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Abstract

We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a
variational autoencoder (VAE) to address the imbalance rock burst dataset, and proposed a multilevel explainable artificial intelligence
(XAI) tailored for tree-based ensemble learning. We collected 537 data from real-world rock burst records and selected four critical fea-
tures contributing to rock burst occurrences. Initially, we employed data visualization to gain insight into the data’s structure and per-
formed correlation analysis to explore the data distribution and feature relationships. Then, we set up a VAE model to generate samples
for the minority class due to the imbalanced class distribution. In conjunction with the VAE, we compared and evaluated six state-of-the-
art ensemble models, including gradient boosting algorithms and the classical logistic regression model, for rock burst prediction. The
results indicated that gradient boosting algorithms outperformed the classical single models, and the VAE-classifier outperformed the
original classifier, with the VAE-NGBoost model yielding the most favorable results. Compared to other resampling methods combined
with NGBoost for imbalanced datasets, such as synthetic minority oversampling technique (SMOTE), SMOTE-edited nearest neigh-
bours (SMOTE-ENN), and SMOTE-tomek links (SMOTE-Tomek), the VAE-NGBoost model yielded the best performance. Finally,
we developed a multilevel XAI model using feature sensitivity analysis, Tree Shapley Additive exPlanations (Tree SHAP), and Anchor
to provide an in-depth exploration of the decision-making mechanics of VAE-NGBoost, further enhancing the accountability of tree-
based ensemble models in predicting rock burst occurrences.
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1 Introduction

Rock engineering (Wagner, 2019) is an engineering field
that studies and applies the principles of rock mechanics
and rock engineering mechanics. Rock engineering has a
wide range of applications, including underground tunnels,
underground space development, dams, rock slopes, rock
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foundations, mining, and other engineering projects (Lee
& Jeong, 2016; Wagner, 2019; Xing et al., 2018).

With the emergence of various new technologies and the
growing demand for energy, resources and space, various
rock engineering projects are being constructed on a larger
scale, at greater depths and in a more complex under-
ground world. The increase in underground construction
leads to an increase in geologic hazards, in which rock
burst is the most frequent one(Waqar et al., 2023).

Rock burst is a disaster in which the stored elastic strain
energy is suddenly released under high geostress conditions
after excavation because the energy inside the rock is much
larger than the restraining force provided by the surround-
ing rock (Yao & He, 2008). The earliest rock burst
recorded in China can date back to 1933, which occurred
ehalf of KeAi Communications Co. Ltd.
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at Fushun Shengli Coal Mine (He & Wang, 2023). Many
rock burst events occurred during the establishment of
the Jinping-II hydropower station (Feng et al., 2015),
including a powerful rock burst event and the maximum
depth of destruction of the surrounding rock up to 3
meters, resulting in severe damage (He et al., 2012). More-
over, in the long term, it is estimated that coal will com-
prise 55% of China’s energy consumption by 2023, with
nearly 10% of that coming from coal mines enduring rock
burst (Pan & Wang, 2023). Therefore, predicting and pre-
venting rock burst holds significant importance for ensur-
ing the safety and sustainable development of deep
underground coal mining in China.

From the energy perspective, the cause of rock burst
seems to be very simple, but from the practical engineering
perspective, because we can’t directly measure the energy
stored inside the rock and the surrounding rock on its con-
straints on the energy, we can only predict by a limited
number of quantitatively expressed characteristics of the
conditions, which makes predicting rock burst very difficult
(Wang et al., 2020). In the early research on the prediction
of rock burst occurrences, researchers use the fuzzy com-
prehension evaluation method (Du et al., 2006; Xu et al.,
2008) and rough set theory (Zhang et al., 2010) of modeling
and other mathematical methods to measure the relation-
ship between the selected features and rock burst occur-
rences and to achieve the purpose of prediction.

As computer science rapidly evolves, machine learning is
increasingly applied in engineering practice (Liu & Lu,
2022; B. Liu et al., 2021, 2022a, 2022b;). Machine learning
(ML) (Topuz & Alp, 2023) is a subfield of artificial intelli-
gence (AI) that aims to enable computer systems to learn
and improve from data and make decisions accordingly
without having to consider the original meaning of the
data. Since the data in it does not need to be considered
for its actual meaning during computational analysis,
ML can be applied to various fields (B. Liu et al., 2023a,
2023b; H. Liu et al., 2023; Xia et al., 2023; Zhu et al.,
2023; Zhuang & Zhou, 2019).

In the problem of predicting rock burst, many research-
ers have obtained better results by building ML models.
Based on the analysis of main cause of rock burst, Zhao
(2005b) proposed the evolutionary support vector machine
(SVM) to predict rock burst. The results showed that this
method was feasible and appropriate with significant
potential. Ahmad et al. (2022) used a newly developed
model to predict rock burst intensity grade using adaptive
boosting (AdaBoost) classifier and found that the predic-
tion results are consistent with the actual conditions of
the subsequent construction.

Ensemble learning (Dong et al., 2020) is an ML method
that improves the performance of a model by combining
multiple weak learners into one strong learner. Its basic
idea is to get more accurate and stable predictions by com-
bining the predictions of multiple weak learners. Due to the
excellent performance of ensemble learning in engineering,
many researchers have used ensemble learning methods to
predict rock burst and have taken good results. Liang et al.
(2021) used an ensemble learning approach for rock burst
risk prediction and showed that random forest (RF) and
gradient boosting decision tree (GBDT) have better overall
performance. Li et al. (2022) constructed an ensemble
learning model consisting of multiple classifiers by estab-
lishing multiple ML models and integration ideas. The
results showed that the robustness of the ensemble model
is significantly better than that of the ordinary model,
and the practicality of the model is verified in the Sanshan-
dao gold mine. H. Liu et al. (2023) used the histogram gra-
dient boosted tree (HGBT) to model rock burst prediction
and verified the feasibility of the model through Sanshan-
dao Gold Mine.

Deep learning (LeCun et al., 2015; Schmidhuber, 2015)
is a special method in ML, which uses neural network mod-
els to simulate the neural network structure of the human
brain, and learns and predicts through the connection
and weight adjustment of multi-layer neurons. In predict-
ing rock burst problems, many researchers have obtained
better results using neural network models. Li et al.
(2005) proposed a neural network model for predicting
rock burst, and the prediction results showed that it is fea-
sible and effective to predict rock burst using artificial neu-
ral networks. Zhao and Chen (2020) established a data-
driven model based on the convolutional neural network
(CNN) and compared it with the traditional neural net-
work. The results showed that the data-driven model can
effectively tap the complex phenomena and mechanisms
of rock bursts occurrences.

Rock burst brings great harm to mines, tunnels, under-
ground engineering, and other rock projects. Solving the
rockburst prediction problem can not only ensure the
safety of the staff but also improve the stability of the pro-
ject so that the whole project is more secure and stable.
However, rockburst data are highly imbalanced, and in
the case of imbalanced data categories, the model may be
more inclined to predict the categories with a higher fre-
quency of occurrence and has poorer prediction of the cat-
egories with a lower frequency of occurrence, which
seriously reduces the performance of the model in dealing
with a small number of categories. Therefore, in order to
better solve the rockburst prediction problem, solving the
data imbalance problem is of primary importance.

Data imbalance is a situation that is encountered in clas-
sification problems, where there is a significant difference in
the number of samples from different categories, which
occurs more frequently in areas such as medical (Khushi
et al., 2021; Tasci et al., 2022) and credit card fraud
(Mienye & Sun, 2023; Puh & Brkic, 2019). The impact of
imbalanced data on ML models is very significant, which
may lead to degradation of model performance and bias
in prediction results. When the data classification is
severely imbalanced, the model tends to be more inclined
or even completely to predict the majority class. Therefore,
it is crucial to change the imbalanced data into balanced
data by generating minority class samples. Generative
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modeling in deep learning is an excellent solution to this
problem. In deep learning, generative adversarial networks
(GAN) (Goodfellow et al., 2014), variational autoEncoder
(VAE) (Kingma & Welling, 2013), etc., are the models used
to generate new samples with similar characteristics by
learning the distribution probabilities of the data. In addi-
tion to this, there are some sampling-based methods, such
as SMOTE (Chawla et al., 2002) which can also be imple-
mented to generate new samples.

As a generative model, VAE has many applications in
text generation, data enhancement, and so on (Liu &
Liu, 2019; Y. Wang et al., 2023). In dealing with the prob-
lem of data imbalance, many researchers have also
addressed this problem by generating a few class samples
through VAE. Mirza et al. (2021) compared various meth-
ods that rely on generative modeling to deal with imbal-
anced data, such as GAN and VAE, and their results
showed that VAE yields higher Precision and F1-score.
Y. Liu et al. (2022) synthesized the advantages of the con-
ditional variational Autoencoder (CVAE) and GAN and
established the CVAEGAN-SM model to augment the
imbalanced dataset. Zhang and Liu (2022) established a
model based on improved conditional variational autoen-
coder (ICVAE) and borderline synthetic minority (BSM)
oversampling techniques for the ICVAE-BSM model.
Their results show that the method is more effective in
improving the accuracy in the case of data imbalance.
Wang et al. (2023) combined the advantages of VAE and
GAN to construct the VAE-GAN model, which solved
the serious data imbalance problem that occurred in the
original system and significantly improved the performance
of the original system.

In summary, this paper addresses three main problems:
(1) the imbalance problem of rock burst data, (2) the rock
burst prediction problem, and (3) the problem that the
ensemble learning model is complex to explain. Therefore,
the main work of this paper can be divided into four parts,
as shown in Fig. 1: (1) constructing the rock burst dataset
and analyzing its data structure; (2) using the VAE gener-
ative model to generate a few classes of samples to solve the
imbalance problem of rock burst data, and building the lat-
est ensemble learning model and the baseline model logistic
regression; (3) comprehensively evaluating the established
model from the perspectives of both generative data
methodology and the classifier; (4) establishing an explain-
able framework to explain the best-performing model in
model evaluation.

2 Data analysis

In this section, we will visualize and analyze the data
using Missingno Library, split violin diagrams, heatmap,
histogram, and scatter plots. Missingno Library can help
us understand the missingness of each feature in the origi-
nal data, and split violin diagrams can enable us to under-
stand the distribution of each feature in different categories
of data. Heatmap, histogram, and scatter plots can help us
understand the relationship between features and data dis-
tribution in more detail.

2.1 Data source

Five hundred and thirty-seven real data of rock burst
occurrences were collected from open literatures (Ahmad
et al., 2022; Cai et al., 2001; Du et al., 2006; Faradonbeh
et al., 2022; Gong & Li, 2007; Guo et al., 2022; Hao
et al., 2016; Jia, 2014; Jiang, 2008; Li et al., 2022; Li et al.,
2017; R. Liu et al., 2019; Pu et al., 2019; Shi et al., 2010;
Tian, 2021; J. Wang et al., 2022; J. Wang et al., 2023; Xia,
2007; Xu et al., 2008; Xue et al., 2020a, 2020b, 2019;
Zhang et al., 2010, 2020, 2011; Zhao, 2005a; Zhao &
Chen, 2020; Zhou et al., 2021, 2020, 2016), among which
there are eight mainly used characteristics, which are max-
imum tangential stress of surrounding rock smax, uniaxial
compressive strength rC, uniaxial tensile strength rt, elastic
strain energy index W et, depth of burial D, shear strength
coefficient C (the ratio of the maximum tangential stress
to the uniaxial compressive strength as Eq. (1)), and two
kinds of brittleness indices B1 (the ratio of the uniaxial com-
pressive strength to the uniaxial tensile strength as Eq. (2)),
B2 (the ratio of the difference between the uniaxial compres-
sive and tensile strengths to the sum of the two as Eq. (3)).
These features describe the depth of the formation in which
the rock is located, the strength of the rock, and the forces
applied, and are widely used to predict rock burst.

C ¼ smax

rC

ð1Þ

B1 ¼ rC

rt

ð2Þ

B2 ¼ rC � rt

rC þ rt

ð3Þ

Since the data are collected from different literatures
recording real-world rock burst cases, a large amount of
missing values (about 49%) is observed in data related to
feature D as Fig. 2. According to the ‘‘80% rule” (Bijlsma
et al., 2006) missing values that exist in more than 20%
of samples may be removed from the data, not to mention
49% of missing values existing for D. Of course, we can
treat the missing values with resort to different data impu-
tation techniques. However, high instances of missing val-
ues severely limit the model performance and create high
uncertainty around the estimated values replacing the miss-
ing data. Therefore, feature D is not retained. On the other
hand, features B1, B2 and C are computed from smax, rC,
and rt, but in ML, the features should be as uncorrelated
as possible, so they are also not retained. Therefore, we
finally use these four features smax, rC, rt and W et.

In denoising, we first tried various denoising methods
under python outlier detection (PyOD) (Zhao et al.,
2019), such as statistically-based denoising, clustering-
based local outlier factor (LOF) denoising, and so on.
However, the models built using the denoised data
are far inferior to the models built before denoising.



Fig. 1. Schematic graph of data flow in the proposed explainable ensemble learning model.

Fig. 2. Visualization of missing values.
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This indicates that the real data collected are very reliable,
so we do not take denoising measures on the data. In sum-
mary, we built a dataset containing 537 four-feature rock
burst binary classifications, of which 79 rock burst did
not occur and 458 rock burst cases occurred, with a ratio
of 1:5.8, which is a seriously imbalanced dataset.
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2.2 Data structure

Figure 3 is the violin diagrams of the dataset. This figure
clearly demonstrates the distribution of each feature and
the imbalance of class. Feature smax is concentrated from
30.9 to 75.0 MPa and its mean value is 59.16 MPa; rC is
concentrated from 91.3 to 158.0 MPa; and its mean value
is 126.72; rt is concentrated from 4.40 to 9.4 and its mean
value is 7.39; W et is concentrated from 3.14 to 6.27 and its
mean value is 5.17. From this figure, we can also see the
imbalance of the data and the differences in the distribution
of the various features of the different types of rock burst.
The distribution of the features in the non-rockburst data is
skewed towards lower values compared to the rockburst
data. In particular, the feature smax is higher than 50
MPa in only a small fraction of the non-rockburst data.

2.3 Feature correlation analysis

Feature correlation analysis is a common method to
understand the correlation between features, and the corre-
lation coefficient allows us to evaluate the reasonableness
of the selected features. Since the Spearman coefficient is
applicable to data with nonlinear relationship and non-
normal distribution, it is used in this paper to measure
the correlation between features. Figure 4 shows the Spear-
man coefficient of smax, rC, rt and W et. In this figure, the
correlations for these four selected features are relatively
low, with the highest correlation coefficient only 0.582.
Therefore, it can be assumed that the correlation between
Fig. 3. Split violin plots of the
these features is very weak and meets the requirements
for feature selection in ML. Additionally, in the scatter plot
in Fig. 4, we further list the data’s distribution between
each feature, and clearly there is a large variance in distri-
bution and the magnitude can be observed. Therefore, it is
necessary to conduct preprocessing data in the initial stage.

3 Methodology

Data imbalance tends to severely degrade the perfor-
mance of classifiers, and obtaining of real data is expensive,
so employing a mathematical approach to data augmenta-
tion has become one of the most popular methods in ML.
Combining the excellent performance of ensemble learning
on geotechnical engineering problems and the effective rev-
elation of uncertainties are often faced by geotechnical
engineers and researchers. Therefore, this chapter focuses
on the two parts: data augmentation and ensemble
learning.

3.1 VAE data augmention

VAE (Kingma & Welling, 2013) is a generative model
that utilizes neural network training to obtain two func-
tions: inferential network and generative network. Figure 5
shows the process of VAE training and generating data.
The training process is the most important part of VAE,
and like unsupervised learning such as AE, and it is impor-
tant to ensure that the difference between the output data
and the original data is relatively small, i.e., the reconstruc-
four selected input features.



Fig. 4. Scatter plot matrix with coefficient heatmap, histogram, and pairwise scatter plots.

Fig. 5. Workflow of VAE generating minority class data.
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tion error is small. In addition to this, unlike AE, the dis-
tribution of the latent layer in VAE is made close to
N � 0; 1ð Þ by narrowing the kullback leibler (KL) scatter
from the standard normal distribution.

Figure 6 shows the digital training process of VAE, in
the order that they are needed, which can be divided into
three parts: KL scattering error, reconstruction error, and
reparameter process. First, define the following posterior
distribution probability of: ph zjxð Þ, encoder: qu zjxð Þ,
decoder: ph xjzð Þ, original data: X ¼ x 1ð Þ; x 2ð Þ; � � �; x nð Þ� �

, and

scatter between the distributions of A and B: DKL AkBð Þ.

(1) KL scattering error between qu zjxð Þ and p zjxð Þ can be

calculated by Eq. (4):



Fig. 6. Digital workflow of training VAE.
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DKL qu zjx ið Þ� �kph zjx ið Þ� �� �
¼ Ez�q lg

qu zjx ið Þ� �
ph zjx ið Þð Þ

" #
¼ Ez�q lg qu zjx ið Þ� �� lg ph z; x ið Þ� �� �þ lg p x ið Þ� �

; ð4Þ
where x are known, lgp x ið Þ� �

is a constant, therefore DKL

gets smaller when �Ez�q lgqu zjx ið Þ� �þ lgph z; xð Þ� �
gets big-

ger, where �Ez�q lgqu zjx ið Þ� �þ lgph z; xð Þ� �
is known as Evi-

dence lower bound (Elbo), �Elbo is the first loss function
(L1).

(2) Combining probabilistic modeling ideas, reconstruc-
tion error can be expressed in terms of the maximum
likelihood estimation (MLE) loss function as Eq. (5):

Reconstruction error ¼ � 1

T

XT
t¼1

lg ph x ið Þjz i;tð Þ� �
; ð5Þ
u ¼ ð
which is the second loss function (L2), where T is the num-

ber of times z ið Þ sampled.

(3) The reparameterization trick is a solution to the
inability of the VAE reconstruction error gradient
to backpropagate, and the core principle of which is
to get the display mapping (u) of y � N u; r2ð Þ
through � � N 0; 1ð Þ and Eqs. (6)–(7), so as to com-
pute the expectation of the gradient and backpropa-
gate it.

y ¼ u xð Þ þ r xð Þ � � ð6Þ

u xð Þ;r xð ÞÞ ð7Þ
where
In summary, when assuming that p zjxð Þ � N 0; 1ð Þ, the
objective function is shown as Eq. (8):

L ¼ aL1 þ L2

¼ �a
1

2

XJ

J¼1

1þ lg rj

� �2 � uj
� �2 � rj

� �2� �� �� �
� 1

L

�
XL

l¼1

lg ph x ið Þjz i;lð Þ� �
; ð8Þ

where a can be viewed as a regularization factor, and j is
the dimensions of z.

From the above training process, L1 ensures that the
hidden layer distribution is close to N � 0; 1ð Þ and L2
ensures that the reconstructed data are close to the original
data. Therefore, generating new data only requires sam-
pling from N � 0; 1ð Þ and putting it into decoding, at
which time the new data are most likely to match the orig-
inal data.

When dealing with imbalanced data, suppose we have a
total ofM samples, among which there are T minority class
samples, the whole processing process can be divided into
four steps. (1) Extract the minority class samples from
the training set, and then use these to train a VAE network
to recognize the features of the minority class samples.
(2) Sample M � 2T data from N � 0; 1ð Þ as hidden
variables. (3) Input the hidden variables into the generative
network, so as to generate M � 2T minority class samples.
(4) Merge with the original dataset and the ratio of samples
from the two categories is M � 2T : M � 2T , with category
balanced.
3.2 Ensemble machine learning

3.2.1 NGBoost

NGBoost is an ensemble learning method for prediction
purposes by approximating the predictive probability dis-
tribution, presented by Stanford University researchers
(Duan et al., 2019). Figure 7 shows the overall process of
NGBoost. NGBoost doesn’t use point predictions E yjxð Þ
to solve the problem, but instead uses the conditional prob-
ability distribution P yjxð Þ of the point predictions, which is
unique in ML. Besides this, the natural gradient boosting
method reduces the magnitude of parameter updates and
the risk of the model overfitting to the training data.

NGBoost is flexible, compatible, and easy-to-use, espe-
cially on small datasets, which offers competitive perfor-
mance. In this subsection, we focus on the property
scoring rule and the natural gradient.

(1) The proper scoring rule S ;ð Þ in natural gradient is a
method for assessing how the predicted parameter-
ized distribution H h matches the observations y,
which needs to fulfill Eq. (9):

Ey�Q S Q; yð Þ½ � � Ey�Hh
S H h; yð Þ½ �; ð9Þ
Q is the real distribution of observation y.

Same as VAE, logarithmic score L ð�MLEÞ is also used

in NGBoost. This score can be expressed as
Eq. (10), and a larger value of S H h; yð Þ indicates a larger
difference between H h and y.

S H h; yð Þ ¼ � lgH h yð Þ: ð10Þ



Fig. 7. Diagram of NGBoost algorithm.
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The scatter induced by the �MLE can be derived from
Eq. (11) as the DKL.

S H h; yð Þ � S Q; yð Þ ¼ � lg
Q yð Þ
H h yð Þ ¼ DKL Q yð ÞkH h yð Þð Þ ð11Þ

(2) The generalized natural gradient is the steepest path
of ascent in Riemannian space, which addresses the
difficulty of dealing with probabilistic predictions in
traditional gradient boosting. Combined with the
�MLE used in the proper scoring rule, the natural

gradient er can be calculated by Eq. (12):grL h; yð Þ / IL h; yð Þ�1rL h; yð Þ; ð12Þ
Fig. 8. Diagram of GBDT framework.

where IL h; yð Þ is the Fisher information carried by the
observations on H h yð Þ.
3.2.2 GBDT framework classifier

Gradient boosting decision tree (GBDT) is an ensemble
learning that trains multiple decision tree models serially
and uses the prediction results of the previous tree to
improve the prediction of the next tree. Figure 8 shows
the framework of the GBDT algorithm, which performs
well in dealing with classification and regression problems.
Common models using GBDT as a framework include
XGBoost, LightGBM, and CatBoost.

(1) XGBoost

XGBoost (Chen et al., 2016) implements the GBDT
framework widely employed in engineering, offering
improved speed, accuracy, and generalization performance
compared to traditional GBDT.

In speed, XGBoost uses parallel computing, which
allows multiple GPUs to be used for training simultane-
ously, thus speeding up the training of the model.

In accuracy, XGBoost improves the original GBDT’s
objective function by making a second-order approxima-
tion to the loss function, which makes the model more
accurate in the training process. Its loss function can be
represented by Eq. (13):

obj tð Þ ¼
Xn

i¼1

gif t xið Þ þ 1

2
hif

2
t xið Þ

� 	
; ð13Þ

where gi ¼ @by t�1ð ÞD yi; by t�1ð Þ� �
, hi ¼ @2by t�1ð ÞD yi; by t�1ð Þ� �

, and

D A;Bð Þ defines the difference between A and B.
In generalization performance, XGBoost introduces the

regularization technique, which usually uses L1 and L2 reg-
ularization terms to control the complexity of the model
and prevent overfitting. Therefore, the final objective func-
tion of the model can be represented by Eq. (14):

obj tð Þ ¼
Xn

i¼1

gif t xið Þ þ 1

2
hif

2
t xið Þ

� 	
þ X fð Þ; ð14Þ

where the regularization term X fð Þ ¼ cC þ 1
2
kkxk2 is sup-

plemented in loss to reduce the model complexity and pre-
vent overfitting. Here, C represents node numbers, x is the
corresponding node weight, and k and c are hyperparame-
ters to balance C and x.
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(2) LightGBM

Although XGBoost demonstrates a significant improve-
ment in computational speed compared to GBDT, it is still
relatively slow when dealing with a large number of data,
an issue LightGBM addresses. LightGBM employs a
histogram-based splitting algorithm, specifically gradient-
based one-side sampling (GOSS) and exclusive feature
bundling (EFB) (Ke et al., 2017). This method involves
three main steps for selecting the splitting points: first, dis-
cretizing the continuous features; next, constructing a his-
togram based on the discretized values; and finally,
choosing the optimal splitting points based on statistical
information from the histogram.

GOSS is designed to reduce the utilization of data
instances while preserving the accuracy of the learned mod-
els. Provided a dataset with n instances, the detailed steps
for this algorithm are as follows:

1) Calculate the absolute value of the gradient and sort
the data from high to low based on it, and then select
one of the top-p �100% to assign to subset P.

2) Set up a dataset Q of size q� jP cj from jP cj by ran-
dom sampling, where jP cj is the not selected data in
step1.

3) Finally the data is partitioned through eV J dð Þ, whereeV J dð Þ is the estimated variance gain of feature j at
point d on the dataset P

S
Q.

eV J dð Þ can be calculated by Eq. (15):

eV J dð Þ ¼ 1

n

P
xi2P l

gi þ 1�p
q

P
xi2Ql

gi
� �2

nji dð Þ þ
P

xi2P r
gi þ 1�p

q

P
xi2Qr

gi
� �2

njr dð Þ

0B@
1CA;

ð15Þ

where P l or Ql ¼ xi 2 P or Q : xij � d
� �

, P r or Br ¼ xi 2½
P or Q : xij > d�, and 1�p

q is used to normalize the sum of

the gradients over Q back to the size of P c.
The main objective of EFB is to reduce the computation

time by reducing the feature dimensionality. EFB is com-
posed of Greedy Bundling (GB) and Merge Exclusive Fea-
tures (MEF) algorithm, where GB addresses how to
determine which features can be merged, and MEF
addresses how to merge these features together.

(3) CatBoost

CatBoost is another machine learning algorithm that
utilizes the GBDT framework but with the ability to handle
categorical features and automatic feature scaling, com-
posed by Categorical and Boosting. Compared to other
machine learning algorithms that use the GBDT frame-
work, its most significant advantage is its efficient handling
of categorical features and the ability to prevent biased pre-
diction (Zhao et al., 2023).
There are two main core algorithms added to CatBoost,
ordered target statistics (Ordered TS) and Ordered boost-
ing, where Ordered TS enhances the model generality on
unseen datasets and Ordered boosting helps to prevent
the biased prediction in gradient estimation (Zhang et al.,
2013). Addressing these critical issues can reduce the over-
fitting of model, and improve the model performance
(Prokhorenkova et al., 2018).

Ordered TS is an optimization for the problem of differ-
ent distributions for the training and test sets resulting
from Greedy TS (as Eq. (16)) (Barreca, 2001). Ordered
TS can be expressed by Eq. (17). which uses all the
observed history to compute its TS, i.e., take

DK ¼ xj : rj < rk

� �
in Eq. (16) for a training example and

DK ¼ D a test one. D is the dataset and DK is all the data
already used in the dataset.

x̂ik ¼
Pn

j¼11 xij¼xik½ � � yj þ apPn
j¼11 xij¼xik½ � þ a

; ð16Þ

x̂ik ¼
P

xj2Dk
1 xij¼xik½ �yj þ apP

xj2Dk
1 xij¼xik½ � þ a

: ð17Þ

Ordered boosting on the other hand is an optimization
strategy for the biases in gradient estimation that result
from gradient boosting. Its core idea is to determine the
penalty weights for misclassified samples based on their
ordering relationships, and to better classify these misclas-
sified samples by adjusting the parameters of the model.

3.3 Model building

The model established in this paper is data-driven, and
its development process can be divided into three parts:
data preprocessing, splitting, and hyperparameters tuning.
Firstly, the data are normalized to eliminate the impact of
scale differences. Secondly, the dataset is divided into a par-
tition according to 6∶2∶2 as training set (321), validation set
(108), and test set (108), where the validation set is used in
the process of hyperparameter tuning. Finally since the
modeling process involves the augmented data, the tuning
strategy for each model is borrowed from the method in
(Rodrigues et al., 2023), in which the parameters of the
classifiers are set by the tuning of the balanced dataset.

The establishment process of the VAE-classifier can be
divided into three parts. First, we trained a VAE network
with the training set on the parameters of the VAE net-
work, and we mainly adjusted the number of neurons in
its connection layer and latent layer, and then we deter-
mined it by observing its loss function curves. Figure 9
shows its loss function curve. Then we use VAE to aug-
ment data to make the original data balanced. Finally,
the balanced dataset is used to train a classifier model,
where the parameters of the classifier model are obtained
by a Bayesian optimizer.

In order to fully express the advantages of the model,
not only advanced ensemble learning methods, but also



Fig. 9. Loss curve of the VAE training process.
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the commonly used linear regression classifiers are used for
the model comparison. In comparison with different data
generation methods, we also use three sampling-based data
generation methods, SMOTE, SMOTE-ENN, and
SMOTE-Tomek, and model the corresponding balanced
datasets using NGBoost. In summary, we have built a total
of 15 models, such as VAE-NGBoost, VAE-CatBoost,
VAE-XGBoost, VAE-LightGBM, VAE-RF, VAE-LR,
SMOTE-NGBoost, SMOTE-ENN-NGBoost, SMOTE-
Tomek-NGBoost, etc.
4 Model evaluation

Considering the data imbalance, we used the evaluation
indicators in the confusion matrix that are specialized for
imbalanced data (Susan & Kumar, 2020; Tao et al.,
2024). In addition to that, we also use 5-fold stratified
cross-validation to verify the generalization performance
of the model.
4.1 Confusion matrix

Confusion matrix can help us visualize the performance
of a classification model directly and thoroughly. Consider-
ing the redundancy of the images, we only give a represen-
tative comparison of the confusion matrix plots of the best
in model evaluation. Figure 10 is a schematic representa-
tion of the confusion matrix for the VAE-NGBoost and
NGBoost. The values around this figure can be calculated
by following classification evaluation metrics from bottom
left to top right, Precision (P), negative predictive rate
(NPR), Accuracy (ACC), Specificity (S), and Recall (R).
These evaluation indicators can be calculated by Eqs.
(18)–(22).

P ¼ TP

TPþ FP
; ð18Þ

NPR ¼ TN

TNþ FP
; ð19Þ

ACC ¼ TPþ TN

TPþ FPþ TNþ FN
; ð20Þ

S ¼ TN

TNþ FP
; ð21Þ

R ¼ TP

TPþ FN
; ð22Þ

F1-score ¼ 2PR
P þ R

; ð23Þ

G-mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R� S

p
: ð24Þ

For imbalanced datasets, many researchers have
explored the selection of their evaluation indexes, where
ACC, F1-score, and G-mean are widely used. F1-score
and G-mean can be calculated by Eqs. (23) and (24). In
Table 1, the confusion matrix information and three
indexes of those models are presented.

Figure 11 shows the three metrics of these 15 models
from the data generation method and classifier perspective,
where VAE-NGBoost performs best. From the standpoint
of model improvement by VAE, the VAE model, com-
pared with the original model, got a significant improve-
ment in both its G-mean and F1-score, even though the
ACC did not have a significant improvement, which sug-



Fig. 10. Confusion matrix for (a) VAE-NGBoost, and (b) NGBoost.

Table 1
Confusion matrix for different machine learning models.

Model True label Predicted label ACC G-mean F1-score

None Rock burst

VAE-NGBoost None 14 3 0.935 0.887 0.800
Rock burst 4 87

VAE-CatBoost None 13 4 0.935 0.860 0.788
Rock burst 3 88

VAE-XGBoost None 14 3 0.917 0.877 0.757
Rock burst 6 85

VAE-LightGBM None 12 5 0.917 0.821 0.727
Rock burst 4 87

VAE-RF None 12 5 0.917 0.821 0.727
Rock burst 4 87

VAE-LR None 16 1 0.787 0.845 0.582
Rock burst 22 69

NGBoost None 12 5 0.917 0.821 0.727
Rock burst 4 87

CatBoost None 11 6 0.917 0.791 0.710
Rock burst 3 88

XGBoost None 11 6 0.907 0.787 0.688
Rock burst 4 87

LightGBM None 10 7 0.907 0.754 0.667
Rock burst 3 88

RF None 11 6 0.917 0.791 0.710
Rock burst 3 88

LR None 1 16 0.852 0.243 0.111
Rock burst 0 91

SMOTE-NGBoost None 14 3 0.889 0.861 0.700
Rock burst 9 82

SMOTEENN-NGBoost None 13 4 0.833 0.804 0.591
Rock burst 14 77

SMOTETomek-NGBoost None 15 2 0.889 0.886 0.714
Rock burst 10 81
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gests that the VAE augmented data can improve the mod-
el’s ability to categorize the minor categories. Compared to
other methods of augmenting data, the G-mean of these
models are all improved compared to the original model
in terms of improving the performance of NGBoost. How-
ever, the ACC of the models built by these three methods is
severely reduced, and the ACC of the SMOTE-ENN model
has the most severe reduction.



Fig. 11. Comparison of 15 models from different perspectives.(a) ACC score, (b) G-mean score,(c) F1-score, and (d) generative method perspective.
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4.2 5-fold stratified cross-validation

In the validation of model generalization performance,
we use ACC and G-mean of 5-fold stratified cross-
validation to measure. Stratified cross-validation is a com-
monly used method for evaluating models of imbalanced
datasets, which ensures that the distribution of categories
in each point is similar to the distribution of categories in
the entire training set, thus better assessing the perfor-
mance of the model. Compared with the general stratified
cross-validation, since this paper uses the method of gener-
ating data, in order to prevent the ‘‘spoofing” brought
about by augmented data, we need to make the split data-
set process before the generative process (Tholke et al.,
2023). Tables 2 and 3 are the ACC and G-mean scores of
stratified 5-fold cross-validation for the 15 models,
respectively.

As you can see in both tables, the VAE-NGBoost has a
significant increase in performance in all folds, except for a
small decrease in performance in folds 3 and 4 compared
with NGBoost. This can be due to the quality of the data.
VAE generates a small amount of noise in the process of
generating the data. When the selected data in a certain
fold are of good quality, the noise brought by VAE may
cause a marginal fluctuation in the model performance.
However, in the fair evaluation, overall VAE-NGBoost
outperforms NGBoost in cross-validation. To be specific,
in the third and fourth folds, especially the fourth fold,
when the data quality is already relatively sound, the noise
is comparatively large, which will bring a negative impact
on the model evaluation and reduce the performance of
the model.

From all the models, the VAE-NGBoost model has
the highest average value in both ACC and G-mean.
In addition to this, VAE-RF also performs very well, with
similar ACC and G-mean as VAE-NGBoost. From the
angle of VAE, VAE-classifier is also generally rated higher
than the other original models in terms of stratified 5-fold
cross validation. From the angle of different generative
methods compared with the best performance model
VAE-NGBoost, the other data augmentation methods
show a significant drop in ACC but a significant rise in
recognition of minority classes compared to the original
NGBoost, and there is no doubt that the performance is
far worse than that of VAE.

In summary, the comprehensive comparison of these
models demonstrates that the classical logistic regression
model performs very poorly, with its G-mean only around



Table 2
ACC in 5-fold stratified cross-validation.

Model ACC in 5-fold stratified cross-validation Averaged ACC

1 2 3 4 5

VAE-NGBoost 0.930 0.930 0.895 0.907 0.941 0.921
VAE-CatBoost 0.942 0.930 0.895 0.907 0.918 0.918
VAE-XGBoost 0.953 0.919 0.907 0.860 0.953 0.918
VAE-LightGBM 0.965 0.895 0.884 0.884 0.941 0.914
VAE-RF 0.965 0.919 0.907 0.895 0.918 0.921
VAE-LR 0.814 0.767 0.733 0.767 0.741 0.765
NGBoost 0.884 0.907 0.919 0.919 0.929 0.911
CatBoost 0.919 0.907 0.930 0.907 0.929 0.918
XGBoost 0.953 0.884 0.907 0.884 0.941 0.914
LightGBM 0.942 0.907 0.919 0.860 0.918 0.909
RF 0.919 0.919 0.919 0.884 0.906 0.909
LR 0.884 0.895 0.884 0.849 0.882 0.879
SMOTE-NGBoost 0.884 0.826 0.872 0.791 0.882 0.851
SMOTEENN-NGBoost 0.826 0.756 0.802 0.802 0.906 0.818
SMOTETomek-NGBoost 0.895 0.837 0.872 0.791 0.882 0.856

Table 3
G-mean in 5-fold stratified cross-validation.

Model G-mean in 5-fold stratified cross-validation Averaged

G-mean
1 2 3 4 5

VAE-NGBoost 0.925 0.925 0.763 0.675 0.811 0.819
VAE-CatBoost 0.894 0.805 0.803 0.768 0.702 0.795
VAE-XGBoost 0.938 0.842 0.846 0.474 0.816 0.783
VAE-LightGBM 0.907 0.788 0.797 0.665 0.764 0.784
VAE-RF 0.944 0.842 0.768 0.763 0.753 0.814
VAE-LR 0.885 0.760 0.716 0.735 0.709 0.761
NGBoost 0.688 0.641 0.774 0.815 0.759 0.735
CatBoost 0.753 0.748 0.779 0.809 0.759 0.770
XGBoost 0.860 0.688 0.768 0.665 0.764 0.749
LightGBM 0.764 0.748 0.774 0.656 0.645 0.717
RF 0.702 0.753 0.729 0.713 0.641 0.708
LR 0.408 0.500 0.480 0.539 0.408 0.467
SMOTE-NGBoost 0.897 0.753 0.861 0.626 0.782 0.784
SMOTEENN-NGBoost 0.862 0.787 0.849 0.631 0.794 0.785
SMOTETomek-NGBoost 0.830 0.799 0.861 0.711 0.737 0.788
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0.5, influenced by the decision boundary bias generated by
the imbalanced data. Moreover, in the ensemble learning
model, compared to RF, the ensemble model based on
the gradient boosting algorithm gradually optimizes the
performance of the model through the continuous learning
of the residuals, which leads to the model’s performance
being better. Relative to other data augmented methods,
the VAE augmented data more closely match the original
samples and with relatively less sample noise, which results
in a higher performance of the model built in this way.
Combining the advantages of VAE and ensemble learning,
the VAE-NGBoost built in this paper performs signifi-
cantly better than the other models.

5 Model explanation

Model explanation is the key to understanding and
trusting the decision-making mechanism of the complex
ML models. Currently, it seems that even though complex
models can exhibit high performance, we still do consider
using more transparent and simple models, such as linear
regression. Therefore, model explanation is crucial for
black-box models, which not only helps us adjust the
decision-making process of ML models but also improves
the models’ reliability, robustness, and user acceptance.
In this section, the model explanation is divided into two
main parts: global analysis and local analysis. The follow-
ing section focuses on these two parts to explain the VAE-
NGBoost model, which has the best performance of the
above models.

5.1 Global explanatory analysis

Global explanatory analysis of ML models refers to
integrating and analyzing a large amount of data to reveal
the relationship between individual features in the data and
the model output as a whole. The combined use of multiple
methods can provide more comprehensive and accurate
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explanation and analysis results, helping us to better under-
stand and apply ML models. Therefore, we use two meth-
ods, sensitivity analysis, and SHAP analysis, to interpret
the VAE-NGBoost model.

5.1.1 Sobol sensitivity

Sensitivity analysis is a method to investigate how the
output of a model responds to changes in its input.
B. Liu et al. (2020), Liu et al. (2023c), and Zhou et al.
(2020) used this method to gain insight into the relative
importance of different input parameters to the model or
system output. It serves not only to assess the stability of
model outputs in case input data are inaccurate or fluctuat-
ing but also for feature selection, allowing us to identify
and exclude features that have minimal impact on the out-
put. Various methods have been proposed in the field of
sensitivity analysis, with Sobol’s method being the most
widely employed in engineering (Yong et al., 2008).

Sobol sensitivity analysis is based on the principle of
total variance decomposition, which decomposes the vari-
ance of the outputs into the contributions of individual
input variables and their interactions. Specifically, Sobol
sensitivity analysis assesses the significance of input vari-
ables by calculating the variance of their main and interac-
tion effects, usually using the first-order, second-order, and
total-order sensitivity indices for the analysis (Liu et al.,
2020). First-order sensitivity reflects the direct effect of
changes in a single feature on the model output, second-
order sensitivity reflects the effect of interactions between
two features on the model output, and total-order sensitiv-
ity reflects the degree to which a single feature has an over-
Fig. 12. First-order and total-order s
all effect on the model output, both directly and indirectly
through interactions with other features. In the following,
define the first-order sensitivity as S1i, the second-order
sensitivity as S2i;t, and the total sensitivity as STi, where
i; t are the i th and t th feature. From the introduction in
Saltelli et al. (2008), the formula can be expressed by
Eqs. (25)–(27), where Var Yð Þ is the variance of all numbers
in Y .

In this section, we will employ the S1i and STi to explain
the VAE-NGBoost model, where S1i and STi are calcu-
lated by Salib (Herman & Usher, 2017), which is a python
library specifically designed for sensitivity analysis.

S1i ¼ VarX i EX�i Y jX ið Þð Þ
Var Yð Þ ð25Þ

S2i;t ¼
VarX i EX�i;t Y jX i;X tð Þ� �

Var Yð Þ ð26Þ

STi ¼ E VarX i EX�i Y jX ið Þð Þð Þ
Var Yð Þ ð27Þ

Figure 12 demonstrates the first-order and total-order
sensitivity values of each feature. The first-order sensitivity
of the features suggests that the feature that primarily
affects rock burst predictive model is the smax, whose first-
order sensitivity index is 0.58. The first-order sensitivities
of the other features are all less than 0.1, which suggests
that a change in the values of these few features will only
have a small direct effect on the model output. A small
first-order sensitivity does not mean that the feature is
ensitive indices of four features.



240 S. Lin et al. / Underground Space 17 (2024) 226–245
worthless; given the nonlinear relationship between these
features, the total-order sensitivity can often be more
responsive to the impact of the feature.

The feature affecting the rock burst predictive model
most is smax, whose total-order sensitivity value is 0.80.
The total-order sensitivities of the other features, although
relatively low, have a significant increase compared to their
first order sensitivities, implying that the interactions exist-
ing between the individual features have a significant
impact on the model output. This reveals that these four
chosen features are all valuable to the model performance,
which is consistent with the literature collected above. In
the study of rock burst, researchers also tend to use these
four indicators and their combination of values such as
C, B1 and B2 to predict rock burst.

5.1.2 Tree SHAP

Tree SHAP is a method for explaining the prediction
results of ML models. Lin et al. (2023) and Liu et al.
(2024) used SHAP interpretability analysis to carefully
interpret the model developed, and the consistency of their
results with published experimental results improved the
reliability of the model. It is based on the concept of SHAP
values and is used to determine how much each feature
contributes to the prediction results. In contrast to sensitiv-
ity analysis, Tree SHAP not only measures the importance
of each feature, but also roughly indicates the positive or
negative correlation between the feature and the model
output by the positive or negative SHAP value. The Tree
SHAP method is often applicable to models based on tree
structures, so we also use Tree SHAP for the VAE-
NGBoost explanation presented in this paper.

Figure 13(a) and (b) shows the feature importance of the
four features and the distribution of the SHAPvalue, respec-
tively. From Fig. 13(a), we can see that the importance of
Fig. 13. Feature importance and SHAP values of the features. (a) Mean(|SHAP
(impact on model output).

Table 4
Details of two samples.

Location of the data in dataset Features

smax(MPa) rC(MPa) rt(MPa) W et

306 29.7 116 2.7 3.7
316 15.97 114.07 11.96 2.4
each feature is consistent with the distribution of the total-
order of sensitivity in the sensitivity analysis, which suggests
that the most important feature for the model is smax, both in
terms of variance contribution and marginal contribution.
From Fig. 13(b), we can see that the feature smax and the
occurrence of rock burst is positively correlated, i.e., the
more the rock is subjected to the maximum tangential stress,
the more likely the rock burst will occur. The correlation
between the remaining three features and the occurrence
of rockbursts is ambiguous, i.e., these three features tend
to influence the model predictions in conjunction with other
features. This is consistent with the conclusions drawn in the
sensitivity analysis.

5.2 Local explanatory analysis

Local explanatory analysis is the process of explaining
model predictions at the individual level. Local explanatory
analysis can provide individuals with personalized recom-
mendations and decision support. It is very meaningful in
engineering examples, where we can provide individuals
with customized recommendations and decision support
based on their specific situation by understanding the dri-
vers of the predicted results of the data, provided that
the model performs well. In this subsection, we will carry
out the local explanation of the model through Anchor
and Tree SHAP. For data selection, we used one rockburst
and one non-rockburst sample from the test as example
templates, and the details of these two samples are shown
in Table 4.

5.2.1 Anchor

Anchor is a method for explaining model predictions
and has the advantage of providing intuitive and explain-
able results. ElShawi et al. (2021) compared multiple
value|)(average impact on model output magnitude), and (b) SHAP value

Situation Data source

Rockburst Daxiangling tunnel YK61 + 445 (Afraei et al.,2019)
Non-rockburst Biotite granite porphyry(Zhou et al., 2016)



Table 5
VAE-NGBoost prediction rules generated by Anchor.

Samples Predict outcome Rule of features Precision Coverage

smax(MPa) rC(MPa) rt(Mpa) W et

306 Rock burst >26.8 �125.7 �5.65 >3.1 0.95 0.07
316 None �26.8 �125.7 >5.65 0.95 0.39
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machine learning interpretability methods on multiple
datasets and showed that anchor points achieved the high-
est performance on the trust metric. The Anchor algorithm
is based on the paper by Ribeiro et al. (Ribeiro et al.
(2018). Its computation is based on a heuristic search algo-
rithm, which searches in a continuous loop to find the opti-
mal explanation that satisfies a confidence threshold.
Compared to local interpretable model-agnostic explana-
tions (LIME), Anchor illustrates the scope of ‘‘explana-
tion” through coverage, which solves the problem of
overconfidence in the explanation that LIME tends to
cause. In addition, Anchor generates an explanation as a
set of feature constraints, which is intuitively explainable
and allows us to better understand the decision-making
process of the model.
Fig. 14. (a) Rules of the 306th sample, and (b) rule of the 316th sample
generated by Anchor.

Fig. 15. Local SHAP value analysis. (a) The
In Table 5, you can find the results of Anchor’s explana-
tion of the VAE-CatBoost prediction about these two sam-
ples. As can be seen from Table 5, the model’s prediction
outcome of the 306th sample is rock burst due to the rule
of smax > 26:8, rC � 125:7, rt � 5:65 and W et > 3:1. A
comparison of the two samples shows that different values
of smax and rt can affect the prediction results when rC is
under the same rule, which is also in line with the results
of the global sensitivity analysis and SHAP analysis men-
tioned above, where the sensitivity as well as the impor-
tance of smax and rt are in the first and second place. To
make it easier to understand the size of the scope of the
rules generated by Anchor, Fig. 14 describes its limited
scope in percentage terms.
5.2.2 Tree SHAP

In addition to global interpretability, Tree SHAP also
provides local explanation for each datum. Compared to
Anchor, Tree SHAP not only quantifies the size of the con-
tribution to be made to each feature, but also indicates the
relevance of that contribution to the output results. Fig-
ure 15 shows the explanation of the model output results
by Tree SHAP.

As can be seen in Fig. 15(a), smax, rt and W et have a neg-
ative effect on the model’s prediction of ‘rockburst’, while
rC has a positive effect. Since the sum of the base value
and the shap value of each feature is negative, the model
predicts that rockburst will occure in this space, and the
306th sample, and (b) the 316th sample.
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same analytical principle applies to Fig. 15(b). Considering
the results of the first order sensitivity analysis of the data,
the model is explained mainly in terms of the direct effect of
smax, rt and the interaction rC and W et with other features.
From the comparison of these two sets of data, the positive
SHAP value produced by smax is significantly higher due to
the decrease in smax, i.e., a decrease in rt reduces the likeli-
hood of rock burst. This is consistent with the conclusions
in (Xu et al., 2022), in which it is clearly stated that the
direct cause of rock burst is the disturbance and superim-
position of external loads on the surrounding rock, i.e.,
an increase in smax increases the likelihood of rock burst.
Due to the elevation of rt, the negative SHAP value pro-
duced by rt is also elevated, i.e., the elevation of rt also
reduces the likelihood of rock burst, which is consistent
with the results in Du et al. (2006) and Guo et al. (2022).
In that literature, it is clearly stated that the greater the
rock brittleness indices, the more prone to rock burst,
and when rC is constant, the greater the rt, the greater
the brittleness indices. For the other features rC and W et,
there is a large difference in their SHAP values, even
though the difference in their values is not large. From this,
we can also see that there is a strong interaction between
the features, where a change in one feature affects the con-
tribution of the other feature to the model output.

In summary, we have used three methods, Sobol sensi-
tive analysis, Tree SHAP and Anchor, for global and local
explanation of VAE-NGBoost. From the results, these
three explanatory methods can corroborate each other,
and their results are consistent with the theoretical basis
in the previous literature, which improves the utility of
the black model and further increases our trust in the
model.
6 Conclusions

In this paper, we proposed a multilevel explainable
ensemble learning model equipped with a variational
autoencoder for rock burst analysis that can handle imbal-
anced engineering data. We collect real-world recorded
data of 537 rock bursts from opening source literature
for model training and testing, and analyze the correlation
between data structure and features. For parameter set-
tings, we used Bayesian optimization and the algorithm-
specific parameter tuning strategies of imbalanced datasets
to find the optimal hyperparameter settings for all ML
models in the pipeline. Finally, for the model explanation,
we formulated the multilevel XAI model with Sobol sensi-
tivity analysis and Tree SHAP for a global explanation of
high-performance ensemble learning models. In order to
have a more detailed understanding of the model’s output
explanation for each instance, we also analyzed the local
explanation for both instances using Anchor and Tree
SHAP. The data-driven model in this study involves rock
mechanics, engineering geology, deep learning, and
explainable machine learning to provide a powerful
method for predicting rock burst occurrences and under-
standing their mechanisms.

(1) Compared to the re-sampling based imbalanced data
processing method, the use of VAE to generate a few
class samples better solves the problem of imbalanced
data, and the model built using this dataset signifi-
cantly outperforms the original dataset as well as
other balanced datasets.

(2) The gradient boosting based machine learning model
performs better on this dataset than the standard
ensemble learning model RF and the single linear
regression model. Combining the advantages of
VAE and the ensemble learning model based on the
gradient boosting algorithm, the VAE-NGBoost con-
structed in this paper shows powerful performance:
ACC=0.935, G-mean = 0.887, F1-score = 0.800 of
test data, and the average ACC and G-mean scores
of 5-fold stratified cross-validation are 0.921 and
0.819, respectively.

(3) Multilevel XAI not only gives us a macroscopic view
of the impact of each feature on the model, but also
allows us to specifically explain the role that each fea-
ture plays on the model output in each instance. Its
results can inform future feature collection to further
improve the performance of the model.

(4) The results from the different perspectives of the
explainable model show that the factors affecting
the VAE-NGBoost in this paper are broadly consis-
tent with the records of published literature and the
experiences of the engineering practice. This consis-
tency gives us sufficient reliability in using VAE-
NGBoost for predicting rock burst.

Due to the VAE, the model is more suitable for rock-
burst analysis when the data are currently imbalanced,
and further optimization of the model will be required
when more and more balanced rockburst data are collected
in the future. In the actual prediction, we need to collect the
same features, and then use VAE-NGBoost for prediction.
Finally, the effectiveness of the model needs to be deter-
mined by the local interpretation analysis of XAI and engi-
neering experience.

While the results of this study are valuable, there are
some limitations to consider. The applicability of VAE
could not be clarified before the model was built, and it
is clear from the 5-fold cross-validation that, in some situ-
ations, the model works better without VAE despite the
imbalanced data. The ML model is a data-driven model
that simplifies the complexity of the field situation.

In the future, we will look for ways in which data quality
can be clarified and combined with VAE as a condition for
using VAE. Collect more relevant features to discover the
complexity patterns in engineering practices.

In summary, the main contributions of this paper are
the establishment of an extensive rock burst database and
the revelation of the best way to expand the data and the



S. Lin et al. / Underground Space 17 (2024) 226–245 243
ensemble learning models, especially the VAE-NGBoost
model for predicting rock burst. In addition, we investigate
the framework of explainable methods suitable for ensem-
ble classifiers, which improves the transparency and relia-
bility of complex black-box models.
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