leads to carbon emissions mitigation. Qi et al. 
(2023) also find that green finance projects are crucial for RED and 
realizing the zero emissions goal. In addition, based on the case of China, 
Tang and Zhou (2023) investigate the impact of CF on RED in China and 
show that CF can not only promote RED locally, but also has a positive 
effect on RED in neighboring regions. Lee et al. (2022a) investigate CF 
on carbon emissions between 2000 and 2018, and show that CF has a 
positive effect on carbon emissions mitigation. The finance of climate 
change mitigation and climate change adaptation both show significant 
effects. Moreover, they also reveal that compared to high-quality 
economies, small island countries benefit more from climate aid, 
which means that this effect is greater in developing countries. This 
conclusion is supported by Pinar (2023) who also shows the effective-
ness of CF on carbon emissions mitigation. In addition, Umar and Safi 
(2023) take the budget spent on renewable energy public R&D as a 
proxy variable for climate-related development finance, and find that CF 
leads to lower trade-adjusted carbon emissions in OECD countries. 
Similarly, Yu et al. (2022) explore the nexus between CF and carbon 
emissions; based on the data from 60 countries around the world, they 
show that the amount of money spent on R&D for renewables can 
significantly reduce carbon emissions. Similar to CF, the role of finance 
on energy aid is stressed by Liu et al. (2023), who use 65 countries’ data 
from 2002 to 2020 to find the impact of energy aid on carbon emissions. 
They conclude that energy aid finance is an effective means for miti-
gating carbon emissions. Moreover, technical and structural effects are 
the impact mechanisms. Chung et al. (2018) focus on the CF related to 
technology development, and find that CF has an insignificant impact on 
overall emissions reduction; however, they also mention that CF is 
effective in reducing carbon emissions in certain sectors such as electric 
power sector. Using the quantile regression model, Carfora et al. (2017) 
reveal that while climate financial support is crucial for curbing emis-
sions, its influence varies depending on the distribution of fund alloca-
tion. The finding of the positive effect of CF on carbon emissions 

mitigation is also detected by Alharbi et al. (2023), Biagini et al. (2014), 
and Xu et al. (2023). 

2.3. Literature gaps 

While it is evident from the above discussions that the intersection of 
AI, CF, and RED has garnered significant attention from scholars, there 
remain noteworthy gaps in the existing literature. First, although prior 
studies have examined the social and environmental impacts of AI, 
including its pivotal role in elevating trade quality, fostering innovation, 
and propelling advancements in energy systems, a notable absence 
persists in connecting AI to RED. This signifies that the causal effect of AI 
on the advancement of renewable energy sources remains unverified. 

Second, delving into the nuanced and potentially asymmetric impact 
of AI on RED, alongside the intricate underlying mechanisms at play, 
emerges as a crucial area for further exploration. Intriguingly, the 
literature landscape has seen scant investigation into the asymmetric 
effects of AI on RED and their pathways of influence, leaving a critical 
knowledge gap. 

Third, while certain studies have shed light on the direct influence of 
CF on RED, there has been a notable dearth of scholarly attention 
directed towards probing whether CF wields a moderating influence in 
the intricate nexus between AI and RED. Consequently, the imperative 
arises for researchers to embark on the task of integrating AI, CF, and 
RED into a comprehensive analytical framework. This integrated 
framework will enable the estimation of CF’s potentially pivotal 
moderating role, warranting a thorough and insightful discussion. In 
light of these considerations, it is imperative to conduct rigorous 
research endeavors that bridge these gaps. 

3. Methodology and data 

3.1. Econometric model 

The research questions in the Introduction part drive us to construct 
a comprehensive framework to evaluate the causal relationship between 
AI and RED. To this end, we construct a multivariate estimation model 
that includes RED, AI, and a series of control variables. 

REDit = f (AIit,GDPit,FDIit, TRADEit,POPit, INDit) (1)  

where REDit represents the development level of renewable energy, and 
AIit shows the development level of artificial intelligence. The control 
variables GDPit, FDIit, TRADEit, POPit, and INDit denote economic 
development, foreign direct investment, trade volume, population, and 
industrial development. In addition, i and t in the subscript represent the 
sample country and time. 

We take the logarithmic form of the above variables to reduce the 
heteroscedasticity problem; thus, we generate the following equation. 

lnREDit = β0 + β1lnAIit + β2lnGDPit + β3lnFDIit + β4lnTRADEit
+β5lnPOPit + β6lnINDit + πi + μt + εit

(2) 

In the above equation, the six parameters β1 − β6 measure the im-
pacts of the independent variables on the dependent variable. On ac-
count that our research aim is to accurately evaluates the causal impact 
of AI on RED and we want to answer the question about the nexus be-
tween AI and RED, β1 is the most important parameter that we con-
cerned, which shows the elasticity relationship between AI and RED and 
we expect to be positive. We also consider two-way fixed effects, which 
can be found in πi and μt. εit is the error term. 

Regarding the estimation methodology, our primary choice is the IV- 
GMM approach. While this study incorporates various control variables 
related to the economy, trade, industrial development, and population, 
it is possible some variables that have impacts on RED are excluded, 
resulting in omitted variable bias. Additionally, reverse causality may 
exist because energy development may lead to economic improvement 
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and induced technological advancements. Under such conditions, 
employing ordinary least squares (OLS), fixed effect (FE), random effect 
(RE), or feasible generalized least squares (FGLS) may not yield an 
effective and consistent estimation due to potential endogenous prob-
lems; although FGLS is reliable and feasible at dealing with unknown 
heteroscedasticity problems (Zhao et al., 2022b). In contrast, by utiliz-
ing orthogonal conditions, the IV-GMM technique can offer consistent 
and efficient estimators when addressing endogeneity concerns (Zhao 
et al., 2023a). Moreover, following Acheampong et al. (2020, 2021), we 
take the lag term of the independent variable (i.e., AI) as the IV in the IV- 
GMM model. 

3.2. Variables and data 

Our dependent variable, RED, is measured by the generation level of 
renewable energy (Zhao et al., 2023c). We obtain the data for renewable 
energy generation, including hydroelectricity, solar energy, wind en-
ergy, and geothermal energy generation, from the British Petroleum 
(BP) (BP, 2023) website. These data are then aggregated to obtain the 
total generation level of renewable energy, which serves as a proxy 
variable for RED. Fig. 1 presents the levels of RED in 2000, 2010, and 
2019, respectively. The data in Fig. 1 illustrate a significant increasing 
trend in RED over the past two decades, despite the fact that developed 
countries generally have higher levels of RED than developing countries. 

AI, being an emerging technology, is actively involved in various 
markets and applications, which complicates the task of accurately 
gauging its true development status and scale. Some studies measure AI 
from the perspective of technological innovation, for example, Wang 
et al. (2023a) track the number of AI-related patents. In addition, robot 
application is also adopted by scholars as a measurement of AI. For 
instance, Li et al. (2023b) employ the robot application data to inves-
tigate the impact of AI on resource efficiency. Moreover, Duan et al. 
(2023), Fu et al. (2021), Wu (2023), and Yang and Wang (2023) also 
document the topic of AI and focus on the development of industrial 
robots. Compared to technological innovations like patents, robot ap-
plications offer a more precise measure of AI development. This is 
because many technological patents often remain in the theoretical 
stage without practical application. In contrast, robots have already 
been integrated into industrial production, allowing them to provide a 
more accurate reflection of the current state of AI development, which 
means that robots embody AI technologies and their installation reflects 
the adoption and maturity of AI in automation. Hence, we use the in-
dustrial robot installation to represent the development of AI, which is 
our independent variable. The data of industrial robot installation in 
each country comes from the International Federation of Robotics (IFR, 
2023). The federation also has data on industrial robot stock, which we 
will use as an alternative independent variable in the robustness tests. 
Notably, the data on industrial robots has only been updated to 2019; 
thus, the time span of this paper is 2000–2019. 

Fig. 2 shows the box chart of industrial robot installations. On the 
one hand, the average installation of industrial robots exhibited an up-
ward trend between 2000 and 2019, indicating an overall improvement 
in the global level of AI. On the other hand, although some countries had 
zero industrial robot installations, the number of countries without in-
dustrial robots is also decreasing steadily. 

In terms of the control variables, we consider five variables: gross 
domestic product (i.e., GDP), which measures economic development; 
foreign direct investment (i.e., FDI), which reflects the openness level; 
imports of goods and services (i.e., TRADE), which helps us identify the 
trade volume; population (i.e., POP), which represents demographic 
growth; and value added of industry (i.e., IND), which denotes industry 
development. The data of all control variables are from the World 
Development Indicators (World Bank, 2023). Therefore, we have a 
global panel dataset of 63 countries for the period 2000–2019, and 
Table 1 shows descriptive statistics of the variables. 

4. Estimation results and analysis 

4.1. Baseline regression results 

Table 2 presents the results of baseline regressions estimated by five 
models. On the one hand, these five models can be used for comparison 
to check the reliability of our primary result; on the other hand, IV-GMM 
is our preferred model, and we will analyze the result mainly in the last 
column. Before analyzing the coefficients estimated in the IV-GMM 
model, it is necessary to check its two tests, namely the LM test and 
the Wald test, which are used to verify the reliability of the IV. From the 
statistics of these two tests (see the last three rows in Table 2) we can see 
that our IV is neither under-identified nor weak. 

AI has positive and significant coefficients in all the models, which 
indicates a robust positive nexus between AI and RED. Thus, developing 
AI is a feasible approach to promote RED. The coefficient of AI is 0.1187 
in the IV-GMM model, implying that an increase in industrial robot 
installation by 1% can trigger an increase in RED of 0.1187%. The 
development of AI can bring several benefits to the development of 
renewable energy. By integrating robots into renewable energy opera-
tions, such as the production of solar panels or components for wind 
turbines, there can be a substantial enhancement in overall efficiency 
and productivity (Li et al., 2023b). This leads to increased output and 
reduced costs, making renewable energy technologies more economi-
cally viable. Aside from boosting productivity and efficiency, AI also 
plays a vital role in guaranteeing the quality control of renewable energy 
systems (Lee et al., 2022b; Wang et al., 2023b; Yu et al., 2023). More 
importantly, the installation and maintenance of renewable energy 
systems often involve working in challenging environments, such as 
offshore wind farms or solar power plants. Utilizing industrial robots can 
shield human workers from perilous environments and high-risk as-
signments. Robots are capable of executing tasks in hazardous or inac-
cessible areas, thereby diminishing the likelihood of accidents and 
injuries. This fosters a safer work environment and minimizes the risks 
associated with renewable energy development (Sayed et al., 2023; Wu 
et al., 2023). 

Control variables also exert a significant impact on RED, except for 
FDI. Specifically, economy and population are positively related to RED, 
while trade and industry development are not beneficial for RED. As 
societies become more prosperous and populations expand, there is a 
greater need for energy to power industries, homes, transportation, and 
other sectors. Renewable energy sources offer a sustainable and envi-
ronmentally friendly option to meet this growing energy demand. 
Moreover, as economies grow, investments in research and development 
increase, leading to technological innovations and improvements in 
renewable energy systems. This, in turn, promotes the adoption and 
utilization of renewable energy sources (Algarni et al., 2023; Wu and 
Wang, 2022; Xiao et al., 2022; Zhang et al., 2022). On the other hand, 
trade often involves the exchange of goods and resources, including 
fossil fuels. If countries rely heavily on traditional energy sources such as 
coal, oil, and natural gas for their industrial development, trade can 
contribute to increased non-renewable energy (Ivanovski and Churchill, 
2020; Zafar et al., 2020). Moreover, industrial development often builds 
upon existing infrastructure and investments, which are based mainly on 
conventional energy systems and technologies. The cost and effort 
required to transition from traditional energy sources to renewable en-
ergy can be significant, potentially leading to continued reliance on non- 
renewable energy sources (Korczak et al., 2022; Wu et al., 2021). 

4.2. Robustness checks 

The baseline regressions results show a positive nexus between AI 
and RED, to test whether their positive nexus is robust or not, we have 
two robustness checks. First, we use the alternative independent vari-
able, namely the volume of industrial robot stock, to represent AI 
development. The data on industrial robot stock also comes from the 
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Fig. 1. Spatial distribution of renewable energy development for selected years.  
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International Federation of Robotics (IFR, 2023). The results in Table 3 
show the impact of industrial robot stock on RED. From Table 3 we can 
know that basically industrial robot stock has a positive and significant 
impact on RED; an increase of industrial robot stock by 1% can promote 

RED by 0.1282%, which is consistent with the elasticity relationship 
between industrial robot installation and RED. 

Second, we also change our dependent variable, and we use the 
volume of renewable energy consumption, instead of renewable energy 
generation, to gauge RED. BP provides us with data on hydroelectricity 
consumption, solar consumption, wind consumption, and geothermal 
consumption (BP, 2023), and we aggregate these kinds of renewable 
consumption data to obtain the total renewable energy consumption. 
Renewable energy consumption is then applied as the dependent vari-
able to get results in Table 4. Notably, the coefficients of AI are all sig-
nificant and positive in five models, and the last column shows that for a 
1% increase in industrial robot installation, renewable energy con-
sumption will be significantly enhanced by 0.1192%. Thus, we can 
confirm that the positive effect of AI on RED is robust and reliable. 

Fig. 2. Time trend box chart of international industrial robot installation.  

Table 1 
Descriptive statistics of the variables.  

Variable Mean Std. Dev. Min. Median Max. 

lnRED − 1.9605 2.2062 − 13.2355 − 1.6561 2.9623 
lnAI 7.0395 3.8850 0.0000 7.7928 14.8574 
lnGDP 26.3249 1.5010 22.4627 26.2777 30.6960 
lnFDI 1.2922 0.8210 − 4.9021 1.2778 4.4727 
lnTRADE 3.6369 0.5219 0.0000 3.5984 5.3439 
lnPOP 16.9039 1.5939 12.5468 17.0202 21.0581 
lnIND 3.3462 0.3023 2.6161 3.3015 4.3150  

Table 2 
Baseline regression result.  

Variable OLS FE RE FGLS IV-GMM 

lnAI 0.1124*** 0.0430*** 0.0472*** 0.1124*** 0.1187***  
(5.4579) (3.7023) (4.0929) (5.4736) (3.9801) 

lnGDP 0.2247*** 0.2689*** 0.3009*** 0.2247*** 0.2077**  
(3.4572) (4.9158) (5.7465) (3.4671) (2.1561) 

lnFDI 0.0603 − 0.0596** − 0.0534** 0.0603 0.0645  
(0.9635) (− 2.3036) (− 2.0601) (0.9663) (1.0550) 

lnTRADE − 1.2761*** 0.5075*** 0.4201*** − 1.2761*** − 1.2691***  
(− 9.8126) (4.0610) (3.4262) (− 9.8410) (− 9.4343) 

lnPOP 0.3343*** 1.4695*** 0.8212*** 0.3343*** 0.3448***  
(7.3243) (4.7269) (6.1652) (7.3455) (5.2304) 

lnIND − 1.5553*** − 1.4364*** − 1.6424*** − 1.5553*** − 1.6456***  
(− 8.4623) (− 7.0398) (− 8.4202) (− 8.4868) (− 5.1224) 

Constant − 4.6403*** − 31.2881*** − 20.3200*** − 4.6403*** − 4.1494*  
(− 2.7846) (− 6.0798) (− 8.3067) (− 2.7927) (− 1.7069) 

KP LM (statistic) 154.587 
KP LM (Pvalue) 0.000 
KP Wald F     1693.916 

Notes: *** 0.01 ** 0.05 * 0.1. 
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4.3. Asymmetric nexus analysis 

We have investigated the linear relationship between AI and RED, 
now we wonder whether the non-linear relationship also exists. To this 
end, we employ the panel quantile regression model to test the asym-
metric impact of AI on RED. This model is helpful in identifying the 

marginal impact of AI on different quantiles of RED. 
Table 5 shows the panel quantile regressions results. AI exerts a 

positive and significant impact on RED from the 10th quantile to the 
90th quantile, implying that a positive AI-RED nexus exists at all 
quantiles of RED, which once again shows the robustness of our primary 
finding. On the other hand, as the quantile levels of RED increase, the 

Table 3 
Robustness tests I: using alternative independent variable.  

Variable OLS FE RE FGLS IV-GMM 

lnAI alter 0.1179*** − 0.0262*** − 0.0246*** 0.1179*** 0.1282***  
(6.5337) (− 2.8790) (− 2.6984) (6.5526) (5.5751) 

lnGDP 0.2506*** 0.4362*** 0.4825*** 0.2506*** 0.2213***  
(4.4647) (9.3906) (11.5029) (4.4776) (2.8607) 

lnFDI 0.0361 − 0.0571** − 0.0501* 0.0361 0.0411  
(0.5835) (− 2.1997) (− 1.9193) (0.5852) (0.6754) 

lnTRADE − 1.2914*** 0.6530*** 0.5676*** − 1.2914*** − 1.3085***  
(− 10.1883) (5.2966) (4.6930) (− 10.2177) (− 10.0893) 

lnPOP 0.2905*** 1.5194*** 0.7957*** 0.2905*** 0.2985***  
(6.4731) (4.8875) (6.1704) (6.4918) (4.8798) 

lnIND − 1.5852*** − 1.5059*** − 1.7559*** − 1.5852*** − 1.6727***  
(− 8.7733) (− 7.4189) (− 9.0804) (− 8.7987) (− 5.1195) 

Constant − 4.1685*** − 36.4035*** − 24.3803*** − 4.1685*** − 3.2340  
(− 2.6175) (− 7.3121) (− 10.6840) (− 2.6250) (− 1.4438) 

KP LM (statistic) 278.769 
KP LM (Pvalue) 0.000 
KP Wald F     2872.709 

Notes: *** 0.01 ** 0.05 * 0.1. 

Table 4 
Robustness tests II: using alternative dependent variable.  

Variable OLS FE RE FGLS IV-GMM 

lnAI 0.1129*** 0.0454*** 0.0504*** 0.1129*** 0.1192***  
(5.4657) (3.9068) (4.3591) (5.4815) (4.0029) 

lnGDP 0.2265*** 0.2918*** 0.3295*** 0.2265*** 0.2082**  
(3.4734) (5.3234) (6.2771) (3.4835) (2.1633) 

lnFDI 0.0470 − 0.0633** − 0.0569** 0.0470 0.0522  
(0.7487) (− 2.4403) (− 2.1895) (0.7508) (0.8486) 

lnTRADE − 1.2906*** 0.5524*** 0.4630*** − 1.2906*** − 1.2867***  
(− 9.8932) (4.4114) (3.7649) (− 9.9217) (− 9.5245) 

lnPOP 0.3324*** 1.6278*** 0.8423*** 0.3324*** 0.3433***  
(7.2590) (5.2257) (6.3076) (7.2800) (5.2061) 

lnIND − 1.5390*** − 1.5139*** − 1.7315*** − 1.5390*** − 1.6294***  
(− 8.3474) (− 7.4051) (− 8.8527) (− 8.3715) (− 5.0891) 

Constant − 0.0574 − 29.9112*** − 16.7237*** − 0.0574 0.4711  
(− 0.0343) (− 5.8008) (− 6.8188) (− 0.0344) (0.1939) 

KP LM (statistic) 154.587 
KP LM (Pvalue) 0.000 
KP Wald F     1693.916 

Notes: *** 0.01 ** 0.05 * 0.1. 

Table 5 
Panel quantile regression result.  

Variable Quantiles     

10th 25th 50th 75th 90th 

lnAI 0.2861*** 0.1420*** 0.0646*** 0.0467*** 0.0759***  
(7.0401) (4.6508) (5.0755) (4.0614) (2.7765) 

lnGDP − 0.0607 0.1540 0.4197*** 0.5420*** 0.4717***  
(− 0.4798) (1.6209) (10.6033) (15.1324) (5.5460) 

lnIND 0.1357 − 0.0285 − 0.0345 − 0.0532 0.0217  
(0.9724) (− 0.2718) (− 0.7900) (− 1.3473) (0.2310) 

lnTRADE − 1.0870*** − 1.0649*** − 1.3602*** − 1.5027*** − 1.4013***  
(− 3.8064) (− 4.9637) (− 15.2208) (− 18.5814) (− 7.2975) 

lnPOP 0.7469*** 0.4530*** 0.0341 − 0.0718** − 0.0783  
(7.3879) (5.9639) (1.0788) (− 2.5067) (− 1.1519) 

lnIND − 3.4531*** − 1.3939*** 0.0103 0.6705*** 0.9636***  
(− 8.4829) (− 4.5580) (0.0809) (5.8165) (3.5201) 

Constant − 1.2030 − 6.5106** − 8.6167*** − 11.0479*** − 10.2297***  
(− 0.3353) (− 2.4153) (− 7.6741) (− 10.8731) (− 4.2400) 

Notes: *** 0.01 ** 0.05 * 0.1. 
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marginal impact of AI on RED shows a decreasing trend. For example, at 
the 10th quantile, a 1% increase in AI will result in a 0.2861% increase 
in RED; while at the 90th quantile, for a 1% increase in AI, RED can only 
be increased by 0.0759%. That is to say, the positive RED effect of AI is 
more prominent in lower quantiles of RED. Thus, in areas with lower 
levels of RED, the development of AI can be a more effective means for 
stimulating RED. Moreover, Fig. 3 also vividly shows the asymmetric 
effect of AI on RED. 

Countries with lower levels of RED tend to rely more on traditional 
energy sources. Introducing AI and industrial robots can facilitate the 
adoption of renewable energy technologies by overcoming barriers. 
These countries may have less established renewable energy infra-
structure, making AI more impactful for driving RED. Conversely, in 
countries with well-established renewable energy generation, tran-
sitioning to AI-integrated systems may not yield significant economic 
benefits compared to their existing infrastructure. These countries may 
have already made substantial investments in renewable energy tech-
nologies, and introducing AI and industrial robots may not lead to 
substantial additional gains or cost savings. Wang et al. (2023b) also find 
that industrial robot development has a more powerful effect on 
reducing carbon emissions in less developed and industrialized regions 
in China, which is consistent with our finding that AI is more useful for 
promoting RED in low RED countries. 

4.4. Mediation effect model 

We further analyze how AI affects RED, which means that we will 
answer the question of through what mechanisms can AI works on RED. 
The development of AI has the potential to promote more efficient 

production and innovation. Yu et al. (2023) consider technology effect 
when studying industrial robot development and cities’ decarbon-
ization, and energy efficiency is also used as a mediation variable in 
their study. Also, Li et al. (2022) reveal the positive role of AI in 
improving energy efficiency. Thus, we tend to explore the mechanisms 
of the technology effect and the innovation effect. Specifically, we use 
the following equations to conduct mediation effect regressions. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lnEEit = δ0 + δ1lnAI +
∑6

k=2
δklnControlit + πi + μt + εit

lnREDit = λ0 + λ1lnEEit + λ2lnAIit +
∑7

k=3
λklnControlit + πi + μt + εit

(3)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lnR&Dit = φ0 + φ1lnAIit +
∑6

k=2
φklnControlit + πi + μt + εit

lnREDit = χ0 + χ1lnR&Dit + χ2lnAIit +
∑7

k=3
χklnControlit + πi + μt + εit

(4)  

where EE is energy efficiency which is measured by the ratio of GDP to 
energy consumption, and R&D is spending on research and develop-
ment. They are two mediating variables denoting the technology effect 
and innovation effect. Thus, Eq. (3) shows the technology effect, which 
corresponds to the first two columns in Table 6, and Eq. (4) shows the 
innovation effect, which corresponds to the last two columns in Table 6. 

According to Table 6, first, AI is positively linked to energy effi-
ciency. From the first column, we know that an increase in AI by 1% can 

Fig. 3. Figure of panel quantile regression result.  
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trigger energy efficiency to increase by about 0.0125%. Then, energy 
efficiency also has a positive impact on RED, as every additional increase 
in energy efficiency results in an increase of 2.1016% in RED. Thus, it is 
feasible to conclude that AI can indirectly affect RED by increasing en-
ergy efficiency. AI can optimize manufacturing processes to maximize 
energy efficiency (Liu et al., 2022). It can be programmed to analyze 
data and make real-time adjustments to optimize energy usage (Li et al., 
2023b). For example, robots can determine the optimal speed, temper-
ature, and pressure for specific manufacturing tasks, leading to energy 
savings. By continuously monitoring and adjusting production param-
eters, robots help minimize energy waste and improve energy efficiency. 
Moreover, by continuously optimizing processes and making adjust-
ments based on evolving data, AI development contributes to ongoing 
energy efficiency improvements (Chen et al., 2021; Hossin et al., 2023). 
When energy efficiency is enhanced, the demand for conventional en-
ergy sources is decreased, and energy efficiency creates space and op-
portunity for the adoption and development of renewable energy 
sources. 

As for the second mechanism, the result in the third column tells us 
that AI leads to a higher level of R&D; if AI is increased by 1%, R&D can 
be enhanced by 0.0728%. Also, the nexus between R&D and RED is 
positive, and a 1% increase in R&D will result in a 0.2306% increase in 
RED. Hence, we also confirm the second impact mechanism of the 
innovation effect. By handling routine activities, robots free up valuable 
human resources and time, enabling researchers to dedicate their efforts 
to innovation, experimentation, and problem-solving. Thus, AI is 
conducive to increasing R&D (Bahoo et al., 2023; Khan et al., 2023). In 
addition, the development of AI has led to advancements in 
manufacturing techniques, such as additive manufacturing (3D printing) 
and precision machining, which are also crucial for R&D development 
(Li et al., 2023a; Rammer et al., 2022). Further, R&D and innovation 
contribute to the continuous improvement of renewable energy tech-
nology performance, and also lead to cost reductions in renewable en-
ergy production and generation. 

5. Further discussion: the role of climate finance 

5.1. The direct role of climate finance 

In addition to AI, the role of CF in affecting RED cannot be ignored. 
CF is crucial for global sustainable development, because it is important 

in helping developing countries, which often face the greatest challenges 
posed by CF, to access the resources necessary to address climate-related 
issues. We use the aid commitments to countries and regions as the 
proxy variable for CF, and find the data on aid commitments to countries 
and regions from the website of the Organization for Economic Coop-
eration and Development (OECD, 2023). Thus, we will examine the 
direct impact of CF. Specifically, CF is the key independent variable, and 
then we follow the practice in baseline regressions, and use five models 
(i.e., OLS, FE, RE, FGLS, IV-GMM) to estimate the results (see Table 7). 

Generally speaking, the impact of CF on RED is significantly positive, 
despite the fact that its coefficients in the second and third columns are 
insignificant. The result in the last column estimated by IV-GMM in-
dicates that a 1% increase in CF can accelerate RED by 0.3810%. Thus, 
CF plays a positive role in accelerating RED. CF provides the necessary 
financial resources to support the deployment and scaling up of 
renewable energy projects (Aquilas and Atemnkeng, 2022), and helps 
overcome the initial investment costs of renewable energy. By providing 
grants and loans, CF reduces financial barriers and makes renewable 
energy projects more economically viable and attractive to investors 
(Lee et al., 2022a; Qi et al., 2023). Moreover, CF instruments, such as 
guarantees and insurance mechanisms, can help mitigate the risks 
associated with renewable energy investments (Yu et al., 2022). 

5.2. The moderating role of climate finance 

Having detected the direct impact of CF, we then explore the 
moderating role of CF in the AI-RED nexus. Specifically, first, we add 
both AI and CF into the estimation model (see Eq. (5)); second, we 
generate an interaction term by interacting AI with CF, and then esti-
mate the impact of this interaction term on RED (see Eq. (6)); third, we 
add both the interaction term and CF into the estimation model (see Eq. 
(7)). 

lnREDit = α0 + α1lnAIit + α2lnCFit + α3lnGDPit + α4lnFDIit
+α5lnTRADEit + α6lnPOPit + α7lnINDit + πi + μt + εit

(5)  

lnREDit = η0 + η1lnAIit⋅CFit + η2lnGDPit + η3lnFDIit
+η4lnTRADEit + η5lnPOPit + η6lnINDit + πi + μt + εit

(6)  

lnREDit = ρ0 + ρ1lnAIit + ρ2lnAIit⋅CFit + ρ3lnGDPit + ρ4lnFDIit
+ρ5lnTRADEit + ρ6lnPOPit + ρ7lnINDit + πi + μt + εit

(7) 

Table 8 presents the moderation effect results, and the three columns 
in Table 8 correspond to the above three equations. From the first col-
umn we can find that both AI and CF exert positive effects on RED, which 
is consistent with previous findings. The interaction term in the second 
column is significantly positive, and also remains positive in the third 
column, which indicates that AI development can facilitate RED, and the 
interaction of AI and CF can strengthen this effect. CF emphasizes 
technology transfer to developing countries. Renewable energy tech-
nologies, such as solar panels or wind turbines, can be expensive for 
developing nations to adopt and deploy (Gu et al., 2022). CF can support 
technology transfer by facilitating the acquisition of renewable energy 
technologies, knowledge, and expertise from developed countries 
(Tawney and Weischer, 2021). This transfer of technology enables 
developing countries to access and deploy renewable energy solutions 
more effectively (Arezki, 2021). In this circumstance, with the help of 
CF, AI can also be promoted, especially in developing countries. That is 
to say, the interaction of AI and CF can be more effective in accelerating 
RED. Fig. 4 summarizes the intricate nexuses among AI, RED, CF, and 
the impact channels. 

6. Conclusions and policy implications 

6.1. Conclusions 

Based on a panel dataset of 63 countries between 2000 and 2019, this 

Table 6 
Mediation effect results.  

Explained variables: lnRED in (2) and (4); while lnEE in (1), and lnR&D in (3) 

Variable (1) (2) (3) (4) 

lnAI 0.0125*** 0.0956*** 0.0728*** 0.1043***  
(4.1199) (3.4486) (7.8216) (3.4799) 

lnEE  2.1016***     
(16.2854)   

lnR&D    0.2306*     
(1.8405) 

lnGDP − 0.0135 0.2256** 0.3346*** 0.1222  
(− 1.4242) (2.5113) (12.7298) (1.1282) 

lnFDI − 0.0078 0.0903 0.0124 0.0647  
(− 0.5995) (1.5712) (0.6008) (1.0735) 

lnTRADE − 0.0789*** − 1.0828*** 0.1896*** − 1.3010***  
(− 2.9077) (− 8.5704) (4.1109) (− 9.8489) 

lnPOP − 0.0846*** 0.5413*** − 0.3156*** 0.4279***  
(− 7.8042) (8.5270) (− 16.2211) (5.0762) 

lnIND − 0.2515*** − 1.2170*** − 1.1852*** − 1.4298***  
(− 9.3135) (− 3.9076) (− 15.3907) (− 5.0117) 

Constant 2.0343*** − 8.2516*** − 0.9204 − 3.7712  
(4.9269) (− 3.6550) (− 1.3803) (− 1.5582) 

KP LM (statistic) 175.523 152.036 175.523 169.792 
KP LM (Pvalue) 0.000 0.000 0.000 0.000 
KP Wald F 1924.626 1657.790 1924.626 1121.967 

Notes: *** 0.01 ** 0.05 * 0.1. 
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paper empirically investigates the impact of AI on RED, and examines 
their asymmetric nexus. Moreover, we explore the impact mechanisms 
through which AI affects RED, and consider the role of CF. We arrive at 
some significant conclusions. On the one hand, this paper reveals a 
direct connection between AI and RED: Primary finding provides strong 
evidence of the positive impact of AI on RED; by implication, the 
development of AI contributes significantly to RED. Furthermore, the 
RED promotion effect of AI is asymmetric, and AI is more effective in 
stimulating RED in countries with lower levels of RED. On the other 
hand, mechanisms for the impact are also summarized: AI indirectly 
affects RED by promoting energy efficiency and R&D, which reveals the 
importance of technology effect and innovation effect. Moreover, CF 
also plays a significant role in promoting RED. At the same time, CF is a 
moderating variable in the AI-RED nexus, which suggests that the syn-
ergy of AI and CF is an important means of accelerating RED. 

6.2. Policy implications 

Our conclusions lead to the following policy implications, which can 
be grouped into two aspects. 

The first aspect involves AI-related policy recommendations. It is 
feasible for countries to allocate funding specifically for AI research in 
the field of renewable energy. This support could aid in the development 
of AI algorithms and models that optimize energy generation, storage, 
and distribution systems, ultimately leading to more efficient and cost- 
effective renewable energy solutions. Additionally, governments can 

Table 7 
Result of the direct impact of climate finance on renewable energy development.  

Variable OLS FE RE FGLS IV-GMM 

lnCF 0.2848*** − 0.0193 − 0.0170 0.2848*** 0.3810***  
(3.3290) (− 0.4236) (− 0.3720) (3.3547) (3.0793) 

lnGDP 0.5845*** 0.0792 0.1857*** 0.5845*** 0.6350***  
(5.5669) (1.2089) (3.3992) (5.6099) (6.5115) 

lnFDI 0.2565* − 0.0428 − 0.0381 0.2565* 0.1724  
(1.7638) (− 0.7935) (− 0.7004) (1.7774) (0.8847) 

lnTRADE − 0.9895*** − 0.0838 − 0.0345 − 0.9895*** − 1.0087***  
(− 5.0977) (− 0.5527) (− 0.2296) (− 5.1370) (− 5.4917) 

lnPOP 0.0493 2.5373*** 1.4199*** 0.0493 − 0.0703  
(0.3629) (5.6764) (5.4351) (0.3657) (− 0.4873) 

lnIND − 2.1817*** − 0.7893*** − 0.9910*** − 2.1817*** − 2.1363***  
(− 6.7240) (− 2.9783) (− 3.7848) (− 6.7759) (− 5.3727) 

Constant − 9.2277*** − 45.7663*** − 28.5439*** − 9.2277*** − 8.9885***  
(− 4.1457) (− 6.6279) (− 6.8031) (− 4.1776) (− 4.0639) 

KP LM (statistic) 180.146 
KP LM (Pvalue) 0.000 
KP Wald F     632.118 

Notes: *** 0.01 ** 0.05 * 0.1. 

Table 8 
Result of the moderating role of climate finance.  

Variable (1) (2) (3) 

lnAI 0.0896***    
(2.6949)   

lnCF 0.3664***  0.2072**  
(3.0965)  (2.3463) 

lnAI*CF  0.0108** 0.0091*   
(2.0190) (1.6735) 

lnGDP 0.3651*** 0.2894* 0.4230***  
(2.6841) (1.9375) (2.8800) 

lnFDI 0.2312 0.3126* 0.2538  
(1.1901) (1.6882) (1.2708) 

lnTRADE − 1.3335*** − 1.1365*** − 1.1650***  
(− 6.8404) (− 5.7223) (− 5.4981) 

lnPOP 0.0039 0.3624*** 0.1101  
(0.0292) (4.5081) (0.9205) 

lnIND − 1.8660*** − 2.4263*** − 2.2822***  
(− 5.2208) (− 5.4921) (− 5.6914) 

Constant − 3.5535 − 4.5077 − 5.0198  
(− 1.0372) (− 1.1380) (− 1.2662) 

KP LM (statistic) 179.321 78.961 66.835 
KP LM (Pvalue) 0.000 0.000 0.000 
KP Wald F 317.384 595.332 252.187 

Notes: *** 0.01 ** 0.05 * 0.1. 

Fig. 4. The relationship among renewable energy development, artificial intelligence, and climate finance.  
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provide financial incentives, such as tax credits or subsidies, to 
encourage the implementation of AI technologies in renewable energy 
projects. This could attract private sector investment and expedite the 
adoption of AI solutions, ultimately enhancing the performance and 
reliability of renewable energy systems. Furthermore, the promotion 
effect of AI on RED is asymmetric, with AI proving more effective in 
countries with lower levels of RED. Thus, for developing countries, the 
development of AI and CF is more urgent compared to developed 
countries. In such cases, governments can contribute to international CF 
mechanisms, such as the green climate fund, to support renewable en-
ergy projects in developing countries. These actions offer financial 
assistance and technical support to help developing countries transition 
to renewable energy and adapt to climate change. By mobilizing re-
sources at a global level, these practices can accelerate the deployment 
of renewable energy technologies worldwide. 

The second aspect focuses on the role of CF. Considering that CF is 
also an essential driver of RED, it is important to utilize CF to achieve 
better RED. The results regarding the direct impact of CF on RED suggest 
a consistent and steady provision of financial resources for climate- 
related development. Furthermore, it recommends the establishment 
of a monitoring system for climate funds to ensure their efficient utili-
zation in the generation of renewable energy sources, including solar, 
hydroelectric, biomass, wind, and geothermal energy. Governments can 
establish or support the issuance of green bonds, specifically designated 
for financing renewable energy projects. Green bonds provide investors 
with an opportunity to support sustainable projects while earning a re-
turn on their investment. Governments can also contribute to climate 
funds that pool resources to support renewable energy initiatives, 
particularly in developing countries. Moreover, governments can allo-
cate a greater portion of their budgets towards funding renewable en-
ergy initiatives. This includes investments in research and development, 
infrastructure development, and subsidies or grants for renewable en-
ergy projects. Increased public funding can attract private sector in-
vestments and provide financial support for the development and 
deployment of renewable energy technologies. 

This paper addresses a gap in the current literature concerning the 
nexus of AI, RED, and CF. Nonetheless, it comes with certain limitations 
that lay the groundwork for future research. First, this study employs the 
IV-GMM static panel model to estimate their relationship. However, it 
does not account for the dynamic relationship and potential spatial 
networks. Future studies can expand on this static relationship by 
examining the hysteresis and spatial autocorrelation features of AI and 
RED. Second, this study delves into two mechanisms, focusing on the 
effects of technology and innovation. Yet, there may be additional 
impact channels that we may not have considered. Providing further 
insight into these potential impact channels between AI and RED is also 
of significance. 
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