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A B S T R A C T

In this paper, we propose a doping approach to lower the error floor of Low-Density Parity-Check (LDPC) codes.
The doping component is a short block code in which the information bits are selected from the coded bits of the
dominant trapping sets of the LDPC code. Accordingly, an algorithm for selecting the information bits of the short
code is proposed, and a specific two-stage decoding algorithm is presented. Simulation results demonstrate that
the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error
rate of 10�6. Furthermore, the proposed design can lower the error floor of original LDPC codes.
1. Introduction

Since their rediscovery in the 1990s [1], LDPC codes have attracted
researchers’ attention due to their impressive capacity-approaching ca-
pabilities and practical decoding algorithms. So far, they have been
adopted in several industrial standards such as wireless local area
network (IEEE 802.11n) [2], DVB-S2 for video broadcast via satellite,
WiMAX(IEEE 802.16e) [3], IEEE 802.3an for 10 Gbit/s Ethernet [4], and
the fifth generation mobile communication system (5G) [5]. Although
typical short and moderate-length (say �2000 bits) LDPC codes for
wireless and wireline applications have demonstrated excellent waterfall
performance down to a Bit Error Rate (BER) level of 10�7 even to 10�10,
they often suffer from an error floor, especially at high Signal-to-Noise
Ratio (SNR). That is, the error performance of short and
moderate-length LDPC codes ceases to improve much despite using
higher SNR channels. Consequently, they are not very suitable for those
high-throughput, power-efficient applications such as optical communi-
cation and flash memory, where the requirements on data reliability are
typically under a Frame Error Rate (FER) of 10�12.

The error floor problem of an LDPC code is attributed to some topo-
logical substructures of the code's Tanner graph. For the Binary Erasure
Channel (BEC), the graphical structures related to the error floor are
known as stopping sets. A stopping set S is a variable-node set in which
all neighbors of S are connected to S at least twice. As a result, the
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variable nodes cannot be determined by the iterative decoder even if all
other bits are known. It is because every neighbor of S has at least two
connections to this set, and thus all messages to S are erased messages
[6]. For the Additive White Gaussian Noise (AWGN) channel, the
graphical structures associated with the error floor are called trapping
sets [7], which are defined as a specific variable-node set that is con-
nected to some odd-degree check nodes. Trapping sets are characterized
by a pair of parameters (a, b), where a is the number of variable nodes,
and b is the number of check nodes with odd degrees. Trapping sets
which are closely related to the error floor are called dominant trapping
sets whose (a, b) parameters are typically small. For the Binary Sym-
metric Channel (BSC), the graphical structures which limit the perfor-
mance of iterative decoders are called absorbing sets. Absorbing sets
have a similar definition as trapping sets and also control the error floor
behavior of message-passing decoders [8].

Over the past two decades, much work has been devoted to lowering
the error floor. It can be roughly divided into two categories: (1) code
construction avoiding certain topological structures and (2) modification
of decoding schemes. For example, Asvadi et al. [9] constructed
Quasi-Cyclic (QC) LDPC codes with low error floors by eliminating the
dominant trapping sets of the base code. In Ref. [10], Nguyen et al.
designed structured regular LDPC codes with low error floors over the
Binary Symmetric Channel (BSC) by avoiding certain small trapping sets.
Recently, Wang et al. [11] designed separable circulant-based LDPC
@cqu.edu.cn (X. Jiao), yqhu@cqu.edu.cn (Y. Hu), luozhenluozhen@gmail.com
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codes free of certain absorbing sets by utilizing the cycle consistency
matrix. Tao et al. [12] presented a construction of QC-LDPC codes with
degree-3 variable nodes and girth 8 based on fully-connected proto-
graphs, where small elementary trapping sets were removed by avoiding
certain cycles of length 8 in the Tanner graph. In Ref. [13], Sarıduman
et al. developed a simulated-annealing-based method to design regular
QC-LDPC codes without dominant trapping sets and thus with good
performance in the error floor region. Most recently, Karimi et al. [14]
presented a systematic design of protograph-based QC-LDPC codes with
low error floors by characterizing the trapping sets of the codes and
eliminating a targeted collection of trapping sets. Moreover, researchers
proposed Generalized LDPC (GLDPC) codes [15,16], which are better
than original LDPC codes in the error floor region by replacing the single
parity checks with generalized constraints. However, such a construction
leads to a noticeable rate loss which is unacceptable in those scenarios
requiring high bandwidth efficiency.

Alternatively, different decoding strategies have been proposed to
lower the error floor. Han et al. [17] designed three low-error-floor de-
coders by identifying the trapping set information of an LDPC code based
on simulation or graph-search techniques. Zhang et al. [18] designed a
high-throughput parallel-serial decoder architecture and demonstrated
that dually-quantized sum-product decoders and approximate
sum-product decoders lower the error floor of LDPC codes by alleviating
the effects of low-weight absorbing sets. In Ref. [19], Casado et al. pre-
sented Informed Dynamic Scheduling (IDS) strategies that select the
messages to update, converge in fewer iterations, and produce a lower
error floor than either flooding or sequential scheduling. Angarita et al.
[20] developed a reduced-complexity Min-Sum (MS) algorithm and
showed that such an algorithm achieves better error-floor performance
when compared with the normalized MS algorithm. Li et al. [21] pro-
posed a low-complexity post-processing scheme to significantly lower the
error floor of an MS-based LDPC decoder by introducing perturbations
and hence helping the decoder escape from undesired local maximums.
Lee et al. [22] developed a low-complexity redecoding-based error-floor
lowering technique for QC-LDPC codes, where a predetermined set of
variable nodes, obtained by using a two-stage off-line search, are atten-
uated before the redecoding. Tao et al. [23] were inspired by simulated
annealing and generalized the post-processor design, which lowers the
error floors by two orders of magnitude for two LDPC codes. Based on the
assumption that trapping sets are the primary cause of error floor for
quantized LDPC decoders, Hatami et al. [24] presented a modified MS
algorithm which outperforms the conventional MS algorithm, the
attenuated MS algorithm, and the offset MS algorithm across all SNRs.

Although the above-mentioned construction methods and decoding
schemes were developed to lower the error floor, an effective and low-
complexity strategy to design an LDPC code with good performance
(including code construction and decoding strategy) in both waterfall
and error-floor regions is still lacking. In this paper, we first present a
doping method to lower the error floor of LDPC codes by integrating the
Tanner graphs of an LDPC code and a short block code as a whole [26].
Herein, all the information bits of the short block code are chosen from
the coded bits of the LDPC code. The resultant codes are referred to as
doped LDPC codes thereafter, where the LDPC code and the short block
code are called the global code and the component code, respectively.
Actually, our work can be seen as a generalization of [27], in which
additional single parity checks were introduced to lower the error floors
of LDPC codes. In our framework, an algorithm for selecting information
bits of the component codes is developed by utilizing the information of
dominant trapping sets of LDPC codes which can be efficiently obtained
according to the algorithm given in Ref. [28]. (Therein, the influence of
each type of trapping set on the code performance is measured based on
the method given in Ref. [29].) We expect that those variable nodes
forming the dominant trapping sets of the LDPC code are selected to
encode the component code. The objective is to provide extra “external”
information to the variable nodes in the trapping sets and hence help
them converge to the correct bit values.
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It is worth pointing out that those short block codes with low to high
rates can be employed as component codes in our framework. Since they
are much shorter than the original LDPC codes, the resultant rate loss is
very small. On the contrary, high-rate component codes are required for
GLDPC codes due to significant rate loss resulting from replacing the
single parity checks with super checks. Here Quadratic Residue (QR)
codes are considered as the component codes in our simulations, but
other linear block codes are also applicable.

In order to decode the proposed doped LDPC codes, a two-stage
decoding algorithm is further developed. In the first stage, the conven-
tional log-domain Belief Propagation (log-BP) algorithm and the A Pos-
teriori Probability (APP) decoding algorithm given in Ref. [25] are
utilized (it is called the one-stage decoding algorithm hereafter). If no
valid codeword is output, the second-stage decoding will start. During
this stage, a variable γ is introduced to measure the decoding reliability of
the component codes after the first-stage decoding. Subsequently, two
submodes are presented to finish the second-stage decoding in terms of
the value of γ.

Simulation results show that the proposed doped LDPC codes with the
one-stage decoding algorithm achieve 1.6 dB and 1.4 dB gains, respec-
tively, at a FER of 10�5, when the (204, 102) and the (408, 204) Mackay
codes are considered. Nevertheless, the doped LDPC codes with the one-
stage decoding algorithm provide no gain when the (672, 336) Margulis
code and the (279, 158) RS-LDPC code are tested. We also note that the
doped LDPC codes always perform better than the original LDPC codes if
the two-stage decoding algorithm is utilized and the two-stage algorithm
provides noticeable gains over the one-stage decoding algorithm in the
four examples. Furthermore, the rate loss due to doping is small when the
doped LDPC codes are constructed by long LDPC codes and short block
codes. Complexity analysis demonstrates that almost the same average
number of iterations is required for both the one-stage decoding algo-
rithm and the original log-BP algorithm, while the CPU runtime of the
one-stage decoding algorithm is slightly longer than that of the log-BP
algorithm. Moreover, although the two-stage algorithm requires much
more CPU runtime than the one-stage algorithm in the low SNR regimes,
both of them use comparable average decoding time in the high SNR
regimes.

It should be highlighted that the performance of the proposed doped
LDPC code is closely related to the component code. It is because the
information length of the component code represents the number of
Variable Nodes (VNs) located in the trapping sets of the original LDPC
code that can receive the extrinsic information from the Check Nodes
(CNs) of the component code. One intuition is that longer component
codes are required to provide large gains if longer LDPC codes (say with
1000, 2000 bits) are chosen to construct the doped LDPC codes. Never-
theless, we believe that the proposed construction of doped LDPC codes,
which consists of the algorithm of selecting the information bits of the
component code and the doping method, is effective in designing good
doped LDPC codes.

The remainder of this article is organized as follows. The concept of
doped LDPC codes and the (traditional) one-stage decoding algorithm are
first introduced in Section 2, and this section also reviews the knowledge
of trapping sets. Section 3 presents the proposed novel design of doped
LDPC codes and the method to select the information bits of the
component code based on the trapping-set concept. Section 4 describes
the two-stage decoding algorithm. Simulation results and complexity
analysis are discussed in Section 5 and Section 6, respectively. Finally,
Section 7 concludes this paper with a brief summary.

2. Terminology and background of doped LDPC codes and
trapping sets

2.1. Doped LDPC codes

We assume that a doped LDPC code is constructed by adding the
check bits of a short block code after the coded bits of an LDPC code,
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where the information bits of the component code are selected from the
LDPC codeword. We denote N andM as the code length and information
length of the LDPC code and n and m as the code length and information
length of the component code, respectively. Then the corresponding
Tanner graph contains Nþ(n�m) variable nodes, (N�M) Single Parity
Check (SPC) nodes, and one generalized check node called a Component
Check (CC) node in the sequel. Fig. 1 shows an example of the doped
LDPC code, which consists of an LDPC code (for illustration purpose) and
a component code. In this example, v1, v2, …, v8 correspond to an LDPC
codeword, and (v2, v4, v6, v8, v9, v10, v11) represents a component code-
word in which v2, v4, v6, v8 are the information bits. Moreover, the
component code is represented by a Component Check (CC) node (large
square), some extra VNs, and extra connections in the Tanner graph of
the original LDPC code. The corresponding code rate of the resultant
doped LDPC code is then given by

R � M
N þ n� m

(1)

In this paper, we denote x as a scalar, x as a vector,A as a set, andA as
a matrix. The one-stage decoding algorithm of the doped LDPC codes is
similar to the log-BP algorithm for conventional LDPC codes. We denote
by rtj→i (respectively qti→j) the message passed from check node j
(respectively variable node i) to variable node i (respectively check node
j) for the original LDPC code, where the superscript t indicates the iter-
ation number, i¼ 1,…, N, j¼ 1,…, N�M. Let L(Pk), k¼ 1,…, Nþn�m be
the log-likelihood channel message of the k-th received bit. Then the
decoding steps at each iteration are summarized as follows.

1) Update rtj→i

Considering the SPC nodes of a doped LDPC code, the update formula
of rtj→i (j ¼ 1, …, N�M) is the same as that in the log-BP algorithm for
decoding LDPC codes, i.e.,

rtj→i ¼ 2tanh�1

 Y
i0 2N ðjÞni

tanh
�
1
2
qt�1
i0→j

�!
(2)

where NðjÞ is the set of Variable Nodes (VNs) connected to the check
node j.

In a doped LDPC code, we assume that there is only one component
code and denote it by s. We use the APP algorithm given in Ref. [25] to
compute the message transmitted from the CC node to its neighboring
variable nodes. The messages of the CC node received from the neigh-
boring variable nodes in the previous iteration are denoted as

qt�1
s ¼ ½qt�1

g1→s;…; qt�1
gn→s� (3)

whereNðsÞ ¼ fg1; g2;…; gng represents the set of neighboring VNs of the
Fig. 1. The architecture and the Tanner graph of a doped LDPC code.
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component code s. Note that g1, g2, …, gm are also VNs of the original
LDPC code. The APP algorithm computes the log-likelihood values which
are denoted as

yts ¼ ½yts→g1
;…; yts→gn

� (4)

Then the extrinsic messages passed from the CC node to neighboring
variable nodes are given by

ut
s ¼ ½uts→g1

;…uts→gn
� (5)

The relation among ut
s, y

t
s and qt�1

s is

ut
s ¼ yts � qt�1

s (6)

2) Update qti→j for i ¼ 1, 2, …, N

qti→j ¼

8>><
>>:

LðPiÞ þ
X

j0 2CðiÞnj
rtj0→i þ uts→i if i 2 NðsÞ

LðPiÞ þ
X

j0 2CðiÞnj
rtj0→i otherwise

(7)

where CðiÞ is the set of Check Nodes (CNs) connected to the variable node
i.

Update qti→s for i 2 N ðsÞ

qti→s ¼ LðPiÞ þ
X
j0 2CðiÞ

rtj0→i (8)

3) Update the posterior log-likelihood values

LðQiÞ ¼

8>><
>>:

LðPiÞ þ
X
j0 2CðiÞ

rtj0→i þ uts→i if i 2 NðsÞ

LðPiÞ þ
X
j0 2CðiÞ

rtj0→i otherwise
(9)

4) Hard decision

v̂i ¼
�
0; if LðQiÞ > 0
1; otherwise

i ¼ 1;…;N (10)

If the maximum iteration number is reached or the equationH � v̂T ¼ 0
ðv̂¼ ½v̂1;…; v̂N �Þ is satisfied whereH is the parity check matrix of an LDPC
code, then the algorithm terminates. Otherwise, it continues with the
next iteration.

2.2. Trapping sets

The term trapping set first proposed by Richardson [7] was defined as
a specific set of VNs connected to some CNs with odd degrees. An (a, b)
trapping set is a configuration of a VNs, which induces a subgraph
including b unsatisfied CNs (i.e., odd-degree CNs) and any possible
number of satisfied CNs (i.e., even-degree CNs). In a trapping set, the
satisfied CNs contribute to the error floor of an LDPC code because they
tend to keep the current hard-decision output of the decoder that cor-
responds to an incorrect codeword. On the other hand, unsatisfied CNs
can pass the correct extrinsic message into the trapping set and help the
trapped VNs escape from the trapping set.

A trapping set is called an (a, b) elementary trapping set if there are a
VNs inducing b unsatisfied CNs whose degrees are only one or two in the
induced subgraph S. In the literature, elementary trapping sets are known
to be the dominant contributor to the error floor [30]. Define G¼ (V [ C,
E) as the bipartite graph of an LDPC code with the set of VNs V ¼ {v1, v2,
…, vN}, the set of CNs C ¼ {c1, c2, …, cN�M}, and the edge set E. Let S be
the subgraph induced by an (a, b) trapping set contained in G and VS be



Fig. 3. The computation tree with root v4.
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the set of VNs in S. Further, denote CS as the set of CNs adjacent to the
VNs in VS. Let C1 ⊆ CS be the set of unsatisfied CNs with degree-one in the
subgraph S and V1 ⊆ VS be the set of neighboring VNs of those CNs in C1.
For the convenience of algorithm description in the following sections,
two concepts, i.e., the computation tree and the separation [31,32], are
introduced as follows.

Definition 1 (k-iteration computation tree): A k-iteration computation
tree for a message-passing decoder in G, denoted by Tk(v), is a tree
constructed by selecting a variable node v 2 V as its root and then
recursively adding the edges and leaf nodes according to the message-
passing path during k decoding iterations.

Definition 2 (k-separation): Given a Tanner graph G and a subgraph S
induced by a trapping set, a variable node v2 V1 is said to be k-separated if
there exists at least one neighboring degree-one check node, no
descendant of which is included in VS. If every VN in V1 is k-separated, we
say that the induced subgraph S satisfies the k-separation assumption.

In Fig. 2, we show the graph of a (5, 1) trapping set in the (96, 48)
Mackay code and some of its neighboring nodes. The set of VNs in the
trapping set is VS ¼ {v1, v2, v3, v4, v5} indicated by solid black circles, and
the set of CNs in the trapping set is CS ¼ {ci}, 1 � i � 8. In this trapping
set, only C8 is the degree-one CN, i.e., V1 ¼ {v4} and C1 ¼ {c8}.
Accordingly, v6, v7 are the neighboring VNs of the trapping set. Fig. 3
illustrates a computation tree with the root v4 of the subgraph induced by
the above (5, 1) trapping set. According to the above definition, the VN v4
has the separation of 1 since there exists no leaf nodes belonging to VS in
T1(v4) while the descendants v1 and v5 belong to VS in T2(v4). A theorem
about the k-separation is given below.

Theorem 1. (Theorem 4, [32]): Let G be the Tanner graph of a
variable-regular LDPC code that contains an induced subgraph S of a trapping
set. Suppose that the channel is either a Binary Symmetric Channel (BSC) or
an Additive White Gaussian Noise (AWGN) channel, and that the message
transmitted from the channel to all VNs outside the subgraph S are correct. If S
satisfies the k-separation assumption for sufficiently large k, then all erroneous
VNs in S can be corrected successfully with the BP-based decoder.

3. The proposed design of doped LDPC codes

In the conventional GLDPC configuration, the performance
improvement is at the cost of an evident rate loss, which hinders its ap-
plications in those high-rate scenarios. In this paper, a new design al-
gorithm of doped LDPC codes is proposed, in which some VNs of an LDPC
code are selected as the VNs of the component code, i.e., as the infor-
mation bits of the component code. In other words, a doped LDPC
codeword can be generated by re-encoding some selected coded bits of
an LDPC codeword and concatenating the LDPC codeword and the check
bits of the component code. The corresponding Tanner graph is given in
Fig. 1. In such a configuration, some VNs of the original LDPC code and
all the VNs corresponding to the check bits of the component code are
connected to a CC node. As shown in Fig. 1, nodes v2, v4, v6, v8, v9, v10 and
v11 are connected to a CC node and thus satisfy the constraints of the
component code.
Fig. 2. The Tanner graph of a (5, 1) trapping set and its neighboring VNs (v6, v7)
in the (96, 48) Mackay code.
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Proposition 1. Let us select one or a few VNs from an (a, b) elementary
trapping set as VNs of the component code. Assume that all VNs of the
component code are correct, or that they can always be corrected after the APP
decoding. Then the (a, b) trapping set will be reduced to a smaller one or even
disappear.

Proof: The proof is similar to that of Theorem 1 in Ref. [32]. If a VN vr
in a trapping set Γ is connected to a CC node, this VN can escape from Γ
with the aid of the CC node according to the assumption. By removing
this VN and its associated edges from the subgraph induced by Γ, a
smaller elementary trapping set Γ0 is formed because some satisfied CNs
become unsatisfied CNs. These new unsatisfied CNs will further increase
the separation degree of their neighboring VNs (a k-separated VN is said
to have a separation degree of k) with a high probability and thus make
Fig. 4. The flowchart of Algorithm 1.
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erroneous VNs be corrected for a sufficiently large number of iterations.
Consequently, the original trapping set Γ will shrink or even disappear.

In summary, aVNvrof anLDPCcodewill escape froma trapping setwith
a high probability after being connected to a CC node and will further
generate new unsatisfied CNs in the corresponding trapping set. Accord-
ingly, these unsatisfied CNs increase the separation of the neighboring VNs
and hence help the VNs escape from trapping sets as the iteration number
increases. Therefore, the design given in Fig. 1 eliminates or mitigates the
trapping set, thereby improving the performance of the LDPC code. In this
paper,we chooseQRcodes as the component code for illustration, although
other short systematic block codes can also be used in the proposed doped
LDPC framework. In practice, this type of doped LDPC codes can be viewed
as a class of two-edge type LDPC code. One edge-type corresponds to the
LDPC code, and the other is related to the component code.

It can readily be understood that selecting VNs of the component code
directly influences the performance of doped LDPC codes. Yuan et al.
[27] developed a bit-searching algorithm in which the most erroneous
VNs and the most reliable VNs are first located based on Monte Carlo
simulations. Then new CNs connecting the most erroneous VNs and the
most reliable VNs are added to lower the error floor. (However, this al-
gorithm does not utilize the knowledge of trapping sets of an LDPC code.)
The bit-searching algorithm given in Ref. [27] has a drawback: most of
the chosen VNs may belong to one or two trapping sets, whereas some
chosen VNs are not included in any trapping sets, leading to the fact that
there exists no edge between some harmful trapping sets and those newly
added CNs. Towards this end, we develop a bit-selecting algorithm,
called Algorithm 1, based on the knowledge of trapping sets, as follows.
The corresponding flowchart is illustrated in Fig. 4.
Remarks: 1) In the second step of Algorithm 1, we first select a type of
trapping set with the least number of unsatisfied CNs and denote it by A.
It is very likely that this type of trapping set contributes to the error floor.
The VNs in A should be considered with the highest priority when
selecting the VNs of the component code.

2) We guarantee that the selected VNs are associated with as many
trapping sets in A as possible. If a sufficient number of VNs (i.e., m VNs)
cannot be selected from the trapping sets inA, other VNs in other types of
trapping sets not belonging to A will be considered (i.e., E). In selecting
VNs, we always follow the priority given in Algorithm 1 and cover as
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many dominant trapping sets as possible.
3) If three types of trapping sets cannot provide enough VNs needed

to encode the component code, four or more types of trapping sets will be
selected to form E in the third step of Algorithm 1.

4) Experimental results show that the trapping sets in A have a larger
effect on the decoding performance than those in E. Therefore, we always
insert those VNs from A into the left-most position of Q but insert the
ones from E at the end of Q (Note that Q is an ordered set). The
arrangement ensures that the VNs in A have more chance to be selected
than the ones in E since we always select the first m VNs of Q to encode
the component code.

5) Only one VN of each trapping set in A is inserted into Q since
correcting an erroneous VN often helps other VNs escape from the
trapping set. This method increases the variety of trapping sets; thus,
more VNs belonging to different trapping sets can receive the extrinsic
information from the component code.

In order to explain Algorithm 1 more clearly, we take the (204, 102)
Mackay code as an example.

Step 1 The table of dominant trapping sets of this code is generated as
shown in Table 1 in Section 5.

Step 2 The unique (4, 0)-type trapping set consisting of VNs 114, 154,
164 and 199 is selected, i.e., A ¼ ff114;154;164;199gg.

Step 3 The (5, 1)-, (9, 1)- and (7, 1)-types of trapping sets are selected
and form E. As illustrated in Table 1, E consists of 39 trapping sets
(three types of trapping sets).

Step 4 Since there is only one trapping set in A, there are no common
VNs, and Q is an empty ordered set. Set u ¼ 1.
Step 5 Now, E1 is the (5, 1)-type trapping set including 4 trapping sets,
i.e., J ¼ E1 ¼ ff11;37;46;59;188g;f20;77;93;139;162g;f60;67;
130;145;170g;f64;75;170;179;190gg. The appearance frequency
of VN 170 is 2, and other VNs only appear once in these 4 trapping
sets. We first insert VN 170 into Q, i.e., Q ¼ f170g, and J ¼
ff11; 37; 46; 59;188g, f20;77; 93; 139; 162gg. Then, we insert
VNs 11 and 20 into Q. Now, Q ¼ f170;11;20g.

Step 6 We insert the first VN of {114, 154, 164, 199} in front of Q since
there exists no common VN between this trapping set and Q, i.e.,
Q ¼ f114;170;11;20g.



Table 1
Dominant trapping sets of the (204, 102) Mackay code.

Type Number minimum d2ϵ average d2ϵ Type Number minimum d2ϵ average d2ϵ

(4,0) 1 4.1849 4.1849 (5,3) 498 4.8739 16.0324
(5,1) 4 4.9746 7.6723 (7,3) 2248 4.8801 15.1087
(9,1) 34 6.8999 11.0467 (6,4) 7695 2.7132 18.3807
(7,1) 1 7.6917 7.6917 (8,4) 44656 3.6176 17.8413
(4,2) 21 3.9797 12.6847 (4,4) 1291 3.8193 21.3567
(6,2) 85 5.0367 12.0629 (7,5) 84574 3.0705 20.4221
(8,2) 357 5.5773 12.4480 (5,5) 9289 4.9746 22.7715
(9,3) 12021 4.0698 15.5103 (6,6) 68585 5.4932 23.8767
(3,3) 173 4.5091 21.9958 (8,6) 201173 5.5773 22.7468

Fig. 5. Performance comparison of doped LDPC codes based on two different
bit-selecting algorithms.
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Step 7 Since jQj < m (Here m is the message length of the component
code), we obtain u ¼ 2 and go to Step 5. The (9, 1)-type trapping
set is considered next, and it has 34 trapping sets.

Step 8 We obtainQ ¼ f114;170;11;20;1;14;27;43;96;38;132;59;76;6;
7;77g, and the intersection between Q and A is not empty.

Step 9 Algorithm 1 terminates since the cardinality of Q is larger than m
(in the aftermentioned simulations, the (17, 9) QR code is used as
the component code) now, and the VNs that will be used as the
information bits of the component code are {114, 170, 11, 20, 1,
14, 27, 43, 96}.

Fig. 5 compares the error performance of doped LDPC codes in which
the VNs of the component code are selected by our proposed bit-selecting
algorithm and the bit-search algorithm in Ref. [27], respectively. The
one-stage decoding algorithm is used. The (17, 9) QR code is used as the
component code, and the (204, 102) Mackay code and the (408, 204)
Mackay code are used as the original LDPC codes, respectively. As shown
in the figure, our algorithm provides more than 0.3 dB gain at a Bit Error
Rate (BER) of 10�7 for the two doped LDPC codes.

4. A two-stage decoding algorithm

In this section, a two-stage decoding algorithm is presented. In the
first stage, the one-stage decoding algorithm mentioned previously is
conducted. The second-stage decoding will start only if no valid code-
word is output after the first stage. The main body of the second-stage
decoding is still the log-BP algorithm, whereas the APP algorithm for
decoding the component code will play a key role.

The component node (i.e., QR code) will transmit erroneous infor-
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mation continuously if the number of errors exceeds its error-correcting
capacity. Hence, the confidence level of QR decoding needs to be eval-
uated. We define γ as the decoding confidence level of the component
code after the first-stage decoding. The first stage of the two-stage
decoding algorithm is conducted as follows:

Step 1 Initialization: Set γ ¼ 0 and denote C0qr as the decoded QR code-
word by making hard-decisions on the corresponding channel
observations.

Step 2 Iterative decoding: Run the one-stage decoding λ times (a small
modification is required since we need to determine the param-
eter γ). At the l-iteration, if Clqr ¼ Cl�1

qr , 1 � l � λ, then γ ¼ γþ1;

otherwise, γ is reset to 0. Here, Clqr represents the decoding de-
cision corresponding to the QR code after l iterations.

Step 3 Decoding termination: If a valid codeword is an output or the
preset maximum iteration number is reached in the iterative
process of Step 2, terminate the decoding and record γ.

The second-stage decoding will start if a decoding failure is declared
after the first stage. It is conducted in two modes.

1) Mode-I:When γ > 0, the QR code has been decoded successfully with
a high probability. In this case, the information sent from the common
VNs of the QR code and the LDPC code to the adjacent CNs of the
LDPC code is set to the max/min LLR value depending on the decoded
bit value. We denote the max/min LLR value by MAXLLR/�
MAXLLR (say � 30). Note that this ‘initialization’ is done only once.

For example, a VN transmits an LLR value “þ30(�30)” to the
neighboring CNs in the first iteration of the second-stage decoding if its
corresponding hard-decision is a bit 0(1). The update rule for other VNs
and CNs of the LDPC code keeps unchanged. (In this mode, the message
update of the component code terminates since the QR decoding is suc-
cessful with a high probability.)

2) Mode-II: When γ ¼ 0, the confidence level of QR decoding is very
low. In this case, we first determine the VN in the QR code with the
least reliability. Then we set the initial LLR passing from this VN to its
neighboring CNs as MAXLLR (or -MAXLLR) if the LLR output by the
first-stage decoding is negative (positive). Subsequently, one starts
the second-stage decoding, where the update rule for other VNs and
CNs also keeps unchanged (i.e., the same update rule as the one-stage
decoding algorithm). This method is similar to the process in the
flipped BP algorithm, and we only flip the most unreliable VN and
redo the iterative decoding.

Decoding failure may still occur even though two decoding modes are
utilized in the second stage. It is because some VNs fail to escape from the
trapping sets, and the algorithm does not converge to a valid codeword.
Consequently, some further mandatory modifications are required. After
the first-stage decoding, we record K VNs of the LDPC code not belonging
to the component code and having the least reliabilities. Then we sort



Fig. 6. The flowchart of the proposed two-stage decoding algorithm.

Fig. 7. The BER (solid lines) and FER (dot-dashed lines) performance compar-
ison of the (204, 102) LDPC and the (212, 102) doped LDPC codes.

Table 2
Number of successful (Nsd) and unsuccessful (Nusd) decoding for γ > 0 and γ ¼
0 when 500000 doped LDPC codewords of length 212 are transmitted at each Eb/
N0.

Eb/N0(dB) γ > 0 γ ¼ 0

Nsd Nusd Nsd Nusd

1 327323 7377 33875 131425
1.5 392004 3748 25903 78345
2 444687 1545 16778 36990
2.5 476079 447 10250 13224
3 488064 104 8219 3613
3.5 487357 20 11811 812
4 475648 2 24198 152
4.5 451662 0 48303 35
5 419094 0 80901 5
5.5 389890 0 110108 2
6 376591 0 123409 0
6.5 382112 0 117888 0
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them in an ascending order in terms of reliability (i.e., the magnitude of
the channel observation) and denote them by v1, v2, …, vK. Next, in the
second-stage decoding, a K-round iterative decoding is conducted when a
certain mode is determined. At the i-th round (i ¼ 1, 2,…, K), the i-th VN
among the chosen K ones will send a specific LLR, which is set to
MAXLLR (-MAXLLR) if vi has a negative (positive) LLR after the first-
stage decoding, to its neighboring CNs. If the decoder fails to converge,
all LLRs are reset to the output LLRs of the first-stage decoding. Then i is
incremented by 1, and the next decoding round begins. The detailed
flowchart of the two-stage decoding algorithm is shown in Fig. 6.

5. Simulation results

In this section, we evaluate the performance of our proposed doped
LDPC codes by taking two random LDPC and two structured LDPC codes as
examples. Therein, dominant trapping sets are searched by the algorithm
given in Ref. [28] and the trapping sets' influence on code performance is
evaluated based on the method given in Ref. [29] with parameters Eb/N0
¼ 6.0 dB, lmax¼ 3.6, lmin¼ 1.0 and p¼ 10 (these parameters are utilized to
evaluate the trapping sets’ influence on code performance, and we refer
the readers to Ref. [29] for the definitions of lmax, lmin and p). In order to
maintain a low rate loss, we use the (17, 9, 5) and the (23, 12, 7) QR codes
as the component codes. Unless specified otherwise, the maximum num-
ber of iterations is always set to 50 for the original LDPC and doped LDPC
codes. When the two-stage decoding algorithm is utilized, the maximum
number of iterations for the first and second stages are set to 10 and 40,
respectively, with the parameter K ¼ 9.
5.1. Example 1

Table 1 lists the types of trapping sets of the (204, 102) Mackay code.
According to Algorithm 1, A is the (4, 0)-type trapping set while E
consists of the (5,1)-type, the (9, 1)-type and the (7, 1)-type trapping sets.
One (17, 9, 5) QR code is used as the component code of the doped LDPC
code, and the index set of the 9 VNs selected by Algorithm 1 are {114,
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170, 11, 20, 1, 14, 27, 43, 96}. The resultant doped LDPC code has a
length of 212, and the code rate is reduced from 0.5 to 0.4811. As shown
in Fig. 7, the doped LDPC code with the one-stage decoding algorithm
performs approximately 1.6 dB better than the original LDPC code at a
FER of 10�5. However, another 0.3 dB gain can be obtained if the two-
stage decoding algorithm is utilized.

In order to test the confidence level of QR decoding after the first-
stage decoding, we record the number of codewords decoded success-
fully or unsuccessfully with γ > 0 or γ ¼ 0 when 500000 codewords are
transmitted for each Eb/N0. As illustrated in Table 2, the confidence level
of QR decoding is high for γ > 0 even at low Eb/N0s. For example, when
Eb/N0 ¼ 1 dB, among the 334700 cases (¼ 377323 þ 7377) where γ > 0,
377323 cases show that the QR code is decoded successfully. The results
confirm the rationality of distinguishing γ > 0 and γ ¼ 0 in the second-
stage decoding of the two-stage decoding algorithm.

5.2. Example 2

The information of the trapping sets for the (408, 204) Mackay code is
given in Table 3. In this example,A is the (3, 1)-type trapping set while E
consists of the (5, 1)-type, the (8, 2)-type and the (6, 2)-type trapping
sets. The (17, 9, 5) QR code is used as the component code of the doped
LDPC code, and the index set of the VNs chosen by Algorithm 1 is {122,



Table 3
Dominant trapping sets of the (408, 204) Mackay code.

Type Number minimum d2ϵ average d2ϵ Type Number minimum d2ϵ average d2ϵ

(3,1) 2 4.0365 6.4223 (3,3) 156 11.4922 52.1651
(5,1) 1 8.8793 8.8793 (5,3) 195 12.1857 29.0657
(8,2) 42 5.5773 13.3553 (8,4) 5323 7.9594 24.4353
(6,2) 15 5.9696 13.4333 (4,4) 1210 8.2275 48.1440
(4,2) 12 7.4320 18.1337 (6,4) 2522 9.2436 30.3367
(2,2) 2 11.6083 13.0321 (9,5) 10831 8.9544 27.4922
(9,3) 1038 5.6787 18.5315 (7,5) 2642 12.2423 31.5660
(7,3) 506 6.4088 21.2139

Fig. 8. The BER (solid lines) and FER (dot-dashed lines) performance compar-
isons of the (408, 204) LDPC and the (416, 204) doped LDPC codes.

Y. Li et al. Digital Communications and Networks 10 (2024) 217–226
36, 14, 53, 93, 52, 62, 71, 324}. The resultant doped LDPC code is of
length 416 and rate 0.4904. As illustrated in Fig. 8, the proposed doped
LDPC code significantly outperforms the original LDPC code with a slight
rate loss. The gain provided by the doped LDPC code is approximately
2.0 dB at a FER of 2 � 10�6 compared with the original LDPC code. One
also observes from the figure that the two-stage decoding algorithm
provides a larger gain than the one-stage algorithm at the moderate-to-
high Eb/N0s.

5.3. Example 3

Table 4 lists the types of trapping sets for the (672, 336) Margulis
code [33] and the minimum and average squared Euclidean distances.
According to Algorithm 1, A is the (13, 3)-type trapping set while E
consists of the (14, 4)-type, the (10, 4)-type and the (12, 4)-type trapping
sets. The (23, 12, 7) QR code, i.e., Golay code, is used as the component
code of the doped Margulis code, and 12 VNs with indices {8, 117, 270,
275, 317, 348, 439, 576, 1, 2, 31, 37} are chosen as the information
Table 4
Dominant trapping sets of the (672, 336) Margulis code.

Type Number minimum d2ϵ average d2ϵ

(13,3) 1344 10.9128 20.1523
(14,4) 107184 9.7602 25.7580
(10,4) 10752 9.9493 28.3565
(12,4) 32928 10.0733 26.4102
(8,4) 5040 13.1448 35.4228
(6,4) 5040 27.3483 55.7902
(4, 4) 2352 34.7501 85.1811
(9,5) 125664 8.9544 39.2455
(13,5) 885696 10.9128 30.9925
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section of the component code based on Algorithm 1. The resultant
doped LDPC code is of length 683 and rate 0.4919. As illustrated in Fig. 9,
the doped LDPC code with the one-stage decoding algorithm performs
nearly the same as the original LDPC code in the whole Eb/N0 regimes in
terms of FER performance, whereas the former decoded by the two-stage
decoding algorithm provides about 0.2 dB gain over the latter at a FER of
10�6.
5.4. Example 4

Table 5 lists the types of trapping sets for the (208, 40) 5G LDPC code
constructed based on the base graph II given in Ref. [34] and the mini-
mum and average squared Euclidean distances. One observes that the
values of “b” are evidently larger than those of the above three codes,
which means thost trapping sets would have little effect on the decoding
performance of this code. According to Algorithm 1, A is the (2, 7)-type
trapping set while E consists of the (2, 11)-type, the (3, 11)-type and the
(4, 11)-type trapping sets. The (7, 4, 3) Hamming code is used as the
component code of the doped LDPC code, and 3 VNs with indices {19, 18,
17} are chosen as the information section of the component code based
on Algorithm 1. The resultant doped LDPC code is of length 211 and rate
0.1896. As illustrated in Fig. 10, the doped LDPC code with the one-stage
decoding algorithm performs almost as well as the original LDPC code,
whereas the former decoded by the two-stage decoding algorithm is
slightly better than the latter.

It is worth noting that the performance advantage of the proposed
doped LDPC codes over the original LDPC codes shrinks significantly in
the last two examples when compared with the first two. We believe that
it is closely related to the characteristics of the trapping sets. As
demonstrated in Tables 1 and 3, there exist (a, b)-types trapping sets
where b ¼ 0, 1 for the (204, 102) and the (408, 204) Mackay codes.
Comparatively, the minimum values of the parameter ‘b’ are 3 and 7,
respectively, for the (672, 336) Margulis code and the (208, 40) 5G LDPC
code. As depicted in Section 2, the unsatisfied CNs (b represents the
number of unsatisfied CNs in a (a, b)-type trapping set) help the trapped
VNs escape from the trapping set. Therefore, the trapped VNs will receive
sufficiently correct extrinsic messages from the unsatisfied CNs with a
high probability when b � 3. Consequently, a more obvious effect on
performance improvement is observed for those codes, with (a, 0)-type or
(a, 1)-type trapping sets in our proposed doped LDPC framework.

Although the doped LDPC codes provide more coding gains than the
Type Number minimum d2ϵ average d2ϵ

(11,5) 342048 10.9442 33.6160
(7,5) 36288 18.9989 48.2877
(5, 5) 12768 26.3916 72.5671
(10,6) 931392 9.9493 41.5138
(8,6) 348768 17.6409 49.3601
(6,6) 91392 23.3436 63.4114
(13,7) 491904 12.9341 42.1621
(11,7) 104832 19.2379 45.5565
(9,7) 18816 24.4271 54.4713



Fig. 9. The BER (solid lines) and FER (dot-dashed lines) performance compar-
ison of the (672, 336) Margulis code and the (683, 336) doped LDPC code.

Fig. 10. The BER (solid lines) and FER (dot-dashed lines) performance com-
parison of the (208, 40) 5G LDPC and the (211, 40) doped LDPC codes.

Table 6
The comparison of average number of iterations for decoding the (204, 102)
LDPC and the (212, 102) doped LDPC codes.

Eb/N0

(dB)
average number of iterations for
the (204, 102) LDPC code

average number of iterations for the
(212, 102) doped LDPC code

1.0 35.90 35.55
2.0 14.39 14.02
3.0 4.84 4.82
4.0 2.55 2.64
5.0 1.71 1.79
6.0 1.24 1.28
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original LDPC codes, the transmission efficiency decreases accordingly.
Given an (N, M) original LDPC code and an (n, m) component code, the
code loss is M

N � M
Nþn�m. For example, the (212, 102) doped LDPC code has

an approximately 4% rate loss compared with its counterpart. However,
the rate loss may be ignored for those long LDPC codes whose dominant
trapping sets have relatively small parameters (say, the Reed-Solomon-
based binary (2048, 1723) LDPC code included in the IEEE 802.3an
standard. Its dominant trapping sets are reported to be the (8, 8)
elementary trapping set [35]). Unfortunately, finding the dominant
trapping sets of long LDPC codes is very time-consuming. In the future,
we will develop an efficient algorithm to search the dominant trapping
sets of long LDPC codes and apply the doped method to them.

6. Complexity analysis

The proposed doped LDPC codes include an additional QR component
code compared to the original LDPC code, therefore possessing a higher
decoding complexity at each iteration. The APP algorithm for decoding
an (n, m) block code has a complexity of O(2n�mn) in which both real
multiplications and real additions are included. In comparison, the log-
BP algorithm for decoding an (N, M) LDPC code requires
O(Nwc(wcþwr)) real additions in each iteration where wc(wr) denotes the
column (row) weight.

Each iteration of the one-stage decoding algorithm consists of an
iteration of the log-BP algorithm and the complete APP algorithm. Thus,
we can roughly compare the complexity of the original LDPC and the
doped LDPC codes by comparing the corresponding number of iterations.
In Table 6, we list the average number of iterations for decoding the (204,
102) LDPC and the (212, 102) doped LDPC codes by the log-BP and the
Table 5
Dominant trapping sets of the (208, 40) 5G LDPC code.

Type Number minimum d2ϵ average d2ϵ

(2,7) 4 0.0058 0.5711
(2,11) 4 0.0058 0.5711
(3,11) 4 0.0087 0.8567
(4,11) 4 0.0115 1.1422
(2, 12) 12 0.0058 3.7415
(3,12) 12 0.0087 5.6122
(2,13) 4 0.0058 0.5711
(3,13) 12 0.0087 5.6122
(4, 13) 4 0.0115 1.1422
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one-stage decoding algorithms, respectively, when 10000 all-zero code-
words are transmitted at each Eb/N0. As shown in this table, the average
number of iterations for the doped LDPC code is close to that for the LDPC
code.

Although the two-stage decoding algorithm seemsmore complex than
the one-stage decoding counterpart, the second-stage decoding is only
conducted when the first-stage decoding fails and the iterative decoding
terminates once a valid codeword is found. As an illustration, we list the
average number of rounds of the second-stage iterative decoding at each
Eb/N0 for the (212, 102) doped LDPC code in Table 7. Note that the
average value is computed over 10000 tested codewords regardless of
whether the second-stage decoding is conducted. (The second-stage
decoding is not conducted if the first-stage decoding outputs a valid
codeword.) As shown in the table, only 0.0006 average rounds of the
second-stage iterative decoding are needed for each codeword at Eb/N0
¼ 5.0 dB (It roughly corresponds to a 0.06% increase in complexity
compared to the one-stage decoding algorithm.)
Type Number minimum d2ϵ average d2ϵ

(3,14) 28 0.0087 5.8866
(4,14) 22 0.0115 4.2179
(2,15) 16 0.0058 2.8401
(3,15) 20 0.0087 3.4532
(4,15) 32 0.0115 7.0386
(4,16) 50 0.0007 4.7833
(2,16) 8 0.0058 4.1721
(3,16) 36 0.0087 4.7197



Table 7
average number of rounds of the second-stage decoding for decoding the (212,
102) doped LDPC codes.

Eb/N0 (dB) average rounds of the second-stage ecoding for all tested codewords

1.0 5.56
2.0 1.39
3.0 0.11
4.0 0.0048
5.0 0.00060
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7. Conclusion

This work presents a novel design approach to constructing a class of
doped LDPC codes, which integrate the Tanner graphs of an LDPC code
and a short block code as a whole. In this framework, all the information
bits of the short code are selected from the VNs of the LDPC code. They
are selected based on the dominant trapping sets of LDPC codes. The
construction mechanism is vastly different from the construction method
of GLDPC codes, where a large number of SPC nodes are replaced with
generalized constraint nodes, leading to a significant rate loss. Addi-
tionally, a specific two-stage decoding algorithm is developed. Simula-
tion results show that the proposed doped LDPC codes can provide gains
over the original LDPC codes with a slight rate loss and a moderate in-
crease in computational complexity. Particularly, the proposed code
design remarkably mitigates and even eliminates the error floor of
original LDPC codes in some cases, using the proposed bit selecting al-
gorithm and the two-stage decoding algorithm.
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