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A B S T R A C T

This work is devoted to estimation of macroscopic failure strength of heterogeneous rock-like and cement-
based materials. Three representative microstructures are considered, respectively with a random distribution
of pores, stiff inclusions, and both pores and inclusions in a pressure-sensitive plastic solid matrix. In the first
part, a series of direct numerical simulations are performed by using a nonlinear fast Fourier transform (FFT)
method. Different values of porosity and inclusion volume fraction are considered. The respective influences
of pores, inclusions and their interactions on the macroscopic failure stresses are investigated for a large range
of mean stress. The obtained results provides a new insight on the effect of interaction between pores and
inclusion at the same scale. For this case, it is very difficult to obtain analytical solutions. In the second part,
a specific model based on artificial neural network (ANN) is constructed for the prediction of macroscopic
failure strength by using porosity and inclusion volume fraction as input parameters. This model is trained
by using a dataset based on the results obtained from the numerical simulations. The accuracy of the ANN-
based model is verified through different statistic indicators. The good performance of this model is finally
shown through the comparisons between its predictions and the references solutions from the direct numerical
simulations for three groups of heterogeneous materials.
1. Introduction

Cement-based and rock-like materials are widely encountered in
many engineering fields. These materials contain different kinds of
heterogeneity such as pores and inclusions (aggregates) at different
scales (Robinet et al., 2012; Ma et al., 2021). Their macroscopic
mechanical and physical properties are inherently affected by the
micro-structural heterogeneity and evolution due to aging and chemical
degradation. The estimation of macroscopic elastic properties, failure
strength, permeability and other parameters with the micro-structural
evolution is a fundamental issue for the safety and durability analysis of
engineering structures. On the other hand, in the case of cement-based
materials, the microstructure is directly related to mineral composition
(cement, water, sand, aggregate, additive) and fabrication process.
For green construction, geopolymer-based concrete is more and more
used (Zailan et al., 2022; Li et al., 2022). For an optimal design of
those new materials, it is needed to establish the relationships between
macroscopic properties and microstructures which are related to com-
positions and fabrication technology. In this context, the present work
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focuses on the estimation of macroscopic failure strength as functions
of porosity and inclusion volume fraction.

In the last decades, by using limit analysis technique and variational
approach, a high number of analytical macroscopic strength criteria
have been developed for different types of porous materials. We can
mention the pioneer work by Gurson (1977) for porous materials with
Mises type solid matrix and spherical pores. Many extensions have
been proposed so far. For example, some authors have considered
non-spherical voids (Gologanu et al., 1993; Monchiet et al., 2014),
nonoporous materials (Brach et al., 2017) and combined effect of pore
size and shape (Monchiet and Kondo, 2013), anisotropy in tension
and compression (Cazacu et al., 2010; N’souglo et al., 2020), plastic
anisotropic materials containing spheroidal voids (Monchiet et al.,
2008), etc. Some analytical strength criteria have also been developed
for porous materials with two families of voids at different scales (Vin-
cent et al., 2009; Shen et al., 2014). Macroscopic strength criteria of
heterogeneous materials reinforced by stiff inclusions have also been
investigated (Gărăjeu and Suquet, 1997). For rock-like and concrete
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materials, a two-step homogenization technique was used to take into
account the effects of pores and inclusions on two different scales (Shen
et al., 2013, 2012; He et al., 2013). Based on a three-step homoge-
nization procedure, the effect of carbonation of cement past was taken
into account in an analytical strength criterion (Ghorbanbeigi et al.,
2016). These analytical models provide explicit strength criteria as
functions of porosity and inclusion volume fraction. Their formulation
is generally based on idealized representative volume element (RVE).
The real spatial distribution of pores and inclusions is not directly
taken into account. The case of simultaneous presence of voids and
inclusion at the same scale has been investigated in few studies and
different kinds of approximation were adopted (Shen, 2022). As an
alternative to analytical models, various numerical homogenization
techniques have also been developed, based on direct simulations of
microstructures, by using different types of numerical methods such
as finite element method (FEM), discrete element method (DEM), and
fast Fourier transform (FFT) solution. The numerical models are able to
consider realistic microstructures but requires a high computing time.
Their application to engineering problems is not obvious.

During the recent years, machine-learning based approaches, par-
ticularly those centered on artificial neural networks (ANNs), have
witnessed increasing adoption in materials science and engineering
applications. The remarkable adaptability of ANNs has been pivotal in
their widespread acceptance, allowing them to flexibly address various
challenges through parameter and hyperparameter adjustments. Un-
like traditional numerical simulation models, once a machine learning
model is constructed, the output can be obtained quickly based on
the input. With the advancement of machine learning, there is no
longer a need for tedious coding and extensive background knowledge,
which significantly enhances materials science research. ANNs have
found application across diverse domains, encompassing solutions for
forward and inverse problems governed by partial differential equa-
tions (PDEs) (Raissi et al., 2019; Han et al., 2017; Sirignano and
Spiliopoulos, 2018), reduced-order modeling (Hesthaven and Ubbiali,
2018; Lee and Carlberg, 2020; Fresca et al., 2021), and data-driven
discovery (Ray and Hesthaven, 2018). They have also been instrumen-
tal in estimating material mechanical properties, including the elastic
modulus of concrete (Xue et al., 2023a,b) and the uniaxial compres-
sion strength (Asteris and Mokos, 2020; Armaghani and Asteris, 2021;
Gül et al., 2021), among others. Hybrid models, combining ANNs
with meta-heuristic algorithms, have emerged to bolster numerical
efficiency in predicting material behavior (Asteris and Mokos, 2020;
Armaghani and Asteris, 2021; Gül et al., 2021). Furthermore, the devel-
opment of convolutional neural networks has facilitated the modeling
of structure–property relationships, notably predicting yield surfaces
from microstructure images (Heidenreich et al., 2023). Similarly, neu-
ral network-based material cells have been crafted to characterize
elastoplastic behavior, supporting finite element analyses in boundary
value problems (Shaoheng et al., 2023). Additionally, innovative ap-
proaches such as machine learning-driven stress integration methods
have been proposed for anisotropic plasticity in sheet metal forming,
showcasing the versatility of machine learning models in diverse sce-
narios (Piemaan and Whan, 2023). Recent studies have demonstrated
the potential of ANNs in various applications. These works have ex-
plored computational homogenization of materials (Le et al., 2015),
development of smart constitutive laws (Logarzo et al., 2021), and
investigation of deep learning-based upscaling methods (Ma and Zhang,
2023), among other areas (Vasilyeva and Tyrylgin, 2021; Vasilyeva
et al., 2020; Zhang et al., 2023). However, despite these advancements,
a notable challenge remains in research pertaining to the estimation
of failure strength in heterogeneous materials containing pores and
inclusions at the same scale and under multi-axial conditions.

The paper has two main objectives. Firstly, through a series of direct
numerical simulations using the nonlinear FFT method, we investigate
the influence of varying porosity and inclusion volume fractions on
2

macroscopic failure stress. We explore the effects of pores, inclusions,
and their interactions under different mean stresses, providing new
insights into the interactions between pores and inclusions at the
same scale. Secondly, we establish a specific model based on ANN.
This model utilizes porosity and inclusion volume fraction as input
parameters to estimate the macroscopic failure strength of concrete-like
or rock materials with random distributions of pores and inclusions at
the same microscopic scale.

For this purpose, the following methodology is adopted. In Sec-
tion 2, we shall perform direct numerical simulations of RVE for
three representative families of materials: porous materials, inclucion-
reinforced composites, and heterogeneous materials containing both
pores and inclusions. The effects of pores, inclusions and their inter-
action will be investigated in detail. In Section 3, a specific ANNs-
based model is constructed in view of estimating macroscopic failure
stresses of three types of heterogeneous materials. The structure and
effectiveness of the model is presented and demonstrated by a series
of benchmark test cases. The application of ANNs-based model to
predicting the macroscopic failures stresses of like-concrete materials
is presented Section 4. Some concluding remarks are formulated in
Section 5.

2. Direct numerical simulations

In order to develop an artificial neural network (ANN) model, it
is primordial to construct a large and representative dataset. It is
strongly desired to collect experimental data. However, in the case of
heterogeneous materials, it is very difficult to obtain a comprehensive
set of experimental data for various configurations of micro-structure.
In this work, an alternative approach is adopted. Direct numerical
simulations (DNS) are performed on the selected representative volume
element (RVE) and the obtained results are used for the construction of
dataset. In order to easily account for different types of microstructures
inside the RVE, in particular the spatial distribution of pores and
inclusions, a numerical method based on fast Fourier transform (FFT)
solution is adopted. Indeed, with this method, there is no need to create
complex mesh. It is then particularly suitable for three-dimensional
analysis of heterogeneous materials. The theoretical background and
numerical implementation algorithm have been presented in a number
of previous studies, for instance for nonlinear heterogeneous materi-
als (Moulinec and Suquet, 1994, 1998). This method has also been
successfully applied to rock and concrete materials (Cao et al., 2018;
Xue et al., 2023a,b). Details of the FFT-based homogenization method
for nonlinear rock-like materials have been presented in Cao et al.
(2018, 2020).

In this work, we consider a class of heterogeneous materials, encom-
passing both man-made composites, rocks and concrete. It is also useful
to point out that there are some common points of microstructures for
those materials, which are mainly composed of a solid matrix in which
embedded pores and inclusions. In the field of civil engineering, the
primary application is for rocks and concrete. For this purpose, a typical
microstructure is here selected, as shown in Fig. 1. For the sake of
simplicity but without loosing generality, spherical pores and inclusions
are considered here. It is noticed that the modeling method presented
here can also be easily applied to non-spherical inclusions and pores.

The matrix phase exhibits an elastic perfectly plastic behavior while
the inclusions are characterized by a linear elastic model. We focus
here on typical materials used in civil engineering applications, such
as concrete and rocks. It is known that the plastic behavior of those
materials is strongly dependent on mean stress. Therefore, the local
plastic yield condition of the matrix phase is here described by the
widely used Drucker–Prager criterion:

𝐹𝑚 = 𝜎𝑑 + 𝑇 (𝜎𝑚 − ℎ) ⩽ 0 (1)

By denoting 𝝈 as the local stress tensor inside the matrix phase, 𝜎𝑚 =
𝑡𝑟𝝈∕3 is the mean stress while 𝜎𝑑 is the deviatoric stress defined as 𝜎𝑑 =
√

3𝝈′ ∶ 𝝈′, with 𝝈′ being the deviatoric stress tensor. The parameter T
2
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Fig. 1. Representative volume element of studied heterogeneous materials.

Table 1
Mechanical properties of constituents.

Young’s Poisson’s Frictional Hydrostatic Tensile
modulus ratio coefficient strength

Matrix 𝐸𝑚 = 13.4 GPa 𝜈𝑚 = 0.25 𝑇 = 0.9 ℎ = 5 MPa
Inclusions 𝐸𝑖 = 74.5 GPa 𝜈𝑖 = 0.15

represents the local frictional coefficient and h the hydrostatic tensile
trength of the solid matrix at the microscopic scale.

In the direct simulation with the FFT-based method, the RVE is
epresented by a cubic unit cell subjected to periodic conditions. A
pecific number of spheres of uniform size are randomly embedded
ithin the unit cell at fixed positions. Inclusions and pores are differen-

iated by assigning distinct elastic parameter values to their respective
pheres. Consequently, the volume occupied by the spheres (whether
ores or inclusions) is calculated based on the sphere radius and
uantity. Notably, for simplicity, this paper initially overlooks the size
ffects of pores and inclusions. The spatial resolution for all calculations
resented here is fixed to 150 × 150 × 150 voxels. Additionally,

the influence of the spatial location of inclusions and pores on the
numerical results is well worth exploring. To this end, we randomly
generated three types of microstructures, namely Microstructure-A,
Microstructure-B, and Microstructure-C. Their differences lie in the
distribution of pore and inclusion spatial positions. The common factors
among them are a porosity of 𝑓 = 20%, an inclusion volume fraction of
= 20%, and a total number of inclusions and pores 𝑁 = 300. Fig. 2

depicts the three microstructures of the model and their corresponding
stress–strain curves under a confining pressure of −10 MPa. It can be
observed that the different distributions of inclusions and pores have a
certain impact on the failure strength. To mitigate this uncertainty, in
addition to ensuring fixed spatial positions for the spheres, it is neces-
sary to assign a unique sequence number to each sphere. During each
microstructure generation, the spheres are designated as either pores
or inclusions in a rigorously sequential order based on their assigned
sequence numbers, pores are prioritized over inclusions in this paper.
This ensures the completion of microstructure parameterization, where
the fixed volume fractions of porosity and inclusions correspond to a
unique microstructure. In the subsequent research, unless otherwise
specified, the spatial positions and sequence numbers of the spheres in
the microstructures generated by FFT are based on Microstructure-A,
as shown Fig. 2(a).

The emphasis is to put on the effect of porosity and inclusion
fraction on the macroscopic failure strength. The mechanical proper-
ties of solid matrix and inclusions are then fixed. Based on previous
studies on concrete-like materials (Stock et al., 1979), a reference set
of mechanical parameters is selected and presented in Table 1.

To effectively showcase the stress–strain response of unit cells to
various microstructural elements, we delve into three distinct case:
materials comprised entirely of pores, hybrid composites containing
both pores and inclusions, and materials reinforced by inclusions. To
mitigate the size effect of inclusions and pores, we have maintained
a constant total number of inclusions and pores at 𝑁 = 300, with an
3

overall volume fraction of 30%, that is 𝑓 + 𝜌 = 30%. This approach c
ensures that inclusions and pores are of comparable size. In this pa-
per, 𝑓 represents the porosity, and 𝜌 signifies the volume fraction of
inclusions. The specifics of Cases 1, 2, and 3 are detailed below.

• Case 1 (purely porous materials): 𝑓 = 30%, 𝜌 = 0;
• Case 2 (mixed composites with pores and inclusions): 𝑓 = 15%,
𝜌 = 15%;

• Case 3 (inclusion reinforced materials): 𝑓 = 0, 𝜌 = 30%

In Fig. 3, the main results are presented for the porous materials
case 1). Three different loading paths are considered: hydrostatic
ension and compression, triaxial compression with different constant
onfining stresses. It is interesting to notice that due to the presence
f pores, there is a failure strength under hydrostatic compression. It
eans that the failure surface is fully closed on the mean stress axis.

n addition, the failure stress under hydrostatic compression (34.37
Pa) is much higher than that under hydrostatic tension (1.76 MPa).
he well-known compression-tension dissymmetry property is well cap-
ured by the direct numerical simulation. A set of triaxial compression
ests with different confining stresses are then simulations. The axial
𝐸1) and radial (𝐸3) strains are presented versus the deviatoric stress
𝛴𝑑 =

√

3
2𝜮

′ ∶ 𝜮′, with 𝜮′ being the macroscopic deviatoric stress
tensor). Three examples are shown in the figure. It is interesting to find
that unlike the general idea on geological materials, the failure devia-
toric stress does not increase monotonically with the applied confining
stress. Indeed, the failure stress for the confining stress of 17 MPa is
higher than that of the case with 26 MPa. This can be explained by
the fact that due to the effect of pores, the plastic deformation of solid
matrix is more important when the confining stress is higher, leading to
a decrease of macroscopic failure strength. The stresses at the failure
(peak) states are further reported in the classical mean stress (𝛴𝑚 =
𝑡𝑟𝜮∕3) versus deviatoric stress plane to represent the numerical failure
surface (locus), as shown in the figure. As said above, one gets a closed
failure locus along the mean stress axis. Moreover, the failure surface
is strongly dissymmetric between the tension and compression. This is
consistent with typical experimental results of porous materials (Han
et al., 2020; Xie and Shao, 2006, 2012) and with the theoretical
predictions of analytical homogenization models (Maghous et al., 2009;
Shen et al., 2020).

In Fig. 4, the numerical results are presented for the composite
materials containing pores and inclusions at the same scale (Case 2).
In this case, the hydrostatic tensile strength (2.51 MPa) is increased
with respect to the porous material (Case 1), but it still clearly lower
than that of the solid matrix (5 MPa) due to the effect of pores. At
the same time, no failure stress is obtained under hydrostatic com-
pression in the range of mean stress considered here. Regarding the
triaxial compression loading, four examples of stress–strain curves are
presented. As for the porous material above, the failure deviatoric stress
first increases and then decreases when the mean stress increases. One
obtains a strongly nonlinear failure locus in the 𝛴𝑚 - 𝛴𝑑 plane.

In Fig. 5, we show the numerical results for the inclusion reinforced
material without pores with 𝑓 = 0, 𝜌 = 30%. For this case, the
macroscopic hydrostatic tensile strength (5.02 MPa) is nearly the same
as that of the solid matrix (5 MPa). It means that in the absence
of pores, the presence of inclusions does not affect the macroscopic
tensile strength. This is consistent with the analytical homogenization
solution reported in Maghous et al. (2009). However, differently with
the linear strength criterion adopted to the solid matrix (cyan line), the
macroscopic strength locus is not fully linear, but curved, due to the
influence of inclusions, as illustrated by the last graph of the figure.

Based on the representative cases presented above, a high number
of numerical simulations (the total number is equal to 1998) are
performed in order to construct a large dataset for the establishment
of ANN model. For this purpose, different values of porosity 𝑓 and
inclusion fraction 𝜌 are considered here. However, in order to facilitate

omparisons, the sum of porosity and inclusion volume fraction is
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Fig. 2. Effect of spatial location distribution of inclusions and pores on stress–strain cures under 𝛴33 = −10MPa.
Table 2
The statistics of input and output parameters.

𝛴𝑚 (MPa) 𝑓 𝜌 𝛴𝑑 (MPa)

Max 5.000 50.000% 50.000% 305.560
Min −251.853 0.000% 0.000% 0.007
Mean −86.657 11.551% 14.605% 89.523
Standard deviation 72.965 0.116 0.134 77.841

limited to 𝑓 + 𝜌 ≤ 50%, and the porosity to inclusion ratio takes the
following values: 𝑓/𝜌 ∈ [0, 1/2, 1/3, 1/4, 1/5, 1, 2, 3, 4, 5, ∞]. It is
worth emphasizing that, according to the parameterization process of
the microstructures described above, in this paper, the input values 𝑓
and 𝜌 in the ANN model uniquely correspond to the microstructures
generated by FFT. As a consequence, we collect an original dataset of
1998 sets, each containing 𝛴𝑚, 𝑓 , 𝜌, and 𝛴𝑑 . The statistical properties
of the dataset are shown in Table 2.

Moreover, correlation analysis is also conducted to capture the
interrelationships between the input and output parameters (referred
to as features) in the dataset. This statistical measure is highly useful
as it describes the degree of correlation among the involved features,
reflecting the effectiveness of the dataset in its applicable scope. In this
4

paper, the so-called Pearson correlation coefficient 𝑟 is employed, and
its definition is as follows:

𝑟 =
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)
√

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̄)2

(2)

𝑥 and 𝑦 are two features, while the overline and subscript 𝑖 respectively
represent the mean and the 𝑖th observation. The value of 𝑟 closer
to 1 indicates a stronger linear positive correlation between the two
features. Conversely, closer to −1 indicates a stronger linear negative
correlation. When approaching 0, it indicates no correlation. In this
study, the correlation matrices of all input and output features are
shown in Fig. 6. From the results of the correlation analysis, we
observed a correlation coefficient of −0.59 between porosity and 𝛴𝑑 ,
indicating a highly negative correlation between them. Additionally,
there is a positive correlation between the volume fraction of inclusions
and 𝛴𝑑 . These findings are consistent with existing patterns, which
affirms the validity of the dataset.

2.1. Further analysis of microstructure effect

From the previous results, an interesting phenomenon is observed.
It seems that the incorporation of rigid inclusions does not necessarily
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Fig. 3. Stress–strain curves and failure strength locus obtained from DNS for porous material with 𝑓 = 30%, 𝜌 = 0.
lead to a reinforcement of the effective mechanical strength of the
material. For instance, as shown above, the strength for the case 𝑓 =
20%, 𝜌 = 0 is higher than that 𝑓 = 20%, 𝜌 = 20%, especially under high
confining stresses. It is worth noticing that in all previous calculations,
a fixed total number of spheres (𝑁 = 300) is chosen to represent pores
and inclusions. As a consequence, for a given porosity, the pore size
for 𝑓 = 20%, 𝜌 = 0 is smaller than that for 𝑓 = 20%, 𝜌 = 20%. This
would suggest that the failure strength is lower when the pore radius
is larger. However, that comparison is not obvious as we compare
two basically different microstructures, respectively with and without
inclusions. In order to more clearly investigated the relative effects of
pores and inclusions as well as their interactions, a complementary set
of simulations is here performed. We consider hereby the following
three types of microstructures:

(1) Material 𝛼: 𝑁 = 300, 𝑓 = 20%, 𝜌 = 0.
(2) Material 𝛽: 𝑁 = 150, 𝑓 = 20%, 𝜌 = 0.
5

(3) Material 𝛾: 𝑁 = 300, 𝑓 = 20%, 𝜌 = 20%.
The microstructures of three materials are depicted in Fig. 7. The

primary difference between Figs. 7(a) and 7(b) lies in the pore size,
while that between Figs. 7(b) and 7(c) is the presence of inclusions.

In Fig. 8, one illustrates the strength surfaces of three materials. By
comparing the cases 𝛼 and 𝛽, we can see that the strength surface of
the material 𝛼 is located below that of 𝛽. This should indicate that as
the pore size increases, the macroscopic strength becomes higher. A
quantitative comparison is given for a triaxial compression test with
40 MPa confining stress. However the strength difference between these
two materials is very small. One can conclude that at the material scale
considered here, the pore size has a relatively minor impact on the
material macroscopic strength. Comparing now the material 𝛾 with the
previous two ones, say 𝛼 and 𝛽. It is observed that for low values of
mean stress, say less than 25 MPa, the deviatoric stress at failure of 𝛾 is
higher than those of 𝛼 and 𝛽. A quantitative comparison is given for the
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Fig. 4. Stress–strain curves and failure strength locus obtained from DNS for the composite materials with 𝑓 = 15% and 𝜌 = 15%.
case of triaxial compression test with 5 MPa confining stress. However,
when the mean stress becomes higher, there is a significant decrease of
deviatoric strength for the material 𝛾, which is lower than those of the
two materials without the presence of inclusions. This clearly confirms
that the presence of inclusions enhances the materials failure strength
under low mean stress but has a weakening effect under high mean
stress.

In order to better understand the origin of difference between three
materials, the full stress–strain curves during two triaxial compression
tests respectively with 𝛴33 = −5 MPa and 𝛴33 = −40 MPa are shown in
Fig. 9. It is seen that very small differences of deformation are observed
between the materials 𝛼 and 𝛽. Under 𝛴33 = −5 MPa, the material
𝛾 exhibits a more important plastic hardening process, leading to a
higher peak strength than the other two materials. Inversely, for the
case with 𝛴 = −40 MPa, the material 𝛾 has a very small macroscopic
6

33
plastic yield stress, resulting in a faster plastic deformation kinetics and
a lower peak strength than two other materials.

To further elucidate the reasons behind the significant impact ob-
served on material 𝛾 under conditions of elevated mean stress, it is
essential to examine the synergy between the microstructural con-
stituents of the material and the stress applied to it. Under scenarios
of heightened mean stress, the presence of inclusions, imperfections,
and grain boundaries within the microstructure becomes instrumental
in the initiation and propagation of cracks. These microstructural ele-
ments act as stress amplifiers, facilitating the onset and development
of cracks even under relatively low levels of applied stress. As mean
stress intensifies, the probability of crack initiation and propagation
escalates, exacerbated by the augmented effects of stress concentration
inherent within the microstructure. Moreover, inclusions present within
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Fig. 5. Stress–strain curves and failure strength locus obtained from DNS for the inclusion reinforced material with 𝑓 = 0 and 𝜌 = 30%.
the material can serve as preferential locations for crack initiation, par-
ticularly under conditions where the mean stress exceeds the resilience
of the inclusion–matrix interface. This leads to expedited crack growth,
thereby significantly undermining the material’s structural integrity. In
the forthcoming stages of our research, we will seek to validate these
observations through experimental studies employing 3D printing tech-
nology, with a specific focus on the role of inclusions and their effect on
the mechanical properties of materials. These empirical validations are
expected to significantly enhance our understanding of the importance
of precisely modeling inclusions in the analytical assessment of Material
𝛾, thereby contributing valuable insights to the domain.

3. Construction of ANN-based model

3.1. Principle of artificial neural network

Artificial neural network (ANN) is one of the most popularly used
statistical models to determine input–output relationships through a
series of interconnected data structures with multiple neurons that have
the ability to perform a large number of calculations for data processing
and information representation (Lawal et al., 2021; Adesanya et al.,
2021). An ANN model can be trained to predict the desired output
7

from a given input. The ability of ANN structures to process information
depends on the weights connecting the neurons (Jain et al., 1996). The
most widely used feed forward neural network with a back propagation
(BP) algorithm is adopted in this study. The structure of a typical feed-
forward neural network consists of an input layer and an output layer
and at least one hidden layer, and each layer has a number of neurons.
The number of neurons in the input and output layers is determined
according to the problem under study. The number of hidden layers and
the number of neurons per layer are very important for the accuracy
of the model, and they are the hyperparameters that need to be tuned.
Moreover, the neurons are massively interconnected and improve their
predictive capability as the network evolves (Chung and Abbott, 2021).
Additionally, each neuron performs two tasks: the summation and
activation. The structure of a neuron is shown in Fig. 10. The 𝑙th layer
has 𝑛 neurons while the (𝑙−1)th layer has 𝑚 neurons. The input/output
relationship of a neuron is indicated in a matrix form as follows:

𝑎𝑙𝑖 = 𝜎

( 𝑚
∑

𝑗=1
𝒘𝑙

𝑖𝑗𝒂
𝑙−1
𝑗 + 𝒃𝑙𝑖

)

(3)

where 𝒘𝑙
𝑖𝑗 is the weight matrix from the (𝑙−1)th layer to the 𝑙th layer,

𝒃𝑙 is the bias vector for inputs on the 𝑙th layer, The indices 𝑖 = 1, 2,… , 𝑛,
𝑖
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Fig. 6. Correlation matrix of features in original dataset.

Fig. 7. Microstructure of the three materials studied.

Fig. 8. Comparison of macroscopic strength surfaces of three materials.
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Fig. 9. Stress–strain curves of three materials in two triaxial compression tests with different confining stresses.
and 𝑗 = 1, 2,… , 𝑚. 𝜎 represents the activation function. In this paper,
ReLU (𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥)) is used as the activation function, except for
the output node where 𝜎(𝑥) = 𝑥 is used.

The fitting ability of the neural network is determined by its weights
and bias. By comparing the network’s outputs with the target outputs,
the weights and bias are adjusted. The objective is to lower the value of
the loss function until the network output closely resembles the target
with a respectable degree of accuracy. Network training or learning
is the process of adjusting the weights. The loss function used in this
study is mean squared error (MSE). The mean absolute error (MAE)
is applied during validation. In addition, the model’s parameters are
automatically adjusted using the error back propagation and weight
9

updating mechanisms to increase accuracy, and the Adam function is
adopted to accelerate the convergence of the model.

3.2. Preprocessing of original dataset

The original dataset has to be preprocessed before building an
ANN model, the purpose is to make the model more accurate and
robust (Qazi et al., 2015). The two parts of dataset preprocessing are
the reasonable division of the original dataset and the normalization of
the input data. Normalization is to reduce the impact of input data with
different scales on the accuracy of the model. In this study, the original
dataset (1998 sets) is divided into three subsets: training dataset (1198
sets), validation dataset (400 sets), and test dataset (400 sets). And
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Fig. 10. Illustration of neuronal structure.
Table 3
Mean 𝑘̄ and standard deviation 𝜎 of input data.

𝛴𝑚 (MPa) 𝑓 𝜌

𝑘̄ −86.265 11.671% 14.562%
𝜎 73.022 0.117 0.133

normalize all input data according to the Eq. (4). (the output data does
not require any processing). For more detailed information about this
section, the reader is referred to Xue et al. (2021).

𝑥𝑖 =
𝑘𝑖 − 𝑘̄
𝜎

(4)

where 𝑘𝑖, 𝑥𝑖, 𝑘̄, 𝜎 are the actual value of the data, the normalized value,
the mean and standard deviation in the data samples, respectively. In
this paper, the mean and standard deviation of the input data are shown
in Table 3.

3.3. Performance evaluation

In order to quantitatively evaluate the predictive performance of the
ANN model, seven different statistical parameters are adopted: absolute
percentage error (APE), mean absolute percentage error (MAPE), root
mean square error (RMSE), root mean square error to observation’s
standard deviation ratio (RSR) and weighted mean absolute percentage
error (WMAPE), coefficient of determination (𝑅2) (Asteris et al., 2021;
Duan et al., 2021; Armaghani et al., 2017; Chen et al., 2019; Hajihas-
sani et al., 2019; Yang et al., 2019). The mathematical formulations of
which are given by:

𝐴𝑃𝐸 =
𝑛
∑

𝑖=1
|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

| × 100% (5)

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

| × 100% (6)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (7)

𝑅𝑆𝑅 = 𝑅𝑀𝑆𝐸
√

1
𝑛
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(8)

𝑊𝑀𝐴𝑃𝐸 =

∑𝑛
𝑖=1 |

𝑦𝑖−𝑦̂𝑖
𝑦𝑖

| × 𝑦𝑖
∑𝑛

𝑖=1 𝑦𝑖
(9)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛 2

(10)
10

𝑖=1(𝑦̄ − 𝑦̂𝑖)
Table 4
Ideal value of different statistical parameters.

Parameters APE MAPE RMSE RSR WMAPE 𝑅2

Ideal value 0 0 0 0 0 1

in which 𝑦̄ =
∑𝑛

𝑖=1 𝑦𝑖
𝑛 , 𝑦𝑖 is 𝑖th actual value, 𝑦̂𝑖 is 𝑖th calculated output

values. In theory, 𝑅2 value ranges from 0 to 1 while the model has
the healthy predictive ability when it is near to 1 and is not analyzing
whatever when it is near to 0. These performance metrics are a good
measure of the overall predictive accuracy. For a perfect predictive
model, the values of these indices should be equal to their ideal value,
the details of which are presented in Table 4.

Furthermore, a following new engineering index, the 𝑎20-𝑖𝑛𝑑𝑒𝑥, has
been recently proposed for the reliability assessment of ANN mod-
els (Apostolopoulou et al., 2019; Asteris et al., 2019; Huang et al., 2019;
Asteris et al., 2021).

𝑎20-𝑖𝑛𝑑𝑒𝑥 = 𝑚20

𝑀
(11)

where 𝑀 is the number of dataset sample and 𝑚20 is the number of
samples with value of ratio of actual and predicted value between
0.80 and 1.20. Note that, for a perfect predictive model, the value
of 𝑎20-𝑖𝑛𝑑𝑒𝑥 is expected to be unity. The proposed 𝑎20-𝑖𝑛𝑑𝑒𝑥 has the
advantage that its value has a physical engineering meaning. It declares
the number of the samples that satisfies the predicted values with a
deviation ±20% compared to actual values.

3.4. Structure and algorithm of a specific model

In this study, the ANN model is trained using the advanced open
source Keras (Gulli and Pal, 2017) library on the TensorFlow (Shukla
and Fricklas, 2018) framework. Fig. 11 illustrates the process for build-
ing an ANN model for predicting the strength surface of concrete-like
materials. There are two main phases. (1) Preprocessing of the original
dataset obtained using the FFT-based numerical simulation method.
The inputs to the model are 𝛴𝑚, 𝑓 and 𝜌, and the output is 𝛴𝑑 . The
train dataset, validation dataset, and test dataset are 1198, 400, and
400 sets, respectively. (2) Determining the optimal hyperparameters
of the model. The hyperparameters of ANN model include the number
of hidden layers, the number of neurons in each layer, the activation
function, the loss function, etc. Hyperparameters are very important
to the accuracy of the model. Unfortunately, there is no guidance on
choosing the optimal hyperparameters. In the present work, inspired
by previous studies on similar problems (Lee, 2003; Liu et al., 2021;
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Fig. 11. Flowchart for building an ANN-based model.
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Table 5
Hyper-parameters of the ANN model for predicting the macroscopic strength surface
of concrete-like materials.

Input layer Hidden layer Output layer Loss function Optimizer

𝛴𝑚, 𝑓 , 𝜌 2 × 100×ReLU 𝛴𝑑 MSE Adam

Congro et al., 2021; Tam et al., 2022), several combinations of hyper-
parameters were obtained and a trial-and-error approach was used to
select the structure of the model. To be more precise, the initial model
hyperparameters are employed first, followed by model training and
evaluation using the training and validation dataset and test dataset,
respectively, to compare the accuracy of various models and select
the optimal hyperparameters. If the accuracy of the model does not
meet the requirements, the hyperparameters are selected again until
the accuracy requirements are satisfied. After our experimentation,
a BP neural network with two hidden layers and 100 neurons in
each is constructed. The network structure is shown in Fig. 12. The
input/output and hyperparameters are presented in Table 5. The MSE is
used as the loss function and the Adam is adopted as the optimizer. The
training and validation processes are illustrated in terms of the MAE.
Further, the Batch-size is 32 and maximum number of epochs is 1000
for training.

3.5. Performance of model

In this subsection, the established ANN model is comprehensively
evaluated based on mathematical statistics. Fig. 13 shows the evolution
of the MAE and loss function for the training and validation sets during
the training phase. It can be seen that the convergence of the model
is very fast, and both the loss function and MAE drop to the minimum
value very quickly. After 1000 epochs, the final values of MAE and loss
function are 0.23697, 0.11124 for the training dataset and 0.34972,
0.51743 for the validation one. There is the relatively small difference
for model performance in the train and validation sets, which also
indicates that the model is not over-fitting.

In order to further elaborate the accuracy of the model, the perfor-
mance of the model is verified on the train, validation and test datasets,
respectively. The comparison between the actual and predicted values
of the ANN model are shown in Fig. 14. The actual values of the three
datasets and their predicted ones are distributed on the 𝛴𝑑 = 𝛴′

𝑑 line,
which denotes the high accuracy of the ANN model. It is worth noting
that there is no significant difference in the performance of the model
between these three types of datasets.

Furthermore, Table 6 represents the details of the performance
parameters of the ANN model. As can be seen, the model achieves over

2 2
11

99% accuracy in the train (𝑅 = 0.99999), validation (𝑅 = 0.99992)
Table 6
Details of performance indices of ANN model in train, validation and test sets.

Dataset type MAPE RMSE RSR WMAPE 𝑅2 𝑎20-𝑖𝑛𝑑𝑒𝑥

Train 4.07585% 0.27446 0.00353 0.00210 0.99999 98.08013%
Validation 5.23597% 0.71933 0.00913 0.00381 0.99992 96.00000%
Test 4.93063% 0.45124 0.00584 0.00324 0.99997 97.25000%

and test (𝑅2 = 0.99997) dataset. And the values of RMSE (training
0.27446, validation = 0.71933 and testing = 0.45124) indicate the

cceptable precision. The ANN also showed excellent training results
n terms of MAPE, RSR and WMAPE. Physically meaningful perfor-
ance indices (𝑎20-𝑖𝑛𝑑𝑒𝑥 = 98.08013% in the train dataset, 𝑎20-𝑖𝑛𝑑𝑒𝑥

= 97.25000% in the test dataset) shows the generalization capability
of the model in both datasets. In addition, a model with high predic-
tion accuracy during the test dataset is generally considered a robust
model (Asteris et al., 2021). From the performance indices of different
datasets types on the model, the train dataset has the best predictions,
followed by the test dataset, while the validation dataset has the worst
results, and the performance of test dataset and the train dataset are
also very close to each other. It shows that the trained model is not
only accurate, but also robust.

3.6. Limitations and error sources

To investigate the limitations and error sources of the ANN model,
the error distribution of the model was first analyzed. Unless otherwise
noted, errors in this section refer to absolute percentage error (APE).
Fig. 15 shows the cumulative curves with errors less than 10% for
the three types of datasets. It can be observed that about 95% of the
datasets have an error of less than 10% and their MAPE is about 4.75%,
which are good indicators of the accuracy of the model. For this study,
model errors within 10% are acceptable, so this piece of the model error
sources will not be considered further. The focus of this section is to
investigate the situation when the error of the model is greater than
10%. There are 94 datasets (from train, test and validation datasets)
with an error over 10%, accounting for 4.70% of the total dataset
(94/1998 ≈ 4.70%). Fig. 16 illustrates the corresponding inputs and
outputs for these datasets, where Open represents the open form of the
complete strength surface for the corresponding material, while Closed
is its closed form. Various combinations of 𝑓 and 𝜌 represent different
types of materials. It can be noted that the strength surface form is
closed for most materials (the proportion is 75/94 ≈ 79.79%) and the
corresponding 𝛴𝑑 values are between 0 and 5 MPa. The reason for this
error is that this closed strength surface data is underrepresented in
the dataset where the model was trained. In fact, this is mainly limited

by the material under study. For a material like concrete, it has a
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Fig. 12. Established BP neural network model for failure strength prediction.
Fig. 13. MAE and loss function evolution during training process.
large strength and most of the strength surfaces are open. Therefore,
the number of datasets collected for closed strength surfaces is less,
which also leads to a shortage of training for the model in this range,
so the accuracy is bad. For materials with open strength surfaces, the
inaccuracy of model predictions is concentrated in the case of relatively
small 𝛴𝑚. In fact, this is due to the low tensile strength of the concrete-
ike material and the limiting value of the confining pressure, in which
ase the number of datasets used to train the model is also relatively
mall, so the error of the model is large at this stage.

At present, an effective way to improve the accuracy of ANN models
ithin a specified input interval is to appropriately increase the input
nd output data for that interval, add them to the original dataset,
nd then retrain the model (Burke et al., 1997; Santos et al., 2021).
owever, it is considered unnecessary in the present study. The purpose
f this paper is to obtain the macroscopic strength surface of a material.
s can be seen in Fig. 16, the ANN model is inaccurate at only one
r a few points, which actually has less effect on the overall strength
12
surface of the material. From the model performance indices presented
previously, it can be believed that the current ANN model is valid and
accurate.

4. Application to failure strength prediction

4.1. Methodology

The purpose of this study is to determine the strength locus of a
heterogeneous material by using the developed ANN model. For this
purpose, it is useful to first define the general frame of application.

The methodology adopted is as follows. The microstructure of ma-
terial is characterized by the porosity 𝑓 and the inclusion volume
fraction 𝜌. In practice, can be measured by various techniques such
as mercury intrusion porosimetry (MIP), nuclear magnetic resonance
(NMR), and X-ray Diffraction (XRD). Then, for a given value of mean
stress 𝛴 , the corresponding value of deviatoric stress at failure should
𝑚
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Fig. 14. Correlation between predicted and actual values of 𝛴𝑑 for train, validation
and test sets.

Fig. 15. Cumulative frequency versus the absolute percentage error (APE) for the ANN
odel.

e predicted by the proposed ANN model. Therefore, it is needed to first
elect the representative range of mean stress 𝛴𝑚. Its maximum value
s the hydrostatic failure stress denoted as 𝛴𝑡

𝑚, which can be obtained
rom the FFT-based direct numerical simulation for a given set of 𝑓
nd 𝜌. The minimum (algebra) value of mean stress is the hydrostatic
trength 𝛴𝑐

𝑚, which can be also obtained from the FFT-based direct
umerical. However, for some cases such as the inclusion reinforced
aterial discussed above, the value of 𝛴𝑐

𝑚 can be very large or does
ot exist (the failure locus is not closed). Therefore, for the sake of
onvenience, the minimum value of mean stress is here fixed to −150
Pa.

In order to illustrate this procedure, an example is here presented
n detail. We consider a porous material with 𝑓 = 25% and 𝜌 = 0.

The mechanical parameters are the same as those used in the FTT
based simulations (see Table 1). In Table 7, one shows a selection of
12 stress state ta failure. The value of mean stress 𝛴𝑚 is bounded by
its hydrostatic tensile strength (2.03 MPa) and compression strength
(−83.25 MPa). At these two particular states, the corresponding devi-
atoric stresses are equal to zero. Between these two bounds, for each
value of mean stress 𝛴 , the corresponding value of deviatoric stress 𝛴
13

𝑚 𝑑 z
Table 7
An example of input values (𝑓 , 𝜌, 𝛴𝑚) and output result (𝛴𝑑 ) for a porous material

ith 𝑓 = 25% and 𝜌 = 0.
Number 𝑓 𝜌 𝛴𝑚 (MPa) 𝛴𝑑 (MPa)

1 25% 0 −83.2583.2583.25 0.000.000.00
2 25% 0 −78.23 9.68
3 25% 0 −70.83 17.50
4 25% 0 −62.57 22.70
5 25% 0 −53.23 24.70
6 25% 0 −43.10 24.30
7 25% 0 −32.23 21.70
8 25% 0 −20.70 17.10
9 25% 0 −8.40 10.20
10 25% 0 −0.32 3.95
11 25% 0 1.38 1.85
12 25% 0 2.032.032.03 0.000.000.00

Bolded values are obtained from FTT DNS.

at failure is predicted by the ANN model. Based on these results, the
strength locus of the considered porous material is drawn and presented
in Fig. 17.

4.2. Results and discussions

The proposed ANN model is now applied to predicting the failure
stresses of three representative groups of materials defined above. The
input mechanical parameters are the same as those used in the direct
numerical simulations. Moreover, the results of the FFT simulations are
taken as the reference solutions for the validation of the ANN model.
In addition, for convenience, the values of 𝛴𝑚 and 𝛴𝑑 are normalized
as 𝛴𝑚/𝑇ℎ and 𝛴𝑑/𝑇ℎ, with 𝑇ℎ = 4.5 MPa.

In the first group (Case 1), porous materials without inclusions
(𝜌: 𝑓 = 0) are studied, while in the third group (Case 3) composites
reinforced by inclusions without pores (𝜌: 𝑓 = ∞) are investigated. In
Fig. 18, one shows the strength locus of these two types of materials
with different values of porosity or inclusion volume fraction. It is
first seen that there is a very good concordance between the failure
stresses predicted by the ANN model and those from the direct FFT
simulations. This illustrates the good accuracy of the ANN model.
Moreover, for the porous materials, the mechanical strength is strongly
affected by porosity. The failure surface gradually shifts downward
with the increase of porosity 𝑓 , and the strength surface becomes closed
along the mean stress axis when the porosity value is high enough, for
instance 𝑓 ≥ 25% for the present case. For the inclusion reinforced
materials, the mechanical strength gradually increases as the volume
fraction of inclusions 𝜌 is higher. However, the strengthening effect due
o inclusions is very limited. Therefore, although the mechanical failure
trength of heterogeneous materials is affected by pores and inclusions,
ut the impact of pores is generally much more significant than that
f inclusions. Similar results have been presented by some previous
xperimental studies Murakami and Endo (1994), Cao et al. (2021),
hawla et al. (2021).

The second group covers a wide range of composite materials
ontaining pores and inclusions at the same scale. For convenience,
hree sub-cases are separated. In the first sub-case, the material contains

same volume fraction of inclusions and pores (𝜌: 𝑓 = 1:1). The
orresponding results are shown in Fig. 19. Again, the predictions of the
NN model are quasi identical to the reference results provided by the
FT simulations. Similarly to the porous materials presented above, as
he values of 𝜌 and 𝑓 increase, the strength surface of the material shifts
ownward and becomes closed when 𝜌 = 𝑓 ≥ 20%. This result indicates
hat in spite of the increase of inclusion volume fraction, the mechanical
trength of materials still decreases if the porosity becomes higher.
hat clearly confirms the dominating role of porosity with respect to
he inclusion volume fraction. The reason for this phenomenon is that
he plastic yielding of material generally tends to occur in the weak

ones. Indeed, the presence of pores facilitates the plastic yielding of
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Fig. 16. Input and output distributions for datasets with errors greater than 10%, where Open represents the open form of the complete strength surface for the corresponding
material, while Closed indicates its closed form.
Fig. 17. Macroscopic strength locus predicted by the ANN model for 𝑓 = 25%, 𝜌 = 0.

solid matrix at the microscopic scale while the strengthening effect of
inclusions is moderate.

In the second sub-case, one considers materials with more pores
than inclusions, respectively with 𝜌: 𝑓 = 1:2 and 𝜌: 𝑓 = 1:3. The
corresponding failure stress surfaces are displayed in Fig. 20. Once
more, the comparisons with the results of FFT simulations confirm the
high accuracy of the ANN model. The general trend of failure surface
is very similar to that of porous materials. The macroscopic failure
strength is dominantly controlled by the porosity. The dominating role
of porosity is even more significant when the ratio 𝜌: 𝑓 is lower, as
shown in Fig. 20(b).

In the last sub-case, we consider those materials with more inclu-
sions than pores. Three different ratios are used here such as 𝜌: 𝑓 = 2:1,
𝜌: 𝑓 = 3:1 and 𝜌: 𝑓 = 5:1. The results obtained are shown in Fig. 21.
Like the previous cases, the predictions of the ANN model are again
confirmed to be accurate with respect ot the reference results of the
FFT simulations. About the evolution of macroscopic strength surface,
there is clearly a strong competition between weakening impact by
pores and strengthening effect by inclusions. When the 𝜌: 𝑓 is relatively
low, for example 𝜌: 𝑓 = 2:1, the strength surface of the material is
14
still mainly controlled by the porosity although an important presence
of inclusions. More precisely, the failure stresses decrease with the
increase of porosity and inclusion fraction. But for higher inclusion-
porosity ratios, for instance 𝜌: 𝑓 = 3:1 and 𝜌: 𝑓 = 5:1, the weakening
effect of porosity becomes more and more attenuated. One obtains an
open strength surface in the mean stress axis for all cases studied.
Moreover, another interesting phenomenon is observed for this cate-
gory of materials. It seems that for those materials with a high volume
fraction of inclusions, the effect of porosity is no more systematical
and depends on the value of main stress. Taking the case with 𝜌: 𝑓
= 5:1, an simultaneous increase of porosity and inclusion fraction has
a weakening effect for high values of mean stress but a strengthening
consequence for low mean stresses. This phenomenon is more visible
when the ratio 𝜌: 𝑓 is higher. It means that due to interaction between
pores and inclusions, the plastic deformation in the domain of low
mean stresses is attenuated by an strong presence of inclusions.

In order to investigate the respective effects of pores and inclusions
on the macroscopic failure strength, it is interesting to compare the
results reported in Fig. 18(a) and Fig. 19. More specifically, one com-
pares the materials respectively with 𝑓 = 15%, 𝜌 = 0 and 𝑓 = 15%,
𝜌 = 15%, as well as 𝑓 = 20%, 𝜌 = 0 and 𝑓 = 20%, 𝜌 = 20%. In each
of these two sets, the porosity remains unchanged while the inclusion
fraction is changed. The comparisons of strength surface for two sets
are presented in Fig. 22. As the accuracy of the ANN model is already
clearly demonstrated in all previous cases, only the predicted results
of the ANN model are reported here. First, for two values of porosity
considered here, in the absence of inclusion (𝜌 = 0), the failure surfaces
are not closed. The failure strength is lower for 𝑓 = 20% than for 𝑓
= 15 and the related failure surface is more curved toward the mean
stress axis. The weakening effect of pores alone is clearly confirmed.
However, by adding inclusions into materials, one obtains a contrasted
effect on macroscopic strength. In the zone of low mean stress (less
than 6 MPa for 𝑓 = 20%, less than 11 MPa for 𝑓 = 15%), there is
a strengthening effect by the presence of inclusions. Otherwise, the
materials are rather weakened by the addition of inclusions. It seems
that in this situation, the interaction between pores and inclusions
enhances the plastic deformation of solid matrix. Such a weakening
effect is more significant for a high value of porosity. For the case of 𝑓 =
20%, one even gets a closed failure surface like pure porous materials.

5. Concluding remarks

In this paper, a series of direct numerical simulations have first

been performed by a FFT-based method on heterogeneous materials



Computers and Geotechnics 170 (2024) 106294J. Xue et al.

c

i

w
r
m
r
m
a
b
h
A
w
f

m
p
s

Fig. 18. Illustration of normalized macroscopic strength surface for different values of porosity for porous materials (left figure) and of inclusion volume fraction for reinforced
omposites (right figure): comparisons between ANN model and direct FFT simulation.
Fig. 19. Normalized macroscopic strength locus for different values of porosity and
nclusion fraction with 𝜌: 𝑓 = 1:1.

ith different microstructures. In particular, three representative mate-
ials are considered: porous media, inclusion-reinforced composites and
aterials containing both pores and inclusions at the same scale. The

esults from the direct simulations are first used for investigating the
acroscopic failure strength of those materials, and then to construct
representative dataset for the training and validation of an ANN-

ased model. This one is based on a BP algorithm and contains two
idden layers with 100 neurons in each one. The performance of the
NN model is evaluated through various statistical metrics comparisons
ith the reference solutions provided by the direct FFT simulations. The

ollowing main remarks can be formulated:
At the material scale considered here, the effect of pores size on

acroscopic failure strength of materials is negligible. In general, the
orosity has a weakening impact while the stiff inclusions have a
15

trengthening effect. However, the influence of pores is much more
important than that of inclusions. Due to the interaction between pores
and inclusions, the strengthening effect of stiff inclusions is completely
attenuated by the presence of pores. A weakening impact of inclusions
can be observed under high values of mean stress.

The accuracy of ANN-base model is very high in predicting the
macroscopic failure stresses of all types of heterogeneous materials
considered here. More precisely, its accuracy is over 99% in the training
(𝑅2 = 0.99999), validation (𝑅2 = 0.99992) and testing (𝑅2 = 0.99997)
dataset. The values of RMSE (training = 0.27446, validation = 0.71933
and testing = 0.45124) also show a very good precision. And all other
error indices are also very low.

In the current ANN model, we only incorporate two input micro-
structural parameters: porosity and inclusion volume fraction. Future
investigations could expand this model to encompass additional ma-
terials parameters, such as local cohesion and friction of the solid
matrix, and interface transition zone. Moreover, exploring the poten-
tial of 3D printing technology for constructing microstructure models
and experimental validation represents a promising avenue for future
research. Additionally, considering a convolutional neural network
(CNN) approach could facilitate establishing the connection between
real microstructure images and macroscopic failure strength. Another
important feature is on the uncertainty of microstructure parameters, in
particular for geomaterials. For this purpose, the present model should
be incorporating uncertainty analysis in the ANN model.
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Fig. 20. Normalized macroscopic strength surfaces with different values of porosity and inclusion fraction for materials containing more pores than inclusions.

Fig. 21. Normalized macroscopic strength surfaces with different values of porosity and inclusion volume fraction for materials with more inclusions than pores.
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Fig. 22. Effect of inclusion volume fraction on the normalized macroscopic strength surface of materials with a given porosity.
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