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A B S T R A C T   

To schedule power sources operated by different entities in a short-time scale considering nonconvex generation 
cost and deep peak regulation (DPR) service constraints, this paper proposes an FRL-based multiple power 
sources coordination framework in wind-solar-thermal power network. In the studied power transmission 
network (TN), renewable energy sources and thermal power units connected to the same bus are aggregated as a 
wind-solar-thermal virtual power plant (WSTVPP). The transmission system operator (TSO) sends dispatch in-
structions to each WSTVPP by optimal power flow program, and allocates the cost of DPR service in TN. Based on 
the dispatch instruction, the internal power sources of each WSTVPP are scheduled by its local center control 
agent to achieve local economic operation while maximizing the overall DPR service revenue for the WSTVPP 
from the auxiliary service market. The multiple WSTVPPs operation is modeled as a partially observable Markov 
decision process, and solved by a designed FRL algorithm. The FRL algorithm employs a global neural network 
(NN) model for coordination, heterogeneous local NN models and data to efficiently train each WSTVPP control 
agent with individual objectives for handling multiple power sources scheduling in TN while preserving local 
privacy. Numerical studies validate the effectiveness of the proposed framework for handling the short-time scale 
power sources operation with nonconvex constraints.   

1. Introduction 

INTEGRATION of high-penetration renewable energy sources (RESs) 
into the power grid have significantly increased the demand for flexible 
power sources [1,2]. The stochastic fluctuations of PV and WT genera-
tions give rise to the unpredictability and instability of power systems 
[3]. By aggregating or deploying the RESs and flexible power sources at 
close distance in the form of a virtual power plant (VPP) [4], the RES can 
directly take advantage of flexible power sources to handle their fluc-
tuation locally and enhance efficiency. 

On the generation side, thermal power units (TPUs) play a central 
role as the main flexible and extensively utilized power sources within 
TN in regions with limited water resources [5]. However, the flexibility 
of TPUs is restricted by their inherent physical characteristics. To 
address this issue, flexibility retrofit of TPUs is a straightforward and 
realistic method. For example, by setting up a dust bunker between the 
coal mill and the burner to store pulverized coal, the minimum output of 
TPU can be lowered to accommodate more RES [5,6], and gain more 
benefits through real-time DPR auxiliary services [7]. On the other 

hand, the complexity of TN with multiple VPPs is increased due to the 
presence of more components, higher communication overheads, 
simultaneous local behaviors, and nonconvex operation characteristics 
on a short-time scale. For example, research in [8] demonstrates that 
TPU has different maximum ramp rates under different output statuses, 
which may lead to nonconvex ramping constraints on the 15-minute 
time scale. Furthermore, as the integration of RES increases, optimiza-
tion of VPP operation considering real-time DPR auxiliary services on 
such a short time scale is also essential for a flexible power source to 
balance the stochastic load demand and RES generation accurately and 
sufficiently [9]. However, relevant research has not thoroughly 
considered the aforementioned nonconvex characteristics [10–12]. 
Therefore, the design of an innovative scheduling architecture, which 
can effectively aggregate RESs with retrofitted TPUs in VPP and coor-
dinate VPPs in TN, brings about a new challenge. 

The TN and its internal VPPs are usually operated by different op-
erators with distinguished objectives [13], coordination and communi-
cation are imperative among different power source operators and 
transmission system operator (TSO). Privacy preservation is also a 
challenge that need to be addressed in TN operation. Both TSO and 
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power source operators may be reluctant to share sensitive privacy in-
formation since the detailed power output information may reveal the 
behavior of the power source operators, potentially leading to privacy 
disclosures and unfair competition [14]. For example, peak regulation 
strategy and technical characteristics of power sources could be inferred 
from the output data of each power source in a VPP, enabling intentional 
operators to devise targeted strategies for gaining undue advantages 
[15]. 

Traditional TPUs or multiple VPPs scheduling in power system 

operation is typically formulated as a model-based optimization prob-
lem to maximize the total generation revenue of the system. When 
dealing with a large-scale power grid with multiple power sources, the 
prevalent centralized optimization methods [16,17] adopt a center 
coordinator for modeling, data processing, and calculation of power 
sources scheduling. These methods suffer from heightened communi-
cation and computational demands, as well as concerns about privacy. 
To address these challenges, distributed or decentralized optimization 
methods [18–21] have been developed to break down the global 

Nomenclature 

Indices 
g ∈ G Index and set of generation groups in transmission network 

(TN). 
i ∈ I Index, set of wind-solar-thermal virtual power plants 

(WSTVPPs) and their control agent. 
m ∈ M Index and set of emission type 
t ∈ T Index and set of time steps. 
u ∈ Ui Index and set of thermal power units (TPUs). 
Δt Time interval. (1/4 h, i.e. 15 min) 

Superscript 
TP Thermal Power generation. 
N/D Normal/Deep peak regulation states. 
O/E Operation/Emission. 
B/F Basic/Flexibility active output 
WT Wind Turbine generation. 
PV PhotoVoltaics generation. 
c Corrected output. 
P Penalty factor. 
R Revenue. 
S Shared cost. 
TN Transmission Network. 

Parameters (a) Thermal power 
ATP,S

1/2 Load rate standard for deep peak regulation (DPR) service 
shared cost of TPU. 

aTP,D
i,u , bTP,D

i,u Fitting coefficients of TPU DPR loss. (ton/MW, ton) 

aTP,E
i,u , bTP,E

i,u Fitting coefficients of TPU pollution. (m3/MW, m3) 

aTP,O
i,u , bTP,O

i,u , cTP,O
i,u Fitting coefficients of TPU operation cost. (ton/ 

MW2, ton/MW, ton) 
CTP,R

0/1/2 Unit generation revenue of TPUs in different compensation 
standard. (CNY/MW) 

Ccoal Unit cost of coal. (CNY/ton) 
CTP,E

m Unit generation cost of emission. (CNY/kg) 
kTP,D

t Season coefficient for DPR revenue of TPUs. 
PTP

i,u Maximum active power of TPU. (MW) 

PTP,N/TP,D
i,u Minimum active power of TPU at NPR (normal peak 

regulation), DPR state. (MW) 
RTP,N

i,u , RTP,D
i,u Ramping rate of TPU in NPR, DPR states. (MW/h) 

STPU
i,u Capacity of TPU. (MVA) 

zTP,S
1/2/3 Corrected factors of DPR shared cost for TPU. 

μTP,D
1/2 Load rate standard for DPR compensation revenue of TPU. 

τTP
i,u Real time flexibility regulation rate of TPU. 

ρm Emission factors of pollutants. (kg/m3) 
σm Equivalent value of pollutants. 

(b) Wind and Photovoltaics 
CPV/WT,R Unit generation cost of photovoltaic (PV), wind turbine 

(WT) generation. (CNY/MW) 
CPV/WT,P Penalty factor of PV, WT curtailment. 
SPV/WT

i Capacity of PV/WT generation. (MVA) 
zPV,S/WT,S

t Corrected factors of DPR shared cost for PV, WT. 
τPV

i , τWT
i Minimum PV, WT utilization rate. 

(c) Others 
Rg Overall ramping rate of integrated grid-connected power 

source g. (MW/h) 
Sg Capacity of integrated grid-connected power source g. 

(MVA) 
wUN,P Penalty factor of unbalanced power. (CNY/MW) 

Variables (a) Thermal power 
aTP

i,u,t , aTP
i,u,t Upper, lower bound of active power feasible range for TPU 

generation. (MW) 
fTP
i,u,t Objective of TPU. 

PTP
i,u,t Actual TPU active output. (MW) 

PTP,B
i,u,t Basic active output of TPU. (MW) 

PTP,F
i,u,t Real-time active flexibility of TPU. (MW) 

PTP,c
i,u,t Corrected TPU output for DPR shared cost. (MW) 

μTP
i,u,t Load rate of TPU. 

(b) Wind and Photovoltaics 
aPV/WT

i,t , aPV/WT
i,t Upper, lower bound of active power feasible range 
for PV/WT generation. (MW) 

fWT/PV
i,t Objective of WT/PV. 

PPV*
i,t , PPV

i,t Predict/actual PV active power. (MW) 
PWT*

i,t , PWT
i,t Predict/actual WT active power. (MW) 

PPV,c
i,t , PWT,c

i,t Corrected PV, WT output for DPR shared cost. (MW) 

(c) Others 
CTN,D

t Total DPR service revenue in TN. (CNY) 
fOPF
t Objective of optimal power flow (OPF). 

fVPP
i,t Objective of WSTVPP. 

Pg,t , Pg,t Upper and lower bound of active power feasible range for 
g. (MW) 

Qg,t , Qg,t Upper and lower bound of reactive power feasible range 
for g. (MVar) 

Pg,t Total active power generation of a bus. (MW) 
Qg,t Total reactive power generation of a bus. (MVar) 
Pc

g,t Total corrected output of DPR shared cost. (MW) 
PL

i,t Active dispatch instruction. (MW) 
PNET

i,t Net active load. (MW) 
PUN

i,t Unbalanced active power between total generation and 
dispatch instruction. (MW)  
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optimization problem into several subproblems that can be solved 
locally. However, these methods cannot handle the nonlinear or non-
convex problem effectively. Apart from the aforementioned short-time 
scale ramping constraints of TPUs, generation cost functions and reve-
nue sharing mechanism of DPR service among power sources also have 
nonlinear or nonconvex characteristics [7,22], which will further pose 
challenges to the model-based optimization methods. 

Reinforcement learning (RL) provides a feasible model-free solution 
for complex decision-making problems [23] and has been successfully 
applied in VPP operation problems and nonconvex power sources 
scheduling problems, such as managing distributed energy resources 
within VPP for regulation service [24] and the efficient multi-timescale 
bidding for hybrid power plants [25]. These methods are based on 
centralized training with all the data collected and processed by a center 
coordinator, which will inevitably lead to privacy concerns, heavy 
communication and computation burden. To address the above issues, 
distributed RL methods with local training and data exchange between 
neighbors, which reduce communication and computation burden, are 
developed [26,27]. However, they are still limited due to the complex 
communication mechanism, insufficient scalability, and direct raw data 
sharing with neighbors. 

To overcome the shortages of the RL methods above, federated 
reinforcement learning (FRL) has been developed recently to enable 
distributed local training with privacy preservation. FRL can achieve 
coordination and efficient training among agents through a global 
model which is updated by model parameter exchange instead of raw 
data [28]. FRL has been successfully applied in economic operation of 
power systems [29,30]. [31] proposes a robust FRL approach to 
schedule VPPs with electric vehicles and RES, it enables multiple users 
for training a shared policy model. In [32], an FRL-based algorithm is 
proposed for decentralized voltage control of multiple VPPs in distri-
bution network. However, the above FRL-based studies mainly adopt the 
shared neural network (NN) models [29–31] or an incomplete privati-
zation setting [32]. Under the complex multiple VPPs operation envi-
ronment characterized by nonlinear and nonconvex constraints, each 
VPP has individual local status. The FRL methods with shared NN 
models prove to be challenging in achieving good performance with 
model privacy preservation. 

To sum up, several research gaps need to be addressed in the existing 
studies for multiple VPPs operation in TN: (i) Model-based optimization 

methods [18–21] require the detailed parameterized model, making 
them unsuitable for solving the short-time scale large nonconvex prob-
lem with high computation efficiency and good convergence. (ii) 
Centralized-based RL frameworks [24,25] have a heavy communication 
burden. Besides, they fail to adequately protect the privacy of models 
and data for power sources operated by different entities, posing a risk of 
potential exposure of sensitive generation information, control algo-
rithms, and strategies. (iii) Distributed RL methods [26,27] necessitate 
specifically designed communication methods, resulting in compro-
mises in scalability and efficiency for both maintenance and training. 
(iv) Most FRL methods are based on shared NN models or incomplete 
privatization settings [29–32], which struggle to effectively coordinate 
the complex nonconvex operation objective of individual VPP and bal-
ance the power supply and demand with good performance. (v) Previous 
studies for the operation of multiple VPPs mainly focus on the distri-
bution side, little or no research has been implemented on the genera-
tion side considering DPR auxiliary service. 

To fill the aforementioned research gaps, this paper proposes a 
hybrid approach that combines data-driven FRL with the model-based 
method for the coordinated operation of multiple power sources in a 
wind-solar-thermal TN. The proposed framework aggregated the grid- 
connected RES and TPUs at the same bus in TN as several WSTVPPs. 
The TN and WSTVPPs are operated separately with limited necessary 
information exchange to achieve coordination while preserving privacy. 
Power sources in each WSTVPP are scheduled by individual control 
agents for local economic operation considering TN DPR auxiliary ser-
vice. The designed FRL algorithm with both heterogeneous local NN 
models for each agent and the global NN model for coordination is used 
to efficiently train the WSTVPP control agents. During training, the 
proposed FRL algorithm can enhance the training performance, and 
preserve the local models and data privacy by exchanging only the pa-
rameters of the global NN model. The contributions of this paper are 
summarized as follows: 

1) A hybrid approach that integrates the data-driven FRL into the 
model-based method is proposed to address the scheduling of diverse 
power sources within a TN considering the participation of DPR auxil-
iary services. The proposed approach breaks down the complex sched-
uling challenge into distinct TN OPF and WSTVPP operation models 
while ensuring minimal yet effective information exchange (limited to 
dispatch and DPR service cost data). 

2) The WSTVPPs operation with a strategic information exchange 
mechanism for privacy and coordination is reformulated as a decen-
tralized partially observable Markov decision process (Dec-POMDP) 
considering the power sources characteristics. This transformation can 
enable the scheduling of internal power sources by WSTVPP control 
agents for effectively following dispatch instructions, accommodating 
RES generation, and achieving economic operation. 

3) A customized FRL algorithm incorporating a global coordinator 
and NN model alongside heterogeneous local NN models for distributed 
agents is proposed. The algorithm can efficiently address the nonconvex 
challenges of multiple WSTVPPs coordinated operation in TN, while 
safeguarding local NNs’ privacy through parameter exchanges of the 
global NN model, handling the individual agent objective to achieve 
local economic operation, obtain DPR service revenue from TN, and 
track load demand. 

2. MULTIPLE POWER SOURCES OPERATION MODELING OF WIND-SOLAR- 
THERMAL POWER TRANSMISSION NETWORK 

In this section, the overall TN and multiple power sources operation 
framework is discussed first. Then the detailed operation model for TN 
OPF and WSTVPP operation considering DPR auxiliary service is 
presented. 

Fig. 1. Overall framework of the studied system.  
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2.1. Problem formulation 

In this paper, a TN incorporating several megawatt-level doubly fed 
induction generator (DFIG) based wind farms, solar farms, and thermal 
power plants with a capacity of several hundred megawatts is consid-
ered. These large-scale power source plants are directly connected to the 
main bus in TN. Solar farms and DFIG-based wind farms can leverage 
their inverters to provide adequate reactive power support to TN [33]. 
Thermal power plants can also provide certain reactive power support to 
TN [34]. The TSO is responsible for the operation of TN to balance 
power supply and demand. Several power source groups connected to 
certain buses are operated by different operators. To dispatch each 
power source in TN, the TSO needs to access necessary detailed models 
and data of power sources owned by various operators, leading to pri-
vacy concerns. Furthermore, DPR auxiliary service in TN involves 
complex revenue and sharing mechanisms with nonlinear characteris-
tics, which presents challenges when employing traditional model-based 
optimization approaches for effective power dispatch. To address these 
issues, a hybrid approach that combines data-driven FRL with the 
model-based method for multiple power sources coordinated operation 
is proposed. The proposed framework enables both privacy preservation 
and efficient solutions for the separate operation of TN and power 
sources. 

As depicted in Fig. 1, in the TN, the power sources connected to 
specific buses are regarded as several generation groups. The TSO as-
signs short-time scale (15 min) dispatch instructions to each generation 
group based on the OPF program to regulate bus voltage within the 
allowable range, balance the power supply and demand, and reduce the 
additional power generation in TN. The generation groups need to 
follow the dispatch instructions, schedule their internal power sources to 
supply active and reactive power. The generation groups only need to 
provide their overall feasible active and reactive output range to TSO for 
future OPF calculation and dispatch instruction. Additionally, the TSO 
and the generation groups also exchange information for revenue and 
shared cost calculation associated with DPR auxiliary service. Specif-
ically, generation groups provide their aggregated DPR compensation 
revenue and corrected generation output to TSO, the total DPR 
compensation revenue is subsequently shared among the power sources 
in TN. The TSO leverages the above information from generation groups 
to calculate the specific shared costs of each generation group and send 
them back to respective generation groups for local economic 
calculation. 

In the TN, certain generation groups comprise power sources of the 
same type with similar economic and technical characteristics. These 
groups can easily coordinate the output of their internal power sources 
in accordance with the active and reactive power dispatch instructions, 
which can be regarded as an integrated grid-connected power source 
(represented as g ∕∈ I). On the other hand, there are generation groups 
involve RES and nearby high performance retrofitted TPUs provide 
flexible resources with varying characteristics. These groups face the 
challenge of considering the intricate complex economic and technical 
characteristics of different types of power sources, along with the need 
to incorporate DPR auxiliary services into their internal power source 
scheduling. In this paper, the generation group with different types of 
power sources (i.e., WT, PV, and TPUs) is considered as a WSTVPP 
(represented as (g = i) ∈ I), which internal power sources are scheduled 
by its local center controller based on the active and reactive power 
dispatch instructions from TSO. To accommodate more RES by flexible 
power sources and collaborate to gain more revenue, it is reasonable for 
internal power sources in a WSTVPP to share their generation infor-
mation to the local center controller. The WSTVPP controller acts as a 
control agent. The control agent of WSTVPP can directly transmit power 
generation instructions to the automatic generation control system of 
the power sources within the VPP, thereby controlling the output of the 
power sources. The control agents of WSTVPP in TN are efficiently 
trained by a FRL algorithm to achieve global interaction with TN and 

local economic operation with privacy preservation. 
The proposed framework aims to address several critical challenges 

in multiple power sources operation in TN. Specifically: (i) The large- 
scale nonlinear and nonconvex short-time scale operation problem of 
TN considering DPR auxiliary service is decomposed in TN level and 
power source group level. (ii) The TSO does not require the detailed 
model of each power source for OPF calculation, which enables efficient 
separate operation and privacy preservation. (iii) The WSTVPP opera-
tion considering both global DPR auxiliary service and local economic 
operation can be iteratively trained by the designed FRL algorithm to 
avoid solving complex and time-consuming nonlinear optimization 
problem. 

2.2. Optimal power flow in transmission network 

At the TN level, the objective of TN OPF in this paper is to minimize 
the overall generation feed-in at each time step: 

minf OPF
t =

∑

g∈G
Pg,t. (1) 

The constraints include commonly used polar active/reactive power 
balance of buses, active/reactive power injection equations of buses 
between generation and load, voltage limits of buses, and branch 
transmission limits, of which details can be found in studies of optimal 
power flow analysis, such as [35]. Other constraints are listed as follows: 

Pg,t ≤ Pg,t ≤ Pg,t,∀g ∈ G, (2)  

Qg,t ≤ Qg,t ≤ Qg,t, ∀g ∈ G, (3)  

{
Pg,t = Pg,t− 1 − RgΔt
Pg,t = Pg,t− 1 + RgΔt , ∀g ∕∈ I, (4)  

⎧
⎪⎨

⎪⎩

Pg,t =
∑

u∈Ui
aTP

i,u,t + PWT*
i,t + PPV*

i,t

Pg,t =
∑

u∈Ui
aTP

i,u,t + PWT*
i,t + PPV*

i,t

, ∀(g = i) ∈ I, (5)  

Qg,t,Qg,t = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
g − P2

g,t

√

,∀g ∕∈ I, (6)  

Qg,t,Qg,t = ±

[
∑

u∈Ui

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

STP
i,u

)2
−
(
aTP

i,u,t

)2
√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SPV

i

)2
−
(

PPV*
i,t

)2
√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SWT

i

)2
−
(

PWT*
i,t

)2
√ ]

,∀(g

= i) ∈ I, (7) 

where (2), (3) are the active, reactive power feasible range of gen-
eration units or WSTVPP, where Pg,t, Pg,t , Qg,t, Qg,t are calculated by 
corresponding grid-connected power source or WSTVPP and informed 
to TSO in this paper. The active power feasible ranges of grid-connected 
power source and WSTVPP are constrained by (4) and (5). (5) considers 
the real-time output of RES, ramping constraints, and output of TPUs at 
the last time step in WSTVPP, where aTP

i,u,t and aTP
i,u,t are designed in the 

FRL framework by eqs. (27) and (28), the details will be discussed in 
Sections II-C and III. The reactive power feasible ranges are constrained 
by power source capacities and maximum active feasible output of 
power sources. For grid-connected power source and WSTVPP, the 
reactive power feasible range can be calculated by (6) and (7) respec-
tively. (7) is designed to ensure that the active output of power sources 
in WSTVPP will not affect its overall reactive power capability. 

2.3. Operation model of virtual power plant 

The objective for the operation of WSTVPP i is to maximize the 
overall revenue including its DPR auxiliary service revenue and shared 
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cost generated from global interaction with TN, local economic opera-
tion, and reduce the unbalanced active power between generation and 
dispatching instruction at t: 

maxf VPP
i,t = Δt

(
∑

u∈Ui

f TP
i,u,t + f PV

i,t + f WT
i,t − wUN,P

⃒
⃒
⃒PUN

i,t

⃒
⃒
⃒

)

. (8) 

The overall generation revenue of TPUs fTPU
i,u,t is 

f TP
i,u,t = f TP,R,N

i,u,t + f TP,R,D
i,u,t − f TP,O

i,u,t − f TP,E
i,u,t − f TP,S

i,u,t , (9)  

which includes coal consumption/operation cost fTP,O
i,u,t , environment cost 

fTP,E
i,u,t , basic revenue fTP,R,N

i,u,t DPR auxiliary service compensation revenue 

fTP,R,D
i,u,t and shared cost fTP,S

i,u,t ,. Where the fTP,R,D
i,u,t can be obtained when the 

average load rate of TPUs is below the given compensation standard at t 
[7]. fTP,R,N

i,u,t , fTP,R,D
i,u,t are calculated by 

f TP,R,N
i,u,t = CTP,R

0 PTP
i,u,t, (10)  

f TP,R,D
i,u,t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, μTP,D
1 ≤ μTP

i,u,t ≤ 1

kTP,D
t CTP,R

1

(
μTP,D

1 PTP
i,u − PTP

i,u,t

)
, μTP,D

2 ≤ μTP
i,u,t < μTP,D

1

kTP,D
t CTP,R

2

(
μTP,D

1 PTP
i,u − PTP

i,u,t

)
, 0 ≤ μTP

i,u,t ≤ μTP,D
2

, μTP
i,u,t

=
PTP

i,u,t

PTP
i,u

, (11)  

where the first line in eq. (11) represents DPR service revenue only can 
be obtained when the output rate of a TPU μTP

i,u,t is lower than μTP,D
1 . The 

second and third line in eq. (11) represent the current active output of 
TPU can obtain first or second-tier DPR service revenue with a unit price 
of CTP,R

1 or CTP,R
1 . The revenue is calculated based on the difference be-

tween the active output corresponding to the compensation standard 
μTP,D

1 PTP
i,u and the current active output PTP

i,u,t. Besides, the DPR service 
revenue undergoes seasonal adjustments, incorporating a correction 
coefficient represented by kTP,D

t . 
fTP,O
i,u,t is associated with the NPR, DPR states, which comprises coal 

consumption cost function and an additional cost function required to 
sustain TPU operation under low output conditions when the TPU is in 
the DPR state. It can be calculated by [10] 

f TP,O
i,u,t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)PTP
i,u,t ∈

[
PTP,N

i,u ,PTP
i,u

]

Ccoal
[

aTP,O
i,u

(
PTP

i,u,t

)2
+ bTP,O

i,u PTPU
i,u,t + cTP,O

i,u

]

(2)PTP
i,u,t ∈

[
PTP,D

i,u ,PTP,N
i,u

]

Ccoal
[

aTP,O
i,u

(
PTP

i,u,t

)2
+ bTP,O

i,u PTP
i,u,t + cTP,O

i,u

]

+ aTP,D
i,u PTP

i,u,t + aTP,D
i,u

(12) 

fTP,E
i,u,t can be calculated by 

f TP,E
i,u,t =

∑M

m=1
CTP,E

m
ρm

σm

(
aTP,E

i,u • PTP
i,u,t + bTP,E

i,u

)
. (13) 

The compensation revenue of DPR auxiliary service in TN is shared 
by WT, PV, and TPUs which load rates are higher than the compensation 
standard in the system. For TPU, the higher its current output, the more 
cost need to be shared. The shared cost fTP,S

i,u,t is calculated by [7] 

f TP,S
i,u,t =

⎧
⎨

⎩

CTN,D
t • PTP,c

i,u,t

/
∑

g∈G
Pc

g,t, μTP
i,u,t ≥ μ1

0, μTP
i,u,t < μ1

, (14)  

PTP,c
i,u,t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)PTP
i,u,t ∈

[
PTP,R

i,u ,ATP,S
1 PTP

i,u

]

zTP,S
1 PTP

i,u,t

(2)PTP
i,u,t ∈

[
ATP,S

1 PTP
i,u ,ATP,S

2 PTP
i,u

]

zTP,S
1 ATP,S

1 PTP
i,u + zTP,S

2

(
PTP

i,u,t − ATP,S
1 PTP

i,u

)

(3)PTP
i,u,t ∈

[
ATP,S

2 PTP
i,u ,PTP

i,u

]

zTP,S
1 ATP,S

1 PTPU
i,u + zTP,S

2
(
ATP,S

2 − ATP,S
1
)
PTP

i,u + zTP,S
3

(
PTP

i,u,t − ATP,S
2 PTP

i,u

)

,

(15)  

Pc
i,t =

∑

u∈Ui

PTP,c
i,u,t +PWT,c

i,t +PPV,c
i,t , (16)  

CTN,D
t =

∑

i∈I

∑

u∈Ui

f TP,D,R
i,u,t . (17) 

The overall generation revenue of PV fPV
i,t and WT fWT

i,t are 

f PV
i,t + f WT

i,t = CPV,RPPV
i,t +CWT,RPWT

i,t − f WT,S
i,t − f PV,S

i,t − CPV,P
(

PPV*
i,t − PPV

i,t

)

− CWT,P
(

PWT*
i,t − PWT

i,t

)
,

(18) 

which include generation revenue (CWT,RPWT
i,t , CPV,RPPV

i,t ) and shared 
cost (fWT,S

i,t , fPV,S
i,t ). fWT,S

i,t , fPV,S
i,t are calculated as [7] 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f PV,S
i,t = CTN,D

t • PPV,c
i,t

/
∑

g∈G
Pc

g,t

f WT,S
i,t = CTN,D

t • PWT,c
i,t

/
∑

g∈G
Pc

g,t

PPV,c
i,t = zPV,S

t PPV
i,t

PWT,c
i,t = zWT,S

t PWT
i,t

. (19) 

The compensation and shared cost of DPR service for directly con-
nected generation can also be calculated similarly by referring to eqs. 
(14)-(17), and (19). 

The constraints of WSTVPP operation are 

PL
i,t =

∑

u∈Ui

PTP
i,u,t +PWT

i,t +PPV
i,t +PUN

i,t , (20)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)PTP
i,u,t ∈

[
P TP

i,u − RTP,N
i,u Δt,P TP

i,u

]

− RTP,N
i,u Δt ≤ PTP

i,u,t+1 − PTP
i,u,t ≤ RTP,N

i,u Δt

(2)PTP
i,u,t ∈

[
PTP,N

i,u − RTP,D
i,u Δt,P TP

i,u − RTP,N
i,u Δt

]

RTP,D
i,u

RTP,N
i,u

PTP
i,u,t+1 − PTP

i,u,t ≤ RTP,D
i,u Δt −

(

1 −
RTP,D

i,u

RTP,N
i,u

)

PTP,N
i,u

RTP,D
i,u

RTP,N
i,u

PTP
i,u,t − PTP

i,u,t+1 ≤ RTP,D
i,u Δt −

(

1 −
RTP,D

i,u

RTP,N
i,u

)

PTP,N
i,u

(3)PTP
n,t ∈

[
PTP,D

i,u ,PTP,N
i,u − RTP,D

i,u Δt
]

− RTP,D
i,u Δt ≤ PTP

i,u,t+1 − PTP
i,u,t ≤ RTP,D

i,u Δt

, (21)  
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PTP
i,u,t = PTP,B

i,u,t + PTP,F
i,u,t

− τTP
i,u PTP

i,u Δt ≤ PTP,F
i,u,t ≤ τTP

i,u PTP
i,u

PTP,D
i,u ≤ PTP

i,u,t ≤ PTP
i,u

Δt, (22)  

⎧
⎨

⎩

τWT
i PWT*

i,t ≤ PWT
i,t ≤ PWT*

i,t

τPV
i PPV*

i,t ≤ PPV
i,t ≤ PPV*

i,t

, (23) 

where (20) is the power balance constraint in WSTVPP. (21) is the 
nonconvex ladder-type ramping constraints of TPUs [8] in Δt = 1/4h =

15min. (22) is the output constraints and real-time flexibility reserve of 
TPUs. The real-time flexibility reserve of TPUs is used to correct the 
influence of uncertainties and power unbalanced between generation 
output and load demand. (23) is the output constraint of RES with uti-
lization rates. 

3. FEDERATED REINFORCEMENT LEARNING FRAMEWORK 

The multi-WSTVPP operation model in TN proposed above has 
nonlinear objective and non-convex constraints. Specifically, it com-
prises power flow and transmission constraints, operation cost of TPUs 
(12), share cost for DPR services (14)-(17), (19), and ramping constraint 
of TPUs (21). It is difficult for traditional optimization methods to effi-
ciently handle this large-scale non-convex optimization problem to 
achieve both global and local cost-effective power sources scheduling. In 
this section, the multiple WSTVPPs operation is modeled as a Dec- 
POMDP, the designed action transformations are used for converting 
the output actions of the agent to the actual output of power sources in 
WSTVPP while reducing the unbalanced active power. Then the FRL 
framework is adopted to efficiently train the agent with privacy 
preservation. 

3.1. Partially observable Markov decision process modeling 

In this paper, to address the separate operation of TN and each 
WSTVPP, each WSTVPP can only access the local information and TSO 
dispatching instruction, e.g., the partial information in TN, to schedule 
its power sources. Therefore, it is reasonable to model the time series 
multi-WSTVPP operation process as a Dec-POMDP {I ,S ,O ,A ,R ,T ,

γ} [36] in the environment of TN with multiple WSTVPPs. Specifically, 
i ∈ I is the agent set, S is the global state, oi ∈ O i∈I is the local 
observation set, ai ∈ A i∈I is the action set, ri ∈ R i∈I is the reward set, 
T is the stochastic state transition, γ is the discount factor. The specific 
elements of Dec-POMDP are: 

1) Agent set: Each VPP controller is considered as an agent (i.e., 
WSTVPP control agent) to schedule its power sources. 

2) Environment set: The environment is the TN OPF model and 
WSTVPP operation model in Sections II-B and C. 

3) State and observation set: The global state is the combination of 
information in TN and WSTVPPs. The local observation of each WSTVPP 
is the local information of power sources and dispatch instruction of 
TSO: 

oi,t =
{

PWT*
i,t ,⋯,PWT*

i,t+hΔt,PPV*
i,t ,⋯,PPV*

i,t+hΔt ,P
L
i,t,P

NET
i,t ,PTP

i,u,t− 1(u ∈ Ui)
}
. (24)  

It comprises short-term RES forecast for h consecutive time steps from t 
to t + hΔt, dispatch instruction, minimum net load at t based on dispatch 
instruction and RES forecast PNET

i,t = PL
i,t − PWT*

i,t − PPV*
i,t , output of TPUs at 

t − 1. The short-term forecast values account for the uncertainty of RESs 
with rolling adjustments made at each time step. The handling of these 
uncertainties will be detailed in the section on state transitions. Given 
the high accuracy of ultra-short-term forecasting [47], this paper 
directly uses Pi,t

WT* and Pi,t
PV* as the maximum available output of RESs at 

time t. 

4) Action set: The action is set as the output range of power sources in 
each WSTVPP at t: 

ai,t =
{

aTP
i,u,t(u ∈ Ui), aWT

i,t , aPV
i,t

}
∈ [ − 1, 1]. (25)  

ai,t can be transformed to the actual output of power sources 
PTP,B

i,u,t (u ∈ Ui), PWT
i,t , PPV

i,t at next time step based on their output 
constraints: 

P(•)

i,t = 0.5
(

a(•)

i,t + 1
)(

a(•)

i,t − a(•)

i,t

)

+ a(•)

i,t , (26)  

where ( • ) represents a specific power source in WSTVPP (i.e., TPUs, 
WT, PV). For WT and PV, aWT

i,t , aPV
i,t are PWT*

i,t , PPV*
i,t , aWT

i,t , aPV
i,t are τWT

i PWT*
i,t , 

τPV
i PPV*

i,t . For TPUs, aTP
i,u,t and aTP

i,u,t can be determined by ramping con-
straints (21) and current net load (PNET

i,t = PL
i,t − PWT

i,t − PPV
i,t ) considering 

compensation standard of DPR. For PNET
i,t <

∑
u∈Ui

μTP,D
1 PTP

i,u ,aTP
i,u,t and aTP

i,u,t 

are calculated based on the ramping constraints of TPU 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)PTP
i,u,t ∈

[
PTP

i,u − RTP,N
i,u Δt,PTP

i,u

]

aTP
i,u,t = min

(
PTP

i,u ,P
TP
i,u,t− 1 + RTP,N

i,u Δt
)

aTP
i,u,t = PTP

i,u,t− 1 − RTP,N
i,u Δt

(2)PTP
i,u,t ∈

[
PTP,N

i,u − RTP,D
i,u Δt,PTP

i,u − RTP,N
i,u Δt

]

aTP
i,u,t = min

{

PTP
i,u ,

RTP,N
i,u

RTP,D
i,u

[

PTP
i,u,t− 1 + RTP,D

i,u Δt −

(

1 −
RTP,D

i,u

RTP,N
i,u

)

PTP,N
i,u

]}

aTP
i,u,t = max

{

PTP,D
i,u ,

RTP,D
i,u

RTP,N
i,u

PTP
i,u,t − RTP,D

i,u Δt −

(

1 −
RTP,D

i,u

RTP,N
i,u

)

PTPU,N
i,u

}

(3)PTP
i,u,t ∈

[
PTP,D

i,u ,PTP,N
i,u − RTP,D

i,u Δt
]

aTP
i,u,t = PTP

i,u,t− 1 + RTP,D
i,u Δt

aTP
i,u,t = max

(
PTP,D

i,u ,PTP
i,u,t− 1 − RTP,D

i,u Δt
)

.

(27)  

For PNET
i,t ≥

∑
u∈Ui

μTP,D
1 PTP

i,u , TPUs cannot obtain revenue from DPR ser-
vice. In this case, aTP

i,u,t is calculated similarly as (27), aTP
i,u,t is modified as 

follow to help reduce DPR loss 

aTP
i,u,t = min

(
PTP

i,u,t− 1 +RTP,D
i,u Δt,PTP,N

i,u

)
. (28)  

After transforming the actions of TPUs from aTP
i,u,t to PTP,B

i,u,t , the real-time 

fine-tune PTP,F
i,u,t in (22) is introduced to reduce the remaining PUN

i,t . The 
fine-tuning order of TPUs is determined by the economy of the TPUs in a 
WSTVPP. For PUN

i,t > 0, the power generation of WSTVPP is insufficient, 
in this case, TPU with better economic performance is prioritized for 
fine-tuning to increase their output until PUN

i,t = 0. For PUN
i,t < 0, the 

WSTVPP is overgeneration, TPU with lower economic performance is 
prioritized to decrease its output until PUN

i,t = 0. 
5) State transition: The state transition T is defined as a stochastic 

transition function from state S t to S t+1 after each agent takes action 
A i∈I . The state transition processes are: (i) Each agent takes action ai,t 

through local observation oi,t , transforms ai,t to actual output 
PTP

i,u,t(u ∈ Ui), PWT
i,t , PPV

i,t . (ii) Each WSTVPP control agent calculates its 
DPR compensation revenue 

∑
u∈Ui

fTP,R,D
i,u,t by eq. (11), total corrected 

output Pc
i,t by eqs. (15), (16), (19), and feasible output range at next time 

step Pg,t+1, P g,t+1, Qg,t+1, Q g,t+1 by eqs. (4)-(7). (iii) Each agent sends the 
information in (ii) to TSO. (iv) The TSO calculates the total DPR 
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compensation revenue in TN CTN,D
t by eq. (17), total corrected output 

∑
g∈GPc

g,t , dispatching instruction of each grid-connected power source 
and each WSTVPP at the next time step Pi,t+1, Qi,t+1 by OPF, and sends 
them to each agent. (v) Each agent calculates its share cost, reward ri,t , 
and updates local observation oi,t+1 for the next time step. Notably, the 
WT, PV in oi,t and load in TN have stochastic characteristics [37]. 
Gaussian noise is added to the RES forecast values and load values to 
represent this stochastics in the state transition process. The FRL 
framework can handle this stochastic and output correct action through 
training. 

6) Reward: The reward of each agent is designed to maximize the 
objective of its corresponding WSTVPP and avoid voltage and power 
flow exceeding limits in TN at t 

ri,t = f VPP
i,t − bopf ωopf , (29) 

where a large penalty ωopf and a binary variable bopf = 1 are intro-
duced if the OPF is unsolvable to ensure the outputs of power sources are 
in allowable ranges for safe operation in TN. 

3.2. Federated reinforcement learning algorithm design 

In this paper, a designed FRL framework is adopted to train the 
multiple WSTVPP control agents efficiently considering global and local 
cost-effective operation with privacy preservation, as shown in Fig. 2. 
The FRL framework has a server as coordinator with a global NN model 
to help enhance the training efficiency and cooperation among agents, 
and several distributed clients with individual NN models and data for 

agents. Specifically, the server has a parameterized global state value 
NN (V network) VG

ψ̃ (ot). Each client deploys a corresponding WSTVPP 
control agent with local data and five parameterized individual local 
NNs: a policy NN πi

∅(i)
(
ai,t |oi,t

)
, two state action value NNs (Q networks) 

Qi
θ1(i)(oi,t , ai,t) and Qi

θ2(i)(oi,t , ai,t), a V network Vi
ψ(i)(oi,t) and a target V 

network Vi
ψ(i)(oi,t) with the same structure as the global VG

ψ̃ (ot). Each 
client also has a replay buffer Di to store the local data (oi,t , ai,t , ri,t , oi,t+1,

di,t) for each time step during training, where di,t is a binary variable to 
record whether an episode is done (1 if t = T, else 0). At the client, each 
agent’s policy NN πi

∅(i)
(
ai,t |oi,t

)
is trained to schedule the power sources 

in each WSTVPP based on the local observation for maximizing the 
accumulative discounted reward 

∑T
t=0γtri,t. The individual policy is 

optimized by updating iteratively with the help of other local NN 
models, local data, and global NN model. During the update process, 
only the gradients and parameters of the global NN model are exchanged 
between server and clients. Therefore, the performance of agents can be 
improved while preserving the private local models and data for each 
agent. 

The policy update process is based on the widely used soft-actor- 
critic (SAC) algorithm [38] specially designed for FRL framework. For 
each agent at the client, firstly, local Q networks are updated by 
minimizing 

J
i
Q[θ(i) ] = Eoi,t ,ai,t∼Di

{
1
2

[
Qi

θ(i)

(
oi,t, ai,t

)
− Q̂i( oi,t, ai,t

) ]2
}

, θ(i)

= θ1(i), θ2(i), (30)  

Q̂i( oi,t, ai,t
)
= ri,t +

(
1 − di,t

)
γEot+1∼p

[
Vψ(i)

(
oi,t+1

) ]
, (31) 

where p is a stochastic state transition probability. Qi
θ1(i)(oi,t , ai,t) and 

Qi
θ2(i)(oi,t , ai,t) can be updated by stochastic gradient descent (SGD) 

through the gradients ∇̂θ1(i)J
i
Q[θ1(i)] and ∇̂θ2(i)J

i
Q[θ2(i)] of (30). The 

gradients can be calculated by an open-source RL framework such as 
Pytorch [39]. 

Secondly, the local V network Vi
ψ(i)(oi,t) is updated by the SGD and 

information exchange between clients and server. Each agent calculates 
the stochastic gradient ∇̂ψ(i)J

i
V [ψ(i)] of   

where âi,t is the stochastic evaluation of action. To obtain the eval-
uation âi,t, a noise vector sampled from some fixed distribution is added 
to the output action of current policy based on oi,t in Di. α is a temper-
ature parameter of entropy term. 

In the FRL framework, to achieve global coordination and training 
efficiency improvement, Vi

ψ(i)(oi,t) is updated with the help of server. the 

server aggregates the gradient ∇̂ψ(i)J
i
V [ψ(i)] of (38) from each agent to 

update the global VG
ψ̃ (ot) and sends the updated ψ̃ to overwrite ψ(i) in 

local Vi
ψ(i) at each client. The details of VG

ψ̃ (ot) update process at server 
will be discussed below. 

Thirdly, the local policy network πi
∅(i)
(
ai,t |oi,t

)
is updated using the 

SGD with gradient ∇̂∅(i)J
i
π(∅(i)) by minimizing 

Fig. 2. FRL algorithm for the operation of multiple WSTVPPs.  

J
i
V [ψ(i) ] = Eoi,t∼Di

{
1
2

(

Vi
ψ(i)
(
oi,t
)
− Eâi,t πi

∅

[
min
(

Qi
θ1(i)

(
oi,t, âi,t

)
,Qi

θ2(i)

(
oi,t, âi,t

) )
− αlog πi

∅(i)

(
âi,t
⃒
⃒oi,t
) ] )2

}

, (32)   

Y. Zou et al.                                                                                                                                                                                                                                      



International Journal of Electrical Power and Energy Systems 158 (2024) 109980

8

J
i
π [∅(i) ] = Eoi,t∼Di

{
αlogπ∅(i)

(
âi,t
⃒
⃒oi,t
)

−
[
min
(

Qi
θ1(i)

(
oi,t, âi,t

)
,Qi

θ2(i)

(
oi,t, âi,t

) )
− Vi

ψ(i)
(
oi,t
) ]}

, (33) 

where min(Qi
θ1(i)

(
oi,t , âi,t

)
,Qi

θ2(i)

(
oi,t , âi,t

)
) − Vi

ψ(i)(oi,t) is the advantage 
term to prevent the overestimation of Q [40]. 

Finally, the ψ(i) in local target V NN Vi
ψ (oi,t) is updated by using the 

exponentially moving average of ψ(i) in Vi
ψ(i)(oi,t). 

At server, the global model VG
ψ̃ (ot) is updated by SGD, the corre-

sponding gradient ∇̂ψ̃ J
G
V(ψ̃) is calculated by averaging the gradients 

aggregated from each client 

∇̂ψ̃ J
G
V (ψ̃) =

1
card(I)

∑

i∈I
∇̂ψ J

i
V(ψ), (34) 

where card(I) is the number of elements in I, which equivalents to the 
number of agents.  

Algorithm 1 FRL Framework for multiple WSTVPPs Operation 

Client i Initializ Vi
ψ(i)
(
oi,t
)
; πi

∅(i)
(
ai,t |oi,t

)
, Vi

ψ(i)(oi,t), Qi
θ1(i)
(
oi,t , ai,t

)
, Qi

θ2(i)(oi,t , ai,t) with 

λ∅, λψ , λθ1, λθ2; Di.

Server Initialization: VG
ψ̃ (ot) with the same structure as Vi

ψ(i)(oi,t) and λψ̃ , broadcasts 

ψ̃ to overwrite ψ of each agent’s Vi
ψ(i)(oi,t). B, E, T.  

For episode e = 1 to E do 
Reset environment: randomly select a start time, get the initial actions and local 
observation for each agent. 
For environment time step t = 1 to T do 
At client, each WSTVPP control agent i do in parallel 
Randomly take actions ai,t via local observation oi,t by individual local policy πi

∅(i)

Transform actions to PTP,B
i,u,t (u ∈ Ui), PWT

i,t , PPV
i,t .  

Fine-tune TPUs by PTP,F
i,u,t to acquire PTP

i,u,t .  

Calculate 
∑

u∈Ui
fTP,R,D
i,u,t and Pc

i,t , send them to TSO. 
Calculate Pi,t+1, P i,t+1, Qi,t+1, Q i,t+1, send them to TSO. 
At TSO 
Calculate CTN,D

t and 
∑

g∈GPc
g,t in TN, send to each grid-connected power sources and 

WSTVPPs. 
Determine Pg,t+1, P g,t+1, Qg,t+1, Q g,t+1 of grid-connected power sources and WSTVPP 
by their feasible ranges. 
Run OPF. If OPF is solvable do: 
Send bopf = 0, dispatching instructions Pg,t+1, Qg,t+1 to WSTVPPs and grid-connected 
power sources. 
Else do: 
Send bopf = 1 to WSTVPPs. 
end if 
At client, each WSTVPP control agent i do in parallel 
Calculate 

∑
u∈Ui

fTP,S
i,u,t , fWT,S

i,t , fPV,S
i,t .  

Calculate reward ri,t , obtain done di,t .  
If bopf = 0 do: Update local observation to oi,t+1.  
If bopf = 1 do: oi,t+1 = oi,t .  
Store {oi,t ,ai,t , ri,t ,oi,t+1,di,t} to Di.  
If bopf = 1 do: Break. 
oi,t←oi,t+1.  
If the update condition is satisfied do: 
(Every certain step and there are sufficient data in Di) 
At client, each agent i do in parallel 
Sample B batch of buffer from Di 

Update θ1(i) of Qi
θ1(i): θ1←θ1 − λθ1 ∇̂θ1J

i
Q(θ1).  

Update θ2(i) of Qi
θ2(i): θ2←θ2 − λθ1 ∇̂θ2J i

Q(θ2).  

Calculate gradient ∇̂ψ(i)J
i
V [ψ(i)] and send to server. 

At server 
Aggregate ∇̂ψ J i

V(ψ) and calculate ∇̂ψ̃ J G
V(ψ̃).  

Update ψ̃ of VG
ψ̃ : ψ̃←ψ̃ − λψ ∇̂ψ̃ J G

V(ψ̃).  
Send ψ̃ to each client. 
At client, each agent i do in parallel 
Overwrite ψ(i) of Vi

ψ with ψ̃ from server. 

Update ∅(i) of πi
∅(i): ∅←∅ − λ∅ ∇̂∅J

i
π(∅).  

Update ψ(i) of Vi
ψ(i): ψ←λψ ψ + (1 − λψ )ψ.  

end if (one update process is done) 
end for (one episode is done) 
end for (The training is done)  

3.3. Training process 

The overall training process is shown in Algorithm 1. Before the start 
of the first training episode, each client initializes its individual 
πi

∅(i)
(
ai,t |oi,t

)
, Qi

θ1(i)(oi,t , ai,t), Qi
θ2(i)(oi,t , ai,t), Vi

ψ(i)(oi,t) with the same 
learning rate λ∅, λθ1, λθ2, λψ , as well as Vi

ψ(i)(oi,t). The server initializes 
VG

ψ̃ (ot) with the same structure as Vi
ψ (oi,t) and learning rate λψ̃ , broad-

casts its parameters ψ̃ to overwrite ψ of each agent’s Vi
ψ (oi,t). 

At each training episode e, the environment is reset first. The server 
randomly selects the starting time step and broadcasts it to all clients for 
agents’ training data synchronization. The TSO determines Pg,t , Pg,t in 
(5) based on the summation of TPUs’ minimum/maximum active output 
and predicted RES active outputs. The predicted RES outputs in the 
training process are the history data added with stochastic noises at 
corresponding time steps. The Qg,t , Qg,t in (7) can be determined 
accordingly by Pg,t, Pg,t. Then the TSO runs the OPF program to solve the 
initial dispatching instruction for each grid-connected power source and 
WSTVPP. The initial active power output of grid-connected power 
source is set as its corresponding initial dispatching instruction. The 
initial active power outputs of RES in each WSTVPP are set as their 
corresponding predicted outputs. The initial active outputs of TPUs in 
each WSTVPP are set to allocate the remaining dispatching requirement 
(minimal net load mentioned in Section III-A-3)) proportionally based 
on the capacity of the TPUs. The above process resets the environment, 
then each agent can acquire the initial observation through the local and 
TSO information. Meanwhile, the TSO can obtain the Pg,t, Pg,t, Qg,t , Qg,t 

by eqs. (4)-(7) at the next time step. The training episode can be carried 
out. 

After resetting the environment, at each environment time step, each 
agent at the client takes actions ai,t according to the current policy, 
transforms ai,t to actual output of power sources PTP

i,u,t(u ∈ Ui), PWT
i,t , PPV

i,t . 
Then the state transition considering RES and load uncertainties in 
Section-III-A-5) is conducted, each agent obtains the next oi,t+1 and 
stores (oi,t , ai,t , ri,t , oi,t+1, di,t) to replay buffer Di, the environment moves 
to the next step. The above state-action-reward-next state circle is 
repeated until t = T, one episode is done. The training process is 
terminated until the maximum episode E is reached. 

The model update process is triggered at every certain environmental 
step with sufficient data in the replay buffer. During the update process, 
each agent at the client samples B batches of replay buffer. Using the 
batches, the local and global models can be updated through the 
methods in Section III-B. The update process is also summarized in Al-
gorithm 1. 

During the validation or application process, each agent only needs 
to utilize its trained local policy NN to schedule the power sources’ 
output of the corresponding WSTVPP. 

Table 1 
Basic Data of Power).  

Number Bus TPUs PV 
SPV 

WT 
SWT PTP P TP,N P TP,D 

VPP 1 32 200 + 300 100 + 150 / + 120 200 300 
VPP 2 33 300 + 300 150 + 150 120 + 120 120 180 
VPP 3 38 300 + 600 150 + 300 120 + 180 200 200 
VPP 4 39 600 + 600 300 + 300 180 + 180 400 300 
G1 30 1040 520 / / / 
G2 34 508 254 / / / 
G3 35 687 343.5 / / / 
G4 36 580 290 / / / 
G5 37 564 282 / / / 
Slack bus 31 / / / / / 

Sources In Test Transmission Network (MW 
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4. CASE STUDY 

The proposed FRL-based multiple WSTVPPs coordinated operation 
framework is verified on a modified 39-bus TN [41], a widely used TN 
for studies. The test TN has 5 grid-connected TPUs with only NPR 
capability, 4 WSTVPPs (i.e., 4 agents, abbreviated as VPP) with WT, PV, 
and 2 retrofitted TPUs. The basic data of the power sources in TN is 
shown in Table 1. For the training data, the active and reactive load data 
are collected and modified based on [42] for 3 years. The WT and PV 
data are collected in [43] for 3 years. The test data set, distinct from the 
training data set, comprises data from representative days across various 
months of the year, accounting for approximately 15 % of the volume of 
the training data. The nonlinear AC OPF program adopts algorithm in 
Pandapower [44]. The voltage limit of the OPF in test TN is 0.94p.u. to 
1.06p.u.. The ramping rate of all TPUs at NPR and DPR state are 0.9 •

STP/h and 0.6 • STP/h. The parameters related to DPR auxiliary services 
are derived from reference [7]. ATP,S

1 = 0.7, ATP,S
2 = 0.8, μTP,D

1 = 0.5, 
μTP,D

2 = 0.4, zTP,S
1 = 1, zTP,S

2 = 1.5, zTP,S
3 = 2. For winter season 

(November to next April), kTP,D
t = 1, zPV,S

t = 2, zWT
t = 1.6. For summer 

season (May to October), kTP,D
t = 0.5, zPV

t = 1, zWT
t = 0.8. The param-

eters for operation and costs are wUN = 5× 104, τPV
i = τWT

i = 0.9, τTP
i,u =

0.4, CPV,P = CWT,P = 104, CTP,R
0 = 375, CTP,R

1 = 400, CTP,R
2 = 1000, 

CPV,R = 740, CWT,R = 850, Ccoal = 685, CTP,E
m = 1.2. All NN models in RL 

adopts Relu activation with size 64, λ∅ = λθ1 = λθ2 = λψ̃ = 4× 10− 4, 
λψ = 10− 2, γ = 0.99, α = 1, B = 120, E = 104, T = 96. The case study is 
run on a PC with Intel core i7-13700 K, 3.40 GHz and 32 GB of RAM. 

4.1. Training performance 

The proposed FRL algorithm is compared with other two RL ap-
proaches: (i) A fully distributed SAC algorithm that operates indepen-
dently across 4 WSTVPP control agents without the aid of a central 
coordinator. Each agent only interacts with the TSO with its individual 
local NN models and data. (ii) A centralized training and decentralized 
execution-based multi-agent SAC (CTDE-based MASAC) approach that 
utilizes a central coordinator to aggregate data from all agents during 
the training phase for facilitating coordinated training efforts. Subse-
quently, the central coordinator shares the trained policy NN model with 
each agent for implementation. The learning rates of the above two RL 
approaches are aligned with that of the FRL algorithm. 

The moving average reward curves of the three RL algorithms, based 
on 50 episodic rewards, for the 4 WSTVPP control agents are depicted in 
Fig. 3. The figure illustrates an initial trend of rewards starting from a 
notably negative value with similar converge speeds for the three 

algorithms. This initial phase reflects the agent’s challenge in effectively 
managing the power balance constraint. Afterward, the rewards of FRL 
for all agents gradually converge to a stable level at about 106. While the 
fully distributed SAC for WSTVPP 2 and 4 converges to a relatively low 
reward. The CTDE-based MASAC demonstrates quicker improvement in 
the initial phases of training compared to both the proposed FRL and 
fully distributed SAC. However, the centralized training process, due to 
its handling of vast datasets simultaneously, experiences slower and less 
stable advancements during the latter stages of training. The final 
reward achieved by the CTDE-based MASAC is lower than that of the 
FRL method, with the rewards pertaining to WSTVPP 2 showing 
particular instability. Additionally, the centralized training process ne-
cessitates the complete sharing of agents’ data and models with the 
coordinator, which compromises the privacy of individual agents. The 
computation burden of the central coordinator is also substantial. These 
results indicate that the proposed FRL algorithm is capable of learning 
an effective and stable policy coordinatively, while striking an optimal 
balance between preserving agent privacy and maintaining efficiency 
compared with the other two RL methods. 

Fig. 3. Reward curves of each WSTVPP control agent during training (mov-
ing average). Fig. 4. Some detailed information of each WSTVPP during training (mov-

ing average). 

Fig. 5. Validation of real-time training performance using the test data set 
(evaluated every 100 episodes). 
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Some detailed information about each WSTVPP during the training 
phase is illustrated in Fig. 4. The figure reveals that the control agent of 
WSTVPP can engage in continuous learning through the proposed FRL 
algorithm. During the training process, the agent efficiently coordinates 
the power sources within the system in line with the dispatch in-
structions while reducing the RES curtailment. The above results 
demonstrate the effectiveness of the proposed method in facilitating 
collaborative training among agents with good improvement effects and 
resource utilization efficiency. 

To evaluate the NN model’s generalization capability, 5 test days are 
randomly selected from the test dataset to evaluate real-time perfor-
mance every 100 training episodes. The results are presented in Fig. 5. 
Fig. 5 (a) shows a gradual stabilization of rewards for all agents over 
these test days. Furthermore, OPF achieves consistent convergence 
across the test days after about 9000 episodes, ensuring that voltage 
levels remained within the acceptable range of 0.94 to 1.06p.u., as 
shown in Fig. 5 (b). The results demonstrate that agent’s policy NN 
model can achieve correct convergence and adapt to varying conditions 
through training with strong generalization capabilities. 

4.2. Effectiveness validation for trained policy 

To validate the training performance, the trained policy NN models 
of WSTVPP control agents by using the FRL algorithm are tested on a 
typical summer day and a typical winter day. The initial outputs of RESs 
are set to their predicted values. The initial outputs of TPUs are set to 
allocate PNET

i,t proportionally based on their PTP
i,u . The start hour is 0:00. To 

enable consistent results, the stochastic noises of WT, PV and load are 
not considered during testing. For comparison, the mathematic model- 
based day-ahead optimization approaches are also conducted on these 
two typical days. These optimization approaches comprise independent 
optimization for each WSTVPP and centralized optimization for all 
power sources considering OPF in TN. 

The optimization approach for each VPP adopts the following set-
tings: (i) 4 WSTVPPs’ operation models are considered separately as 
described in eqs. (8)-(22) without considering the shared cost con-
straints of DPR service eqs. (14)-(17), and (19). (ii) Due to the dynamic 
changes in the dispatch instructions of WSTVPPs in the proposed mul-
tiple power sources coordinated framework, the Pg,t, Qg,t used in the 
optimization program are derived through interactions between the 
WSTVPP control agents and TSO during the testing process of the pro-
posed framework. (iii) The convex model is employed, Δt = 1/2h =

30min is used to avoid nonconvex ramping constraints of TPUs in Δt =

15min, the operation cost functions of TPUs are approximated using 
linearization, and the shared costs associated with DPR service are 
calculated after optimization is completed. (iv) The optimization prob-
lem is a mixed integer linear optimization, the Gurobi solver [45] is used 
to solve the optimization problem. 

The centralized optimization approaches adopt the following set-
tings: (i) The first approach, centralized optimization with only TN 
objective, structured as a nonlinear optimization, the objective is 
defined by eq. (1), with consideration of OPF constraints outlined in 
Section II-B, along with eqs. (20)-(22). The RES curtailment is not 

considered, Δt = 1/2h = 30min. All revenues and costs of power sources 
are calculated after optimization. (ii) The second approach, centralized 
optimization integrates both TN and WSTVPP objectives, formulated as 
a mixed integer nonlinear optimization, the objective is the summation 
of eq. (1) and eq. (8) for all WSTVPPs, with all constraints specified in 
Sections II-B and C. Similar to the first approach, the RES curtailment is 
not considered, Δt = 1/2h = 30min. (iii) The optimization models are 
programmed using the GAMS software [46] and are solved by the 
commercial solvers. 

It should be noted that the comparison between the optimization and 
the proposed FRL-based framework is not entirely under identical con-
ditions. Specifically, the scheduling time scales for FRL and optimization 
methods are different. The optimization for each WSTVPP relies on 
dispatch instructions derived from FRL outcomes, and its objectives 
exclude considerations of shared costs. Additionally, the goals of 
centralized optimization methods do not fully account for the multi- 
objective nature of WSTVPPs. Consequently, the results should be 
considered as indicative rather than definitive. 

The revenues of each WSTVPP obtained by FRL-based trained policy 
and optimization approaches on the two typical days are presented in 
Table 2. The table provides clear evidence that the revenues obtained 
through the FRL exhibit only a negligible 0.4 % to 6 % deviation when 
compared to the results obtained through optimization for each 
WSTVPP. The error on the winter day is greater than on the summer day. 
Specifically, WSTVPP 1 exhibits a relatively larger error, while the errors 
for the other WSTVPPs typically hover around 1 %. The results pre-
sented above indicate that the proposed FRL approach is capable of 
training agents to achieve economical scheduling of power sources 
within WSTVPP, while concurrently fulfilling the dispatch requirements 
of the TN. Meanwhile, these tests highlight that optimization is a one- 
time calculation, lacking the capacity to adapt to real-time dynamics 
in TN. Conversely, the FRL method excels in adjusting power source 
outputs within the dynamic TN operating environment without relying 
on predefined scheduling plans. 

In centralized optimization, scheduling multiple power sources 
within TN requires the TSO to access the detailed model of each power 
source. This requirement cannot protect the privacy of power source 
operators. Additionally, centralized optimization poses a large-scale, 
nonconvex problem characterized by substantial computational de-
mands and high complexity. These attributes make it challenging to 
guarantee global optimal convergence within the constraints of a short- 
time scale multiple power sources scheduling. As presented in Table 2, 
the revenue of each WSTVPP obtained from centralized optimization, 
which focuses solely on TN objective, are lower than those of the pro-
posed FRL method. This is because prioritizing only the TN’s objective 
does not facilitate the TPU in maximizing benefits from DPR auxiliary 
services. Centralized optimization fails to find an optimal solution when 

Table 2 
Revenue Comparison of FRL and Optimization (×106 CNY).   

VPP 1 VPP 2 VPP 3 VPP 4 

Summer day 
Proposed FRL  2.0319  2.3455  2.7821  4.9213 
Optimization for each WSTVPP  2.1660  2.3504  2.8057  4.9563 
Centralized optimization  1.9300  2.1480  1.6064  4.4956 
Winter day 
Proposed FRL  5.5537  3.0990  5.3131  7.8196 
Optimization for each WSTVPP  5.8318  3.1199  5.5212  8.0375 
Centralized optimization  5.6477  2.8473  3.9075  7.3455  

Table 3 
Stability and Robustness Test of FRL Approach (×106 CNY).    

VPP 1 VPP 2 VPP 3 VPP 4 

Max. load day Proposed FRL  3.990  2.322  4.075  5.860 
Optimization  4.228  2.322  3.959  5.880 

Max. load day, +5% load Proposed FRL  4.199  2.731  4.160  6.167 
Optimization  4.366  2.794  4.115  6.208 

Min. load day Proposed FRL  4.011  2.165  4.257  5.882 
Optimization  4.231  2.203  4.072  6.035 

Min. load day, − 5% load Proposed FRL  3.759  1.742  4.089  5.505 
Optimization  3.960  1.767  3.855  5.624 

Max. RES day Proposed FRL  3.650  2.142  3.566  5.928 
Optimization  3.831  2.271  3.695  5.982 

Max. RES day, +5% RES Proposed FRL  3.763  2.190  3.662  6.002 
Optimization  3.955  2.255  3.813  6.047 

Min. RES day Proposed FRL  2.036  1.793  2.585  4.255 
Optimization  2.169  1.798  2.577  4.267 

Min. RES day, − 5% RES Proposed FRL  1.981  1.776  2.560  4.233 
Optimization  2.116  1.784  2.547  4.236  
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attempting to balance objectives for both TN and WSTVPPs under 
nonconvex constraints by several commercial solvers such as SBB, 
CONOPT, and BARON in GAMS. This suggests that the comprehensive 

and complex multi-power operation model developed in this study is not 
suitable for traditional centralized optimization techniques. 

To further assess the stability and robustness of the trained agents by 
the proposed FRL algorithm, days with the maximum and minimum 
load, as well as days with the highest and lowest RES output in the TN, 
are selected for testing. Moreover, future load growth and variability are 
also incorporated into these test scenarios. The results are shown in 
Table 3 and compared with the optimization approach for each VPP. 

The table shows that under scenarios of maximum and minimum 
load or RES output, the discrepancy between revenues derived from the 
proposed FRL algorithm in this study and those obtained through the 
optimization method remains around a negligible 1 %. The optimization 
method’s lack of consideration for DPR service cost-sharing results in the 
FRL approach achieving some higher revenues, as observed in the rev-
enues of WSTVPP 3 on days of maximum and minimum loads. The above 
analysis highlights the adeptness of the FRL approach in handling 
various scenarios, addressing potential changes in load patterns and the 
variability of RES, thereby demonstrating its robustness. Moreover, for 
facing the potential increase in both load and renewable energy in the 
future, the proposed FRL algorithm can offer a direct and time-efficient 
strategy for ongoing agent training to adeptly meet upcoming 
requirements. 

In summary, the proposed FRL-based multiple power sources coor-
dinated framework is an effective solution for practical applications. It 
not only addresses privacy concerns but also provides the flexibility 
needed to adapt to real-time changes and large-scale nonconvex opti-
mization across different scenarios in the TN with high overall revenue. 

4.3. Detailed analysis of power sources scheduling 

The detailed power sources scheduling obtained from the proposed 
FRL-based multiple power sources coordinated framework for every 15 
min on the two typical days are shown in Fig. 6. The DPR service rev-
enues of TPUs in each WSTVPP at each time step are shown in Fig. 7. 
From Fig. 6 (a)-(b), it is evident that the trained agents can effectively 
schedule TPUs and RESs in WSTVPPs to achieve real-time power balance 
between generation and dispatch instruction considering RES and load 
fluctuations. Although the TPUs are constrained by the maximum 
ramping rate in a short time scale, the trained agent can schedule the 
TPUs step by step based on local observations and different time periods 
to adapt to the changes in load and RES in the future with a longer time 
scale. For example, TPUs can increase their output ahead of peak load 
demand, typically occurring between 19:00 and 22:00 on winter days. 
Besides, the trained agents can also realize high-RES utilization and 
schedule TPUs to engage DPR service for more revenues. The details will 
be discussed below. 

On the summer day depicted in Fig. 6 (a), the dispatch instruction for 
each WSTVPP remains relatively stable from 8:00 to 24:00. The PV 
output is high at noon, while the WT output is low throughout the day, 
resulting in a relatively modest total RES output. Besides, for the sum-
mer season, the revenue of DPR services is relatively low. Therefore, 
TPUs rarely engage in DPR service to mitigate additional losses in the 
DPR state. As depicted in Fig. 7 (a), only WSTVPP 3 engaged in the DPR 
service, specifically during the early morning hours of 6:00–8:00 and 
again at 10:00, when dispatch instruction is at its lowest. 

Fig. 6. Output of power sources obtained from FRL approach.  

Fig. 7. DPR service revenues of TPUs at each time step.  

Table 4 
Renewable Energy Utilization of the Two Typical Days (%).   

WSTVPP 1 WSTVPP 2 WSTVPP 3 WSTVPP 4 

Summer 
PV 99.82 99.81 99.69 99.65 
WT 100 100 100 99.98 
Winter 
PV 99.77 99.72 99.93 99.87 
WT 99.88 99.90 100 100  
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On the winter day illustrated in Fig. 6 (b), the dispatch instruction is 
relatively high from 18:00 to 24:00. The PV output is relatively low, 
whereas WT output is consistently high throughout the day, leading to 
the total RES output being higher than that of the summer day. This 
contributes to a reduced net load in comparison to the summer, 
particularly evident during nighttime. As demonstrated in Fig. 7 (b), the 
TPUs proactively reduce their outputs and engage in DPR service during 
times of low net load from 0:00 to 6:00, and also during midday when 
RES output is substantial. Revenue from DPR services is significantly 
higher in the winter, enhancing the incentive for TPUs to participate. 
The potential for DPR auxiliary service revenue within a WSTVPP is 
directly linked to the DPR capability of its TPUs. In particular, WSTVPPs 
3 and 4, which are equipped TPUs possessing enhanced DPR capabilities 
(such as 600 MW TPU), are poised to achieve higher DPR service reve-
nues in comparison to other WSTVPPs, especially during times of low 
net load in the TN from 0:00 to 7:00. 

Table 4 shows the RES utilization rate. According to the table, the 
utilization rate of WT and PV over the two typical days is either close to 
or precisely 100 %. Specifically, the utilization rate of WT is slightly 
higher than that of PV. This discrepancy arises from the significant 
output changes of PV during the daytime. Additionally, the unit gener-
ation revenue of WT is higher than that of PV, leading WSTVPP to give 
priority to ensuring WT utilization. In WSTVPPs 1 and 2, the proportion 
of PV capacity in the RES is relatively small in comparison to WT, 
whereas WSTVPPs 3 and 4 exhibit the reverse scenario. Consequently, 
during significant PV output variations on summer days, WSTVPPs 1 and 
2 achieve a higher PV utilization rate compared to WSTVPPs 3 and 4. 
Conversely, on winter days with substantial WT output, WSTVPPs 3 and 
4, which have a smaller WT capacity and a larger thermal power ca-
pacity, can offer more flexibility to Integrate WT effectively. 

Table 5 presents the total DPR revenue and shared cost of each 
WSTVPP on the winter day. The table shows that WSTVPPs with a wider 
output regulation range TPUs can gain more benefits from DPR services. 
Among them, WSTVPP 3 has the highest DPR service revenue due to the 
relatively low power demand of its dispatch instructions throughout the 
day. The DPR service revenue of WSTVPP 2, 3, and 4 surpasses their 
respective shared costs. These results indicate that aggregating high- 
performance flexible retrofitted TPUs with RES as a WSTVPP can ach-
ieve more overall revenue when participating in DPR services. 

5. CONCLUSION 

In this paper, a hybrid approach that combines data-driven FRL with 
the model-based method for multiple power sources coordinated oper-
ation in a wind-solar-thermal power network is proposed. The non-
convex ramping constraint of TPUs, DPR service revenue and shared 
cost, as well as nonlinear cost functions, are considered in the multiple 
power sources operation model. By aggregating the megawatt-level 
grid-connected TPUs and RES plants at the same high voltage bus as 
the WSTVPP, and decomposing the multiple power sources scheduling 
model into the power network OPF model and WSTVPPs operation 
model, the privacy of the power sources operators can be preserved, the 
computational complexity can be reduced. The multiple WSTVPPs 
operation is modeled as Dec-POMDP and a customized FRL algorithm is 
adopted to train the WSTVPP control agents. Through a case study 
conducted in a 39-bus TN, the performance of the proposed FRL 
framework is validated. The trained agent can achieve economic oper-
ation and obtain more DPR service revenue for each WSTVPP consid-
ering privacy preservation. 
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[35] Šepetanc K, Pandžić H. Convex Polar Second-Order Taylor Approximation of AC 
Power Flows: A Unit Commitment Study. IEEE Trans Power Syst 2021;36(4): 
3585–94. 
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