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A B S T R A C T   

Water Distribution Networks (WDNs) are susceptible to pipe failures with significant consequences. Predicting 
wall-thickness loss in pipes is vital for proactive maintenance and asset management. This study develops 
optimized, explainable machine learning models for this purpose. Data from four WDNs located in Canada and 
the USA are collected and preprocessed. Decision Tree, Random Forest (RF), XGBoost, LightGBM, and CatBoost 
are employed, with optimized hyperparameters via Tree-Structured Parzen Estimator. The proposed framework 
performance is assessed using dissimilarity-based and similarity-based metrics. Hyperparameter optimization 
substantially enhances predictive performance such that the mean absolute error of RF improved by 20.51%. 
Based on the evaluation metrics, the Copeland algorithm was employed to rank the models, and CatBoost 
emerged as the best-performing model with a Copeland score of 4, followed by XGBoost and RF. The Taylor 
Diagram offers a visual representation of the linear proportionality between observed and predicted values across 
various models, with CatBoost and XGBoost showing strong alignment. SHAP analysis identifies age, diameter, 
and length as key contributors. The optimized models proactively identify potential pipe failures, enhancing 
maintenance and WDN management.   

1. Introduction 

Water Distribution Networks (WDNs) play a crucial role in ensuring 
reliable supplies of clean water to communities and industries. However, 
the deterioration and failure of these infrastructures can have significant 
consequences across the sustainability dimensions (i.e., economic, 
environmental, and social). Understanding the failure mechanism of 
water pipes is essential for developing effective predictive models to 
prevent such failures and ensure efficient WDNs management [1]. 

Regarding the economic consequences, pipe failures necessitate im
mediate repairs or replacement, which incur significant costs for mate
rials, labor, and equipment [2]. For instance, a study conducted by Xu 
et al. [3] found that pipe failures in China resulted in a rehabilitation 
cost of more than 10 billion RMB in 2014. It is estimated that the United 
States needs to spend about $30 billion yearly to rehabilitate its WDNs 
[2]. Furthermore, pipe failures lead to water leakage, resulting in sub
stantial water loss for utility providers. This loss not only affects the 
revenue stream but also increases operational expenses associated with 
water treatment and pumping. It is assessed that approximately 7 billion 

gallons of water are lost each year due to pipe failures in the United 
States alone, amounting to billions of dollars in economic losses annu
ally [2,4]. 

As per the environmental consequences, water pipe failures increase 
energy consumption, as utilities need to pump and treat additional water 
to compensate for the losses [5]. This increased energy demand not only 
drives up operational costs but also leads to higher greenhouse gas 
emissions, contributing to climate change. Moreover, pipe failure leads 
to erosion, flooding, and traffic congestion [6]. Los Angeles experienced 
a major water pipe failure in 2014, where pipes within 80–90 years 
experienced a burst, causing extensive flooding and damage. The inci
dent resulted in the loss of more than 20 million gallons of water, sig
nificant repair costs, disruption of traffic and businesses, and substantial 
environmental impact due to water wastage [7]. 

The social impacts of pipe failure include an increased risk of getting 
affected by waterborne diseases, public service disruption, and damages 
[8]. Failure of water pipes affects households, businesses, and critical 
infrastructures such as hospitals and schools [6]. Lack of access to clean 
water jeopardizes public health and sanitation, hindering daily activities 
and posing a risk during emergencies. In 2016, the city of Flint, 
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Michigan, USA, faced a severe water crisis when lead-contaminated 
water flowed through aging pipes, exposing residents to health risks. 
The incident highlighted the social consequences of water pipe failures, 
including public health emergencies and long-term health and devel
opmental issues, particularly affecting vulnerable populations [9]. 

The statistics mentioned above provide compelling evidence of the 
significant issues caused by water pipe failures, highlighting the urgent 
need for attention and mitigation strategies. In the literature, various 
forms of failure indicators have been established, including the failure 
probability, failure rates, time-to-failure, remaining useful life, condi
tion index, and wall-thickness loss [10–12]. While predictive models 
have been developed to forecast some of these failure indicators for 
water pipes, such as the failure probability, failure rates, time-to-failure, 
remaining useful life, and condition index, there is a noticeable gap in 
the literature regarding the prediction of wall-thickness loss specifically. 
Wall-thickness loss is directly related to water pipe failure. As pipes age 
and undergo deterioration, the gradual thinning of the pipe-wall due to 
corrosion, erosion, or other forms of material degradation can signifi
cantly impact the pipe’s structural integrity [13,14]. The loss of wall- 
thickness reduces the pipe’s ability to withstand internal and external 
pressures, increasing the risk of failure [15]. Wall-thickness loss is 
critical for assessing the remaining lifespan of water pipes, even though 
it has received relatively less attention in research efforts. The existing 
gaps in the literature are summarized as follows:  

• The current literature lacks sufficient studies specifically addressing 
the prediction of wall-thickness loss in water pipes.  

• Various existing prediction models lack a systematic approach for 
selecting and optimizing the hyperparameters of machine learning 
(ML) models.  

• The majority of ML-models employed in pipe failure prediction are 
often considered black-box models, offering limited insights into 
their decision-making process. 

Therefore, the aim of this study is to contribute to the existing 
knowledge about WDN by developing optimized ML models to predict 
the wall-thickness loss of water pipes. The specific objectives are high
lighted below:  

• To develop optimized ensemble models for predicting wall-thickness 
loss in water pipes.  

• To compare and rank the optimized models using the Copeland 
algorithm.  

• To interpret the best-optimized model using the SHapley Additive 
exPlanations (SHAP) technique, which will provide insights into the 
influential factors and the decision-making process of the model, 
enabling a better understanding of the failure mechanism of water 
pipes. 

Nomenclature 

AC Asbestos Cement 
ANN Artificial Neural Network 
ANFIS Adaptive Neuro-Fuzzy Inference System 
AUC Area Under the Curve 
BT Boosted Trees 
CE Cementitious 
CI Cast Iron 
Cox-PHM Cox Proportional Hazard Model 
C-Index Concordance Index 
CP Cathodic Protection 
CML Cement Mortar Lining 
DI Ductile Iron 
DT Decision Tree 
EL Ensemble Learning 
ELM Extreme Learning Machine 
EFB Exclusive Feature Bundling 
FIS Fuzzy Inference System 
GBDT Gradient Boosting Decision Tree 
GEP Gene Expression Programming 
GOSS Gradient-based One-Side Sampling 
GRNN General Regression Neural Network 
KGE Kling-Gupta Efficiency 
KNN K-Nearest Neighbors 
LightGBM Light Gradient Boosting Machine 
LR Logistic Regression 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MARS Multivariate Adaptive Regression Spline 
ML Machine Learning 
MLP Multi-Layer Perceptron 
MLR Multiple Linear Regression 
MSE Mean Squared Error 
MTF Mean Time to Failure 
M5T Model Tree 
NNR Non-Linear Regression 
NSE Nash-Sutcliffe Efficiency 

OB Ordered Boosting 
OTS Ordered Target Statistics 
PE Polyethylene 
PVC Polyvinyl Chloride 
RAE Relative Absolute Error 
RF Random Forest 
RMSE Root Mean Squared Error 
RSF Random Survival Forest 
RUL Remaining Useful Life 
SD Standard Deviation 
SHAP SHapley Additive exPlanations 
SI Scatter Index 
SVC Support Vector Classifier 
SVM Support Vector Machine 
TD Taylor Diagram 
TPE Tree-Structured Parzen Estimator 
U95 95 % Uncertainty Interval 
WDN Water Distribution Network 
WPHM Weibull Proportional Hazard Model 
WPHSM Weibull Proportional Hazard Survival Model 
XAI Explainable Artificial Intelligence 
XGBoost Extreme Gradient Boosting 
SMBO Sequential model-based optimization 
σ Standard Deviation 
μ Mean 
Wi i-th measured value of wall thickness loss 
Pi i-th predicted value of wall thickness loss 
W̄ Arithmetic mean of the measured values of wall thickness 

loss 
r Correlation between the measure and predicted value of 

wall thickness loss 
σPi Predicted values standard deviation 
σWi Measured values standard deviation 
μPi 

Mean of the predicted values 
μWi 

Mean of the measured values 
∅i(f) Shapley value of feature i 
S subset of features  
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This study employs ensemble learning (EL), a powerful approach in 
ML, which has shown promising results in various domains [16,17] by 
combining multiple individual models to improve prediction perfor
mance increase robustness, and provide enhanced generalization capa
bilities. By harnessing the diversity of individual models, EL models can 
mitigate bias, reduce overfitting, and achieve superior predictive accu
racy compared to single models. In addition to accurate predictions, 
there is an increasing demand for explainable artificial intelligence 
(XAI) models in critical infrastructure management. Hence, this study 
explains the contribution of the input variables to the predictive model 
by leveraging SHapley Additive exPlanations (SHAP). The outcomes of 
this research have significant practical implications for water utility 
managers and decision-makers, enabling them to make informed de
cisions regarding maintenance prioritization, rehabilitation planning, 
and resource allocation. Ultimately, this study contributes to the 
advancement of predictive modeling techniques for water infrastructure 
management, facilitating the reliable provision of clean water to com
munities and ensuring the long-term sustainability of WDNs. 

2. Literature review 

As indicated in the previous section, indicators used for predicting 
failure in water pipes include probability of failure, failure rates, time- 
to-failure, remaining useful life, condition index, and wall thickness 
loss. Table 1 summarizes the existing studies in this regard, including the 
used techniques, predicted failure indicator, adopted evaluation met
rics, pipe type, data splitting ratio, and study location. In cases where 
more than one model is developed in a study, the evaluation metrics for 
the best model are reported. 

Amiri-Ardakani & Najafzadeh [18] applied three algorithms to 
model the failure rate of water pipes in Yazd’s WDN, located in Iran. 
These algorithms include multivariate adaptive regression spline 
(MARS), gene expression programming (GEP), and Model Tree (M5T). 
The pipes’ diameter ranged from 63 mm to 110 mm. In terms of the 
adopted evaluation metrics (correlation coefficient (R) and RMSE), the 
MARS model outperformed the other two algorithms. For instance, the R 
for the MARS model was 0.981, while that of GEP and M5MT were 0.971 

Table 1 
Summary of the related studies for predicting the failure indicators for water pipes.  

Reference Technique Failure indicator Evaluation 
metrics 

Type of pipes Data splitting Study location 

[30] LR Probability of 
failure 

AUC – 0.680 
Recall – 0.672 
Acc – 0.800 

AC, CI, DI, PVC, and others 75 %  

Testing – 25 % 

Austin, USA 

[29] XGBoost, RF, BT Probability of 
failure 

AUC = 0.8992 CI, DI, PVC, and others Training – 12 years 
data  

Testing –3 years 
data 

USA 

[32] ANN, LightGBM, LR, KNN, and 
SVC 

Probability of 
failure 

AUC – 0.81 
Recall – 0.861 

CI, DI, and others Training – 80 %  

Testing – 20 % 

Cleveland, USA 

[27] WPHSM, RF, and RSF Remaining useful 
life 

C-Index = 0.925 AC, CI, and DI Training – 80 %  

Testing – 20 % 

Canada 

[10] ANFIS and FIS Condition index R2 = 0.9145 
RMSE = 0.6829 

– Training – 60 %  

Testing – 40 % 

Arequipa, Peru 

[18] MARS, GEP, and M5 Tree Failure rate R = 0.981 
RMSE = 0.544 

AC, CI, PE Training – 80 %  

Testing – 20 % 

Yazd, Iran 

[11] LR and SVR Probability of 
failure 

AUC – 0.873 
Recall – 0.848 
Acc- 0.769 

CE, PL, and ME. Training – 5 years 
data  

Testing – 
2 years data 

Seville, Spain 

[33] ANFIS and ANN Remaining useful 
life 

MAE = 0.880 
MAPE = 5.431 
RAE = 0.007 

AC, CI, DI, and Steel Training – 75 %  

Testing – 25 % 

USA and Canada 

[24] ANN, RF, and XGBoost Time to failure R – 0.85 
RMSE – 5.81 

AC, CI, DI, and PVC Training – 80 %  

Testing – 20 % 

North America 

[21] Extreme Learning Machine Failure rate R2 – 0.65 
RMSE – 0.09  

AC, CI, and DI Training – 75 %  

Testing – 25 % 

Toronto, Canada 

[25] ANN Remaining useful 
life 

R2 – 0.9877 
MAE – 3.890 
MAPE – 2.870 

AC, CI, Concrete, DI, PE, PVC, Steel, 
and Copper 

Training – 70 %  

Testing – 30 % 

Quebec, Canada 

[19] ANN Failure rate R2 = 0.4142 CI, PE, PVC, and Steel Training – 50 %  

Testing – 50 % 

Poland 

[20] WPHM, Cox-PHM, and Poisson 
Model 

Failure rate RRSE – 0.31 
MAE − 7.3 
RMSE – 9.7 

CI, DI, and PVC Training – 70 %  

Testing – 30 % 

Calgary, Canada 

[23] ANN Time to failure R – 0.82 
RE – 0.32 

AC, CI, DI, and PVC Training – 70 %  

Testing – 30 % 

Scarborough, 
Canada 

[22] Survival analysis Time to failure – – – – 
[26] MLP, GRNN, and M.R. Remaining useful 

life 
R2 = 0.96 
MAE = 0.12 

CI Training – 80 %  

Testing – 20 % 

USA and Canada 

[31] ANN Condition index R2 = 0.8629 CI, DI, and Steel  South Korea  
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and 0.888, respectively. While the study contributed to the failure pre
diction rates of water pipes, the predictive capability of the model could 
be enhanced by systematically selecting the best hyperparameters for 
the models. Employing the data from 261 distribution pipes and 306 
house connection pipes, Kutyłowska [19] established predictive models 
based on artificial neural network (ANN) for forecasting the failure rate 
of water pipes. Although the model achieved an R2 of 0.9510 for the 
house connection pipes, the R2 on the testing dataset was significantly 
low (i.e., R2 = 0.4142). As the author suggested, the model’s accuracy 
can be improved by incorporating more input variables. Using three 
statistical methods – The cox proportion hazard model (Cox-PHM), 
Poisson model, and Weibull proportional hazard model (WPHM) – 
Kimutai et al. [20] predicted the failure rate of pipes in a WDN in Cal
gary, Canada. The network is majorly dominated by polyvinyl chloride 
(PVC) pipes (54 %), followed by cast iron (CI) pipes (20.3 %) and ductile 
iron (DI) pipes (14.5 %). It was found that WPHM outperformed the 
other models. For instance, the relative absolute error (RAE) of the 
WPHM model using the CI pipe dataset was found to be 9.7, while that of 
the Cox-PHM and Poisson models was 16 and 11, respectively. Similarly, 
an extreme learning machine (ELM) has been employed to develop a 
failure rate predictive model [21]. Data was collected from a WDN in 
Toronto, Canada. The analysis data revealed that using pipe protection 
techniques such as cathodic protection (CP) and cement mortar lining 
(CML) reduced water pipes’ failure rate by 60 % and 80 % for CI and DI 
pipes, respectively. In order to evaluate the predictive ELM perfor
mance, its efficiency was compared against alternative ML algorithms, 
including ANN, non-linear regression (NNR), and support vector ma
chine (SVM). The results indicated that the ELM model exhibited su
perior performance compared to the other ML models, demonstrating its 
effectiveness in accurately predicting failure rates. 

While establishing the model for condition assessment scoring of 
pipes, Opila & Attoh-Okine [22] calculated the mean time to failure 
(MTF) for pipes in a network. The MTF was estimated by integrating the 
failure probability over time. Subsequently, the condition grades of 
pipes were computed using the discounting process, which relies on the 
MTF value of the pipes. Using length, diameter, year of installation, 
number of previous breaks, and soil type as the input variables, Harvey 
et al. [23] developed ANN models to predict the time to failure of water 
pipes. The dataset employed in the study was obtained from a 5850 km 
WDN situated in Canada. While the network encompasses four material 
types (AC, CI, DI, and PVC), ANN models were exclusively developed for 
three of the materials due to the high imbalance observed data for the 
fourth material (PVC). The R and relative error (RE) of the DI model was 
0.82 and 0.32, respectively. Similarly, a comparison between ANN, RF, 
and XGboost was made regarding the prediction of time-to-failure of 
water pipes [24]. The models were applied to the data of a WDN in a 
North American city. The results showed that XGboost outperformed the 
other two algorithms in predicting the time-to-failure. 

The remaining useful life (RUL) of water pipes is another failure 
indicator that has been investigated in the extant literature. Zange
nehmadar et al. [25] developed an ANN model based on the Levenberg- 
Marquardt backpropagation algorithm using five input variables (age, 
diameter, length, breakage rate, material, and condition) to forecast the 
RUL of water pipes. The ANN model achieved R2, MAE, and MAPE 
values of 0.9877, 3.890, and 2.870, respectively. While the model 
accurately predicted the RUL of water pipes, the interpretability of the 
model remains a challenge. Furthermore, multi-layer perceptron (MLP), 
general regression neural network (GRNN), and multiple regression 
(MR) were employed by [26] to predict the RUL of cast iron pipes 
located in the USA and Canada. The data was collected from 16 mu
nicipalities in the two countries. 20 % of the data consisting of 136 pipes 
were used for model testing. As per the evaluation metrics, MLP out
performed GRNN and MP models with an R2 and MAE of 0.96 and 0.12, 
respectively. In their study, Snider & McBean [27] aimed to estimate the 
RUL of water pipes by calculating the time to the next breakage. The 
authors defined the time to the next breakage as the point at which the 

pipe repairing cost exceeds the average replacement cost. In essence, 
this approach determined that pipe replacement is more cost-effective 
when the repair costs surpass the replacement cost. To estimate the 
time to the next breakage, the authors employed three different models: 
Random Survival Forest (RSF), Random Forest (RF), and the Weibull 
proportional hazard survival model (WPHSM). To evaluate the predic
tive performance of the models, the researchers utilized the concordance 
index (C-Index). This metric assesses the model’s ability to rank the 
observed failure times correctly. Among the three models tested, the RSF 
model demonstrated the best predictive capability with the highest C- 
Index score. 

In the study conducted by Robles-velasco et al. [28], the failure 
probability of pipes in a WDN located in Seville, Spain, was investigated. 
The WDN had a total length of 3800 km and consisted of pipes made of 
cementitious (CE), plastic (PL), and metallic (ME) materials. The dataset 
for model training ranged from 2012 to 2016, while the models were 
tested on data from 2017 to 2018. Logistic regression (LR) and support 
vector machine (SVM) were employed as predictive models to estimate 
the failure probability. The performance of these models was evaluated 
using metrics derived from the confusion matrix, such as recall and the 
area under the curve (AUC). It should be noted that the failure proba
bility predictions need to be converted to binary values before estab
lishing the confusion matrix. LR outperformed SVM based on the AUC 
metric, indicating better overall performance in predicting the failure 
probability. However, SVM also demonstrated promising results using 
the recall metric compared to LR. Chen et al. [29] utilized data from six 
utilities in the USA to develop models for predicting the failure proba
bility of water pipes. Each of the utilities had different record durations; 
however, the overall common record period utilized in the study was 
from 2005 to 2018. The researchers employed three algorithms to 
develop the predictive models: XGBoost, RF, and Boosted Trees (BT). 
The findings of the study revealed that both XGBoost and RF models 
exhibited comparable performance, which was superior to the BT 
model. Similarly, Rifaai et al. [30] investigated the failure probability in 
a WDN using LR model, taking into account various factors, including 
pipe attributes, environmental conditions, operational factors, and 
failure history. To address the correlation between repeated observa
tions for the same pipe, generalized estimating equations were utilized. 
The data were collected from a WDN located in Austin, USA. One of the 
challenges encountered in the analysis was the highly imbalanced na
ture of the dataset, with only 6.5 % of the pipes having experienced 
failure in the past. The evaluation metrics including accuracy, precision, 
recall, and area under the curve (AUC) were reported as 0.80, 0.67, 0.67, 
and 0.68, respectively. 

Another failure indicator that has been investigated is the condition 
index of water pipes. Dawood et al. [10] presented a framework that 
combines the adaptive neuro-fuzzy inference system (ANFIS) and fuzzy 
inference system (FIS) to assess and predict the condition index of eight 
WDNs. The study utilized historical data from eight provinces in the 
Arequipa region of Peru to train and test the ANFIS model. This model 
was employed to calculate the network condition index for each prov
ince, capturing the unique characteristics and conditions of WDNs. To 
aggregate the individual province indices into a holistic representation 
of the region’s network condition, the FIS model was utilized. The 
resulting network condition index for the Arequipa region was 63.1, 
reflecting the overall WDNs health and performance. The proposed 
framework was validated by comparing it with the multiple linear 
regression model (MLP) and showed better performance and accuracy. 
Geem et al. [31] utilized ANN to predict the condition index of pipes in a 
WDN located in South Korea. Due to data limitations, only 21 out of the 
61 available records were considered for the analysis. To train the ANN 
model, 11 records were utilized, while the remaining 10 records were 
reserved for validation purposes. The evaluation of the ANN model on 
the validation dataset yielded an R2 value of 0.8629. This indicates a 
reasonably good fit of the model to the observed data. However, it is 
important to note that the small size of the dataset used in the study may 
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have led to overfitting. 
The literature review presented above reveals gaps in the existing 

studies pertaining to predictive models for water pipes in WDN. The 
identified gaps are elaborated as follows: 

1. Limited Focus: The current literature lacks sufficient studies spe
cifically addressing the prediction of wall-thickness loss in water 

pipes. This gap highlights the need for more research efforts directed 
toward forecasting this critical aspect of pipe deterioration. 

2. Insufficient Hyperparameter Optimization: Many existing pre
diction models lack a systematic approach for selecting and opti
mizing the hyperparameters of ML-models. This deficiency requires 
developing methodologies that effectively optimize the hyper
parameters to enhance the predictive performance of the ML-models. 

Fig. 1. The proposed framework for predicting wall-thickness loss of water pipes.  
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3. Lack of Interpretability: The majority of ML-models employed in 
pipe failure predictions are often considered black-box models, of
fering limited insights into their decision-making process. This gap 
highlights the necessity for research that focuses on the interpret
ability of ML-models to provide a deeper understanding of the factors 
influencing pipe failure. 

3. Methodology and database 

3.1. Methodology 

The adopted framework for this study is illustrated in Fig. 1, con
sisting of five distinct phases. The first phase focuses on data collection 
and exploration. The data utilized in this study is obtained from previous 
experimental investigations conducted on four WDNs located in Canada 
and the USA, as documented by [34]. To ensure data quality, pre
processing techniques are applied, involving the removal of outliers and 
the conversion of input variables to the metric system (SI units). 
Explanatory data analysis is then conducted to gain insights into the 
characteristics and patterns within the dataset. In the second phase, 
predictive models are developed using various algorithms, including 
decision tree (DT), random forest (RF), extreme gradient boosting 
(XGBoost), light gradient boosting machines (LightGBM), and categor
ical boosting (CatBoost). To enhance the predictive capability of these 
base models, the Tree-Structured Parzen Estimator (TPE) is employed to 
optimize the hyperparameters. This approach aims to improve the 
models’ performance and accuracy by fine-tuning their configuration. 

In the third phase, the developed models are evaluated using both 
dissimilarity and similarity-based metrics. The dissimilarity-based met
rics include Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), Scatter Index (SI), and 95 % Uncertainty Interval (U95). The 
similarity-based metrics encompass R-squared (R2), Nash-Sutcliffe Effi
ciency (NSE), and Kling-Gupta Efficiency (KGE) [35,36]. By employing a 
comprehensive range of evaluation metrics, a holistic assessment of the 
models’ performance is achieved. Subsequently, in the fourth phase, the 
Copeland algorithm is utilized to rank the models based on their eval
uation metrics, enabling the selection of the best-performing model. This 
algorithm allows for a systematic comparison of the models, considering 
their relative performance across multiple metrics. The model with the 
highest rank is considered the most suitable for predicting water pipe 
wall thickness loss. Finally, in the fifth phase, the selected best model is 
interpreted using the SHapley Additive exPlanations. All computations 
in this study, including the development of the predictive models, are 
performed using Python 3.11 programming language and its associated 
libraries, such as Scikit-learn, Pandas, Seaborn, Matplotlib, XGBoost, 
LightGBM, CatBoost, SkillMetrics, and Shap [37]. 

3.2. Data collection and exploration 

The data utilized in this study is obtained from WDNs in Canada and 
the USA, comprising six independent variables: age, length, diameter, 
material, number of breaks, and installation year. The dependent vari
able of interest is the wall-thickness loss, measured as a percentage. The 
database comprises 235 sample pipes, a size commonly found in 
experimental investigation databases [17]. To facilitate modeling, the 
categorical variable of material is preprocessed as dummy variables. The 
descriptive statistics of the numerical data are presented in Table 2, 
providing insights into each variable’s central tendency and variability. 

The descriptive statistics provide an initial understanding of the 
characteristics and range of the variables in the database. It is observed 
that the average age of the water pipes in the dataset is approximately 
50.76 years, with a standard deviation of 32.21 years. The minimum and 
maximum ages recorded are 1.0 and 131.0 years, respectively. More
over, Fig. 2 presents the correlation matrix of the dataset’s variables. 
The correlation is computed using the Pearson Correlation Coefficient. 

The results reveal a moderate correlation between the majority of the 
independent variables and the dependent variable, wall thickness loss, 
as the correlation coefficients predominantly fall within the range of 0.3 
to 0.5 [38]. 

Fig. 3 presents the histograms of the numerical data. The indepen
dent variables are shown in orange, while the dependent variable is 
presented in green for easy visualization. The visualization of the dis
tributions aids in identifying any potential outliers, as seen in the his
togram of the “number of breaks” variable, which are data points that 
significantly deviate from the rest and could impact the modeling pro
cess. To ensure data quality, preprocessing techniques were applied, 
including the removal of outliers using the interquartile range (IQR) 
method. The IQR represents the difference between the 75th and 25th 
percentiles of the data. Any data points that were below the 25th 
percentile minus 1.5 times the IQR, or above the 75th percentile plus 1.5 
times the IQR, were removed from the dataset as potential outliers. This 
process eliminated erroneous and anomalous measurements that could 
adversely impact the modeling. Regarding the material distribution, 
52.8 % is made up of CI, while 20.9, 16.2, and 10.2 % are made up of DI, 
CI, and steel, respectively. 

4. Model development 

This section explains the development of ensemble learning models 
for predicting the wall-thickness loss. It details the algorithms that are 
employed, including predictive, optimization, ranking, and interpret
ability algorithms. 

4.1. Predictive modeling using decision tree 

Decision trees (DTs) operate heuristically and can predict continuous 
values in regression tasks [39]. It is a tree-like algorithm comprising a 
hierarchy of nodes and leaves representing decisions and their possible 
consequences. The tree is constructed by splitting a root node into a few 
initial internal nodes, which are further divided into subsequent internal 
nodes based on the information-gain of an attribute feature (see Figs. 4 
and 6). Nodes that terminate the decision trees are called terminal nodes 
and possess the maximum homogeneity of the decision class [40]. When 
using a DT for multivariate regression tasks, the goal is to minimize the 
difference between the parent node variance and the weighted sum of 
the child node variance. 

A differential entropy H(α) is adopted to measure the random un
certainty that follows a continuous probability distribution in a multi
variate regression (see Equation 1) (Cover & Thomas, 2005). That is, 
given y = Rd, the learning goal is to generate a prediction model M (y|x)
through a decision tree evaluation and storing a simple density model 
ρl(y) at the leaf l. 

H(α) = −

∫

y
α(y|x)logα(y|x)dy (1)  

where α(y|x) is a density with an absolutely continuous cumulative 
distribution function, and α(x, y) is the true generating distribution. 
Optimizing the differential entropy of unknown continuous distribution 

Table 2 
Descriptive statistics of the database.  

Factor Mean Standard 
deviation 

Minimum Maximum 

Age (Years)  50.76  32.21  1.0  131.0 
Length (m)  986.29  1604.71  6.25  11029.27 
Diameter (m)  0.28  0.13  0.10  0.60 
Number of breaks  5.32  8.05  1.00  95.00 
Installation year  1959.45  30.31  1887.00  2011.00 
Wall thickness loss 

(%)  
23.57  13.02  1.00  49.00  
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is complicated; therefore, several estimators, including kernel density 
estimates, minimum spanning tree length, and k-nearest neighbor dis
tances [41] have been proposed to achieve the maximum leaf homo
geneity. DTs are the foundation for ensemble tree-type learning 
algorithms such as RF, CatBoost, XGBoost, and LightGBM. 

4.2. Predictive modeling using Random Forest 

Random Forest (RF) works on the concept of bootstrapping, i.e., by 
selecting random samples S1(x, y),⋯, Sk(x, y) from the defined dataset 
with replacement [42]. It is inspired by bagging and feature randomness 
of the independent variables. A DT is built from each sample, consid
ering only a random subset of the features at the node-splitting stage. 
This selection is contrary to what happens in the regular DT method, 
where all features are considered during partitioning. The final output of 
regression trees is decided by the mean of all the individual tree pre
dictions [37]. Each tree is constructed to minimize the MSE of the 
prediction, as shown in Equation 2. 

MSE(S) =
1
|S|

∑

i∈S
(yi − ȳS)

2 (2)  

where S is the sample space of the node, yi is the individual target values, 
and ȳS is the mean target value of the node. The MSE also serves as the 
splitting criterion for the regression model, whereas the Gini index 

determines how a node should be divided for the classification tasks 
[42]. Similar to DT, splitting starts with the root node (see Fig. 4), and 
the parent node splits to generate left and right branches of child nodes 
based on the former’s mean squared residual. 

4.3. Predictive modeling using Boosting Algorithms 

4.3.1. XGBoost 
Gradient Boosting Decision Trees (GBDT) are models that operate by 

fitting additive models in a forward stage-wise manner. A gradient- 
boosting model relies on the continuous learning of base learners to 
improve its performance, i.e., a weak learner is added to the present 
model at every stage to reinforce its learning capacity by reducing the 
prediction losses [43]. XGBoost learns additively from weak learners to 
strengthen its learning capacity and robustness. Due to its inherent 
parallel handling ability, it is scalable and efficient in handling large- 
scale classification and regression tasks. When dealing with real-world 
data, it does not require significant preprocessing due to the efficiency 
in managing missing data issues. XGBoost intends to minimize the 
objective function indicated in Equation 5. Since the gradients for all 
instances offer significant information to the GBDT algorithms, an 
instance that produces a small gradient possesses low deviation and is 
therefore considered well-trained. If there are K base learners (fk) to 
create an XGBoost model (ȳi), fk is successively added to ̄yi each time, as 

Fig. 2. Correlation matrix of the variables in the dataset.  
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shown in Equation 3 [44]. 

ȳi =
∑K

k=1
fk(xi), fk ∈ F, (3) 

The function F is a space containing all the regression trees in the 
XGBoost model. For the full understanding of the functions that make up 
the model, the regularized objective function is minimized as shown 

below: 

L =
∑

i
l (ȳi , yi) +

∑

k
Φ(fk)Φ(f ) = γN +

1
2

λ||ω| |2 (4) 

Optimizing the ensemble function is complex because it is trained 
additively; therefore, a greedy mechanism is used to achieve the desired 
optimization. Thus, ft is the greedy function added to Equation 4 to 
minimize the model’s loss at every iteration, such as the loss at Equation 

Fig. 3. Histograms of the numerical variables in the dataset.  

Fig. 4. The flowchart of the Random Forest approach.  

R. Taiwo et al.                                                                                                                                                                                                                                   



Ain Shams Engineering Journal 15 (2024) 102630

9

5 [44]. 

L
t
=

∑n

i=1
l [(yi, ȳS)

(t− 1)
+ft(xi)]+Φ(ft) (5)  

where ̄y(t)S represents the i-th instance prediction at the t-th iteration. The 
regularized objective function has three parts: l obtains the difference 
between the real values yi and the predicted values ȳS, ft is included to 
help minimize the function, and Φ manages the regression tree’s 
complexity. N is the number of tree leaves, ωi is the score or weight on 
the i-th leaf [44]. For regression tasks, as in this case, the scores of the 
leaves are continuous and shared by all the trees. XGBoost has shown 
high scalability and superior performance in many research areas, 
including infrastructure management and business domain [45]. Refer 
Fig. 5 for the graphical workflow of the XGBoost approach. 

4.3.2. LightGBM 
LightGBM is designed to reduce resource consumption while 

achieving high efficiency in speed and accuracy, especially for large- 
scale data tasks [46]. It employs two powerful techniques: Gradient- 
based One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB) to manipulate the gradient feature behavior for better scalability 
and efficiency. Normally, the instances with larger gradients contribute 
the most to the model gradient reduction. GOSS capitalizes on this 
feature and preserves those with larger gradients to whom it assigns 
larger weights while randomly sampling the instances with lower gra
dients. EFB uses the idea of feature exclusiveness to reduce the feature 
size for improved speed and memory consumption through feature 
bundling. Feature exclusiveness implies that it is often uncommon for 
most features to take nonzero values simultaneously since feature- 
exclusive values have very low occurrence rates [47]. 

LightGBM grows its trees leaf-wise (see Fig. 6) by preferring the most 
promising leaves, i.e., those with the maximum delta loss. The maximum 
delta loss is the largest loss reduction achieved when a node is parti
tioned [48]. For growth at the same leaf, leaf-wise growth algorithms 
have greater loss reduction than level-wise algorithms. Experimental 
results proved LightGBM (using GOSS) to exceed GBDT with the Sto
chastic Gradient Boosting in performance [47]. The quick imple
mentation makes it ideal for practical applications of real-life problems 

because it can be updated frequently. The model’s complexity at each 
computational stage is determined to decrease with the EFB adoption. If 
A is the given dataset, a sample data B is generated through bundling, 
such that the computational cost of building a histogram is reduced from 
∇A to ∇B where B≪A [46]. 

4.3.3. CatBoost 
CatBoost is a scalable ensemble learning technique developed for 

tackling categorical and numerical tasks with heterogeneous data and 
complex dependencies [49]. It adopts two innovative mechanisms: Or
dered Target Statistics (OTS) and Ordered Boosting (OB). The OTS is a 
target-based encoding introduced to handle high cardinality features, 
which are not managed by the one-hot encoding in CatBoost imple
mentation. Assuming a regression task to be performed on the dataset 
M (x1, y2),⋯, (xk, yk) using the novel CatBoost algorithm, if ht is the 
initial decision tree formulated. Then ht+1 is the decision tree to be 
added to form an ensemble in a way to minimize the loss L . Therefore, 
the goal is to obtain a sample S from M , that will bring about minimum 
losses [50]. 

However, it is crucial to ensure that overfitting would not occur from 
the encoding process using future data unavailable at the prediction 
time, a phenomenon known as target leakage. To avoid this, the OTS 
uses random permutations of the dataset to generate the required sam
ple S for creating the required ht+1. Then, the entire dataset M is used to 
evaluate whether the loss at L (y, Ft +ht+1) is minimized [50,51]. 
Additionally, it applies smoothing techniques to reduce the noise and 
variance of mean values in the training data, especially for low- 
frequency categories, to avoid imbalance or low-quality situations. 

OB, on the other hand, involves how the ensemble is constructed by 
the addition of a new tree to CatBoost model without causing prediction 
shifts. It ensures that the model uses all the datasets (xk, yk) by the end of 
the training process for its generalizability requirements. Employing the 
OB is necessary as the initial application of random data selection by the 
previous techniques, and even the choice of data samples for building 
new trees ht+1. Here, a new independent dataset Sk is always sampled 
from the entire dataset at each step of the boosting. It is then used as the 
new training examples for the current model, which was trained from 
the previously samples dataset Sk− 1 to obtain unshifted residuals [49]. 
Refer to Fig. 7 for the flowchart of the CatBoost approach. 

Fig. 5. The workflow of XGBoost approach.  
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4.4. Hyperparameters optimization using TPE 

The Tree-structured Parzen Estimator (TPE) is a sequential model- 
based optimization (SMBO) approach that is widely used for hyper
parameter optimization in ML-models [52,53]. The TPE algorithm is a 
Bayesian optimization method that models P(x|y) and P(y) instead of 

P(y|x) as in other SMBO methods. Here, x represents the hyper
parameters and y denotes the associated loss. The TPE algorithm oper
ates by constructing a probabilistic model that maps hyperparameters to 
a probability of a score on the objective function. The algorithm itera
tively refines this model as it gathers more data, using the model to 
select the most promising hyperparameters to evaluate on the actual 

Fig. 6. Level-wise tree growth (Left) and Leaf-wise tree growth (Right).  

Fig. 7. The flowchart of CatBoost approach.  
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objective function [54]. 
Mathematically, the TPE algorithm defines two distributions: l(x) for 

the best observed hyperparameters and g(x) for the rest. The algorithm 
selects the next set of hyperparameters to evaluate the objective function 
by maximizing the Expected Improvement (EI) criterion, which is given 
by Equation 6 [55]. 

EI. (x) = E [max(f(x) − f(x*), 0 ) ] (6)  

where x is the point being evaluated, x* is the current best point, f(x) is 
the predicted value of the function at x, and E[.] denotes expectation. 

The TPE algorithm follows these steps: 

• Initialize by randomly sampling a single hyperparameter configu
ration and evaluating the MSE as the objective function value.  

• Construct non-parametric Parzen estimator density models for the 
distributions l(x) and g(x). l(x) models the density of hyperparameter 
configurations that led to poorer objective scores. g(x) models the 
density of configurations with better objective scores.  

• Generate a new candidate set of hyperparameters by sampling from g 
(x) and low-density regions of l(x). The expected improvement 
acquisition function is used to balance exploration and exploitation.  

• Evaluate the MSE for the new hyperparameters and add them to the 
dataset.  

• Rebuild the Parzen estimator models l(x) and g(x) using the updated 
data.  

• Repeat steps 3–5 for M iterations until convergence criteria are met. 
Convergence is determined when no improvement in best MSE is 
observed over N iterations or maximum iterations M is reached.  

• Return the hyperparameter configuration with the lowest MSE as the 
final solution. 

The TPE algorithm has been shown to outperform other SMBO 
methods on a variety of benchmark problems, and thus, it was selected 
in this study [52,55]. Table 3 shows the hyperparameters of the five 
algorithms that were optimized, including their type and range. 

4.5. Model evaluation metrics 

In the assessment of the predictive EL-models, nine statistical metrics 
are employed to quantify their performance. These metrics are catego
rized into two groups: dissimilarity and similarity metrics [16]. The 
dissimilarity metrics include MSE, RMSE, MAE, MAPE, SI, and U95. The 
similarity metrics are R2, NSE, and KGE. Thus, the dissimilarity metrics 
measure the disparity between predicted and actual values, while the 
similarity metrics assess the degree of resemblance between predicted 

and observed values [16]. The R2 measures the proportion of variance in 
the dependent variable explained by the predictors, with values ranging 
from 0 to 1 and higher values denoting better model fit. NSE assesses 
how well the model replicates observed data by comparing residual and 
measured data variance; and ranges from − ∞ to 1. KGE provides a more 
comprehensive assessment by decomposing model performance into 
correlation, variability bias, and mean bias. This metric also ranges from 
− ∞ to 1, with higher KGE values suggesting stronger agreement be
tween modeled and observed data [16,17]. Table 4 depicts the evalua
tion metrics and their corresponding formulas [36,56,57]. 

4.6. Model ranking using the Copeland algorithm 

In this study, the Copeland algorithm is used to rank various pre
dictive models based on their performance. The algorithm works by 
comparing each model to every other model one by one. Points are given 
to the model that performs better in each comparison based on selected 
evaluation metrics [58]. 

(a) Performance Metrics: Criteria for Evaluation 
In the scope of this research, multiple evaluation metrics serve as the 

fundamental criteria for ranking. For instance, metrics based on 
dissimilarity are evaluated using the principle: 

LowerMSEValue⇒BetterModelFit (7)  

Conversely, similarity-based metrics are assessed by: 

HigherR2Value⇒GreaterExplanatoryPower (8) 

(b) Methodology of Pairwise Comparisons 
The basis of the Copeland algorithm is the pairwise comparison of 

each model against every other model in the set. For a given pair (Model 
i and Model j), the evaluation metrics are compared, with points allo
cated based on the following criterion: 

IfMetrici > Metricj, thenPointi + = 1 (9)  

IfMetricj > Metrici, thenPoinj+ = 1 (10) 

Table 3 
Hyperparameter details of the EL-models.  

Ensemble algorithms Hyperparameters Type Range 

DT Maximum depth Integer [1,20]  
Minimum samples leaf Integer [2,20]  
Minimum samples split Integer [1,20] 

RF Maximum depth Integer [1,20]  
Minimum samples leaf Integer [2,20]  
Minimum samples split Integer [1,20]  
Number of estimators Integer [1, 1000] 

XGBoost Learning rate Continuous [0.01, 1]  
Maximum depth Integer [1,20]  
Number of estimators Integer [1, 1000]  
Subsample Continuous [0.01, 1] 

LightGBM Learning rate Continuous [0.01, 1]  
Maximum depth Integer [1,20]  
Number of estimators Integer [1, 1000]  
Subsample Continuous [0.01, 1] 

CatBoost Learning rate Continuous [0.01, 1]  
Maximum depth Integer [1,20]  
Number of estimators Integer [1, 1000]  

Table 4 
Evaluation metrics for the predictive models.  

Performance 
indicator 

Category Formula Remark 

MSE Dissimilarity- 
based 

1
n
∑n

i=1
(Wi − Pi)

2 The lower 
the values 
of these 
metrics, 
the better 
the model 

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Wi − Pi)

2
√

MAE 1
n
∑n

i=1
|Wi − Pi|

MAPE 1
n
∑n

i=1
|
Wi − Pi

Wi
|

SI. RMSE
W̄ 

U95  1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(SD2 − RMSE2)

√

R2 Similarity- 
based 1 −

∑n
i=1(Wi − Pi)

2

∑n
i=1(Wi)

2 0 ≤ R2 ≤ 1 
The closer 
the values 
of these 
metrics to 
1, the 
better the 
model 

NSE 
1 −

∑n
i=1(Wi − Pi)

2

∑n
i=1(Wi − W̄)

2 − 1 ≤ NSE ≤ 1 

KGE 
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+
(σPi

σWi
− 1

)2
√

+

(μPi

μWi

− 1
)2  

Note: Wi is the i-th measured value of wall-thickness loss, Pi is the i-th predicted 
value of wall-thickness loss, W̄ is the arithmetic mean of the measured values of 
wall-thickness loss, r is the correlation between the measure and predicted value 
of wall thickness loss, σPi is the predicted values standard deviation, σWi is the 
measured values standard deviation, μPi 

is the mean of the predicted values, and 
μWi 

is the mean of the measured values.  
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This iterative process is conducted across nine evaluation metrics, 
concluding when all model pairs have undergone comparison. 

(c) Aggregated Scoring and Quantification 
Following pairwise assessments, an aggregate score, S, for each 

model is calculated using: 

S =
∑

Pointsgainedinallpairwisecomparisions (11) 

This aggregated score encapsulates the model’s performance across 
the spectrum of comparisons, serving as a comprehensive metric of its 
relative effectiveness. Five different outcomes are recorded for each 
model: ‘points,’ ‘wins,’ ‘losses,’ Copeland score, and rank.  

• Points: These are accumulated points given to a model when it 
performs better than another model in specific metrics during a 
pairwise comparison. For instance, if Model A has a lower MSE than 
Model B, Model A gains a score point. Scores are summed up across 
all comparisons to provide an aggregate score for each model.  

• Wins: A ‘win’ is counted for a model when it accumulates more score 
points in a pairwise comparison than its competitor. For example, if 
Model A gains more points than Model B across all selected metrics in 
a particular pairwise comparison, then Model A is said to ‘win’ that 
comparison.  

• Losses: Conversely, a ‘loss’ is recorded for a model when it gains 
fewer points than another model in a pairwise comparison.  

• Copeland score: The Copeland score is calculated as the difference 
between the number of ‘wins’ and ‘losses’ for each model. Mathe
matically, it can be represented as: 

CopelandScore = Wins − Losses (12)    

• Rank: Finally, the models are ranked based on their Copeland scores. 
The model with the highest Copeland score is ranked first, thereby 
indicating its superior performance across the evaluation metrics. 

4.7. Model interpretability using SHAP framework 

In this study, the SHAP framework is utilized to achieve model 
interpretability and gain insights into the wall-thickness loss prediction 
model. It should be noted that the best model selected by the Copeland 
algorithm is interpreted. The SHAP framework is based on cooperative 
game theory and provides a unified and mathematically grounded 
approach to explain the output of complex ML-models [59]. It assigns a 
unique value, known as the Shapley value, to each input feature, rep
resenting its contribution and direction to the prediction. The Shapley 
value ensures a fair and consistent allocation of contributions across 
features, considering all possible feature combinations. 

Mathematically, the Shapley value for feature i is defined by Equa
tion 7 [60]: 

∅i(f ) =
∑

[p(S ∪ {i}) − p(S)] (7)  

where ∅i(f) is the Shapley value of feature i for the prediction function f, 
S is a subset of features, excluding feature I, p(S) is the model’s pre
diction when considering only the features in subset S, p(S ∪ {i}) is the 
model’s prediction when including feature i in the subset S. The Shapley 
value satisfies desirable properties, such as efficiency, linearity, and 
symmetry, making it an attractive method for feature attribution in ML- 
models. 

5. Model implementation and discussion 

This section discusses the results of the EL-models in relation to the 
base and optimized models, the selection of the best model, and its 
interpretability. It should be noted that 80 % of the data are used for 
training, while the remaining 20 % is employed for testing the models. 

5.1. Results of the base EL-models 

Table 5 reports the evaluation metrics of the base EL-models for 
predicting the wall-thickness loss of water pipes using the training and 
testing datasets. Variations in the model’s performance across different 
metrics are observed, which highlights the importance of thorough 
evaluation. The five EL-models generally exhibit good performance on 
the training dataset, as indicated by the relatively low values for MSE, 
RMSE, MAE, and MAPE. Lower values for these metrics suggest that the 
models can closely predict the wall-thickness loss values. The high R2, 
NSE, and KGE values further confirm the models’ ability to explain the 
variance and achieve a strong fit to the training data. Using the testing 
datasets, which represent unseen data, the models show a decline in 
performance compared to the training datasets. This drop in perfor
mance is expected since the models encounter new patterns using data 
points not exposed to during training. Despite this drop, the EL-models 
still maintain reasonable predictive accuracy, as indicated by the rela
tively low values of the dissimilarity-based metrics and high values of 
the similarity-based values. When comparing the performance of the 
base EL-models, it is observed that each model has its strengths and 
weaknesses. The DT model shows exceptional performance on the 
training datasets, achieving the lowest MSE, RMSE, and MAE values 
among all EL-models. However, it shows a relatively higher drop in 
performance on the testing datasets, showing potential overfitting dur
ing the training phase. On the other hand, CatBoost, XGBoost, and RF 
consistently perform well across both datasets, achieving competitive 
results with relatively low MSE, RMSE, MAE, and MAPE values. Cat
Boost and XGBoost also exhibit high R2 and NSE values, suggesting a 
strong fit on both datasets. RF also demonstrates consistent and 
competitive performance across both datasets. 

5.2. Results of the optimized EL-models 

The evaluation metrics for the optimized EL-models, as presented in 
Table 6, provide an assessment of their performance based on both 
training and testing datasets. The optimized EL-models demonstrate 
improvements in prediction accuracy during the training and testing 
phases compared to their respective base EL-models. For example, the 
RF model exhibited notable improvements, with MSE, RMSE, MAE, and 
MAPE decreasing by 19.56 %, 10.31 %, 17.70 %, and 6.93 %, respec
tively, during the training phase after hyperparameter optimization 
using TPE. A similar trend was observed during the testing phase, where 
the RF model’s MSE, RMSE, MAE, and MAPE improved by 3.65 %, 1.84 
%, 15.80 %, and 9.05 %, respectively, after optimizing the process. 
Furthermore, the optimized EL-models generally outperformed their 
base EL-models concerning similarity-based metrics such as R2, NSE, 
and KGE. The R2 values for the optimized EL-models were found to be 
very close to the unit, indicating a strong agreement between the 
measured and predicted values. For example, XGBoost model achieved 
an R2 value of 0.9825 using the training data, while the optimized 
XGBoost model improved this performance to 0.9965. Similarly, using 
the testing data, the R2 value increased by 5.30 %. The NSE and KGE 
metrics also reflected the enhanced performance of the optimized EL- 
models. NSE values approaching 1 indicate superior accuracy, which 
is demonstrated in NSE values compared to the base EL-models. Addi
tionally, the KGE metric of XGBoost, which quantifies the agreement 
between EL-model predictions and observed values, improved by 3.96 % 
after optimization using TPE. 

Moreover, in Fig. 8, scatter plots of the predicted versus measured 
values of the wall-thickness loss are presented using five optimized EL- 
models for both datasets. The red-line represents the best-fitting line for 
the measured values, while the green-line depicts the best-fitting line for 
the predicted values. Notably, when using the testing data, a remarkable 
agreement between the predicted and measured values of wall-thickness 
loss is observed, as evidenced by the minimal distance between the red 
and green lines, particularly for the optimized CatBoost and XGBoost 
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models. These results substantiate the effectiveness of hyperparameter 
optimization using TPE in boosting the predictive capabilities of the EL- 
models. The improvements in accuracy and generalization achieved by 
the optimized EL-models signify their potential for practical application 
in WDN management and decision-making processes. 

5.3. Selection of the best EL-model 

As discussed in the preceding section, the optimized EL-models have 
demonstrated satisfactory predictive capabilities. However, determining 
the overall best EL-model requires a systematic approach, as different 
EL-models excel in specific evaluation metrics. For instance, when 
considering the testing dataset, the optimized CatBoost model per
formed the best in terms of MSE, while the optimized XGBoost model 
exhibited the highest value for KGE. Moreover, the MAPE values of the 
optimized RF and XGBoost models are nearly identical. As such, a 
method that systematically weighs all evaluation metrics is essential to 
select the best-performing EL-models. 

To achieve an unbiased selection for the best EL-model, Copeland 
algorithm was run on the testing dataset results shown in Table 6, while 
the results are reported in Table 7, where the model with the highest 
Copeland points is ranked first. According to the result, the optimized 
CatBoost model obtained 26 Copeland points, four wins, and zero losses, 
suggesting its consistent outperformance compared to other EL-models 
in the majority of the evaluation metrics. The optimized XGBoost 
model is ranked second with three wins and one loss, indicating its 
strong performance, although slightly behind the CatBoost model. With 
two wins and two losses, the RF model garnered a Copeland score of 
zero, signifying that it achieved an even performance compared to other 
EL-models. The DT and LightGBM models were ranked fourth and fifth, 
respectively, with negative Copeland scores, indicating lower perfor
mance than the other EL-models. In addition, the Taylor Diagram (TD) is 
computed using the testing dataset to further confirm the ranking of the 
EL-models. TD shows three statistical measures, including the standard 
deviation of the predicted and measured values, the root mean square 
difference (RMSD), and the correlation coefficient [16]. The standard 

deviation ratio is represented as the radial distance from the reference 
point to each model’s data point. A shorter radial distance signifies a 
smaller standard deviation ratio, indicating that the model’s variability 
closely matches the measured data. The RMSD is depicted as the 
azimuthal angle of each model’s data point relative to the reference 
point. A smaller azimuthal angle indicates a lower RMSD, suggesting 
better agreement between the model’s predictions and the actual mea
surements. The correlation coefficient is represented by the distance of 
each model’s data point from the reference point. Closeness to the 
reference point implies a higher correlation between the model’s pre
dictions and the measured values. Upon analysis of Fig. 9, it can be 
observed that the optimized CatBoost model is the closest to the refer
ence point, followed by the optimized XGBoost, RF, DT, and LightGBM 
models, respectively. This result aligns with the findings obtained from 
the Copeland algorithm, reinforcing the credibility and consistency of 
the EL-model ranking. 

5.4. Interpretability of the best EL-model 

One of the gaps in the previous related studies is that the contribu
tion of the input variables to the model prediction is unknown. To 
address this limitation, the contribution of the features (i.e., input var
iables) to the best EL-model predictions is explained using the SHAP 
framework. Fig. 10 presents the contribution of each feature to the 
prediction of the optimized CatBoost model. As per the result, “age” has 
the highest contribution to the predictive EL-model, followed by 
“installation year,“ “diameter,” and “length.” 

The age and installation year of water pipes are crucial factors in 
predicting wall-thickness loss. Older pipes are more likely to experience 
corrosion and wear over time, leading to a decrease in the wall-thickness 
[61]. Corrosion is a natural process that occurs as pipes are exposed to 
water and other elements, causing the gradual thinning of the pipe- 
walls. As pipes age, their resistance to environmental stressors di
minishes, making them more vulnerable to damage and leaks. There
fore, age is an essential feature as it captures the cumulative effect of 
degradation over the pipe lifespan. Regarding the pipe diameter, 

Table 5 
Evaluation metrics for the base EL-models using the training and testing datasets.  

Dataset Models MSE RMSE MAE MAPE SI U95 R2 NSE KGE 

Training DT  0.5611  0.7491  0.2074  1.3133  3.0391  1.4682  0.8530  0.9966  0.9975 
RF  5.8671  2.4222  1.9834  8.9891  8.8763  4.9721  0.9689  0.9700  0.9539 
XGBoost  0.5719  0.7562  0.2667  1.6550  3.0681  1.4822  0.9825  0.9903  0.9961 
LightGBM  14.8788  3.8573  2.9318  16.1763  15.6493  7.5603  0.9094  0.9099  0.9168 
CatBoost  2.4944  1.5793  1.2107  7.1171  6.4076  3.0955  0.9848  0.9849  0.9716 

Testing DT  28.2780  5.3177  3.9212  27.9766  27.5423  10.4210  0.8277  0.8314  0.9138 
RF  18.5690  4.3092  3.8305  26.4381  23.3914  9.9826  0.8459  0.8491  0.9199 
XGBoost  18.8455  4.3411  3.3708  25.2200  22.3700  8.4641  0.8552  0.8816  0.9085 
LightGBM  23.0591  4.8019  3.9197  37.2570  24.8738  9.4113  0.8513  0.8625  0.9182 
CatBoost  16.2245  4.0279  3.1922  29.8229  20.8266  7.8800  0.9011  0.9032  0.9217 

*Bold numbers indicate the best result. 

Table 6 
Evaluation metrics for the optimized EL-models using the training and testing datasets.  

Dataset Models MSE RMSE MAE MAPE SI U95 R2 NSE KGE 

Training DT + TPE  17.8790  4.2283  3.2676  16.1046  17.1547  8.2875  0.8912  0.8918  0.9208 
RF + TPE  4.7192  2.1723  1.6323  8.4234  8.8116  4.2569  0.9712  0.9714  0.9553 
XGBoost + TPE  0.5703  0.7518  0.2181  1.3622  3.0474  1.4800  0.9965  0.9966  0.9973 
LightGBM + TPE  18.4813  4.2989  3.2923  18.1405  17.4412  8.4260  0.9075  0.8881  0.8942 
CatBoost + TPE  0.5424  0.7364  1.1824  6.9775  6.2093  2.9997  0.9857  0.9858  0.9733 

Testing DT + TPE  19.3884  4.4032  3.1791  26.2625  22.8061  8.6289  0.8812  0.8844  0.9312 
RF + TPE  17.8909  4.2297  3.2250  24.0459  21.9107  8.2902  0.8910  0.8933  0.9302 
XGBoost + TPE  15.5882  3.9481  3.0130  24.0448  20.4503  7.7376  0.9030  0.9070  0.9460 
LightGBM + TPE  23.7815  4.8766  3.8368  36.4374  25.2577  9.5566  0.8551  0.8582  0.9028 
CatBoost + TPE  15.3342  3.9159  3.0768  27.0862  20.2111  7.6471  0.9045  0.9085  0.9357 

*Bold numbers indicate the best result. 
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Fig. 8. Scatter plots of the predicted versus measured values of wall-thickness loss for all the five EL-models.  
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variations in water pressure within the pipe can contribute to wall 
thickness loss. Higher water pressures exert more force on the pipe’s 
internal diameter, leading to potential weakening and thinning of the 
wall [62,63]. Additionally, pressure variations create cyclical stress on 
the pipe, promoting fatigue and material degradation. Length is another 
factor with a high contribution to the predictive EL-model. Longer pipes 
have a larger surface area exposed to external factors, such as soil 
movement, temperature variations, and environmental conditions. 
These external factors can contribute to wall-thickness loss through 
external corrosion or wear [64]. 

Fig. 11 visually represents the direction of each feature contribution 
to the EL-model’s prediction. The figure’s spectrum reflects the input 
variables’ feature values, ranging from blue (representing the lowest 
feature value) to red (representing the highest feature value). It is 
observed that a low value of age (indicated by the blue color) has a 
negative impact on the prediction. This implies that as the age of the 
water pipes decreases, the EL-model predicts a lower likelihood of wall- 
thickness loss. Older pipes, with higher age, are more prone to corrosion, 

wear, and degradation, leading to a higher probability of wall thickness 
loss. Therefore, the model correctly captures the inverse relationship 
between age and wall-thickness loss. The figure also shows that a higher 
pipe diameter value negatively contributes to the EL-model’s prediction, 
suggesting that larger pipe diameters are associated with a reduced 
likelihood of wall-thickness loss [65]. Larger diameter pipes can better 
withstand the stresses and pressures imposed during water trans
portation, reducing the risk of internal erosion and corrosion that lead to 
wall-thickness loss. 

6. Implications and limitations of the study 

6.1. Implications 

The optimized EL-models, particularly the CatBoost + TPE and 
XGBoost + TPE models, demonstrated improved predictive accuracy 
compared to their base counterparts. These models exhibited better 
performance across various evaluation metrics, including MSE, RMSE, 
MAE, and MAPE. Such enhanced predictive accuracy allows water 
utility managers to make informed decisions about pipe maintenance, 
replacement, and resource allocation, thereby optimizing the WDN ef
ficiency. The systematic use of the Copeland algorithm allowed for an 
unbiased selection of the best-performing model. The algorithm 
considered all evaluation metrics, providing a comprehensive assess
ment of EL-model performance. The CatBoost + TPE model emerged as 
the top-performing EL-model based on its Copeland score, with consis
tent wins across various evaluation metrics. This model selection process 
ensures that water utility managers adopt the most reliable and accurate 

Fig. 8. (continued). 

Table 7 
Comparative result of the Copeland algorithm.  

Model Copeland Point Wins Losses Copeland Score Rank 

CatBoost + TPE 26 4 0 4 1 
XGBoost + TPE 24 3 1 2 2 
RF + TPE − 2 2 2 0 3 
DT + TPE − 12 1 3 − 2 4 
LightGBM + TPE − 36 0 4 − 4 5  
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predictive model for their specific WDNs. 
The study addressed the lack of model interpretability in previous 

related studies by employing the SHAP approach to explain the contri
bution of input variables to the optimized CatBoost model’s predictions. 
The SHAP visualizations provided valuable insights into the influence of 
age, installation year, diameter, and length on wall thickness loss. This 

interpretability empowers water utility managers to identify critical 
factors affecting pipe deterioration and prioritize maintenance efforts 
effectively. The successful implementation of explainable EL-models 
with interpretability tools creates a robust decision support system for 
WDN management. By integrating ML predictions with the SHAP 
framework, water utility managers comprehensively understand the 

Fig. 9. Taylor diagram of the EL-models using the testing datasets.  

Fig. 10. Contribution of each feature to the prediction of the optimized CatBoost model.  
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underlying factors influencing wall-thickness loss. This knowledge fa
cilitates proactive and data-driven decision-making, resulting in cost- 
effective and sustainable maintenance strategies. 

Furthermore, with the ability to predict wall-thickness loss accu
rately, water utility managers can assess the structural integrity and 
remaining lifespan of water pipes. This knowledge empowers them to 
develop targeted rehabilitation plans, prevent catastrophic failures, and 
enhance the overall WDN resilience. By addressing potential issues 
before they escalate, the study’s implications contribute to the long-term 
reliability and safety of WDS. 

6.2. Limitations 

The present study offers valuable contributions to the field of pre
dictive modeling for pipe failure and wall-thickness loss. However, it is 
crucial to acknowledge the limitations inherent in the research to pro
vide a balanced perspective and guide for future works. One limitation is 
the relatively small number of factors included in the dataset, consisting 
of only seven variables, including the dependent variable. This limited 
set of variables may not fully capture all the complex factors that could 
influence the wall-thickness loss in water pipes. As a result, there might 
be some unaccounted variables that could have significant effects on the 
prediction accuracy of the EL-models. 

Additionally, the data used in this study were gathered from limited 
locations. This geographical restriction may limit the generalizability of 
the findings to other regions with different environmental conditions 
and infrastructural characteristics. The dataset may not fully represent 
the diverse range of conditions and pipe materials found in WDNs 
globally, thus potentially affecting the models’ performance when 
applied to different contexts. Future research could address these limi
tations by considering a more comprehensive dataset, including more 
variables, incorporating data from diverse geographical locations, and 
exploring alternative modeling approaches. 

Another limitation is the absence of a treatment of uncertainty in the 
predictive models due to lack of data. Incorporating uncertainty con
siderations into predictive models offers an additional layer of rigor, 
enhancing the model’s applicability for risk assessments and decision- 
making processes. Uncertainty manifests in various forms, such as 
model uncertainty, parameter uncertainty, and external factors, as 
explained below:  

• Model Uncertainty: This refers to the limitations in the predictive 
model itself. No model can capture all the complexities of a real- 
world system, so there’s always some level of approximation 
involved in the model’s output.  

• Parameter Uncertainty: The estimates for model parameters are 
based on available data and can vary within a confidence interval. 
This variability introduces another layer of uncertainty.  

• Measurement Uncertainty: The data employed in this study were 
measured and recorded using specific instruments and methodolo
gies. Any error or limitation in these processes can contribute to the 
overall uncertainty of the model predictions.  

• External Factors: Unaccounted factors such as future environmental 
changes or shifts in usage patterns can also contribute to prediction 
uncertainty. 

Addressing these limitations could be the focus of future research. 
For instance, incorporating Bayesian methods or Monte Carlo simula
tions could offer a more nuanced understanding of uncertainty. This 
would not only enhance the model’s reliability but also provide 
decision-makers with a more robust basis for risk assessment. 

7. Conclusion 

Water distribution networks often face significant challenges due to 
unexpected pipe failures, adversely impacting the environment, econ
omy, and society. To mitigate such failures, one essential approach is 
predicting the wall-thickness loss of water pipes, an indicator of pipe 
integrity that has received relatively lower attention in previous studies. 
Addressing this critical gap, the current research developed and opti
mized machine learning (ML) models for wall-thickness loss prediction 
while employing the SHapley Additive exPlanations (SHAP) for model 
interpretability. 

The study harnessed experimental data collected from four WDNs 
situated in Canada and the USA, encompassing seven variables: age, 
length, diameter, installation year, material, number of breaks, and 
wall-thickness loss. Preprocessing steps involved outlier removal and 
exploratory data analysis, including correlation matrix assessments and 
other statistical techniques were conducted. For model development, 
five ensemble algorithms, namely CatBoost, Decision Tree, Random 
Forest, XGBoost, and LightGBM, were employed to predict wall- 
thickness loss. Subsequently, the hyperparameters of the EL-models 

Fig. 11. Directional distribution of the SHAP values on the best EL-model’s output.  
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were optimized using the Tree-Structured Parzen Estimator. The EL- 
models were evaluated using dissimilarity and similarity-based met
rics. As per the evaluation metrics, improvements in predictive perfor
mance after optimization were demonstrated, affirming the efficiency of 
hyperparameter tuning in enhancing the models’ capabilities. For 
instance, the MSE and SI of DT using the testing dataset were reduced by 
31.46 % and 17.19 %, respectively, after optimizing the hyper
parameters. To ensure an unbiased selection of the best optimized 
model, the Copeland algorithm was employed to systematically rank the 
models based on the evaluation metrics. The Copeland algorithm’s 
result indicated that CatBoost outperformed the other models, followed 
by XGBoost and RF. This result was further corroborated by the Taylor 
Diagram analysis, which displayed the superiority of CatBoost and 
XGBoost in terms of standard deviation ratio, RMSD, and correlation 
coefficient. Furthermore, the best model was explained using the SHAP 
framework. The interpretation of the best model revealed valuable in
sights into the contribution of input variables to the prediction of wall- 
thickness loss. The identification of influential features, such as age, 
installation year, diameter, and length, enables a better understanding 
of the factors driving pipe degradation, further informing decision- 
making in WDN management strategies. 
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