
Information Sciences 662 (2024) 120212

Available online 26 January 2024
0020-0255/Â© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fuzzy inference system with interpretable fuzzy rules: Advancing 
explainable artificial intelligence for disease diagnosis—A 
comprehensive review 

Jin Cao a, Ta Zhou a,b, Shaohua Zhi a, Saikit Lam c,d, Ge Ren a, Yuanpeng Zhang a,e,f, 
Yongqiang Wang a, Yanjing Dong a, Jing Cai a,d,f,* 

a Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 
b School of Electrical and Information Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China 
c Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China 
d Research Institute of Smart Aging, The Hong Kong Polytechnic University, Hong Kong, China 
e Department of Medical Informatics, Nantong University, Nantong 226007, China 
f The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China   

A R T I C L E  I N F O   

Keywords: 
Explainable artificial intelligence 
Interpretability 
Fuzzy rule 
Disease diagnosis 
Fuzzy inference system 

A B S T R A C T   

Interpretable artificial intelligence (AI), also known as explainable AI, is indispensable in estab
lishing trustable AI for bench-to-bedside translation, with substantial implications for human 
well-being. However, the majority of existing research in this area has centered on designing 
complex and sophisticated methods, regardless of their interpretability. Consequently, the main 
prerequisite for implementing trustworthy AI in medical domains has not been met. Scientists 
have developed various explanation methods for interpretable AI. Among these methods, fuzzy 
rules embedded in a fuzzy inference system (FIS) have emerged as a novel and powerful tool to 
bridge the communication gap between humans and advanced AI machines. However, there have 
been few reviews of the use of FISs in medical diagnosis. In addition, the application of fuzzy rules 
to different kinds of multimodal medical data has received insufficient attention, despite the 
potential use of fuzzy rules in designing appropriate methodologies for available datasets. This 
review provides a fundamental understanding of interpretability and fuzzy rules, conducts 
comparative analyses of the use of fuzzy rules and other explanation methods in handling three 
major types of multimodal data (i.e., sequence signals, medical images, and tabular data), and 
offers insights into appropriate fuzzy rule application scenarios and recommendations for future 
research.   

1. Introduction 

Applications of artificial intelligence (AI), from smartphones to natural image recognition, navigation and autonomous vehicles, 
have rapidly proliferated in people’s daily lives. In the medical domain, however, AI applications in real-world clinical settings have 
lagged behind applications in other settings, despite extensive AI research being conducted in recent decades to obtain insights to 
support clinical decision- making in a wide range of areas, such as cancer prognostication [1], tumor responses [2], medical image 
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synthesis [3], and the detection of Coronavirus disease-2019 (COVID-19) infection [4]. This protraction of act in the field of medicine 
is largely attributed to the increasing, yet unsatisfied, demand for interpretable AI. 

Interpretable AI, also referred to as eXplainable AI (XAI), is important for establishing trustable AI models for bench-to-bedside 
translation [5]. XAI is particularly important given AI’s potential far-reaching implications for human well-being. Conventional 
prediction models, developed using simple methods (e.g., linear regression) and comprising a limited number of predictors, are easy to 
comprehend and interpret using plain language. However, since the paradigm shift in the AI era, studies have mostly focused on 
designing complex and sophisticated methods, such as deep neural networks, to harvest highly accurate prediction models, regardless 
of whether the models are interpretable. The complexity of these models greatly restricts the possibility of key stakeholders (i.e., 
physicians, patients, policymakers, and even researchers) comprehending the processes underlying how and why the AI reaches the 
ultimate prediction results. There is also a lack of interaction between humans and machines, which is a prerequisite for implementing 
trustworthy AI, in the medical domain. 

In light of the increasing awareness of the aforementioned issues, the European Union enforced a legal right in 2019 for individuals 
to access “meaningful information about the logic behind automated decisions using their data” [6]. In addition, research is growing 
on interpretable AI in terms of its precise definition, categorization, assessment criteria, and the interpretability of explanation 
methods. 

Various explanation methods have been adopted by researchers. These methods can be broadly classified into two categories: 
model-agnostic and model-specific interpretability techniques. Model-agnostic techniques are independent of the model structure and 
work by unraveling the relationship between the input parameters and outcomes of the trained models. Examples of these techniques 
are SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME). These techniques have 
remained prevalent in the medical field due to their wide applicability. In contrast, model-specific techniques are based on specific 
model structures or architectures and use reverse engineering methods that are specific to particular model structures to explain how a 
given model generates prediction results. For instance, rule-based approaches have been adopted in binary tree-based modeling to 
elucidate the reasoning process behind final prediction outcomes. These approaches have received more attention than model-agnostic 
approaches due to their interpretability. 

Among the model-specific explanation techniques, the use of fuzzy rules in a fuzzy inference system (FIS) has emerged as a 
powerful method. Its inherent capability in bridging the communication gap between humans and machines (including both machine 
learning (ML) and deep learning (DL) models) has been demonstrated for various medical tasks. This capability is built on two central 
pillars. First, fuzzy rules in an FIS enables human-like reasoning for inferring prediction results. These rules are formulated as IF–THEN 
statements based on expert knowledge or data and leverage fuzzy logic to provide a high level of semantic interpretability and un
derstandability in reasoning processes that resemble human reasoning behaviors. Fuzzy rules are thus highly intuitive and compre
hensible even for stakeholders outside the field of AI, such as clinicians, patients, and policymakers. The applicability of FISs has been 
extensively demonstrated for various medical tasks, such as the handling of sequential medical signals, (e.g., electroencephalogram 
(EEG) for epilepsy classification and recognition, or seizure identification [7,8,9]), and the use of tabular medical data (e.g., medical 
records, heart rate data, and blood test results) for the risk assessment of cardiovascular diseases [10] and the diagnosis of breast cancer 
[11]. Second, FISs have untapped potential in terms of integration with complex artificial neural networks (ANNs). Multiple research 
groups have successfully incorporated fuzzy logic theory into ANNs for medical image classification [12], COVID-19 detection [4], 
thyroid disease classification, and diabetes detection. Given their strengths, fuzzy rules in FISs are anticipated to gain prominence in 
the contemporary era of AI. This integration is expected to enhance the accuracy of complex and sophisticated prediction models while 
providing semantic human-like reasoning and interpretability of the prediction results. 

Although reviews have been published on the interpretability of fuzzy rules in FISs, they are either irrelevant to medical disease 
diagnosis [13] or restricted to specific diseases [14], and do not provide a comprehensive overview of fuzzy rules for disease diagnosis. 
That is to say, there is a scarcity of reviews covering a broader spectrum of medical diagnosis. Moreover, the literature offers little 
discussion of the role of fuzzy rules in handling medical data with diverse modalities, yet such use of fuzzy rules is expected to provide 
valuable insights that will advance interpretable AI through the design of appropriate methodologies for the available datasets. 

The overarching goals of this review are to enhance the understanding of fuzzy rules in FISs and to promote the adoption of fuzzy 
rules for advancing XAI in the field of medical diagnosis. In Section 2, we introduce the fundamental knowledge, definitions, cate
gorizations, properties, and historical development of FISs and fuzzy rules. In Section 3, we present comparative analyses of fuzzy 
rules and other explanation methods used in handling multimodal medical data (including sequence signals, medical images, and 
tabular data) for disease diagnosis. In Section 4, we discuss appropriate scenarios for the application of fuzzy rules and provide 
recommendations for future research. In Section 5, we present the conclusions of the review. 

2. Explainable artificial intelligence (XAI) 

Over the past decade, the concepts, taxonomies, assessment criteria, and underlying opportunities and challenges of XAI have been 
discussed. In this section, we introduce the fundamental knowledge and terminologies of XAI and interpretable FISs for readers to 
better comprehend the subsequent discussions presented in this review. We begin by introducing the general context of interpret
ability, including the categorization of interpretability and the properties of explanation methods (Section 2.1). We then give an 
overview of the interpretable FIS, focusing on its historical development and fuzzy rules (Section 2.2). 
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2.1. Context of interpretability 

Since 2017, there has been a notable increase in research exploring the interpretability of AI, ML, and DL models, as evinced by data 
from Google Trends [15] (Fig. 1). This trend suggests a growing global awareness of the necessity for transparent and interpretable AI 
models in various domains, including disease diagnosis. 

2.1.1. Interpretability and explainability 
In the field of disease diagnosis, the terms “interpretability” and “explainability” are often used interchangeably. Since the para

digm shift in the AI era, primary research has focused on designing complex and sophisticated methods, such as DL models, to obtain 
accurate and optimized model performance, regardless of the interpretability of the models. The complexity of the resulting models has 
greatly limited the possibility for key stakeholders (i.e., physicians, patients, policymakers, and even researchers) to understand how 
and why the AI reaches its ultimate prediction results. There is thus a lack of interaction and “trust” between humans and machines. To 
address this problem, the terms “interpretability” and “explainability” have emerged and been extensively discussed within the 
research community, although precise mathematical definitions have yet to be agreed upon. These terms highlight the importance of 
the comprehension and transparency of AI models and have been established as critical criteria for evaluating AI-generated models, 
alongside accuracy. 

Although some researchers have attempted to distinguish the terms interpretability and explainability, no clear boundaries have 
been established, leading to these terms often being used interchangeably in the literature. We also use the two terms interchangeably 
throughout this review. 

2.1.2. Category of interpretability 
Numerous interpretable AI models and tools have been developed. Broadly, interpretability can be categorized in terms of: (1) the 

application scope, (2) the origin, and (3) the application phase. 
Application scope. Interpretability can be classified as model-specific or model-agnostic. Model-agnostic techniques are applicable 

irrespective of the model structure, and work by unraveling the relationship between the input parameters and outcomes of trained 
models rather than delving into the inner structures of the model. SHAP and LIME are widely used model-agnostic techniques that are 
applied irrespective of the model type. For instance, SHAP has been used in ML with decision trees [16] and deep neural networks, such 
as the convolutional neural network (CNN) [17]. These techniques are commonly used in the medical field because of their wide 
applicability. In contrast, model-specific techniques are only suitable for specific model structures in terms of yielding explanatory 
prediction results. For instance, simple linear classifiers can be readily interpreted on the basis of their specific transparent model 
structure but are rarely applied in more advanced AI models for interpretability analyses. Model-specific techniques have attracted 
more attention than model-agnostic approaches owing to their peculiar interpretability. 

Origin. Interpretability can be categorized as intrinsic or post-hoc. Intrinsic interpretability refers to explanations derived from 
constraints imposed on the principles of ML models. Intrinsic interpretability is also known as transparency and sheds light on how a 
model operates. Post-hoc interpretability involves the use of additional methods to analyze the trained model and it answers the 
question of what extra insights can be gained from the model. 

Application phase. Interpretability can be categorized in terms of the timing of the application of the explanation methods. Pre- 
model interpretability refers to applying explanation methods before model development, in-model interpretability refers to 
applying explanation methods during model development, and post-model interpretability refers to applying explanation methods 
after the model has been developed. Pre-model interpretability relates to the graphical representation of the descriptive statistics of 
data, such as principal component analysis and t-distributed stochastic neighbor embedding. In-model interpretability relates to the 

Fig. 1. Google Trends [15] data for the terms “interpretability,” “explainability,” and “explainable AI” worldwide over the past 10 years, revealing 
an increasing in search interest since 2017. 
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interpretability of the model itself, as well as the intrinsic interpretability described earlier. Post-model interpretability, similar to the 
concept of post-hoc interpretability, relates to improving interpretability after model development. 

Although there are various methods of categorizing interpretability, many of them relate to each other to some degree [18]. For 
instance, the in-model, intrinsic model, and model-specific categories largely encompass the same XAI models that do not depend on 
external explanation or calculation tools. In contrast, the model structure is rarely considered in the application of the post-model, 
post-hoc, and model-agnostic categories. 

2.1.3. Properties of explanation methods 
Various explanation methods have been applied to enhance the interpretability of AI models. These methods have varying degrees 

of interpretability power based on their properties. Robnik-Sikonja et al. [19] defined four main properties of explanation methods, 
which were also discussed by Carvalho et al. [18]: expressive power, translucency, portability, and algorithmic complexity. 

Expressive power refers to the structure or form of the output of the explanation method, including heat maps, rules, decision trees, 
and even natural language. Translucency is a measure of the extent to which the explanation method uses the parameters within the 
model. Portability is a measure of the application range of the explanation method. Algorithmic complexity is a measure of the 
computational cost of the explanation method. 

Despite the introduction of the above assessment criteria, the direct quantification of explanation methods remains challenging. 
Generally, model-specific explanation methods have high translucency but low portability, whereas model-agnostic explanation 
methods have low translucency but high portability [18]. In any event, a comparative analysis of the two methods can provide deep 
insights into their capabilities. In Section 4.1, we discuss the capabilities of fuzzy rules in comparison with the capabilities two other 
popular explanation methods (SHAP and a heat map) applied to multimodal medical data. 

Fig. 2. Illustration of the basic structures of an FIS and an ANFIS. (a) Basic structure of an FIS. (b) Network structure of a TSK-based ANFIS. (c) 
Network structure of a Mamdani-based ANFIS. 
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2.2. Interpretable fuzzy inference system 

The term FIS refers to a series of classifiers based on fuzzy set theory. A key feature of FIS is the use of crucial fuzzy rules, which 
provide semantic interpretability and enhance the understandability of the reasoning process. Therefore, this section focuses on the 
development and central principles of fuzzy rules in an FIS. 

2.2.1. Development of FISs 
Concerted efforts have been made to develop interpretable FISs. An FIS is governed by fuzzy rules, which were originally derived 

from Zadeh’s theory of fuzzy sets proposed in 1965 [20]. Fuzzy sets are used to represent the degree of membership in the form of a 
real-value rather than a true and false statement of an object’s characteristics, and they serve as a bridge between computer-friendly 
crisp numbers and human-friendly semantic expressions. 

Fuzzy sets have developed into three types according to how they handle uncertainty. The type-1 (T1) fuzzy set, initially introduced 
by Zadeh to model linguistic uncertainty, has two popular modelling methods: the Mamdani type proposed in 1977 [21], and the 
Takagi-Sugeno-Kang (TSK) type proposed in 1985 [22]. These methods were later introduced to neural networks in research on the 
adaptive neural network based fuzzy inference system (ANFIS) conducted by Jang et al. in 1993 [23]. This integration allowed FISs to 
be driven by data instead of relying solely on experts’ inputs. Although the membership grades of T1 fuzzy set are crisp value, there are 
scenarios with uncertain deviations in grades of membership. For instance, different physicians may have different interpretations of 
the linguistic term “serious” in the case of disease assessment. 

The type-2 fuzzy set (T2 FS) was introduced to extend the modeling capacity of uncertainties by fuzzifying membership grades. 
Interval type-2 fuzzy logic controllers have attracted much research interests, and it has been shown that they are better than T1 fuzzy 
logic controllers at handling uncertainties. For instance, Wu et al. conducted extensive research in this field and recently compared T1 
and interval type-2 fuzzy systems [24]. 

The type-3 fuzzy set (T3 FS) further extends the concept of the T2 FS by incorporating the notion of the footprint of uncertainty, 
allowing varying degrees of uncertainty within the membership functions. Castillo’s team proposed multiple T3 FS based models such 
as the hybrid hierarchical neural network classification and prediction model with interval type-3 fuzzy aggregation and an ensemble 
model of the T3 FS and neural networks for COVID-19 time series prediction [25,26]. In addition, Zadeh investigated the potential of 
the T2 FS and further generalized the above concepts to type-n fuzzy sets [27]. Although there are challenges to revealing the following 
n-3 types of fuzzy set due to the rapidly growth of complexity, relevant research is still active. The FIS considered in the following 
sections of this paper is a T1 FS based inference system, as it has the most extensive applications. 

Fig. 3. Presentations of fuzzy rules. (a) An instance of fuzzy rules in the form of IF–THEN generated by the TSK-based FIS. (b) An instance of 
parameters in the zero-order TSK with a Gaussian membership function. (c) An instance of a result-view of fuzzy rules. (d) An instance of a surface- 
view of fuzzy rules. The IF–THEN form and the visualized presentation of fuzzy rules are respectively the most understandable presentation for end- 
users and researchers in the fuzzy logic field. 
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Besides the theoretical investigation of fuzzy sets, numerous studies on FISs have focused on optimizing the solution and calculation 
of parameter sets in the antecedent and consequent networks. This has been done using various strategies such as combining ANNs and 
fuzzy logic, adopting genetic-based algorithms, adopting hierarchical models [4,8] around the 2020 s, and adopting other fuzzy logic 
based techniques. Notably, the central pillar of the semantic interpretability of fuzzy rules in FISs has remained consistent throughout 
the development of FISs. FISs are thus known as fuzzy-rule-based systems [23]. 

2.2.2. Fuzzy rules in FISs 
Each FIS (including its evolved variants) has five primary components, namely, a database, fuzzy rule base, fuzzification 

component, fuzzy inference component, and defuzzification component (Fig. 2a). The database plays a crucial role in determining the 
membership functions of fuzzy sets, which are used in fuzzification and defuzzification. It is noted that the membership function 
requires an adequate volume of sample data, or a direct definition given by experts at the initial stage. During fuzzification, crisp inputs 
are transformed into membership values, representing the degree of matching with linguistic terms in fuzzy sets. Conversely, the 
defuzzification step converts the inferred fuzzy results back into crisp outputs. The fuzzy rule base is elaborated in the following. 

The fuzzy rule base, a critical component of an FIS, comprises logical fuzzy rules. a fuzzy rule is an effective representation of 
knowledge provided by an expert or data [27]. It has been shown that a system designed using such represented knowledge performs 
comparably to a system designed by experts and performs slightly better in terms of completeness of knowledge representation than a 
system designed using non-monotonic logic. For plain understanding, the if part in a fuzzy rule is a condition, and the then part is a 
consequent, and the consequent can thus be inferred from the conditions. Imagine a scenario, in which a person feels dizzy at home and 
does not have a thermometer, she/he habitually touches her/his forehead and senses her/his underlying body temperature to estimate 
whether she/he is having a fever. The inference logic behind this action is that if a person feels a “little dizzy” and the body temperature 
is “very high”, then she/he “most likely” has a fever, or if a person feels a “little dizzy” and the body temperature is “low”, then she/he 
may not have a fever. This logic of linguistic representation using the terms (if, and, then and or) has been seamlessly incorporated into 
the fuzzy rules of FISs (Fig. 3). 

For instance, Casalino et al. [10] used a neuro-fuzzy model to evaluate the risk of cardiovascular disease based on four clinical 
features, namely, heart rate, breathing rate, blood oxygen saturation, and lip color. The neuro-fuzzy model enables the transformation 
of numerical crisp values into linguistic terms and uses fuzzy IF–THEN rules. In their study, the heart rate domain ranged from 10 to 
180 bpm, and was manually fuzzified into three fuzzy sets representing the linguistic terms Bradycardia, Normal, and Tachycardia. The 
breathing rate domain ranged from 0 to 80 and was fuzzified into three fuzzy sets corresponding to Bradypnea, Normal, and Tachypnea. 
Blood oxygen saturation had a domain range of 75 to 100 and was fuzzified into the fuzzy sets Critical, Low, and Normal. Lip color had a 
domain range of 0 to 14 and was fuzzified into the fuzzy sets Regular, Altered, and Purplish. The output variable, the risk level, was 
associated with the linguistic terms Low, Medium, High, and VeryHigh. The relationship between the input variables and the potential 
cardiovascular risk was established through fuzzy rules according to. 

IF (heart rate is Bradycardia) and (breathing rate is Bradypnea) and (blood oxygen saturation is Low) and (lips color is Altered), 
THEN (risk is High). 

We see that both the condition part (i.e., the IF part) and the consequent part (i.e., the THEN part) comprise input or output 
variables and their corresponding linguistic terms. The definition and number of linguistic terms for each variable can be determined 
by experts or optimized using data-driven approaches (as explained in the following). In theory, the total number of fuzzy rules is the 
product of the linguistic terms of all variables, including both input and output variables. However, not all fuzzy rules are reasonable or 
efficient. It is thus crucial to effectively generate or select useful fuzzy rules that minimize assessment bias. 

With such a linguistic representation, the fuzzy knowledge or experience of experts, which may not be easily quantifiable, can now 
be represented in the form of a human-like reasoning process and transferred or stored conveniently. In addition, this reasoning process 
is logical, non-linear, and fuzzy (owing to the use of fuzzy linguistic expressions such as “little”, “low”, “very high” and “most likely” in 
the descriptions), which implies that the process can handle a complex, abstract, non-linear, and fuzzy task. Furthermore, the fuzzy 
rules can be understood directly by various stakeholders in the medical domain, including physicians and patients, which increases the 
degree of transparency and approbation of the FIS-aided decision-making process. As a result, ML algorithms with fuzzy rules have 
great semantic interpretability in both the inference process and inferenced results. As the complexity of data and FISs grow rapidly 
with time, the adaptive and effective selection of fuzzy rules is expected to become a focus of FIS research. 

Substantial efforts have been made to improve the methods of fuzzy rule selection and parameter resolution. ANFISs play a 
fundamental role in the construction of a set of fuzzy IF–THEN rules with appropriate membership functions to generate stipulated 
input–output pairs [23]. In contrast with the modularized flow depicted in Fig. 2a, an ANFIS combines fuzzy set theory with neural 
networks to form a hybrid neuro-fuzzy network. According to the model structure depicted in Fig. 2b and Fig. 2c, the fuzzy rules in an 
ANFIS are based on antecedent and consequent parameters. The optimization of fuzzy rules is thus equivalent to the tuning of 
antecedent and consequent parameters. 

A key advantage of ANFISs (or neuro-fuzzy networks) is that the parameters can be optimized by adopting a neural-learning 
strategy (e.g., back propagation, or gradient descent strategy) and neuro-fuzzy networks can thus extract effective and human-like 
knowledge representations adaptively from data, resulting in outstanding interpretability. Sanz et al. [28] proposed a fuzzy associ
ation rule-based classifier that adopts a global fuzzy rule selection of all classes using the Apriori algorithm. Experimental results 
indicated that the minority class takes a larger number of fuzzy rules, which suggests high classification performance for imbalance 
data. The fuzzy rules used in such research offer semantic interpretability for diagnosis results and have been optimized to enhance 
training efficiency and understandability for end users. 

In addition to the fuzzy rule logic, the methods of fuzzy rule presentation play a crucial role in enhancing the interpretability of 
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models. There are three ways to present fuzzy rules: adopting IF–THEN statements (Fig. 3a), making a list of antecedent and conse
quent parameters (Fig. 3b) and visualization (Fig. 3c and Fig. 3d). For most parameters in black-box models, such as the weights in a 
deep neural network, it is difficult to understand the logic of the model by directly listing the parameters in a table. However, this 
becomes understandable when an FIS is used. As mentioned earlier, the fuzzy rules are determined by the antecedent and consequent 
parameters in an ANFIS. Hence, the presentation of antecedent and consequent parameters is equivalent to the presentation of fuzzy 
rules. As a result, the presentation of antecedent and consequent parameters can reveal the reasoning process of an ANFIS. The 
IF–THEN form is the most logistic linguistic and human-like presentation of the reasoning process, and is intuitive for users who are 
unfamiliar with fuzzy set theory. In contrast, the visualized presentation of fuzzy rules is mainly associated with a result-view (Fig. 3c) 
or surface-view (Fig. 3d) of the corresponding rule sets. Specifically, the result view is useful for obtaining crisp output values and 
evaluating the performance of an FIS whereas the surface view provides a visual understanding of the fuzzy rules and their effects on 
the output according to different input combinations. Overall, the IF THEN form, and visualized presentation of fuzzy rules are 
respectively the most understandable presentations for end users and researchers in the field of fuzzy logic. The adopting of these 
presentations in previous studies is further discussed in Section 3. 

3. XAI applications in disease diagnosis 

Medical disease diagnosis has been recognized as a challenging and intricate task for healthcare professionals as the process of 
diagnosing patients requires physicians to carefully consider multiple factors and circumstances alongside medical evidence. However, 
disease diagnosis is prone to errors owing to its vague and complex nature when considering all factors, leading to great uncertainty in 
the process of disease diagnosis since different patients may have varying levels of confirmation for different diseases. In addition, it is 
critical in computer-assisted diagnosis modeling to clarify the process of reasoning out how to deal with all the factors. As shown in 
Fig. 4, the decision made by an understandable model using the same data as used by black box is more transparent and creditable for 
doctors, reducing the additional uncertainty introduced by the computer-aided diagnosis model and the difficulty in recognizing 
hidden relationship across factors. 

Extensive studies have been carried out on XAI to reveal the predictive power of diverse data, including sequence signals from 
medical sensors (e.g., EEGs and electrocardiograms (ECGs)), medical images (e.g., chest X-ray (CXR), computed tomography (CT), 
magnetic resonance imaging (MRI), ultrasonography, and elastography images), and tabular data (e.g., medical health records, heart 
rate data, and blood test results). Fig. 5 provides an overview of XAI techniques commonly used in computer-aided disease diagnosis 
obtained from 50 relevant publications. The left panel gives different types of medical data. The right panel gives a series of explainable 
methods in XAI, including the use of fuzzy rules, a rule base, SHAP, LIME, a heat map, and other specialized but representative methods 
such as mathematical method, as described in Table 1. The middle panel of Fig. 5 presents a parallel sets plot generated from a 
summary of the 50 relevant publications, showcasing the proportions of research utilizing each of the explanation methods on different 
modalities of medical data. The plot shows that each explanation method has its advantages and is applicable to different proportions 
of diverse disease diagnosis scenarios with various types of data. 

This section is organized into three subsections according to the type of multimodal medical data, namely, sequence data, medical 
image data, and tabular data, and presents the actual application modes of fuzzy rules and other explanation methods to facilitate a 
comprehensive comparison. 

Fig. 4. Illustration of a computer-aided diagnosis system. Compared with a decision made using a black box model, the decision made using an 
interpretable model is more understandable for doctors. 
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Fig. 5. Overview of XAI techniques commonly used in computer-aided disease diagnosis scenarios, based on the analysis of 50 relevant literature 
sources. The line width in the parallel set figure is determined by the number of relevant sources. The examples of data types and interpretability 
methods mentioned are not limited to those presented on the sides of the parallel set plot. 

Table 1 
Brief description of other interpretability methods.  

Interpretability 
methods 

Description 

Rule base Rule base can be generated by decision tree-based model, including Decision Tree, Random Forest, XGBoost etc. These rules describe the 
conditions that lead to specific decisions, making the model easily interpretable. These models provide insights into the importance of 
each feature in the decision-making process, and it can also be well integrated with the SHAP principle. In the view of this, they are often 
used together. However, its biggest difference from fuzzy rules is that it does not include fuzzy linguistic variables, instead it relies 
entirely on crisp values, as shown in the panel of Fuzzy rule and Rule base in Fig. 5. 

SHAP SHAP is a game-theoretic approach that provides a unified framework for explaining the output of any machine learning model. It is 
based on concepts from cooperative game theory, specifically Shapley values, which allocate the contribution of each feature toward the 
prediction outcome. SHAP values represent the impact of each feature on the predicted outcome for a specific instance. These values 
enable us to understand the importance and influence of features in the model’s output. An example is shown in the feature analysis panel 
of Fig. 5. 

LIME LIME is a technique for explaining the predictions of any black-box machine learning model. It aims to provide local and interpretable 
explanations by approximating the behavior of the model around specific instances. By examining the coefficients of the approximated 
model, LIME identifies which features were the most influential in influencing the prediction for that particular instance. These 
explanations help users understand the model’s decision-making process at an individual instance level, thus increasing transparency 
and trustworthiness. An example is shown in the feature analysis panel of Fig. 5. 

Heat map A heatmap is a visualization technique used to represent the importance or relevance of features in a model. The color gradient in the 
heatmap helps identify patterns and correlations between features and instances. A higher intensity or a distinct color in a cell or pixel 
signifies a stronger influence of that feature on the model’s decision, while lower intensity or a different color suggests a relatively lesser 
impact, as shown in the heat map panel in Fig. 5.  
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3.1. Sequence data 

Sequence data, such as EEG and ECG data, are harvested from medical sensors and widely utilized for diagnosing diseases related to 
the heart, brain, and mental health owing to their non-invasive recording and suitability for longitudinal disease monitoring. This 
subsection outlines the application of sequence data in disease diagnoses, focusing on the explanation methods of fuzzy rule, SHAP and 
LIME based methods developed to handle sequence data. 

3.1.1. Fuzzy rule approaches 
Directly handling temporal features in sequence data can be challenging for fuzzy rule-based algorithms. Therefore, feature 

extraction methods are commonly used to pre-process raw sequence data. In the case of multi-view EEG data, Zhang et al. [9] used 
various feature extraction methods, such as wavelet packet decomposition (WPD), short time Fourier transform (STFT), and kernel 
principal component analysis (KPCA), to construct training and testing datasets. They used a specific model called the deep view- 
reduction TSK fuzzy system to determine the weight of each view and automatically reduce the effect of weak views, achieving a 
testing accuracy of 84.89 % in the classification of epilepsy. Moreover, they used fuzzy rules in the specific TSK fuzzy neural network to 
enhance the interpretability of prediction results, enabling researchers to understand the meaning of parameters during the reasoning 
process and providing linguistic interpretability support for the results. Similarly, Xue et al. [8] proposed a novel deep ladder-type TSK 
fuzzy classifier for epilepsy recognition using EEG signals. They also used WPD, STFT, and KPCA for feature extraction in dataset 
construction and summarized the antecedent and consequent parameters, as well as fuzzy rules, to enhance the understandability of 
the results. Other studies have developed specific TSK-based FIS models and used fuzzy rules to provide transparency in the reasoning 
process [7,29]. 

Different representations of fuzzy rules, each having its advantages and uses, have been used in medical diagnosis based on 
sequence data. Xue et al. [8] used all three representations discussed in Section 2.2.2: the parameters, IF–THEN, and visualization 
representations. Each of these three representations of fuzzy rules has its advantages, but the simultaneous adopting of all three 
maximizes the ability to comprehend the reasoning process according to fuzzy rules and ensures a higher level of interpretability for 
the widest audience. Most previous studies [9,30] have used both the parameter and IF–THEN representations of fuzzy rules as the 
represented knowledge. Fuzzy rules have been used to make medical diagnosis from sequence data to realize high interpretability and 
to generate knowledge representations. Indeed, there have been researchers who have taken the interpretability of fuzzy rules as a 
default advantage and only briefly mentioned it in their works [29]. 

3.1.2. Conventional approaches 
Besides the use of fuzzy rules, studies have used model-agnostic explanation methods to enhance the interpretability of results. For 

instance, Smith et al. [31] explored a combination of variational mode decomposition and the Hilbert transform to extract hidden 
information from EEG signals. They used five traditional classifiers and four model-agnostic explanation methods (i.e., the use of LIME, 
SHAP, a partial dependence plot, and Morris sensitivity) to detect attention deficit hyperactivity disorder, achieving an accuracy of 
99.81 %. However, the extracted features were mainly statistical measures, such as standard deviations and mean values, and the 

Table 2 
Literatures related to the interpretability of a disease diagnosis made using sequence data.  

No. Author Disease Data Preprocessing Model ACC Explanation 
method 

1 Tao et al.  
[30] 

Epilepsy EEG WPD, STFT, KPCA Domain adaptation learning, semi- 
supervised learning, and a fuzzy 
system 

96.8 % Fuzzy rules 

2 Li et al. [7] Epilepsy EEG WPD, STFT, KPCA Multi-view TSK fuzzy system 98.87 
% 

Fuzzy rules 

3 Zhang et al. 
[9] 

Epilepsy EEG WPD, STFT, KPCA Deep View-reduction TSK fuzzy 
system 

84.89 
% 

Fuzzy rules 

4 Gu et al.  
[29] 

Seizure EEG WPD, STFT, KPCA Multiple-source transfer learning- 
based TSK 

97.1 % Fuzzy rules 

5 Xue et al.  
[8] 

Seizures EEG STFT, KPCA Deep ladder-type TSK fuzzy 
classifier 

88 % Fuzzy rules 

6 Rahman 
et al. [33] 

Cardiac arrhythmia ECG Butterworth bandpass 
filter 

FIS ~100 
% 

Fuzzy rules 

7 Smith et al.  
[31] 

Attention deficit 
hyperactivity disorder 

EEG Variational mode 
decomposition, Hilbert 
transform 

DT, Nearest Neighbor, Medium NN, 
Random Forest and Explainable 
Boosting Machine 

99.81 
% 

Heat map (SHAP, 
LIME, PDP based) 

8 Zhang et al. 
[34] 

Cardiac arrhythmia ECG N/A Deep neural network 96.6 % Heat map 

9 Rashed et al. 
[32] 

Cardiovascular ECG N/A VGG16-based CNN 99.1 % Heat map (SHAP 
based) 

10 Agrawal 
et al. [35] 

Changes in the ECG of 
the post-COVID 

ECG HRV-analysis module Convolutional Neural Network 
without HRV 

100 % Heat map (SHAP 
based) 

11 Rashed et al. 
[36] 

Epileptic seizures EEG Signal-to-image 
conversion methods 

FT-VGG16 classifier 99.21 
% 

Heat map (SHAP 
based)  
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explanation methods enhanced the understandability of the statistical features instead of the raw sequence data. In contrast, CNN 
related models handle sequence data without additional feature extraction algorithms. For instance, Rashed et al. [32] proposed a 
VGG16-based CNN adopting the time–frequency representation of temporal ECG signals to diagnose cardiovascular conditions. In 
addition, they applied SHAP values in the time domain of frequency mapped ECG to highlight key features and its range in the original 
domain, confirming that the model learnt useful information from effective regions. Numerous studies have performed diagnostic tasks 
with or without the preprocessing of sequence data and have explored the interpretability of the models (Table 2). 

Compared with heat map explanation methods, the current use of fuzzy rules may be suboptimal for end-users to understand, even 
though the rules elucidate the reasoning process. As depicted in Fig. 6, a heat map directly illustrates the importance or contribution of 
each point in the raw data, whereas fuzzy rules and SHAP plots mainly explain abstract statistical features that are extracted from 
sequence data. Therefore, in scenarios of disease diagnosis from sequence data, deep neural networks with heat map explanation 
methods are recommended to improve interpretability. 

3.2. Medical image data 

Medical imaging techniques, such as CXR analysis, CT, MRI, ultrasonography, and elastography, are commonly used in disease 
diagnosis as they provide valuable tissue-related information for clinicians in a non-invasive manner. These types of data can be 
directly used by CNN based models, and in FISs after feature extraction. The two applications are further discussed in this subsection. 

3.2.1. Feature extraction 
Two main approaches for feature extraction from medical images are used in disease diagnosis: the use of specific filters and the use 

of deep neural networks. 
Specific filters are used to extract descriptors that capture specific information from medical images, such as texture features and 

contour features. Radiomics feature extraction methods are commonly used to extract quantitative features from medical images, 
including but not limited to CXR, CT, and MRI images. Zhang et al. [4], for example, extracted radiomic features, including the in
tensity, shape, texture, and wavelet features, from segmented CXR images using U-net. Subsequently, these features were used for 
COVID-19 detection using a novel TSK fuzzy classifier with a soft label-driven mechanism. They used fuzzy rules in their model to give 
transparency to the reasoning process by adopting both IF–THEN and parameter representations (as elaborated in Section 2.2.2). The 

Fig. 6. Representative examples of explanation methods used in disease diagnosis with sequence data. (a) A heat map used as an explanation to 
highlight fragments with diverse relevance in ECG data. (b) A SHAP plot of statistical features calculated from ECG sequence data for the analysis of 
the impact of features on the model output. (c) A method of applying fuzzy rules to improve the interpretability of the reasoning process and results 
for epilepsy recognition based on statistical features calculated from EEG sequence data. 
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variables in fuzzy rules are features extracted from medical images and are as abstract as those in scenarios involving extracted 
sequence data (Fig. 7). 

Deep neural networks have been used to improve the interpretability of the feature extraction and reasoning process. Ma et al. [37] 
extracted mammography and ultrasound features based on the BI-RADS manual from ultrasound images and used SHAP to determine 
the contributions of the features, thereby offering a degree of model interpretability. Explanation methods used in scenarios involving 
eigenvectors extracted from image data are slightly superior to those used for sequence data because the extracted features retain 
spatial information from the raw image, which can be understood by users. However, interpretability in disease diagnosis using ei
genvectors extracted from image data remains limited. 

3.2.2. Convolutional neural networks 
Currently used visualization maps include feature maps, attention maps, gradient-based saliency maps, and other specific heat 

maps. These maps offer varying levels of clarity regarding the calculation process and pixel contributions in CNN-based models. These 
visualization maps enhance the trust of clinicians in the results of computer-aided diagnosis systems. Previous reviews have sum
marized the explanation methods for models using image-based data, and these techniques can also be applied in disease diagnoses 
using medical image data [38]. Gradient-weighted class activation mapping (Grad-CAM), a specific type of attention mapping, is a 
technique widely used to provide visual explanations for decisions made using CNN-based models. Panwar et al. [39] used Grad-CAM 
to visualize regions contributing to the detection of COVID-19 in X-ray and CT images, thereby enhancing model interpretability. Grad- 
CAM remains a representative and useful model-agnostic explanation tool for improving the interpretability of CNN-based models. 

Traditionally, the direct application of FISs to image data has been rare and challenging. Concerted efforts have enabled the 
incorporation of fuzzy logic theory into CNNs in various ways. Sharma et al. [12] explored the use of fuzzy-based pooling in CNNs for 
image classification. To tackle the uncertainty in the extraction of useful information due to the unclear intuition of conventional 
pooling methods, type-2 fuzzy logic was utilized to identify the dominant convolved features of the pixels within a window to be 
pooled, and type-1 fuzzy logic with the weighted average of these dominant features was adopted to reduce the spatial size. Their 
proposed method, achieving an accuracy of 94.4 % for fuzzy pooling, 94 % for average pooling, and 88.4 % for max pooling, out
performed conventional pooling methods on challenging image datasets, such as MNIST. Recently, Ruixuan et al. [40] proposed a 
Reference-guided Fuzzy Integral Generative Adversarial Network to nonlinearly fuse the textural and structural features of ultrasound 
images into the convolutional layer of a generative adversarial network. Wang et al. [41] converted an input medical image into a 
fuzzy domain and processed the uncertainty of the pixels utilizing proposed fuzzy rules, and fused the outputs of the fuzzy rule layer 
and convolution layer. They achieved a high reconstruction performance for high-resolution medical images. It is widely agreed that 
even with a powerful CNN, there is uncertainty in the network structure, which can be addressed using fuzzy logic. Owing to the 

Fig. 7. Representative examples of explanation methods used in disease diagnosis with medical image and tabular data. (a) Fuzzy rules used in an 
FIS model with clinical features to assess the risk of cardiovascular disease. (b) SHAP plot that showing importance distribution of clinical features. 
(c) Use of an FIS in disease detection based on radiomic features (including Shape features, First-order features, and texture features) extracted from 
medical images, with fuzzy rules in the form of IF–THEN providing interpretability of the reasoning process. 
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inherent strength of CNN, the improvements that result from the introduction of fuzzy logic may not be large. However, in the medical 
field (a highly interactive and high-risk domain), it is crucial to thoroughly address this uncertainty. Although this technique has 
commonly been tested on MNIST data and is still in its infancy, it has provided evidence that fuzzy logic can handle uncertainties in 
image classification, such as noise, perturbation, and multi-center variations and has application potential in the field of medical 
diagnosis. 

3.3. Tabular data 

Various tabular data, such as medical records, blood test reports, and radiomic features, can be used in disease diagnosis. These data 
are highly convenient for use in ML models and contribute to the wide use of explanation methods such as fuzzy rules and SHAP. 

Clinical records (including but not limited to records of patient characteristics, clinical history, and heart rate) are directly obtained 
from electronic health records and can be used in ML algorithms after normalization. Fuzzy rules are commonly used in explanation 
methods for this scenario. For example, Casalino et al. [10] used tabular data on four clinical features (i.e., heart rate, breathing rate, 
blood oxygen saturation, and color of the lips) to assess the risk of cardiovascular diseases using an ANFIS. They achieved 91 % ac
curacy and used 80 fuzzy rules in IF–THEN form (as elaborated in Section 2.2.2), which are largely understandable. Algehyne et al. 
[11] incorporated tumor features into a five-layered FIS for breast cancer diagnosis and stored IF–THEN fuzzy rules in a fuzzy rule base 
for inference of the output. Several other studies have used fuzzy rules in the context of tabular data from clinical records to enhance 
the understandability of the reasoning process and results (Table 3). When fuzzy rules incorporate clinical records, they represent 
logical relationships in IF–THEN form rather than quantitative rankings of clinical or tumor features. This characteristic of fuzzy rules 
makes the reasoning process more comprehensible to end users owing to its human-like nature (Fig. 7). Therefore, we strongly 
recommend the application of an FIS with interpretable fuzzy rules in disease diagnosis involving tabular-based data such as the data of 
clinical records. 

4. Discussion 

The aforementioned literature indicates that different explanation methods exhibit varying performance across diverse application 
scenarios. In this section, we first discuss the advantages of using FISs in disease diagnosis applications. We than compare the per
formance of fuzzy rules with that of two other explanation methods (i.e., the adoption of SHAP and a heat map) considering the four 
key properties described in Section 2.1.3. Finally, we suggest several future research directions, including the application of novel 
FISs, enhancement of interpretability in FISs, and reduction of the complexity of fuzzy rules, aimed at advancing the use of XAI in 
disease diagnosis. 

4.1. FISs in disease diagnosis 

In this subsection, we discuss the strengths of FISs in disease diagnosis scenarios and present a comparative analysis of fuzzy rules 
and two other explanation methods (i.e., the adoption of SHAP and a heat map). 

4.1.1. Advantages of fuzzy rules in disease diagnosis 
FISs use fuzzy logic to generate prediction results and thus offer a high level of semantic interpretability for both the reasoning 

process and results. Although fuzzy rules can only be used in conjunction with an FIS, the FIS has great adaptability and generalization 

Table 3 
Literatures on the interpretability of disease diagnosis with tabular data.  

No. Author Disease Data Feature 
No. 

Model Best 
ACC 

Explanation 
method 

1 Casalino et al.  
[10] 

Cardiovascular risk Clinical features 4 ANFIS 91 % Fuzzy rules 

2 Bai et al. [42] Breast cancer Clinical features, 
tumor features 

10 A broad learning-based dynamic FIS 96.74 % Fuzzy rules 

3 Thani et al.  
[43] 

Breast cancer Clinical features 10 FIS 90.3 % Fuzzy rules 

4 Algehyne et al.  
[11] 

Breast cancer Tumor features 30 FIS 99.33 % Fuzzy rules 

5 Murugesan et al. 
[44] 

Chronic kidney 
disease 

Clinical features 7 FIS 96 % Fuzzy rules 

6 Dong et al. [45] 3-year risk of diabetic 
kidney 

Clinical features 46 LightGBM, XGBoost, Adaboost, 
ANN, DT, SVM, LR 

0.815 
(AUC) 

SHAP 

7 Liu et al. [46] Cardiovascular Clinical features 11 SVM, KNN, LR, RF, ET, GBDT, 
XGBoost, LightGBM, CatBoost, MLP 

89.86 % SHAP 

8 Hakkoum et al.  
[14] 

Breast cancer Tumor features 30 Multilayer perceptron, and Radial 
Basis Function Network 

96.63 % LIME, PDP 

9 Pal et al. [47] Lung cancer Tumor features 10 SVM, KNN, GBM, XGBoost, RFC and 
feed forward neural network 

94.2 % SHAP  
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capabilities. In particular, ANFISs [23] excels at adaptively tuning fuzzy rules by optimizing antecedent and consequent parameters 
based on large datasets, as detailed in Section 2.2. Consequently, in disease diagnosis applications, the explanation method of fuzzy 
rules retains the advantage of being highly comprehensible without requiring specific task. Even in the case of sequence data, such as 
EEG and ECG data, and medical images, ANFISs can handle the classification task when the data have been transformed to tabular or 
eigenvector data in advance, as presented in Section 3.1 and Section 3.2. Fuzzy rules, especially when expressed in the form of 
IF–THEN statements, present a reasoning process that closely resembles human reasoning. They are thus highly intuitive and 
comprehensible even for individuals outside of the field of fuzzy logic, such as clinicians and patients. This is particularly evident in 
disease diagnosis scenarios involving clinical records, as discussed in Section 3.3 and presented in Fig. 7. 

This resemblance to human reasoning means that fuzzy rules are highly suitable for applications in the medical domain (Fig. 8). For 
instance, in a scenario of sequence data, Xue et al. [8] presented the fuzzy rules in parameter, IF–THEN, and visualization repre
sentations to show the interpretability of a TSK-based ANFIS in the recognition of epilepsy from EEG signals. Even when sequence 
signals had been transformed to abstract features, the role of each parameter in the human-like reasoning process and the generated 
prior knowledge representation remained understandable (Fig. 6). For medical imagery, the FIS can be utilized as an interpretable 
classification method after feature extraction. Zhang et al. [4] extracted radiomic features, including intensity, shape, texture, and 
wavelet features, from segmented CXR images using U-Net as the input of a novel TSK neural network for COVID-19 detection, and 
presented fuzzy rules in parameter and IF–THEN form for the interpretation of the reasoning process (Fig. 7c). Similarly, Algehyne 
et al. [11] adopted an FIS based on clinical features, such as the radius, texture, area, and smoothness, for breast cancer detection; their 
model achieved 99.33 % accuracy and presented an interpretable knowledge base of the predictors (Fig. 7a). However, it is worth 
noting that although fuzzy rules have strong interpretability, the current variants of fuzzy rules may still encounter limitations when 
compared with model-agnostic explanation methods, such as SHAP and LIME. These limitations are explored in the following 
subsection. 

4.1.2. Comparative analysis 
The use of fuzzy rules, as a model-specific explanation method, exhibit varying interpretability performance for different types of 

multimodal medical data in disease diagnosis scenarios. This discussion centers around the three representative modalities of medical 
data (i.e., sequence signals from medical sensors, medical images, and tabular data), as presented in Section 3. Fig. 9 offers a 
comparative analysis of the four properties of explanation methods detailed in Section 2.1.3: expressive power, translucency, portability, 
and algorithmic complexity. Algorithmic complexity, portability, and translucency pertain to the interaction with the model whereas 
expressive power relates to the interaction with the end-user. Fig. 9 reveals that the properties of algorithmic complexity, portability, and 
translucency remain consistent across various application scenarios, whereas expressive power differs. 

From our analysis, we reach a conclusion similar to that of Carvalho [18] regarding the consistent properties of explanation 
methods. The use of fuzzy rules, as a model-specific explanation method, exhibit the highest translucency and algorithmic complexity and 
lowest portability owing to its dependence on the specific model structure and parameters. Conversely, the use of SHAP, as a model- 
agnostic explanation method, has the lowest translucency and highest portability owing to its independence of the model. Both SHAP 
and a heat map have high algorithmic complexity owing to their reliance on external computational resources. However, heat maps are 
more generic and moderate as there are many ways to draw a heat map. The advantages of each interpretability method are elaborated 
in the following for three scenarios. 

In scenarios involving sequence data (Fig. 4), heat maps directly show the importance and contribution of each data point in the 
raw data. In contrast, fuzzy rules and a SHAP plot explain only abstract features extracted from the data, which may not provide 
adequate understanding from the perspective of the end-user (as elaborated in Section 3.1). In disease diagnosis scenarios involving 
tabular data, particularly clinical records, fuzzy rules offer substantial advantages in terms of the understandability of explanation 
methods owing to their human-like inference processes (as elaborated in Section 3.3). SHAP provides the importance or contributions 
of features to the model’s output, which is result interpretable rather than process interpretable, and this is the reason why its expressive 
power is not as good as that of fuzzy rule. A heat map is commonly used in the correlation analysis of features, which is data inter
pretable. This is efficient but there are other methods that can also be utilized to analyze data. In disease diagnosis scenarios involving 
image data, heat maps (such as Grad-CAM) and attention maps effectively illustrate what has been learned by the CNN and the 
contributions made to the recognition results (as elaborated in Section 3.2). Therefore, in scenarios of disease diagnosis involving 
tabular data, such as data on clinical features, tumor features, and radiomic features, we highly recommend that researchers apply 
fuzzy rules as the explanation method to enhance model interpretability. 

When assisting doctors in diagnosing diseases from tabular data, the FIS has a distinct advantage of providing highly 

Fig. 8. Interpretability of an FIS in the scenario of disease diagnosis.  
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understandable interpretability in the form of IF–THEN rules for the reasoning process, inferred results, and represented knowledge. 
Moreover, the FIS has the ability to extract and handle fuzzy and uncertain features in data, and its inference process is inherently 
interpretable. However, it is indisputable that some explanation methods offer better interpretability than fuzzy rules in other ap
plications due to various limitations, indicating that there is room for further improvement of FISs. The primary difficulty in adopting 
an FIS lies in the high requirement for the understandability of the input features. The inclusion of easily comprehensible data features, 
such as clinical characteristics, enhances the expressive power of fuzzy rules. However, when dealing with medical imaging data or 
sequence data, which are also commonly used in the medical field, both the pixel-level information in the original images and the 
abstract features extracted from the images pose challenges in terms of understandability for physicians. Another limitation is the 
absence of an intuitive visual representation of fuzzy rules. The commonly used result view or surface view of fuzzy rules (as shown in 
Fig. 3) primarily serve as means for researchers to validate their theories rather than to facilitate the interpretation of the reasoning 
process and output results. As a result, the representation remains abstract and less comprehensible for physicians. 

Although this review centers on FISs, we strongly recommend that researchers adopt different complementary interpretation 
methods, individually or in combination, whenever appropriate according to the data type to obtain simple and transparent medical 
decision-making insights into disease diagnosis. 

4.2. Future Trends of FIS 

4.2.1. Medical applications of novel FISs 
Currently, researchers are focusing on the development of novel and powerful FISs, which hold great potential in the medical field. 

Notably, in the field of medical disease diagnosis, classical FISs continue to be extensively applied [10]. Therefore, the development of 
novel FISs that cater to the substantial demand for interpretability and recognition accuracy in the contemporary AI paradigm is 
crucial. Numerous emerging methods have been introduced to optimize fuzzy neural networks and have been evaluated with public 
datasets, as discussed in Section 2.2.1. Zhang et al. [48] evaluated a sensitivity-ensemble-level-based TSK fuzzy system with epilepsy 
EEG data and reported great accuracy and high interpretability. In medical applications, it is common for a single patient to undergo 
multiple medical tests to confirm a disease, leading to the adoption of multi-view or multi-modality approaches. The research of Zhang 
et al. concentrated on state-of-the-art FIS methods and is representative of tentative and potential studies of novel FISs in a spectrum of 
medical applications. 

4.2.2. Interpretability enhancement of FISs 
As discussed in previous sections, the interpretability of FISs in disease diagnosis applications is limited when the input features 

become increasingly abstract and complex. In such cases, ensemble learning can be implemented through the fusion of multiple TSK 
fuzzy systems and the adoption of appropriate ensemble learning strategies. This approach has been shown to be effective in elimi
nating the curse of dimensionality problem and reducing the number of fuzzy rules, thus enhancing the interpretability of TSK fuzzy 
systems. Zhang et al. [49] provided a comprehensive survey of TSK fuzzy system fusion strategies to elaborate the TSK fuzzy system 
embedding methods and their interpretability when dealing with high-dimension and complex data, such as multimodal data in the 
field of medicine. In contrast, model-agnostic explanation methods, such as SHAP and Grad-CAM, can be integrated with FISs to 
maximize model interpretability. For instance, with an increasing awareness of the importance of FISs, concerted efforts have been 
made to simultaneously apply multiple explanation methods, such as drawing heat maps based on SHAP theory [31]. This paves the 
way for the incorporation of model-agnostic explanation methods to further enhance the interpretability of FISs. Given this strength, 
the role of fuzzy rules in FISs is expected to become increasingly prominent in the AI era in terms of leveraging the enhanced accuracy 
of complex and sophisticated prediction models while providing semantic human-like reasoning and interpretability of the prediction 

Fig. 9. Subjective comparisons of the properties of explanation methods in disease diagnosis scenarios revealing that the properties of algorithmic 
complexity, portability, and translucency remain consistent regardless of the application scenario, whereas the expressive power of various explanation 
methods varies across different scenarios. 
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results. These improvements, in turn, are expected to bridge the communication gap between humans and machines, leading to ad
vancements in XAI in the medical domain. 

4.2.3. Reduction of the complexity of fuzzy rules 
FISs with lightweight fuzzy rules provide high understandability and generalizability. Studies have attempted to define evaluation 

metrics for fuzzy rules, such as the length and the number of the rules. These studies have reported that a greater complexity of fuzzy 
rules is associated with a greater difficulty for individuals to understand and interpret the rules. Conversely, mitigating complexity 
facilitates the learning of more general fuzzy rules that are suitable for diverse application scenarios, thus improving the generaliz
ability of FISs. In disease diagnosis, differences in data across different medical institutions, such as variations in equipment, opera
tional procedures, and image algorithms, necessitate the development of generalizable fuzzy rules, which is expected to become an 
interesting and important topic of research on FIS. For instance, Zhou et al. [50] recently adopted a deep TSK fuzzy classifier with a 
random rule heritage (Drrh-TSK-FC) to recognize the sleep stage from EEG signals. In their research, several randomly generated short 
fuzzy rules were used to imitate the cognitive behavior of past experiences (i.e., the represented knowledge base-fuzzy rules) to solve 
new yet similar problems. Moreover, the simplicity of fuzzy rules in Drrh-TSK-FC enabled the expansion of fuzzy neural networks to 
deeper levels, providing fuzzy sub-classifiers with better uncertainty handling and generalization capabilities. 

5. Conclusion 

There is an increasing, yet unsatisfied, demand for interpretable AI (or XAI), particularly to achieve human machine interactions 
and trustworthy AI for bench-to-bedside translation in clinics. Among various explanation methods for interpretable AI, the use of 
fuzzy rules embedded in FISs is a novel and powerful technique. However, there are few reviews of the use of FISs in medical diagnosis. 
In addition, the role of fuzzy rules for different types of multimodal medical data has been little discussed. In this review, we not only 
provide the fundamental and historical knowledge of fuzzy rules to facilitate readers better appreciate fuzzy logic, working principles, 
and the underlying semantic interpretability but also discuss the strengths and weaknesses of fuzzy rules for three major types of 
multimodal medical data used in diagnosis compared with those of two other popular methods (i.e., the adoption of SHAP and a heat 
map). In the field of medical diagnosis, we strongly recommend the adoption of fuzzy rules when using tabular data (such as clinical 
parameters, diseases characteristics, and radiomic features) owing to their high expression power and translucency. Given the current 
limitations of fuzzy rules discussed in this review, we recommend that researchers combine fuzzy rules with other explanation methods 
(such as the use of SHAP and a heat map), whenever appropriate, to maximize the interpretability of AI models used in the bench-to- 
bedside translation of prediction models applied to clinical decision-making processes. In the contemporary AI paradigm, model 
interpretability has become indispensable in clinical implementation for various stakeholders, specifically medical practitioners and 
patients. The advantages of emerging FIS technique, as discussed in this review, mean that FISs outperform other explanation methods 
in terms of interpretability. As both FIS and AI techniques are evolving, it is anticipated that the role and impact of FISs will become 
even greater in the medical domain. 
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