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A B S T R A C T   

Advanced rail transit systems (ARTS), including high-speed rail and maglev trains, provide enhanced trans-
portation options to meet the growing demand for efficient transportation systems. However, they present 
unique challenges in maintaining the safety and performance of their infrastructures. Structural health moni-
toring (SHM) has emerged as an essential practice to forestall the potential consequences of structural defects in 
ARTS. Recently, digital twins and digital shadows have been successfully employed in various industries to 
monitor the state of physical systems. However, their application for structural health monitoring in ARTS re-
mains largely unexplored. Hence, this article explores the potential of digital twins and digital shadows, in 
improving structural health monitoring in ARTS. Due to the digital twins’ ability to bi-directional communication 
between a real system and its virtual replica, this article presents a comprehensive literature survey on their 
enablers and capabilities. Meanwhile, a framework for digital twins-based monitoring in ARTS is also proposed. 
The key distinctions and benefits of digital twins over other Industry 4.0 digital representation concepts, such as 
real-time monitoring, optimization, prediction, simulation, and decision-making, are identified. The paper 
highlights the significant opportunities that digital twins, especially, can offer to improve health monitoring. 
Similarly, limitations and bottlenecks that must be tackled in future research for implementations are also 
acknowledged. Finally, harnessing the power of digital twins can catalyze a transformative shift in ARTS, leading 
to more effective monitoring, enhanced safety, and improved performance.   

1. Introduction 

Transportation networks, including roads and railways, play a 
crucial role in societal development and the economy [1]. With the 
increasing demand for efficient transportation, rail transit has emerged 
as a reliable, efficient, and sustainable option. However, the pursuit of 
higher speeds, increased loads, and growing passenger volumes pose 
challenges to rail infrastructure, particularly in advanced rail transit 
systems (ARTS). These systems, such as high-speed rail, maglev, auto-
mated metros, and hyperloop, have been developed to address these 
challenges and improve the overall performance of the railway industry 
[2–4]. The rail transit system in China has grown exponentially in the 
last few decades, boasting the most extensive public transport network 
in the world [5]. Other regions, such as Eastern Asia and Europe, have 
also witnessed significant progress in implementing ARTS, led by 
countries like Germany, Japan, and South Korea [6]. Despite these ad-
vancements, rail infrastructure faces challenges from loadings, 

environmental factors, and human-induced effects, impacting its con-
dition [7]. Regular monitoring is essential to assess operational char-
acteristics, detect anomalies, and prevent discomfort, risks, and failures 
[8]. Structural health monitoring (SHM) is crucial for extending the life 
of rail assets through proactive maintenance [8]. 

SHM systems rely on sensor networks to continuously measure 
structural and environmental data in order to detect anomalous condi-
tions [9]. Various sensing technologies, including strain sensors, accel-
erometers, and displacement transducers, enable integrated and 
distributed measurements inside and outside the structure [10]. Despite 
extensive research, the industry still relies on visual inspections, which 
could be inefficient [11]. Autonomous real-time systems are crucial for 
providing engineers with timely information about structural conditions 
[12]. Early detection of structural malfunctions in critical components 
like train bogies [13], railway signal systems [14], maglev suspension 
systems [15], track systems, etc. [16] increases service life and reduces 
maintenance costs. 
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While conventional SHM techniques that rely on direct sensor data 
analysis or model updating are gaining recognition, their reliability in 
detecting structural issues accurately and promptly depends on their 
correct deployment [17]. However, traditional SHM techniques face 
several challenges, resulting in a low acceptance rate in related in-
dustries. These challenges include data sufficiency and management, 
disruption of service or normal use of structures, interference risks, lack 
of real-time measurement and inference automation, uncertainties, 
deployment costs, sensor configuration issues, and a lack of uniform 
methodology in implementation [18]. Digitalized SHM involving digital 
shadows (DS), or digital twins (DT) can address some of these 
limitations. 

The advent of Industry 4.0 [19] and the emerging Industry 5.0 [20] 
hold tremendous potential for advancing sustainability and resilience in 
various sectors, particularly in transportation systems. The combination 
of technologies introduced allows for intelligent decision-making, pre-
dictive maintenance, and sustainable practices, leading us toward a 
future that balances economic growth, environmental responsibility, 
and enhanced resiliency [21]. 

Industry 4.0 concepts such as building information modeling (BIM), 
cyber-physical systems (CPS), DT, DS, big data, artificial intelligence 
(AI), machine learning (ML), cloud computing, internet of things (IoT), 
and sensor networks have gained popularity in the architecture, engi-
neering, and construction (AEC) industry. These advancements reflect 
the increasing digitization and convergence of the AEC industry with 
other sectors. However, the AEC industry has been slow to adapt to the 
digital trend, posing challenges for infrastructural digitalization, smart 
infrastructures (SI), and SHM [8]. While the AEC industry has been 
relatively less digitized, full-scale digitalization is anticipated to result in 
substantial cost savings during different construction phases. Fig. 1 (a) 
shows the increasing worldwide relative search volume for the search 
term “digital twin” over a five-year period, between June 2018 and May 
2023. The search volume is presented on a scale of 0 to 100, with 100 
representing the highest search volume observed. On the other hand, 
Fig. 1 (b) shows the relative distribution of 8815 research documents 
related to “digital twin”, “digital twins”, “digital shadow” or “digital 
shadows” available on the Web of Science database between 2014 and 
2023. The exponentially growing bar chart also highlights the growing 
scientific interest in the concept of digital twins. 

The concept of DT can be ambiguous due to varying interpretations 
[22]. The U.S. National Aeronautics and Space Administration (NASA) 
defines DT as a simulation that incorporates multiple scales, physics, and 
stochastic elements, using the best available models and updated 

information to mirror the life cycle of its physical twin [23]. On the 
other hand, a DS enables one-way information exchange between the 
physical structure/object and the digital representation, with limited 
manual communication between the digital entity and the physical en-
tity [24]. 

DTs have gained traction in manufacturing, automotive production, 
aerospace, and healthcare sectors [25,26]. Despite these advancements, 
the full implementation of DTs in complex systems like railways for 
enhancing reliability, competitiveness, and efficiency, delivering high- 
quality services remains unexplored [27]. While extensive research 
has been conducted on DT in the AEC industry and related fields 
(Table 1), there is often discrepancies in its usage and definition across 
these studies. Finding clear guidelines and technical reports on devel-
oping DT platforms for complex systems like rail transit is challenging. 
Additionally, there is a limited number of DT-related papers in the AEC 
industry, particularly in the context of railways. However, there is sig-
nificant potential for DTs in areas like SHM. Furthermore, there is a lack 
of studies combining ARTS, DTs, and SHM. Meanwhile, integration of 
these aspects through DTs and establishing formalized frameworks are 
crucial. 

The main contribution of this paper is to provide a comprehensive 
review of the existing literature on DTs and related concepts, clarify 
digitalization concepts, bridge the gap between SHM and DT, and pro-
pose a framework for SHM-DT in ARTS. The paper aims to establish a 
generally applicable technical framework for developing SHM-DTs in 
the advanced rail transit industry. 

The paper is organized as follows: Section 2 critically reviews the 
concept of SHM, including the need for SHM, types of maintenance, and 
enablers. Section 3 discusses the concept of digitalization, highlighting 
the various levels of virtualization and their applications. Section 4 
discusses the enablers of DT and its requirements. Section 5 focuses on 
applying DT technology in SHM for the railway industry and other 
sectors. Section 6 proposes a conceptual framework for designing SHM- 
DTs for ARTS. Section 7 explores other aspects of the rail transit in-
dustry where DT adoption would be beneficial. Section 8 discusses 
barriers to fully realizing DT’s potential and proposes future works to 
address them. Finally, in Section 9, concluding remarks are provided. 

2. Overview and evolution of structural health monitoring 
(SHM) 

This section provides an overview of SHM from a general perspec-
tive. It discusses the necessity for SHM, the classification of SHM 

Fig. 1. (a) The increasing interest in worldwide search for “digital twins” on Google search engine (2018 – 2023); (b) The exponential growth of the total publi-
cations regarding “digital twins” on the Web of Science (2014 – 2023). 
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practices, and the enabling technologies that drive advancements in 
SHM. 

2.1. The necessity for SHM 

SHM is primarily concerned with monitoring and detecting degra-
dations and defects that impact a structure’s ability to perform its 
intended purpose, as well as the material and geometric properties [52]. 
Based on the information obtained from the structure, SHM can be 
categorized into four phases [53], i.e. damage localization, life predic-
tion, identification, and damage assessment, as shown in Table 2. 

In general, for all types of rail transit systems, whether conventional 
or advanced, monitoring is particularly crucial for track/guideway 
components such as curvatures, slopes, irregularities, and turnouts [54]. 
Abnormal loads can impact the bogie (in high-speed rails) or the levi-
tation bogies (in maglev trains) and can also lead to fatigue issues [55]. 
In maglev trains, the dynamic contact between the electromagnet and 
the guideway [56] and irregularities in the guideway [15] can cause 
resonance and vehicle instability [57]. Resorting to traditional mainte-
nance practices in railway would lead to under- or over-maintenance 
[58]. Therefore, there is a need for improved, digitized, continuous, 
and real-time-based maintenance. 

2.2. Classification of SHM 

2.2.1. Based on variation of measured system properties 
SHM methods often require measuring the responses of a structure to 

infer the structure’s condition [59]. There are two main groups in this 
regard: static SHM involving slowly varying system responses; and dy-
namic SHM involving dynamically varying properties [53]. 

2.2.2. Based on measured system properties 
SHM can be classified into vibration-based and non-vibration-based 

methods based on the measured system properties. They are vibration- 
based SHM which could involve free, forced, or ambient responses 
[60]; and non-vibration-based SHM [61]. 

2.2.3. Based on modeling 
SHM practices can also be classified based on the analytics meth-

odology, specifically, the approach used for system condition identifi-
cation [53]. The main categories are physics model-based SHM which 
involves updating system models based on measured system responses; 
and data-driven SHM involving statistical methods and/or ML 
algorithms. 

2.3. Advanced SHM enablers 

The advent of some modern devices and the gradual convergence of 
civil engineering with various other fields [62] have recently led to 
advancement in SHM. In the realm of sensing and measurements, 
modern devices have overcome many limitations of conventional sen-
sors, offering improved precision and coverage. These enable the 

Table 1 
Some literature review papers on DT in relation to general practice and the AEC 
industry.  

S/ 
N 

Reference Focus Theme 

1 Aheleroff et al  
[28] 

Developed a holistic reference 
architecture model for DTs 

Generic 

Barricelli et al  
[29] 

Surveyed the definitions, 
characteristics, applications, 
and design of DTs 

Lim et al. [30] Focused on the concept, 
techniques, innovation, 
challenges, and applications of 
DT 

Zheng et al.  
[31] 

Offered an overview of 
cognitive DTs’ difficulties and 
prospects 

Jones et al.  
[32] 

Presented a comprehensive 
characterization analysis on DTs 

Wu et al. [33] Analyzed DT application fields, 
functions, and development 
trends 

Botín-Sanabria 
et al. [34] 

Presented a comprehensive 
evaluation of DT technology, 
implementation, problems, and 
limitations 

Fang et al. [35] Analyzed modelling in DT, 
including the techniques and 
methods 

2 Perno et al.  
[36] 

Discussed the facilitators and 
hurdles to DT implementation 
in the process industry 

Enablers and Barriers 

Aidan et al.  
[37] 

Analyzed the enabling 
technologies, challenges, and 
application of DT in various 
industries 

3 Broo and 
Schooling [38] 

Studied infrastructure DTs’ 
current practices, challenges, 
and strategies 

AEC 

Boje et al. [39] Reviewed the BIM-centered 
construction DT 

Delgado and 
Oyedele [40] 

Proposed a framework for 
adopting DT in the built 
environment industry 

Al-Sehrawy 
and Kumar  
[41] 

Reviewed the DT concept as 
regards its origin, features 
applications and 
implementation hurdles 

Jiang et al.  
[42] 

Provided a state-of-the-art 
analysis of DT implementation 
in the civil engineering sector 

4 Bado et al. [8] Reviewed civil engineering DTs 
based on distribution sensing 

Sensors and sensing 
networks 

5 Juarez et al.  
[22] 

Discussed communication 
strategies involved in DT 
implementation 

Communications and 
networks 

Mashaly [43] Discussed networking 
requirements for the DT 

6 Shahat et al.  
[44] 

Discussed the potential of DTs in 
smart city implementation 

Smart and sustainable 
city 

Ferré-Bigorra 
et al. [45] 

Presented a review on the 
adoption of DTs in urban cities 

Corrado et al.  
[46] 

Examined the sustainability- 
benefitting implementations of 
DTs 

7 Errandonea 
et al. [47] 

Reviewed the usage and 
potentials of DT in maintenance 

Maintenance and 
Disaster Prevention 

Yu and He [48] Reviewed DT application in 
infrastructure disaster 
prevention and mitigation 

8 Dirnfeld et al.  
[49]* 

Discussed the role of AI in DTs 
for railway sector 

Railway Transport 

9 Liu et al. [50] Examined the use of AR in DT 
applications 

Immersive 
technologies and 
visualization 

10 Rathore et al.  
[51] 

Discussed the cognitive roles of 
AI, and ML in the creation of 
digital twins 

Cognition and 
analytics 

*A number of the literature included in this review are of integration level lower 
than DTs and would at most be classified as digital shadows. 

Table 2 
Phases of structural health diagnosis.  

S/ 
N 

Phases Focus 

1 Identification Determine the presence of defects on a global scale 
2 Localization Pinpoint the location and area of damage within a system 
3 Assessment Evaluate the type, level, and intensity of damage in system 

components 
4 Life 

Prediction 
Estimate the remaining life of the structure or system.  
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measurement of new structural characteristics, including electrical 
impedance and guided wave responses, offering integrated, quasi- 
distributed, and distributed measurements [10]. Examples of these 
new sensor technologies include optical fiber sensors (OFS), global 
positioning systems (GPS), micro-mechanical systems (MEMS), radar- 
based systems (e.g., LiDAR), vision-based systems, smart wireless sen-
sors, etc. [17]. 

Other aspects, such as automation and data management speed, have 
also been enhanced through wireless sensors, high-speed computers, 
new ML techniques, cloud computing, and high-speed connectivity [63]. 
Issues with traditional SHM such as data inundation, cable length con-
straints, and interference caused by long cables [64] can also be pre-
vented with new technologies. 

In addition, the rapid advancement of information and communi-
cation technology has resulted in the incorporation of computer-aided 
technologies into SHM practices. Concepts such as computer-aided en-
gineering, BIM (building information modeling), etc., have become 
ubiquitous in the SHM field. Indeed, newer concepts such as ML, the 
internet of things (IoT), big data, cloud computing, DT, and sensor 
networks are also gaining traction. 

3. Digitalization for SHM: Between digital model (DM), digital 
shadow (DS), and digital twin (DT) 

This section explores digitalization and aims to clarify the various 
concepts associated with it. The distinction between these concepts is 
crucial to avoid the confusion often encountered in literature. Addi-
tionally, the application and impact of digitalization in the AEC industry 
and other sectors will be discussed. 

3.1. The concept of digitalization and modeling 

The integration of computer-aided technologies and information 
technologies into the AEC industry is grounded in the virtualization of 
physical systems or objects, collectively known as “digitalization”. In 
essence, digitalization involves creating a digital representation or 
model of a physical system [65]. DT represents the pinnacle of the 
digitalization process [8] in engineering and management, as it provides 
a framework to automate and optimize the “cradle-to-grave” processes 
associated with operating a civil engineering asset. Therefore, the 
question arises: where, when, and how does a model evolve into a DT? 

3.2. The simplification of digital modeling levels and their key attributes 

Within the realm of digitalization, several concepts closely related to 
DTs, such as simulation, emulation, DS, CPS, digital thread, and BIM 
exist [47]. In the AEC industry especially, finding clear guidelines, and 
semantics that differentiate various aspects of digitalization is quite 
challenging. In their literature review, Liu et al. [66] observed that over 
half of the studies described digital models or DSs, despite claiming to 
focus on DTs. The definitions of concepts also vary so much that they are 
sometimes incorrect [67–69], resulting in their misuse [70]. Hence, it is 
essential to differentiate these concepts. 

3.2.1. Simplification of the terms: DM, DS, DT, and digital thread 
A DM is the foundational level of virtualization and refers to the 

virtual representation of a simulated or real object that does not involve 
any information interchange between the real and virtual counterparts 
[71]. On the other hand, a DS represents a virtual object that allows for 
automatic unidirectional information exchange between the real and 
virtual objects. Changes in the state of the real object are reflected in the 
virtual object, but there is no automatic reverse information exchange 
[47]. A DT surpasses the capabilities of a DS by enabling mutual bidi-
rectional information exchange between a real object and its virtual 
counterpart throughout the entity’s lifecycle. Finally, a digital thread is 
the continuous connection of all digital representations throughout the 

different phases of a product’s lifecycle, enabling traceability from re-
quirements to retirement [72,73]. 

3.2.2. Clarifying misconceptions among similar concepts 
This sub-section seeks to clarify distinctions between DTs, BIM, CPS, 

and smart infrastructures (SI).  

a) Between DT and BIM 

While BIM can manage digital information and be considered a 
digital model of a physical asset [74], it does not fulfill the requirements 
to be fully considered a DT. Although, high level BIMs with sensors exist 
[75,76], a DT goes beyond by enabling bidirectional information 
interchange with the real object throughout its life cycle, including real- 
time visualization, data analysis, and feedback [77,78].  

b) Between DT and CPS 

While CPS emphasizes the computing and communication capabil-
ities of the cyber world to the physical [79–82], a DT provides a detailed 
representation of the physical process and can thus incorporate CPS 
technologies as part of its communication module [83].  

c) Between DT and SI 

SI combines sensory networks with physical infrastructure for 
monitoring and better-informed decision-making [84]. While SI focuses 
on the physical asset itself using real-time data, DTs focus on virtual 
replication of the physical asset and its behaviours based on real and 
historical data. 

Based on the characteristics of the digitalization concepts discussed 
above and the cited references, Table 3 provides a summary of the at-
tributes for clearer understanding. Meanwhile, the increasing com-
plexities of digitalization concepts, and their interactions are presented 
in Fig. 2. 

3.3. Aspects and definition of DT 

A comprehensive collection of DT’s definitions can be found in [85]. 
According to the Industrial Internet Consortium (IIC) [86], DT is defined 
as “a formal digital representation of some asset, process, or system that 
captures attributes and behaviors of that entity suitable for communi-
cation, storage, interpretation, or processing within a certain context.”. 

According to Grieves [87], a digital twin consists of three main 
components: (i) physical objects in the real world, (ii) digital objects in 
the virtual world, and (iii) connections linking the digital and physical 
world. Based on these, the key characteristics of DTs are:  

1. Virtual representation: DTs are virtual replicas of real-world physical 
assets (the physical or real twin).  

2. Communication: DTs incorporate information from real-world data 
measurements, enriching their geometric and graphical data.  

3. Self-evolution: DTs can automatically update themselves with new 
real-time data, evolving alongside the physical twin. 

3.3.1. Applications case studies of DT in the AEC and railway industry 
DTs have found applications in various areas of the AEC industry. For 

railways, frameworks such as In2Smart [88], have been developed to 
facilitate the digitalization of railway intelligent asset management and 
monitoring practices. Other implementations of DTs in smart construc-
tion have also been reported [89]. For power and energy management, 
DTs have been developed to control electric railway power systems [90], 
track a power transformer’s voltage distribution [91], and provide on-
line analysis for energy management [92,93]. DTs have also found 
application in smart city development in Singapore [94], Herrenberg 
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[95], Zurich [96], etc. 

3.3.2. Application case studies in other industries 
DTs have made significant impacts in various industries for 

enhancing, planning and productivity. Beyond its usage by NASA, other 
studies (e.g., [97]) have reported usage in the space and aeronautics 
field. In the production industry, DTs have been applied to product 
identification and position tracking [82], predictive maintenance [98], 
sustainable manufacturing [99], and many other areas of smart 
manufacturing [100–103]. Sustainability-related DT applications have 
also emerged such as decarbonization in ship routing [104], sustainable 
offshore exploration [105], etc. In the health area, DTs have been 
applied to personal health monitoring [106], and in many other appli-
cations [107–110]. 

4. Perspectives on the composition of a DT: Enablers and 
requirements 

Based on the preceding discussions, it is evident that DT represents a 
convergence of multiple technologies, including data analytics and AI, 
haptics and IoT, cybersecurity, and communication networks [106]. In 
this section, we discuss the enablers and requirements necessary for the 
design of DTs. 

4.1. Enablers 

Advancements in AI, broadband connectivity, sensor technology, big 
data techniques, and computing technologies, have facilitated the 

emergence of DTs in the past decade [29]. In this section, the major 
enablers for DTs emergence and implementations are discussed. 

4.1.1. Sensors and sensing system 
New wired and wireless networking protocols incorporate data 

encryption functionality [43], to remove the barrier of installation costs 
[111] and data security concerns. The rise of advanced sensing tech-
nology e.g., optical fibers [112–114] has enabled sensing networks 
capable of measuring various responses from target structures, in mul-
tiple directions and high frequencies. Others like laser scan sensors can 
carry out reverse engineering for faster modeling [76]. 

4.1.2. Enhanced modeling and computation 
Simulation methods such as discrete-event simulation, finite element 

method (FEM), computational fluid dynamics (CFD) etc., are common 
nowadays [22]. Rasheed et al. [115] highlighted developments in 
computational hardware as major factors contributing to the advance-
ment of DT, as they enabled extensive data processing, improved ac-
curacy [49], cost benefits and portability [116]. 

4.1.3. AI/ML 
AI techniques, particularly ML methods [117], have found extensive 

use in extracting valuable information from available data, guiding 
decision-making, reducing human efforts, and achieving a high level of 
automation in processes [118]. More recently, deep learning (DL) 
methods have been developed, offering even greater efficiency in data 
analytics [119,120]. 

Table 3 
Comparison of attributes of the digitalization concepts.  

Attributes DM DS DT Digital Thread BIM Higher-level BIM CPS SI 

Physical part ⨯ ✓ ✓ ✓ ⨯ ✓ ✓ ✓ 
Virtual model ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ⨯ 
Connection between the physical and virtual world ⨯ ✓ ✓ ✓ ⨯ ✓ ✓ ✓ 
Automatic feedback to the physical world ⨯ ⨯ ✓ ✓ ⨯ ⨯ ⨯ ✓ 
Visualization ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ⨯ 
Analytics and semantics ⨯ ✓ ✓ ✓ ⨯ ✓ ✓ ✓ 
Real data and behavior history ⨯ ⨯ ✓ ✓ ⨯ ⨯ ⨯ ✓ 
Design phase to end-of-life ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ ⨯ 
Maintenance focused ⨯ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓  

Fig. 2. The increasing complexities of digitalization concepts, as well as their interaction.  
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4.1.4. Big data 
Big data involves collecting and analyzing massive amounts of data 

from various sources, incorporating advanced data cleaning, mining, 
and analysis techniques to DTs [121]. 

4.1.5. Cloud computing and storage 
The emergence of cloud services makes the computation, storage, 

and retrieval of massive amounts of data easy. Since DTs are constantly 
being updated with a continuous, this technology has enhanced their 
implementation e.g., [110,122]. 

4.1.6. Internet-of-things 
IoT, and its industrial counterpart (IIoT)), which enable seamless 

communication among devices and sensors, can help in collecting 
massive amounts of data required by DTs [49]. Incorporating IoT and/or 
IIoT into DT architecture enhances data collection, sorting, visualiza-
tion, control relays, self-diagnostics and even self-repairing [123,124]. 

4.1.7. Networks and communications 
Communication technologies for enhanced interoperability and 

proper data exchange [49] such as 5G, 6G, and WiFi are major DT en-
ablers, allowing communication between the physical and the virtual 
twins, as well as within the cyber world. 

4.1.8. Immersive technologies 
Technologies overlaying the physical and cyber world together, like 

augmented reality (AR), virtual reality (VR), and mixed reality (MR) 
have enhanced the creation of DTs, especially in the domain of visual-
ization, training [49] and better understanding [125]. 

4.2. Requirements for a DT 

In the literature, specific requirements exist for a DT to be fully 
functional. Based on these requirements, researchers have classified DTs 
into various layers/kinds; including five layers [126], three layers 
[121], and seven layers [127]. Ghitta and Siham [121] opined that the 
architectures of DT vary depending on the digital twins’ field of appli-
cations, intended services and benefits, and related technologies and 
concepts. 

In this section, the requirements for DTs are discussed. Fig. 3 presents 
a schematic highlighting the full intricacies and details of the DT for a 
complex system like ARTS. 

4.2.1. Modeling 
In DT architecture, the most important component is the modeling/ 

virtualizing aspect. Several kinds of modeling could be involved, 
including geometric virtual modeling using CAD software; mechanics- 
based modeling for analysis, simulation and predictions [128]; multi-
physics modeling; multiscale modeling for incorporating various spatial 
and temporal scales [129]; data-driven modeling [130]; statistical 
modeling [131]; hybrid modeling combining physics-based and data- 
driven approaches [132–134]; surrogate modeling [135]; and reduced 
modeling to capture only the essential physics [136,137]. 

4.2.2. Sensors and data collection 
One of the three major characteristics of the DT is the information 

exchange between the physical and virtual twins via sensors and sensing 
systems. Sensor data comprises a range of information, including oper-
ational data, behavior descriptions, engineering data, inspection re-
ports, and maintenance history [8]. For data collection, certain 
considerations including the kind of data to measure as well as optimi-
zation of locations are paramount [138,139]. 

4.2.3. Simulation 
Simulation in DTs serves several purposes, including evaluation of 

unobservable responses [140], response prediction to future events 
[29], predictive maintenance [141], decision-making and control stra-
tegies, visualization of the physical twin’s state, as well as training of 
surrogate models for analysis purposes [142], leading to improved 
decision-making, and proactive maintenance strategies [143]. 

4.2.4. Visualization/ user interface 
The visualization and user interface component of the DT is essential, 

as it facilitates human–machine interaction, and allows control actions 
and decisions to be relayed. The user interface must be user-friendly, 
semi- or fully automated for deriving insights, decision support, pre-
dictions and implementation processes [25]. Platforms include immer-
sive technologies [83,125], web applications [7], live graphs [144] etc. 

Fig. 3. Schematic illustrating the full intricacies about the digital twin of an ARTS.  
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4.2.5. Decision and control 
For DTs’ decision support system of DTs, decision-making and 

selecting intervention actions could be formalized into stable architec-
tures like decision trees [8]. Semantics and ontologies have also been 
proposed in the literature [145], especially in cases where aggregation 
of several components of sub-systems DTs is necessary. Data-driven 
assisted cognition functions are also possible by incorporating ML/DL 
algorithms. 

4.2.6. Full autonomy 
An essential requirement of DTs is autonomy, reflected in self- 

adaptation and self-parametrization capabilities, allowing the virtual 
twin to automatically mimic the real twin throughout its whole lifecycle. 
One of the ways to implement full autonomy is by the development of 
highly modularized and parameterized DTs, allowing system decen-
tralization [146]. 

4.2.7. Data handling and management 
Since a DT is expected to mirror the behavior of the real twin 

throughout its entire lifecycle, humongous amounts of data would be 
collected from the physical world. Data handling protocols include 
ontology [145], extensible markup language [147], and the standard for 
the exchange of product model data [148]. On the other hand, data 
management concepts ensure the quality [149], fusion/integration of 
data [150] as well as data security [151]. 

4.2.8. Twin and data storage 
While storing data and the entire DT in a cloud-based system may 

appear straightforward, it is not optimal [7]. According to Schnicke and 
Kuhn [152], data that requires frequent refreshing should be stored on 
the edge, while infrequently updated data can be stored on the cloud. 

4.2.9. Self-updating ability and adaptability 
The DT of a physical entity is expected to exist as several represen-

tations of the physical system over time (almost like a video), with a 
refresh/changing rate equal to the updating frequency of the virtual 
model behavior [8]. It is important for the DT to update itself based on 
available data streams and also reconfigure in adaptation to the evolu-
tion of the physical system itself [153,154]. In traditional model 
updating, calibration of models involves a computationally exhaustive 
process, hence making it impracticable for DT [128]. 

4.2.10. Communication and interactions 
In DTs, especially for distributed systems involving networked twins 

[256], communication between components of each DT and several DTs 
is paramount. Four levels of communication are considered: (a) real 
twin to virtual twin, relying on sensor data transmission and mainte-
nance report feeding [155]; (b) DT to other DTs, for modulated complex 
systems [22]; (c) virtual space intercommunication [156]; and (d) vir-
tual twin to real twin, for relaying decisions, control actions, and feed-
backs [157]. 

4.2.11. Uncertainty considerations 
Uncertainties can arise in prediction results and inferences from 

various sources, including modeling, response measurement, data stor-
age, measurement noise, errors, timing, and analog-to-digital conver-
sion [90]. Model updating approaches, such as Bayesian methods [158], 
can also be utilized to calibrate the structural model’s parameters, 
ensuring that the predicted response aligns with the measured response 
[159–162]. 

5. Digitally enhanced SHM 

With the rapid development of digitalization, researchers are revo-
lutionizing SHM systems with digitalization to benefit the industry 
[1,47]. Hence, in this section, the benefits, and roles of digitalization in 

emerging practices of SHM and maintenance, both in the AEC industry 
and other industries are explored. 

5.1. The benefits of digitalized SHM 

Digitalized SHMs can address some of these limitations suffered by 
traditional SHMs in the following aspects:  

a) Reduction in uncertainties: The comprehensive data integration by 
DTs reduces uncertainties in simulations and predictions, improving 
accuracy and precision [8]  

b) Better coordination of assets and increased efficiency: DTs facilitate 
the convergence of infrastructure networks, which improves effi-
ciency, cost reductions, and better maintenance practices [65].  

c) Continuous replication of physical system characteristics: DTs’ 
continuous collection and generation of operational data enable 
close to real-time simulation and decision-making for improved ef-
ficiency [143].  

d) Enhanced damage detection efficiency: Continuous and automatic 
monitoring with DTs overcomes the limitation of traditional SHM, 
enabling timely intervention.  

e) Better prediction of “what if” scenarios: DTs allow testing and 
assessment of long- and short-term decisions and actions before 
implementation [8,27]. 

f) Enhancement of lifetime support for systems: DTs are able to auto-
mate and optimize the “cradle-to-grave” processes associated with 
operating civil engineering assets [8]. 

g) Decision-making support: A key aspect of DTs is feedback, empow-
ering infrastructure managers and decision-makers with tools to 
effectively control, monitor, and optimize physical assets [27,163].  

h) Maintenance approach selection: DTs facilitate establishing 
condition-based, preventive approaches [164], as well as proactive 
maintenance [8].  

i) Potential for infrastructure automation: DTs enable seamless bi- 
directional information exchange between the real and virtual 
twins, enabling automation.  

j) Sustainability and environmental impact: Optimizing interventions 
and scheduling with DTs extends the service life of infrastructures 
while reducing their environmental impacts. 

5.2. Applications of digitally enhanced SHM 

The railway industry has seen various studies and applications of 
digital-based SHM, primarily utilizing conventional model updating. 
These studies have focused on monitoring ballasted tracks [160,165], 
rails [166], slab tracks [167,168], wheels [169], high-speed rail 
[169,170], railway bridges [171], maglev train [172], wave-based 
approach [173], vision-based approach [174], and advanced sensing 
techniques [166,175]. Meanwhile, new technologies, particularly DS 
and DT, have recently emerged to enhance conventional SHM practices, 
both within and outside the AEC industry. In the manufacturing sector, 
DTs have been used for predictive maintenance of robots [176], machine 
reconditioning [156] and fault diagnosis [177]. DTs have also found 
usage in SHM related to smart infrastructures, especially in bridges 
[178–181], vertical transportation [136], smart and sustainable trans-
portation [137,182]. This section explores the applications of digitali-
zation in various forms to SHM in the railway and other industries. 

5.2.1. Case studies of DTs in railway systems 
An extensive amount of research on the application of DTs to SHM in 

railway systems focuses on civil infrastructure aspects, particularly 
railway bridges [141,183], with less emphasis on other railway aspects. 
For railway vehicles, Efaanov [184] proposed a conceptual model for 
the DT of infrastructure facilities and rolling stock of trains; Wu et al. 
[58] developed a DT-based fault diagnosis framework for high-speed 
train bogies; while Ferdousi et al. [185] designed the RailTwin 
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framework to monitor heavy freight rail cars. For tracks, Yang et al. 
[122] presented a DT-based methodology for predictive maintenance of 
railway switch machines, while Bernal et al. [142] proposed a DT-based 
methodology for preventing train derailments. For rail power systems, 
Ahmadi et al. [90] proposed a DT implementation in controlling and 
monitoring electric railway power systems, Ikeda [2] developed DTs to 
maintain electric railway power supply systems, while Rodriguez et al. 
[186] discussed DT implementation for state estimation of electric 
power train components. Other implementations of DTs in urban rail 
transit have also been explored [146,187]. 

5.2.2. Case studies of DSs in railway systems 
Many studies in the railway industry that claim to be based on DTs 

are DSs or at a lower level in the hierarchy of DMs discussed earlier. 
Some studies utilizing DS have focused on integrating data-driven 
models into decision-making frameworks for railway maintenance and 
examining various assets. Morant et al. [188] and Yang et al. [189] 
considered the maintenance of rail line signaling systems. Núñez et al. 
[190], Jamshidi et al. [191], and Consilvio et al. [192] focused on rail 
track maintenance. Liu et al. [116] proposed a cyber-twins framework 
for high-speed railway prognosis. Similarly, other studies involving 
smart high-speed railway platform monitoring [193], urban railway 
evaluations [194], and IoT-based railway maintenance [195] have been 
reported. 

5.2.3. Case studies of lower-level virtual representations in railway systems 
This section encompasses all virtual representations of railway sys-

tems lower than DS. Most studies in the AEC industry fall into this 
category, with many erroneously labeled as DTs. In some studies, BIM 
was used to create models for railway buildings [196], track turnout 
systems [197], and railway tracks [198]. Also, Hamarat et al. [199] 
devised a technique for evaluating fatigue damage in intricate railway 
turnout crossings. Avizzano et al. [200] introduced a hybrid algorithm 
for reconstructing rolling stocks from a sequence of images. 

Most studies focusing on online monitoring of railway data only 
analyze monitoring data without conducting comprehensive real-time 
equipment status analysis, resulting in one-sided communications 
[122]. Numerous online monitoring applications for high-speed rail can 
be found in the literature, including wheel defect identification 
[170,201], turnout system [202], bogie condition [203], train vehicle 
condition [204], and maglev suspension system [16,172]. 

6. A conceptual framework for the SHM-focused advanced rail 
transit systems DT 

Primarily, ARTS comprises five sectors: track (or guideway); civil 
structures (such as buildings, and bridges); electrical/power systems; 
telecommunications; and signaling/authorization systems [205]. Owing 
to its complexity, it is difficult to create a single DT for the entire system, 
even for a single purpose like SHM. A practicable idea is the creation of 
networked DTs replicating different systems and processes [25]. Each 
ARTS sector is interconnected at a global level. Hence, for SHM, all these 
sectors must be fully incorporated and catered to. 

In this section, a framework that caters to the implementation need is 
formulated for the interoperability of DTs towards obtaining a “fully 
twinned” ARTS. 

6.1. Sensor and response collection 

In this aspect, the following tasks are required: 

(a) Identification of possible systems conditions and responses sen-
sitive to changes in these conditions.  

(b) Selection of proper sensors and sensing technologies for system 
responses.  

(c) Selection of sensors for environmental conditions to reduce 
epistemic uncertainties.  

(d) Identifying the required measurement accuracy level.  
(e) Optimization of sensor quantity, locations, and configurations.  
(f) Optimization of sampling rate for each considered quantity or 

sensor class. 

6.2. Data pre-processing, storage and management 

For the handling of data, we propose using a fusion of edge, fog and 
cloud technology [7,206]. The following steps are necessary:  

a. Data sources classification into static, semi-static and dynamic data.  
b. Determination of proper data storage using cloud, edge, and fog.  
c. Preprocessing and model training.  
d. Deployment of processed data and trained models. 

6.3. Modulation and distributed system 

In ARTS, modulation of DTs is essential. The networked DTs can 
collaborate to diagnose faults and solve system problems [146]. To 
achieve modulation, several actions are required:  

a) Definition of system’s sub-systems and their respective components.  
b) Definition of sub-system’s levels and components.  
c) Definition of each unit, component, level, and sub-level with 

necessary interaction nodes.  
d) Hierarchical evaluation of granulation.  
e) Sensors and sensor locations’ virtualization. 

6.4. Modeling 

The modeling of each component of ARTS must be able to describe 
the components in five essential aspects: geometry, physics, capability, 
behavior, and rule to give the DT an actual “mirroring” outlook. The 
following actions are proposed for modeling:  

a) Multiphysics modeling of the system from bottom to top.  
b) Establishment of data-driven model for each system level.  
c) Creation of hybridized models for each sub-system DTs.  
d) Surrogate meta-modeling based on the created hybrid high-fidelity 

models.  
e) Interaction of models at different system levels. 

The interactions and functions of the various modeling levels and 
techniques for a DT are presented in Fig. 4. 

6.5. Model updating and uncertainty considerations 

Thelen et al. [207] have defined “real-time” as the minimum 
computational speed required to achieve seamless and uninterrupted 
optimization, prediction, and control of the system of interest. The 
necessary tasks for real-time optimum system refreshing are presented 
below.  

a) Identification of the system’s changing and uncertain parameters.  
b) Definition of updating requirements for system components.  
c) Incorporation of surrogate models for model updating.  
d) Specification of updating algorithms.  
e) Optimization of dataset retrieval frequency and system refreshing 

rate. 

6.6. Refreshing/updating rate of DTs 

In the proposed framework, for each sequential data stream, an 
adaptive updating rate is recommended based on these tasks: 
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a) Extraction of useful responses and information from the data.  
b) Assessment of model refreshing needs based on changes and level of 

changes in data streams.  
c) Adaptive updating of the data retrieval rate, and the system 

refreshing rate, based on a defined divergence criterion.  
d) Implementation of the analytics and control components for 

decision-making and control actions. 

The processes and tasks involved in the proposed adaptive updating/ 
refreshing for DTs are detailed in Fig. 5. 

6.7. Simulations 

The various aspects of simulation required in DTs could include:  

a) Simulation for training data-driven models on unobserved system 
characteristics, unmeasurable data, and extreme events.  

b) Simulation for prediction.  
c) Simulation for inference and re-adaptation.  
d) Simulation for visualization. 

6.8. Cognition, semantics, and ontology 

To manage the complexity of the ARTS-DT, ontology and semantics 
are used to design knowledge graph models for coordinating the activ-
ities of the DT including:  

a) Interactions between DTs of different levels.  
b) General system decision making, and analytics.  
c) Interactions between different system DTs of complex systems. 

6.9. Accessibility, user-interface, and feedback 

DT outcomes should be user-friendly and easily understandable by 
non-experts, through clear visualizations, simplified summaries, and 
explicit feedback loops. This involves:  

a) Graphical simulation of the system’s behavior in real-time.  
b) Visualization of dynamic charts and notifications.  
c) Incorporation of human-centered software for control actions.  
d) Incorporation of the online-based platform for easy access. 

A flowchart detailing the proposed conceptual framework for ARTS- 
DT is presented in Fig. 6. 

7. Other aspects of advanced rail transit with high potential for 
DT 

As rail transport is becoming increasingly digitalized, the role of 
digital technology in all aspects of the rail sector is growing, along with 
the benefits. 

7.1. Smart city and smart transportation 

As an evolving strategy for city planning and integration, the market 
for smart city technologies is projected to worth around 165.8 billion 
USD by 2025 [208]. City-wide DTs also enhance effective planning, 
transportation, and comfortable urban living literature [209–211]. 

7.2. Train movement, journey scheduling, and other scheduling tasks 

DT can also be applicable to train movements [212] and automation 

Fig. 4. The interaction between the various models, modeling levels and modeling techniques.  
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of passenger movement and ticketing [146]. Negri et al. [213] have 
demonstrated the strong prospect of DT in scheduling tasks, and 
enhancing efficiency. 

7.3. Smart construction and lifetime control 

Gu et al. [214] demonstrated the ability of DT to facilitate ancient 
building protection, emergency rescue, and general construction prac-
tices including environmental quality monitoring, thermal comfort, and 
energy consumption. 

7.4. Smart manufacturing of rail infrastructure 

DTs can enhance decision-making during the design phase of a 
structure/infrastructure, construction, and its operational life [8,215]. 

7.5. Infrastructure asset management 

DTs will help seamlessly manage railway infrastructure assets 
throughout their entire service life, even for remote assets. 

7.6. Stations management and crowd control 

DTs can facilitate interactions with customer behavior in stations, 
platforms, and trains in the railway industry [27], helping passengers to 
passengers can make informed decisions. 

7.7. Enhanced passengers experience 

DTs can provide insights into passengers’ behavior and can help 
improve customer experience and services [216] by analyzing factors 
like ride comfort, such as temperature and noise levels [212]. 

7.8. Safety 

DT has enormous potential in the safety planning and coordination of 
railway industry activities, including evacuations during unusual events 
and construction [217,218]. 

7.9. Sustainability and resilience and green ecosystem 

DTs enable the use of decision support tools to improve asset man-
agement sustainability, optimize resource utilization and reduce the life 
cycle costs of assets [219]. 

7.10. Others 

Studies such as Parviainen et al. [220] and Marcucci et al. [221] 
identified that DTs enhance efficiency and the creation of new oppor-
tunities, thus impacting urban transport policymaking. 

Fig. 5. The steps involved in the proposed adaptive refreshing algorithm.  
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8. Challenges and future works on SHM-DT for advanced rail 
transit 

8.1. Current challenges  

a) Practical challenges, e.g., sensor installations, data volume, and 
advanced sensing networks may be required in areas with 
peculiarities.  

b) The necessity for organizational and perspective changes of key 
players poses a significant challenge for the railway industry. 

c) The skepticism of infrastructure managers towards SHM, and pref-
erence for experience-based decisions.  

d) Threats in security and policy also pose a significant barrier to the 
implementation of DT.  

e) Ownership, ethical and copyright concerns arise when dealing with 
the vast amount of data collected in DTs.  

f) The scale, complexity, and governance of data related to multi-modal 
rail journeys, which are influenced by various parties.  

g) The need for effective collaboration and teamwork among DTs 
practitioners/end users to address the variety, complexity, and scale.  

h) The complexity and need for aggregating several DTs from different 
systems, and key players poses a huge threat.  

i) Potential heterogeneity of architectures due to the lack of unified 
design, platforms, and tools.  

j) The challenge of disparate information systems resulting from data 
fragmentation. 

8.2. Future works 

Future works on solving some of the issues raised in the previous 

section include:  

a) Modularization, decentralization, and integration of DTs.  
b) Full implementation of DTs for a modern rail transit system, rather 

than conceptual.  
c) Incorporation of enhanced cognitive, management, and security 

components to DTs.  
d) Development of standardized methodologies and frameworks.  
e) Efficient integration of more advanced cyber-physical immersions.  
f) Advancements in sensor technology. 

9. Conclusion 

The rapid advancement of rail transit systems has brought numerous 
benefits and challenges in terms of safety and maintenance. To address 
these challenges, the concept of DTs has emerged as a powerful tool, 
leveraging Industry 4.0 technologies and virtualization concepts. DTs 
and DSs have been increasingly applied in various processes, including 
maintenance and SHM, with promising outcomes. This paper has pro-
vided an explorative review of the literature on DTs’ and SHM, as well as 
highlighted DTs’ main features, enablers, and potentials in advanced 
railway SHM. The distinguishing characteristics of DTs have been clar-
ified, highlighting the core requirements. However, it is noted that the 
literature still lacks comprehensive implementations of DTs in the rail 
industry, particularly for ARTS. Many studies mislabel concepts similar 
to DTs; or focus only on specific rail systems or infrastructure 
components. 

To this effect, this paper aims to answer the question of how DTs can 
be applied to enhance the SHM of ARTS. It argued that DTs are a 
promising technology that can overcome the limitations of traditional 

Fig. 6. Overall representation of the proposed framework.  

M.O. Adeagbo et al.                                                                                                                                                                                                                            



Advanced Engineering Informatics 61 (2024) 102450

12

SHM methods and provide more accurate, reliable, and timely infor-
mation about the health and performance of rail systems. Hence, a 
framework for implementing digital twin based-SHM in ARTS is 
proposed. 

The proposed framework provides a systematic approach to leverage 
Industry 4.0 and 5.0 technologies as well as virtualization concepts in 
several sectors of the railway industry. The contributions of the pro-
posed framework can be quantified through several key metrics. Firstly, 
it offers a comprehensive integration of data collection, storage, inte-
gration, management, and analytics, enabling real-time monitoring and 
proactive maintenance based on both the system history and the pre-
vailing system condition. This leads to a significant reduction in 
downtime and maintenance costs. The framework also facilitates pro-
active decision-making by providing accurate and timely information on 
the health and performance of rail transit systems, without the necessity 
of an expert for interpretation of results as in conventional SHM. 
Additionally, the framework acknowledges and addresses the challenges 
specific to ARTS by considering their unique characteristics and re-
quirements. By leveraging DTs, it enables a paradigmatic shift from 
traditional methods based on digital models and digital shadows to 
dynamic, automated, and interactive representations of rail transit sys-
tems. This shift fosters a deeper understanding of system behavior and 
enables more effective maintenance strategies. 

While the proposed framework contributes to the field of ARTS and 
SHM, it is essential to acknowledge the existing gaps and challenges that 
need further exploration, such as addressing data volume management, 
ensuring data security and privacy, and establishing industry standards 
for DT implementation in the rail sector. The paper also acknowledged 
the limitations of this study, such as the lack of empirical validation, and 
the need to consider the specific characteristics and requirements of 
different rail systems and components. 

In summary, the developed framework for DT-based SHM in ARTS 
presents a significant step towards revolutionizing the monitoring, 
optimization, planning, and control of rail transit systems. By high-
lighting its contributions in terms of reduced downtime, cost savings, 
and improved decision-making, the framework provides a practical and 
valuable solution for the rail industry. There is however a need for future 
research focusing on the development, refinement, implementation, and 
performance evaluation of the DT framework in high-speed rails and 
maglev trains, while concurrently addressing the identified challenges. 
Through these efforts, the integration of DTs in ARTS will drive the 
digitalization and interconnectivity agenda to new heights, ultimately 
enhancing the safety, efficiency, and performance of rail transit systems. 
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