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A B S T R A C T

Cutting-edge connected vehicle (CV) technologies have drawn much attention in recent years. The real-time
traffic data captured by a CV can be shared with other CVs and data centers so as to open new possibilities for
solving diverse transportation problems. The trajectory data of CVs have been well-studied and widely used.
However, image data captured by onboard cameras in a connected environment, as being a kind of fundamental
data source, are not sufficiently investigated, especially for safety and health-oriented visual perception. In this
paper, a bidirectional process of image synthesis and decomposition (BPISD) approach is proposed, and thus
a novel self-supervised multi-task learning framework, to simultaneously estimate depth map, atmospheric
visibility, airlight, and PM2.5 mass concentration, in which depth map and visibility are considered highly
associated with traffic safety, while airlight and PM2.5 mass concentration are directly correlated with human
health. Both the training and testing phases of the proposed system solely require a single image as input. Due
to the innovative training pipeline, the depth estimation network can automatically manage various levels of
visibility conditions and overcome diverse inherent problems in current image-synthesis-based self-supervised
depth estimation, thereby generating high-quality depth maps even in low-visibility situations and further
benefiting accurate estimations of visibility, airlight, and PM2.5 mass concentration. Extensive experiments on
the original and synthesized data from the KITTI dataset and real-world data collected in Beijing demonstrate
that the proposed method can (1) achieve performance comparable in self-supervised depth estimation as
compared with other state-of-the-art methods when taking clear images as input; (2) predict vivid depth
map for images contaminated by various levels of haze when the network trained with previous framework
fails; and (3) accurately estimate visibility, airlight, and PM2.5 mass concentrations. Beneficial applications
can be developed based on the presented work to contribute to high-precise and dynamic geoinformation
reconstruction, transportation, meteorology, and smart city.
1. Introduction

In the past decade, communication technologies have undergone
substantial development. In transportation systems, connected vehi-
cle (CV) technology enables information exchanges between different
system components. The running connected vehicles can continuously
collect data of interest and send them back to the data center for
further analysis. Taking CVs as mobile sensors opens new possibilities
to solve transportation problems using the shared trajectory data (Jia
et al., 2023). It provides us insights to conduct driving environment
perception tasks in a connected environment. Specifically, the image
data captured by the onboard cameras installed on the CVs can also be
shared with other CVs and stored in the data centers. As the road net-
work generally matches the whole city, CVs, therefore, are distributed
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in large-scale urban areas due to regular traffic demands. Together with
the fact that CV flows are continuous in time, the quantity estimations
can then be spatiotemporally continuous. This may promote paradigm
shifts in driving environment perception.

The following four types of information are considered important
for driving environment perception. First, depth estimation is crucial
for 3D scene understanding and the driver’s decision-making. While
current depth estimation methods require either truthful labels for
supervision or image sequence for self-supervised training. The former
is expensive. The latter may fail when the static scene assumption
is violated in a driving environment. Second, visibility is highly as-
sociated with traffic safety. Moreover, PM2.5 mass concentration and
airlight are related to air quality, and thus human health. However,
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visibility, PM2.5 mass concentration, and airlight are often measured
ith a professional instrument outfitted on the roads. Due to the high

apital costs, it is impossible to obtain dense estimates in a large-
cale city. Moreover, substantial differences in these quantities can
xist across various urban areas, raising from diverse land uses, special
eographical properties, and complex weather conditions. Therefore,
patiotemporally continuous estimates are expected for achieving more
ccurate driving environment perception. The dynamic CV signals offer
unique channel for solving these problems.

Taking the image data collected by CVs as input, a self-supervised
o-training framework is proposed to simultaneously estimate depth
ap, airlight, clear image, and visibility using four convolutional neu-

al networks (CNNs). The forward inference process is an image decom-
osition phase. The estimated results are coupled with Koschmieder’s
aw to reconstruct the input image. This reconstruction process is an
mage synthesis phase. The difference between the input image and the
econstructed image is used to train the system. It is noted that after co-
raining each sub-network can be used separately. Upon the estimated
isibility, a statistical model is further deployed to map visibility with
M2.5 mass concentration, where low visibility is assumed to be solely
aused by PM2.5. The estimated PM2.5 mass concentrations are pro-

jected back to the physical world in terms of the location information
for precise air quality monitoring. As traffic is highly dynamic, the
estimated local PM2.5 mass concentration can be continuously updated.
The expectation of multiple estimates for the same area can be taken
as the final outcome. Visibility, depth map, and airlight, can also be
projected onto the physical map and used in driving environment
reconstruction or air component analysis.

Such a bidirectional process of image synthesis and decomposi-
tion (BPISD) is radically different from the previous training pipeline
wherein only image synthesis is used. Furthermore, the reference im-
ages used for reconstruction in the previous training pipeline have cer-
tain time and space shifts as compared with the target image, i.e., the
image sequence is used. This introduces issues of occlusion, moving
objects, lighting changes, etc. The presented work solely requires a
single image as input. The corresponding clear image (i.e., dehazed
image in this study) will be the reference image for reconstruction. All
the above-mentioned issues are automatically resolved.

To validate the proposed system, a large number of driving-view
images with various visibilities caused by different degrees of PM2.5
mass concentrations are needed for training the deep neural networks.
Such a dataset, however, is unavailable to the best of our knowledge.
To address this issue, a novel synthetic method based on Koschmieder’s
law has been proposed and applied to Zhou et al.’ split (Zhou et al.,
2017) in self-supervised depth estimation on the KITTI dataset (Geiger
et al., 2013). Eigen’s split (Zhou et al., 2017) of the KITTI dataset was
used for evaluating the performance of depth estimation. The trained
visibility estimation model was directly applied to the real-world data
collected in Beijing without any refinement. Adopting simple poly-
nomial fitting, the estimated visibilities can be readily transformed
to PM2.5 mass concentrations. Comparisons show that the proposed
method achieves competitive and robust performance in self-supervised
depth estimation under various visibility conditions. For estimation
of visibility and PM2.5 mass concentrations, it was found that the
mean absolute percentage errors (MAPE) were respectively confined
within 5% and 8% across various levels of relative humidity with the
order of polynomial fitting beyond 6. These promising performances
clearly demonstrate the effectiveness of the proposed method. It is
noted that the said approach does not require any additional devices
or change the vehicle configurations, being a non-intrusive method.
As such, it has great potential to be implemented for monitoring
real-time particle conditions and promoting paradigm shifts on many
applications, e.g., starting and embracing health-aware navigation and
travel planning.

In short, the contributions of this paper are fourfold:
2

• A CV-based framework is proposed for estimating spatiotempo-
rally continuous visibility, airlight, and PM2.5 mass concentration
in large-scale cities and possibly establishing dynamical 3D driv-
ing maps by means of accurate depth maps irrespective of diverse
visibility conditions.

• A novel bidirectional process of image synthesis and decompo-
sition (BPISD) paradigm is proposed, and thus a unified self-
supervised multi-task learning framework, to simultaneously esti-
mate depth map, visibility, airlight, and PM2.5 mass concentration
by taking a single image as input.

• Applying the proposed methods to the KITTI dataset and the real-
world Beijing data affords excellent performance in all four sub-
tasks. In particular, the proposed single-image and self-supervised
depth (SSD) method can achieve performance competitive com-
pared to state-of-the-art methods and significantly outperform the
method trained with the traditional self-supervised pipeline in the
case of low-visibility situations.

• This study showcases how advanced vehicle technologies (e.g.,
CVs) help solve problems beyond transportation and opens new
possibilities for developing health and safety-oriented applica-
tions.

In particular, the presented research is fundamentally different from
DMRVisNet (You et al., 2022) in the following aspects: (1) this study
focuses on simultaneously estimating depth map, airlight, visibility, and
PM2.5 mass concentration, while DMRVisNet only targets on visibility
estimation; (2) this study proposes a self-supervised and multi-task
learning framework leveraging Koschmieder’s law, in contrast, DM-
RVisNet adopts supervised learning for all tasks; (3) this study presents
a framework for developing safety and health-oriented applications
in large-scale cities by combining connected vehicle technologies and
the proposed self-supervised multi-task learning paradigm, however,
DMRVisNet is unrelated.

The remainder of this paper is organized as follows. Section 2
reviews related works. Section 3 defines the problem. Section 4 presents
the proposed method. Section 5 reports experimental results. Section 6
concludes the paper.

2. Related work

2.1. Estimation of depth map and visibility

Depth map offers important three-dimensional (3D) information for
the given image, and thus in conjunction with LiDAR point clouds
(Wang and Yao, 2022) is widely used in 3D reconstruction, scene
understanding, and autonomous driving. However, it is nontrivial to
accurately estimate the depth map from a single image, as monocular
depth estimation is an inherently ill-posed problem. Prior to the pros-
perity of deep learning, hand-crafted features need to be extracted from
the input raw images. Then, regression or classification process is used
to estimate the depth map (Saxena et al., 2008; Baig and Torresani,
2016; Choi et al., 2015; Furukawa et al., 2017; Zoran et al., 2015). This
type of method heavily relies on the feature design. It is challenging to
devise abstract and comprehensive features manually.

Deep learning, especially convolutional neural networks (CNN),
can automatically extract abstract and deep features from the input
data (Jia et al., 2020b; Weng et al., 2021; Polewski et al., 2021; Li et al.,
2023; Wang et al., 2023), and thus provide new channels to conduct
monocular depth estimation. Given the ground truth depth map, the
end-to-end networks are trained by minimizing the difference between
the estimated and truthful depth maps. Tremendous work has been
conducted focusing on exploring various CNN structures (Chen et al.,
2016; Eigen et al., 2014; Eigen and Fergus, 2015; Laina et al., 2016;
Li et al., 2017) and capturing global information of the images (Cao
et al., 2017; Eigen and Fergus, 2015; Li et al., 2015; Liu et al., 2015a;

Mousavian et al., 2016; Xu et al., 2017, 2018; Almalioglu et al., 2019;
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C.S. Kumar et al., 2018; Grigorev et al., 2017; Mancini et al., 2017;
Tananaev et al., 2018; Wang et al., 2019a; Jia et al., 2020a). However,
such supervised depth map methods require a large number of truthful
depth maps. This hinders the models’ universal application.

Self-supervised depth estimation does not require any labeled data
for training the networks. The previous training pipeline requires con-
tinuous image sequences as input. By defining target and reference
images, the difference between the reconstructed and original target
images is computed for training the whole system, in which the recon-
struction of target images is based on reference images, the depth map
of the target image, and the ego-motion between the target image and
reference images. This pipeline has attracted many researchers (Zhou
et al., 2017; Chen et al., 2019b; Garg et al., 2016; Ranjan et al.,
2019; Yin and Shi, 2018; Zhan et al., 2018; Zhou et al., 2019, 2017;
Godard et al., 2017; Kuznietsov et al., 2017; Almalioglu et al., 2019;
Feng and Gu, 2019; Guizilini et al., 2020; Jia et al., 2021, 2022;
Jia and Yao, 2023). However, the underlying assumption is that all
objects in the scene are static. This assumption is often violated in a
driving environment. Moreover, the common occurrence of occlusion
and disocclusion in the course of vehicle moving also brings difficulty
in finding pixel correspondence. Although some works are devoted to
mitigating such issues (Godard et al., 2019; Casser et al., 2019; Klingner
et al., 2020; Shu et al., 2020), the problems can hardly be completely
resolved.

Different from the previous training pipeline used in depth esti-
mation, this work proposes a novel self-supervised multi-task learning
framework based on a bidirectional process of image synthesis and
decomposition (BPISD), which solely requires a single image as input
for training the whole system. Thus, the above-described issues are
automatically resolved, thereby possibly achieving better performance.
A single image input lets the system training be more flexible as
well. Multi-task learning is considered more cost-effective in driving
environment perception.

In visibility estimation, three types of methods are often adopted,
i.e., traditional methods, statistical methods, and deep neural network
(DNN)-based methods. Traditionally, visibility is measured by either
manual observation or professional instruments. For the former, the
estimate could be varied from observer to observer. For the latter,
professional instrument is generally expensive and is impossible to be
densely installed in large-scale cities (Chaabani et al., 2017; Pomerleau,
1997). Statistical methods estimates visibility by definition or modeling
the relationship between the collected data and visibility (Dietz et al.,
2019; Cheng et al., 2018), which generally need to perform geographic
calibration and thus are difficult for universal application. DNN-based
methods can establish an end-to-end model for conventionally estimat-
ing visibility. While a large number of labeled data are required for
training the networks (Palvanov and Im Cho, 2018; You et al., 2022).

The presented visibility estimation method differs from the previous
works in two aspects: (1) the proposed method does not need any
labeled data as supervision for training the networks, and (2) the
spatiotemporally continuous visibility across a large-scale city can be
estimated via the active CVs. This provides a unique opportunity for
developing many real-time weather-related applications.

2.2. Estimation of PM2.5 mass concentration and airlight

PM2.5 refers to particulate matters (PM) that own aerodynamic di-
ameters of no more than 2.5 μm. Heterogeneous chemical compositions
f PM2.5 significantly impact aerosol light extinction including aerosol
bsorption and scattering (Xu et al., 2020; Cao et al., 2012; Tao et al.,
019), and thus degenerate visibility (Renhe et al., 2014; Wang et al.,
009; Watson, 2002) and influence transportation. Most importantly,
M2.5 can be readily breathed into the lungs and further penetrate deep
nto the brain from the blood streams, causing serious health prob-
ems, e.g., cardiovascular disease, respiratory disease, and premature
3

eath (Agency, 2016). With the rapid industrial development in many
countries, such as China, India, and Nepal, quickly increasing energy
consumption leads to deteriorating air quality in urban areas (Chan
and Yao, 2008; Kan et al., 2012), especially in the level of PM2.5
mass concentration. Regular haze weather draws special attention of
both the general public and academia (Huang et al., 2020). Accurate
and dynamical detection of PM2.5 mass concentration becomes crucial
for air quality monitoring and travel planning so as to protect public
health.

Various methods have been used in the estimation of PM2.5 mass
oncentration. The commonest type of method is to devise and improve
rofessional instruments based on various chemical principles (Chen
t al., 2019a; Zhao et al., 2019; Pandolfi et al., 2018; Malm and Day,
001). While the professional instrument can be costly and difficult
or universal application. Considering the wide spatiotemporal distri-
ution of PM2.5, satellite-based remote sensing data were considered
dvantageous (Zheng et al., 2017; Chelani, 2019; Shelton et al., 2021;
an Donkelaar et al., 2006; Sun et al., 2019). However, the satellite
ata may not be economically and timely available. Moreover, several
mpirical models have also been proposed to estimate the PM2.5 mass

concentration from the atmospheric visibility (Wang et al., 2006; Ji
et al., 2020). Nevertheless, the atmospheric visibility still needs to
be measured using professional instruments; this limits the models’
intensive use in dense estimations. Due to sophisticated meteorological
changes and geographical differences between various urban areas,
PM2.5 mass concentrations exhibit high spatial–temporal variations in
large-scale cities. The above-described instrument-based methods are
hard to capture such variations in PM2.5 mass concentration in light
of the limited and fixed detector installations. Taking CVs as mobile
‘‘sensors’’, the proposed method can dynamically and densely estimate
PM2.5 mass concentrations for a whole city.

In airlight estimation, there are two types of methods in general:
prior-based methods and learning-based methods. For the former, dif-
ferent priors have been studied, e.g., the brightest pixel prior (He
et al., 2010; Fattal, 2008; Tan, 2008), color constancy prior (Gautam
et al., 2020), color attenuation prior (Zhu et al., 2015), statistical
priors (Berman et al., 2016; Bahat and Irani, 2016; Fattal, 2014), etc.
While various priors may have distinct application conditions; it is
challenging for common use. The latter is to take the raw image as
input and then directly estimate airlight through DNN (Cai et al., 2016;
Zhang and Patel, 2018; Wang et al., 2019b). The presented method is
also a learning-based method but, it does not require any labeled data
and is simultaneously estimated along with the other three tasks. In
this paper, airlight is considered associated with chemical components
in the air, so that it can be used in air quality analysis for protecting
human health.

3. Problem statement

Given an image captured by the onboard camera, the goal is to
simultaneously estimate the scene’s depth map, visibility, airlight, and
PM2.5 mass concentration. Previous methods need to separately train
the networks for estimating these quantities. For depth estimation, the
image sequences are required for conducting self-supervised training.
For the estimation of visibility, airlight, and PM2.5 mass concentration,
truthful labels are generally used for supervised training. One target of
this study is to simultaneously estimate these quantities by devising a
unified, self-supervised, and single-image training framework.

Traditional methods for measuring visibility, airlight, and PM2.5
mass concentration are based on fixed meteorological stations, which
are sparsely distributed in the city, and thus are difficult to capture the
spatial variations. Another goal of this study is to find a solution for
densely estimating visibility, airlight, and PM2.5 mass concentration in

a megacity, thereby providing more precise perception information.
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Fig. 1. Architecture of the proposed framework.
4. Method

This section introduces the detailed method. The overall architec-
ture, hazy image synthesis model, self-supervised multi-task learning
framework, and polynomial correlation model for PM2.5 mass concen-
tration estimation are presented, respectively.

4.1. Architecture overview

The whole system is trained in a self-supervised manner, meaning
that no labeled data is required. Moreover, the system only takes
a single image as input instead of an image sequence used in the
previous self-supervised training framework. As shown in Fig. 1, the
input image is passed to various sub-networks for estimating diverse in-
formation, including depth map, airlight, dehazed image, and visibility.
This process is to conduct image decomposition. In depth estimation,
the depth net used in Monodepth2 (Godard et al., 2019) was utilized
for a fair comparison. The only difference is that the single-scale output
was adopted in this study. Simply changing the number of output
channels to 3 in depth estimation network offers the dehazing network.
Moreover, ResNet-18 (He et al., 2016) and four convolutional layers
with kernel sizes of (1, 3, 3, 1) were respectively used as encoder and
decoder in airlight and visibility estimation.

The estimated depth map, airlight, clear image, and visibility are
then coupled with Koschmieder’s law for reconstructing the input
image. This is apparently an image synthesis process (to be introduced
in the next part). The difference between the reconstructed image and
the original input image, which is measured by L1 norm and structure
similarity (SSIM), is used to train the system. Upon the completion
of visibility estimation, a statistical polynomial correlation model is
further utilized to map visibility to PM2.5 mass concentration. It is
noted that after training each sub-network can be independently used
by taking a single image as input.

4.2. Hazy image synthesis model

A large-scale hazy image dataset is required for training deep neural
networks, but it is not available currently. Nevertheless, large-scale
clear image dataset, e.g., the KITTI dataset, is popular and publicly
available. The KITTI dataset has been used to validate a bunch of com-
puter vision algorithms and autonomous driving models. Multi-source
data have been collected in real-world scenarios, including images,
point clouds, and global positioning systems (GPS). The image data
4

were collected by the onboard cameras. This meets the requirement of
the presented work. Thus, the KITTI dataset was chosen to synthesize
the hazy images, and thus train the proposed framework. Proposition 1
is proposed for generating hazy images as follows.

Proposition 1. Given an image without haze, 𝐼 ′ ∈ R𝐻×𝑊 ×3, the corre-
sponding depth map, 𝐷 ∈ R𝐻×𝑊 ×1, visibility, 𝑉 ∈ R1, airlight, 𝐴 ∈ R1×1×3,
and the minimal observable contrast, 𝜖, the hazy image with respect to the
specified conditions, 𝐼 ∈ R𝐻×𝑊 ×3, can be obtained by the following

𝐼 = 𝐼 ′ ⊙ 𝑒
ln 𝜖
𝑉 𝑅 + 𝐴 ⊙ (1 − 𝑒

ln 𝜖
𝑉 𝑅), (1)

𝑅𝑖,𝑗 = ‖𝑃 𝑖,𝑗
‖2, 𝑅 ∈ R𝐻×𝑊 ×1, (2)

𝑃 𝑖,𝑗 = 𝐷𝑖,𝑗𝐾−1𝑝, (3)

where 𝑅 ∈ R𝐻×𝑊 ×1, 𝑅𝑖,𝑗 , ⊙, 𝑃 ∈ R𝐻×𝑊 ×3, 𝑃 𝑖,𝑗 , 𝐾−1 ∈ R3×3, and
𝑝 ∈ R3×1 represent the range image of the scene, the range value at row 𝑖
and column 𝑗, element-wise multiplication, the point clouds of the scene, the
point cloud at row 𝑖 and column 𝑗, the inverse of camera intrinsic matrix,
and the pixel coordinate. The broadcasting technique will be used in the
course of computation for Eq. (1).

Proof. Light intensity will suffer an attenuation along with the increase
of travel distance, because of a series of physical effects, e.g., reflection
and scattering. This causes that the observed luminance of objects that
are located at various places can be different, even if the actual light
intensities of them are identical. With Koschmieder’s Law, the effect
can be mathematically stated as

𝐼 = 𝐼 ′ ⊙ 𝑇 + 𝐴 ⊙ (1 − 𝑇 ), (4)

wherein 𝑇 ∈ R𝐻×𝑊 ×1 represents the transmission map of the scene,
and is defined as

𝑇 = 𝑒−𝛽𝑅. (5)

In Eq. (5), 𝑒 and 𝛽 ∈ 𝑅1 represent the natural base and extinction
coefficient. In Eq. (4), the airlight, 𝐴, is defined as the color of light
which has been scattered or diffused in the air by dust, haze, or fog
(haze is considered in this paper). This color, in general, is regarded as
the location-free variable, i.e., the haze colors over different locations
in a scene are homogeneous. With priors to the color of haze, it is
convenient to generate various 𝐴 which are close to five possible haze
colors: (1) white, (2) blue gray, (3) yellow, (4) gray, and (5) sepia.
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Let the RGB representation for color (𝑖) be (𝑅𝑖, 𝐺𝑖, 𝐵𝑖),∀𝑖 ∈ [1, 5]. The
irlight, (𝑅,𝐺,𝐵), for an arbitrary image is determined by the following
wo steps:

• Randomly choose the haze color from the given five possible
colors. Each color has the same probability of 1/5=0.2 being
selected.

• For any selected haze color (𝑅𝑖, 𝐺𝑖, 𝐵𝑖),∀𝑖 ∈ [1, 5], the airlight,
(𝑅,𝐺,𝐵), is generated by

𝑅 = 𝑅𝑖 + 𝛥𝑅, 𝛥𝑅 ∼ 𝑈 (−𝑟, 𝑟). (6)

𝐺 = 𝐺𝑖 + 𝛥𝐺, 𝛥𝐺 ∼ 𝑈 (−𝑔, 𝑔). (7)

𝐵 = 𝐵𝑖 + 𝛥𝐵, 𝛥𝐵 ∼ 𝑈 (−𝑏, 𝑏). (8)

where 𝑈 (𝑎, 𝑏) represents the uniform distribution with the support
[𝑎, 𝑏]; 𝛥𝑅, 𝛥𝐺, and 𝛥𝐵 are samples from the respective uniform
distributions.

Given that 𝑅, 𝐺, and 𝐵 are measured with the range of 0 to 255, this
paper sets 𝑟 = 𝑔 = 𝑏 = 10. Note that all values cannot exceed the valid
range [0, 255]. Then, the key is to determine the transmission map, 𝑇 ,
which depends on 𝛽 and 𝑅.

Using any depth estimation model, e.g., Monodepth2 (Godard et al.,
2019), the depth map can then be estimated. It is noted that a depth
estimation method is solely used in haze image synthesis for validating
the proposed framework. In practice, the haze images are directly
obtained from the environment. Thus, the proposed approach is fully
independent of depth estimation models. Given the depth map of the
scene, we can easily get the range map, 𝑅, by computing the 𝐿2 norm
for each space coordinate in the point cloud matrix, 𝑃 , which can be
obtained by reprojection described in Eq. (3). Therefore, the problem
comes to find the extinction coefficient, 𝛽.

As the contrast, 𝐶, is defined as

𝐶 =
𝑝𝑜 − 𝑝𝑏

𝑝𝑏
, (9)

wherein 𝑝𝑜 and 𝑝𝑏 represent the light intensity of object and the baseline
intensity. Generally, the horizon sky is chosen for 𝑝𝑏, i.e., 𝑝𝑏 = 𝐴, the
contrasts for the clear and hazy images, 𝐶𝐼 ′ and 𝐶𝐼 , is written as

𝐶𝐼 ′ =
𝐼 ′ − 𝐴

𝐴
, (10)

𝐼 = 𝐼 − 𝐴
𝐴

=
𝐼 ′ ⊙ 𝑇 + 𝐴 ⊙ (1 − 𝑇 ) − 𝐴

𝐴

= 𝐼 ′ − 𝐴
𝐴

⊙ 𝑇 = 𝐶𝐼 ′ ⊙ 𝑇 ,
(11)

where pixel values are directly used as the measurement of light
intensity for simplicity.

Given that the minimal observable contrast, 𝜖, is defined as the
absolute contrast between the black object and airlight, it follows

|𝐶𝐼 ′ | = |

0 − 𝐴
𝐴

| = 1, (12)

𝐶𝐼 | = |𝐶𝐼 ′ ⊙ 𝑇 | = | − 𝑇 | ≥ 𝜖. (13)

ubstituting Eq. (5) into Eq. (13) furnishes
−𝛽𝑅 ≥ 𝜖. (14)

hen equality holds in Eq. (14), the range becomes visibility, i.e.,
−𝛽𝑅 = 𝜖. (15)

hus, 𝛽 can be derived accordingly,

= − ln 𝜖
𝑉

. (16)

Substituting Eqs. (16) and (5) into Eq. (4) offers Eq. (1). □
5

Remark 1. Although Proposition 1 is used to generate haze images
using clear images, it also can be used in mimicking other types of
contaminated images by simply changing the value of airlight, such as
foggy images, snowy images, night images, and so on.

With Proposition 1, different hazy images, as shown in Fig. 3, can be
gracefully generated based on the images without haze, which will be
further used to train the neural networks in the proposed framework.

4.3. Self-supervised multi-task learning framework

This subsection introduces a novel bidirectional process of image
synthesis and decomposition (BPISD) training pipeline, and thus a
self-supervised multi-task learning framework for driving environment
perception. Using Proposition 1, a hazy image can be synthesized using
the given clear image, depth map, airlight, and visibility. Inspired by
this image synthesis process, the opposite image decomposition course
can be deployed to estimate those components used for image synthesis.
Thus, the following corollary is proposed.

Corollary 1. Given a hazy image, 𝐼 ∈ R𝐻×𝑊 ×3, and its corresponding
clear image, 𝐼 ′ ∈ R𝐻×𝑊 ×3, the range image, 𝑅 ∈ R𝐻×𝑊 ×1, airlight,
𝐴 ∈ R1×1×3, and visibility, 𝑉 ∈ R1, of the given hazy image can be estimated
by solving the following minimization problem:

𝑚𝑖𝑛 𝛷(𝐼𝑟, 𝐼)

𝑠.𝑡. 𝐼𝑟 = 𝐼 ′ ⊙ 𝑒
ln 𝜖
𝑉 𝑅 + 𝐴 ⊙ (1 − 𝑒

ln 𝜖
𝑉 𝑅)

, (17)

where 𝛷(⋅) represents the function that is to evaluate the difference between
the reconstructed image 𝐼𝑟 and the input image 𝐼 .

roof. Based on Proposition 1, the target quantities, 𝑅, 𝐴, and 𝑉 ,
and the given clear image, 𝐼 ′, can synthesize haze images. Given
a specific set of values {𝑅,𝐴, 𝑉 }, the corresponding haze image is
determined. By updating {𝑅,𝐴, 𝑉 } towards the direction of minimizing
the distance between the synthesized image 𝐼𝑟 and the original haze
image 𝐼 , the resulting solution, {𝑅∗, 𝐴∗, 𝑉 ∗}, will converge to the range
image, airlight, and visibility of the given haze image. Therefore, the
range image, airlight, and visibility of the given haze image can be
estimated. □

Remark 2. The problem stated in Corollary 1 is a typically ill-posed
problem. If 𝐼 ′ is not given, which thus has to be estimated, the solution
of the presented minimization can collapse to some unexpected cases,
e.g., 𝐼 ′ = 𝐼 , 𝑅 = 𝟎, 𝐴 = 𝟎, and 𝑉 can be any non-zero number. To
address this issue, some constraints can be imposed on the estimated
either 𝐼 ′, 𝑅, 𝐴, or 𝑉 . 𝐼 ′ was considered known under this circumstance
for successfully estimating other quantities, because (1) the correspond-
ing clear image of 𝐼 can be readily obtained by retrieving historical
image data of the same location captured by the on-board cameras
outfitted on the CVs in a city; and (2) dehazing has been well studied,
and a number of supervised and unsupervised methods (He et al., 2010;
Engin et al., 2018; Yang and Sun, 2018) have been proposed, which can
be borrowed to estimate the clear images.

Remark 3. As the range image has the same resolution as compared
with the input image and thus is high-dimensional, it is challenging to
solve Eq. (17) through typical algorithms in the field of optimization.
Nevertheless, it is apparent that 𝑅, 𝐴, and 𝑉 are dependent on 𝐼 ,
meaning that 𝑅, 𝐴, and 𝑉 can somehow be derived from 𝐼 . Despite
the impossibility of deriving an explicit relationship between 𝐼 and
𝑅/𝐴/𝑉 (at least it is impossible at this stage), powerful DNNs can be
deployed to fit such correlations. Then, it is convenient to train DNNs

using gradient-based optimizers.
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Based on Corollary 1, the proposed framework is constituted by mul-
tiple tasks, including estimations of range image, airlight, and visibility.
Various deep neural networks were used to estimate these quantities.
Consider the range estimation network as 𝛹𝑅, which is defined as 𝛹𝑅 ∶
∈ R𝐻×𝑊 ×3 → 𝑅 ∈ R𝐻×𝑊 ×1. A popular encoder–decoder architecture

resented in Monodepth2 (Godard et al., 2019) was adopted for a
air comparison. Differently, single-scale output was utilized instead
f four-scale output in the original paper. Similarly, the airlight and
isibility estimation networks are denoted as 𝛹𝐴 ∶ 𝐼 ∈ R𝐻×𝑊 ×3 → 𝐴 ∈

R1×1×3 and 𝛹𝑉 ∶ 𝐼 ∈ R𝐻×𝑊 ×3 → 𝑉 ∈ R1, respectively. 𝛹𝐴 and 𝛹𝑉
an either be two separate networks or share the same network with
wo separate estimation heads. The latter strategy was adopted here.
pecifically, ResNet-18 (He et al., 2016) and four convolutional layers
ere respectively taken as the encoder and decoder in this paper. To
btain a clear image, the depth estimation network with minor changes
o the last layer was used to dehaze in a supervised manner. Consider
he dehazing network as 𝛹𝐶 ∶ 𝐼 ∈ R𝐻×𝑊 ×3 → 𝐼 ′ ∈ R𝐻×𝑊 ×3. The

training is to solve the following minimization problem:

𝑚𝑖𝑛 𝛩(𝐼 ′, 𝐼𝑐 )

𝑠.𝑡. 𝛩(𝐼 ′, 𝐼𝑐 ) = 𝛼‖𝐼 ′ − 𝐼𝑐‖1 + (1 − 𝛼)
1 − 𝑆𝑆𝐼𝑀(𝐼 ′, 𝐼𝑐 )

2
,

(18)

where 𝑆𝑆𝐼𝑀(⋅) and 𝐼𝑐 represent the structure similarity function and
he ground truth clear image; 𝛼 is set to 0.15 following Jia et al. (2022).
t is noted that the trained dehazing model will be directly used when
erforming multi-task learning and no longer be trained. As mentioned,
lear images can also be estimated by other means, even they can be
irectly obtained by searching in the historical data.

For each forward process, 𝛷𝑅, 𝛷𝐴, and 𝛷𝑉 take a single hazy image
s input to estimate its range image, airlight, and visibility. The trained
𝐶 also takes the hazy image as input and outputs the clear image for

urther actions. Then, Proposition 1 is used to reconstruct the input
azy images based on the estimated 𝑅, 𝐴, 𝐼 ′ and 𝑉 , as shown in
q. (17). Let 𝑅1 and 𝑅2 be the estimated range images for 𝐼 and 𝐼 ′.
orrespondingly, denote the reconstructed images based on 𝑅1 and 𝑅2
s 𝐼𝑟,1 and 𝐼𝑟,2. The reconstruction error can be written as

1 =
2
∑

𝑖=1
𝛩(𝐼𝑟,𝑖, 𝐼). (19)

he estimated ranges images 𝑅1 and 𝑅2 are expected to be consistent.
hus, the consistency loss is given by

2 = 𝛩(𝑅1, 𝑅2). (20)

inally, the edge-aware smoothness loss, as follows, is also adopted.

3 = 𝛽
2
∑

𝑖=1
|𝜕𝑥𝑅

∗
𝑖 |𝑒

−|𝜕𝑥𝐼 ′| + |𝜕𝑦𝑅
∗
𝑖 |𝑒

−|𝜕𝑦𝐼 ′|, (21)

here 𝑅∗
𝑖 = 𝑅𝑖

𝐸(𝑅𝑖)
is the mean-normalized inverse range following Go-

ard et al. (2019); 𝐸(⋅) and 𝜕 represent the expectation operation and
he partial derivative operator, respectively; and 𝛽 is set to 0.001. The
inal loss is given by

= 𝛷(𝐼𝑟, 𝐼) =
3
∑

𝑖=1
𝐿𝑖. (22)

he Adam optimizer (Kingma and Ba, 2014) with the initial learning
ate of 0.0001, batch size of 12, and other default parameters was used
o train the networks. The numbers of epochs for dehazing model and
ulti-task learning framework were set to 100 and 20, during which

he initial learning rates will be decreased by a factor of 10 at the 95th
nd the 15th epochs. The pretrained model on ImageNet was loaded to
nitialize the parameters of ResNet-18.
6

.4. Polynomial correlation model for PM2.5 mass concentration estimation

Applying the trained visibility estimation model, the visibility of
given image can be obtained. To further estimate the PM2.5 mass

oncentration, a simple polynomial correlation model was adopted to
odel the relationship between visibility and PM2.5 mass concentra-

tion. It follows that

̂ =
𝑘
∑

𝑖=0
𝑐𝑖𝑉

𝑖, (23)

where �̂�, 𝑐𝑖, and 𝑘 represent the estimated PM2.5 mass concentration,
the coefficients of monomials, and the order of the polynomial, respec-
tively. Thus, the key is to estimate the coefficients, 𝑐𝑖,∀𝑖 ∈ [1, 𝑘]. The
problem can be formulated as

𝑚𝑖𝑛
𝑁
∑

𝑗=1
(

𝑘
∑

𝑖=0
𝑐𝑖𝑉

𝑖
𝑗 − 𝜌𝑗 )2, (24)

where 𝑁 and 𝜌𝑗 represent the number of samples and truthful PM2.5
mass concentration. The least square method was utilized to solve the
above minimization. The fitted model can then be used to estimate
PM2.5 mass concentration.

Remark 4. It is noted that a small set of truthful PM2.5 mass concen-
trations is available from the sparse meteorological stations, which can
be used to calibrate the polynomial correlation model. The calibration
process only needs to be conducted once.

5. Experiment

In this section, datasets, definitions of metrics, and experimental
results are introduced, respectively. All experiments are implemented
with PyTorch 1.9.1 on a single TITAN RTX card and same set of
hyperparameters to have fair comparisons.

5.1. Datasets

For self-supervised depth estimation, a large-scale and popular
dataset, KITTI (Geiger et al., 2013), was used to train the networks.
Based on Zhou et al.’ split (Zhou et al., 2017) on the KITTI dataset,
40,109 images with various visibility conditions were first generated
in terms of Proposition 1 to mimic the different levels of PM2.5 mass
concentrations. Five visibility scales, i.e., Terrible, Bad, Middle, Good,
and Perfect, were considered with respect to the corresponding relative
visibilities of 0.1, 0.3, 0.5, 0.8, and 1, where 1 represents the clear
images without haze. In each visibility group, 697 images were used
for testing. The image resolution is set to 640 × 192.

It is noted that some images in the original test set of Eigen’s split
are not suitable for evaluating visibility and airlight as the scenes are
extremely close to the cameras or are full of buildings and pedestri-
ans. Thus, in visibility and airlight estimation, 377 images in Eigen’s
split (Zhou et al., 2017) of the KITTI dataset were chosen for generating
testing images, which are synthesized based on the given clear images
and randomly generated relative visibilities in the range of 0 to 1.

To validate the effectiveness of the proposed method in estimating
PM2.5 mass concentration, real-world images with various PM2.5 mass
concentrations were collected. The image data were manually selected
on the Beijing Tour website, on which the real-time image data and
detailed weather information are provided, including temperature, hu-
midity, wind, etc. The corresponding PM2.5 mass concentration of each
image is obtained from the U.S. Embassy in Beijing. The numbers of
images in relative humidity 0 to 0.5, 0.5 to 0.7, 0.7 to 0.9, and 0.9 to
1 are 39, 17, 13, and 24, respectively, i.e., 93 images with different

PM2.5 mass concentrations were used for validation.
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Table 1
Model training configurations.

√

and ✕ represent with and without corresponding
ruthful information during training.
Model Clear image? Airlight? Visibility?

SSD-A
√ √ √

SSD-B
√ √

✕

SSD-C
√

✕ ✕

SSD-D ✕ ✕ ✕

5.2. Definitions of metrics

This subsection introduces the metrics used for evaluations. Denote
the ground truth depth map and the predicted depth map as 𝐷𝑔𝑡 ∈ Rℎ×𝑤

and 𝐷𝑝𝑟𝑒 ∈ Rℎ×𝑤, where ℎ and 𝑤 are the height and width of the depth
map, respectively. 𝑁 is the number of valid pixels in the ground truth
depth map. Thus, the metrics used for evaluating depth estimation are
defined as follows:

• Absolute relative (AbsRel) error (Eq. (25)):

𝐴𝑏𝑠𝑅𝑒𝑙 = 1
𝑁

𝑁
∑

𝑖=1

|𝐷𝑝𝑟𝑒
𝑖 −𝐷𝑔𝑡

𝑖 |

𝐷𝑔𝑡
𝑖

; (25)

• Square relative (SqRel) error (Eq. (26)):

𝑆𝑞𝑅𝑒𝑙 = 1
𝑁

𝑁
∑

𝑖=1

|𝐷𝑝𝑟𝑒
𝑖 −𝐷𝑔𝑡

𝑖 |
2

𝐷𝑔𝑡
𝑖

; (26)

• Root mean square (RMS) error (Eq. (27)):

𝑅𝑀𝑆 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
|𝐷𝑝𝑟𝑒

𝑖 −𝐷𝑔𝑡
𝑖 |

2; (27)

• Root mean square logarithm (RMSlog) error (Eq. (28)):

𝑅𝑀𝑆𝑙𝑜𝑔 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
|𝑙𝑜𝑔𝐷𝑝𝑟𝑒

𝑖 − 𝑙𝑜𝑔𝐷𝑔𝑡
𝑖 |

2; (28)

• 𝛿𝑇 accuracy (Eq. (29)):

𝛿𝑇 =

∑𝑁
𝑖=1(𝑚𝑎𝑥(

𝐷𝑝𝑟𝑒
𝑖

𝐷𝑔𝑡
𝑖
,
𝐷𝑔𝑡
𝑖

𝐷𝑝𝑟𝑒
𝑖

) < 𝑇 )

𝑁
𝑇 = 1.25, 1.252, 1.253

. (29)

In the evaluation of visibility, airlight, and PM2.5 mass concentra-
ion estimation, RMS error (RMSE), mean absolute error (MAE), and
ean absolute percentage error (MAPE) were adopted. For each test

tem, the metrics stated above are computed. Then, the final results
re obtained by averaging all testing data.

.3. Results

The proposed co-training system is constituted by four sub-tasks:
stimations of the depth map, airlight, visibility, and PM2.5 mass con-
entration. All these four tasks are evaluated.

.3.1. Self-supervised depth estimation
Current self-supervised depth estimation systems are based on view

ynthesis and use reference images to reconstruct the target image. The
econstruction error is taken as the loss to train the networks. Such

view-synthesis approach requires an image sequence as input for
raining. However, videos may not be always available, due to limited
ransmission bandwidth and energy supply on edge devices. Instead,
he presented self-supervised depth estimation system solely takes a
ingle image as input, i.e., performing single-image and self-supervised
7

epth (SSD) estimation. The detailed model training configurations s
re shown in Table 1. This provides a new paradigm for conducting
onocular depth estimation.

Table 2 compares the proposed method with other state-of-the-art
ethods on the original KITTI dataset. It should be noted that (1) ‘‘SSD-
, C, and D’’ perform self-supervised multi-task learning, which are
uch more challenging than other methods of only conducting depth

stimation and (2) other methods require image sequence (video) as
nput to train the network while SSD only takes a single image as
nput. The numbers in Table 2 indicate that SSD-A outperforms other
tate-of-the-art methods almost on all metrics by clear margins. ‘‘SSD-B,
, and D’’ only exhibit very minor performance drops compared with

‘SSD-A’’. ‘‘SSD-A, B, C, and D’’ show the ablation studies by gradually
elaxing the training conditions, demonstrating that the proposed sys-
em can accurately estimate the depth map as well as the byproducts
i.e., visibility and airlight), even with the estimated clear images.

In particular, Table 3 and Fig. 2 reports the quantitative results of
SD under various visibility conditions on the KITTI dataset. Detailed
blation studies on the training conditions were also presented. ‘‘SSD–
’’ model was trained with truthful clear images, airlight, and visibility,
hich outperforms Monodepth2 (Godard et al., 2019) on various vis-

bility conditions. In particular, low-visibility conditions significantly
egrade the performance of Monodepth2. In contrast, the proposed
ethod solely undergoes neglectable performance drops. ‘‘SSD–B, C,

nd D’’ gradually relax the training condition to without truthful visibil-
ty, without truthful visibility and airlight, and finally without truthful
isibility, airlight, and clear image. All these unknown data were
imultaneously estimated through the proposed framework. The results
ndicate that the performance only slightly drops as compared with
hat of ‘‘SSD–A’’. For a perfect visibility situation, the performance of
he final model ‘‘SSD–D’’ is still on par with that of Monodepth2 (Go-
ard et al., 2019). In other hazy conditions, ‘‘SSD–D’’ exhibits huge
dvantages on all metrics as compared with Monodepth2 (Godard et al.,
019). This clearly demonstrates the effectiveness and robustness of the
roposed framework.

Some qualitative comparisons across various visibility conditions
re presented in Fig. 3. Given the perfect-visibility images, the qual-
tative results from the proposed method and Monodepth2 (Godard
t al., 2019) are highly consistent. Nevertheless, with the innovative
raining framework, the proposed method performs much better than
onodepth2 on some difficult regions, e.g., windows. With visibility

eteriorating, many details and far scenes could not be estimated in
onodepth2. The proposed method still provides accurate estimations
ith vivid details.

.3.2. Self-supervised visibility and airlight estimation
Visibility for a given image is represented by a scalar, which is

onsidered highly associated with traffic management and safety. Ap-
lying the trained self-supervised visibility estimation model to the
elected KITTI data, it was found that the RMSE, MAE, and MAPE of
he proposed method are 0.032, 0.025, and 4.9%, respectively.

Airlight, which is represented by a 3D vector (i.e., red, green,
nd blue components), is caused by light scattering and diffusion by
articulate matters, e.g., dust and haze. Airlight owns spatiotemporal
ariations due to the changes in chemical components in the air.
onversely, knowledge of airlight plays a critical role in analyzing the
hemical components in the air and thus provides important guidance
o improve air quality and more precise warnings to the public. Apply-
ng the trained airlight estimation model to the same set of 337 images
sed for self-supervised visibility estimation, the RMSE, MAE, and
APE were found to be 0.067, 0.049, and 9.2%, respectively. Fig. 4a,

, c, and d show the estimated quantities versus the ground truth
uantities graphs. The dots are well distributed along the 45-degree
ines, meaning that the estimations are sufficiently accurate. Fig. 4e
resents some estimation examples. The minor prediction deviations
learly demonstrate the effectiveness of the proposed framework on

elf-supervised visibility and airlight estimation.
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Fig. 2. Results of self-supervised depth estimation on the KITTI dataset (Geiger et al., 2013). The results on various evaluation metrics, including AbsRel, SqRel, RMSE, RMSElog,
𝛿1.25, 𝛿1.252 , 𝛿1.253 , are shown in a, b, c, d, e, f, and g, respectively. h and i represent the means and standard deviations of different metrics across various visibility conditions.
5.3.3. PM2.5 mass concentration estimation
Assuming that low visibility is solely caused by PM2.5, PM2.5 mass

concentration can be derived from the atmosphere visibility. By directly
applying the trained visibility estimation model on the KITTI dataset to
real-world data, the relative visibilities were first estimated. Then, the
polynomial correlation model was used to match the estimated relative
visibilities with the truthful PM2.5 mass concentrations.

As shown in Table 4, Fig. 5a, b, c, and d, the estimation perfor-
mance gradually gets improved and being asymptotically stable with
the increase of polynomial order. The absolute percentage errors were
well confined within 8% as the polynomial order is equal to or greater
than 6. RMSE and MAE were respectively confined within 41 and 31
over various humidity conditions. Fig. 5e presents some estimation
results by setting the polynomial order to 10. Excellent performance
indicates that the proposed method can accurately estimate PM2.5 mass
concentrations under various humidity conditions. It has great potential
to be implemented in an urban system to dynamically monitor PM2.5
mass concentrations.

6. Conclusion

This paper proposes a novel framework to simultaneously conduct
the estimations of the depth map, airlight, visibility, and PM mass
8

2.5
concentrations leveraging the CV technologies. The on-road CVs can
share local information with other vehicles and data centers. Image
data collected by the onboard cameras are used in this study. Due to
the different trips of CVs, it is assumed that CVs are well distributed in
the city. Consider a specific time instant; the images in different urban
regions can be obtained via CVs. Along with the traverse of CVs in the
whole city, the local images can be regularly updated. Given multiple
observations reported by CVs at the same location, the average of
these multiple estimates can be used as the final estimation to enhance
robustness and improve accuracy. Moreover, the spatial resolution can
be readily adjusted by setting various data report frequencies of CVs.
Real-time precise airlight, visibility, PM2.5 mass concentrations, and
depth maps can be estimated accordingly.

The proposed framework solely requires a single input image with-
out any labels for all sub-tasks, working in a self-supervised manner.
Moreover, it is a non-intrusive method, meaning that no additional
equipment, professional instruments, and special adjustments to vehi-
cles are involved. Thus, it is considered more convenient and flexible
as compared with other methods in estimating those quantities. Com-
prehensive experiments demonstrate the effectiveness and superiority
of the proposed method. In depth estimation, the proposed method
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Table 2
Quantitative comparisons of depth estimation on the KITTI dataset (Geiger et al., 2013). GT and PT represent ground truth and pretraining, respectively. – represents that the
situation is unclear. Res. represents resolution. The best performances are marked bold.

Res. Methods GT? PT? Errors ↓ Errors ↑

AbsRel SqRel RMS RMSlog 𝛿1.25 𝛿1.252 𝛿1.253

Eigen et al. (2014), coarse
√

– 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. (2014), fine

√

– 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. (2015b)

√

– 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Kuznietsov et al. (2017)

√ √

0.113 0.741 4.621 0.189 0.862 0.960 0.986
–

Fu et al. (2018)
√ √

0.072 0.307 2.727 0.120 0.932 0.984 0.994

Yin and Shi (2018) (VGG) – 0.164 1.303 6.090 0.247 0.765 0.919 0.968
Yin and Shi (2018) (ResNet) – 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Wang et al. (2018)

√

0.151 1.257 5.583 0.228 0.810 0.936 0.974
Bian et al. (2019)

√

0.149 1.137 5.771 0.230 0.799 0.932 0.973
Casser et al. (2019) – 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Jia et al. (2021)

√

0.144 0.966 5.078 0.208 0.815 0.945 0.981
Klingner et al. (2020)

√

0.128 1.003 5.085 0.206 0.853 0.951 0.978
Godard et al. (2019)

√

0.128 1.087 5.171 0.204 0.855 0.953 0.978
Jia et al. (2022) (CC)

√

0.128 0.990 5.064 0.202 0.851 0.955 0.980
Jia et al. (2022) (CL)

√

0.128 0.979 5.033 0.202 0.851 0.954 0.980

Zhou et al. (2017) 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yang et al. (2017) 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Godard et al. (2019)a 0.144 1.059 5.289 0.217 0.824 0.945 0.976
Jia et al. (2022) (LL) 0.141 1.060 5.247 0.215 0.830 0.944 0.977
Jia and Yao (2023)-S 0.135 0.973 5.084 0.208 0.840 0.948 0.978

416 × 128

Jia and Yao (2023)-L 0.128 0.897 4.905 0.200 0.852 0.953 0.980

Godard et al. (2019) 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Jia et al. (2022) (LL) 0.135 0.979 5.078 0.209 0.841 0.949 0.978

Klingner et al. (2020)
√

0.117 0.907 4.844 0.196 0.875 0.958 0.980
Godard et al. (2019)

√

0.115 0.903 4.863 0.193 0.877 0.959 0.981
Jia et al. (2022) (CL)

√

0.116 0.886 4.787 0.192 0.876 0.959 0.981
Jia et al. (2022) (CC)

√

0.116 0.842 4.708 0.190 0.876 0.961 0.982
Jia et al. (2022) (CC)

√

0.116 0.842 4.708 0.190 0.876 0.961 0.982
Our (SSD-A)

√

0.115 0.866 4.643 0.188 0.878 0.962 0.983
Our (SSD-B)

√

0.116 0.836 4.607 0.187 0.878 0.963 0.983
Our (SSD-C)

√

0.117 0.858 4.635 0.189 0.876 0.963 0.983

640 × 192

Our (SSD-D)
√

0.122 0.810 4.611 0.188 0.870 0.963 0.984

a The results are reproduced by Jia et al. (2022).
Table 3
Quantitative results of self-supervised depth estimation under different visibility conditions.
Methods Visibility Errors ↓ Errors ↑

AbsRel SqRel RMS RMSlog 𝛿1.25 𝛿1.252 𝛿1.253

Godard et al. (2019) Perfect 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SSD-A Perfect 0.115 0.866 4.643 0.188 0.878 0.962 0.983
SSD-B Perfect 0.116 0.836 4.607 0.187 0.878 0.963 0.983
SSD-C Perfect 0.117 0.858 4.635 0.189 0.876 0.963 0.983
SSD-D Perfect 0.122 0.810 4.611 0.188 0.870 0.963 0.984

Godard et al. (2019) Good 0.125 0.994 5.147 0.203 0.860 0.954 0.979
SSD-A Good 0.115 0.892 4.686 0.188 0.878 0.962 0.983
SSD-B Good 0.117 0.851 4.653 0.188 0.878 0.963 0.983
SSD-C Good 0.118 0.873 4.682 0.189 0.875 0.962 0.983
SSD-D Good 0.121 0.834 4.632 0.188 0.870 0.963 0.984

Godard et al. (2019) Middle 0.138 1.063 5.526 0.217 0.835 0.945 0.977
SSD-A Middle 0.116 0.876 4.683 0.188 0.877 0.962 0.983
SSD-B Middle 0.117 0.870 4.688 0.188 0.878 0.962 0.983
SSD-C Middle 0.118 0.889 4.720 0.190 0.875 0.962 0.983
SSD-D Middle 0.121 0.852 4.660 0.189 0.870 0.963 0.984

Godard et al. (2019) Bad 0.161 1.278 6.253 0.244 0.787 0.928 0.968
SSD-A Bad 0.116 0.887 4.709 0.189 0.876 0.961 0.983
SSD-B Bad 0.117 0.886 4.703 0.189 0.877 0.962 0.982
SSD-C Bad 0.119 0.886 4.733 0.191 0.874 0.961 0.983
SSD-D Bad 0.122 0.868 4.691 0.190 0.869 0.962 0.983

Godard et al. (2019) Terrible 0.270 2.478 8.554 0.358 0.571 0.826 0.915
SSD-A Terrible 0.117 0.926 4.813 0.191 0.874 0.960 0.982
SSD-B Terrible 0.120 0.907 4.772 0.192 0.873 0.960 0.982
SSD-C Terrible 0.123 0.960 4.940 0.195 0.868 0.959 0.982
SSD-D Terrible 0.129 0.867 4.803 0.196 0.854 0.959 0.983
9
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Table 4
Quantitative results of PM2.5 mass concentration estimation on the real-world data. RH represents relative humidity. Order represents the
polynomial fitting order.
Order 0 ≤ 𝑅𝐻 < 0.5 0.5 ≤ 𝑅𝐻 < 0.7 0.7 ≤ 𝑅𝐻 < 0.9 0.9 ≤ 𝑅𝐻 < 1

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

1 55.8 36.8 16.0 58.2 49.7 13.0 61.0 48.7 13.4 42.6 33.3 5.9
2 37.4 26.4 11.5 47.9 38.5 10.3 43.0 36.4 10.6 37.6 30.9 5.4
3 22.4 18.5 8.9 43.9 36.8 9.7 18.3 14.6 3.9 37.6 30.9 5.4
4 21.2 17.2 8.2 40.9 34.3 9.0 18.1 14.3 3.8 32.9 25.9 4.5
5 20.1 15.1 7.1 40.8 34.2 9.0 16.7 13.9 4.0 32.9 26.0 4.5
6 19.2 13.5 6.3 40.3 30.7 7.9 12.6 9.9 2.9 30.4 24.1 4.1
7 18.9 13.4 6.2 40.1 31.0 8.0 11.6 7.1 2.9 30.3 23.8 4.1
8 18.9 13.4 6.2 35.1 27.5 7.3 11.6 7.1 2.1 30.2 23.7 4.1
9 18.8 13.0 6.0 34.2 27.0 7.2 11.6 7.1 2.1 30.1 23.4 4.0
10 18.7 13.3 6.2 33.7 26.9 7.3 10.7 6.1 1.8 29.1 22.6 3.8
Fig. 3. Qualitative comparisons of depth estimation under various visibility conditions on the KITTI dataset (Geiger et al., 2013).
achieves performance competitive to current self-supervised methods
when taking clear images as input, and significantly outperforms cur-
rent methods when taking hazy images as input. Minor estimation
derivations on airlight, visibility, and PM2.5 mass concentration fur-
ther show its great application potential. Nevertheless, the proposed
method has the following limitations: (1) given the monocular image
as input, the estimated depth map and visibility are relative values,
and (2) considering different climate situations in different cities, the
calibration process for PM mass concentration estimation may need
10

2.5
to be reconducted in different cities. We expect to develop real-world
applications in the future.
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Fig. 5. Results of PM2.5 mass concentration estimation on the real-world data. a, b, c, d: estimation errors with the relative humidity of 0 to 0.5, 0.5 to 0.7, 0.7 to 0.9, and 0.9
to 1. e: some estimation examples (the unit for numbers is μg∕m3).
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