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In this paper, we investigate a backward doubly stochastic recursive optimal control problem wherein the cost
function is expressed as the solution to a backward doubly stochastic differential equation. We present the dy-
namical programming principle for this type of optimal control problem and establish that the value function is
the unique Sobolev weak solution to the associated stochastic Hamilton-Jacobi-Bellman equation.

1. Introduction

Backward stochastic differential equation (BSDE in short) has been
introduced by Pardoux and Peng [1]. Independently, Duffie and Epstein
[2] introduced BSDE from economic background. In ref. [2], they pre-
sented a stochastic differential recursive utility which is an extension
of the standard additive utility with the instantaneous utility depending
not only on the instantaneous consumption rate but also on the future
utility. The recursive optimal control problem is presented as a kind of
optimal control problem whose cost function is described by the solu-
tion of BSDE. In ref. [3], Karoui, Peng and Quenez gave the formulation
of recursive utilities and their properties from the BSDE point of view.
In 1992, Peng [4] got the Bellman’s dynamic programming principle
for this kind of problem and proved that the value function is a viscos-
ity solution of one kind of quasi-linear second-order partial differential
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equation (PDE in short) which is the well-known as Hamilton-Jacobi-
Bellman equation. Later in 1997, Peng [5] virtually generalized these
results to a much more general situation, under Markovian and even
Non-Markovian framework. In this Chinese version, Peng used the back-
ward semigroup property introduced by a BSDE under Markovian and
Non-Markovian framework. He also proved that the value function is a
viscosity solution of a generalized Hamilton-Jacobi-Bellman equation.
In 2007, Wu and Yu [6] gave the dynamic programming principle for
one kind of stochastic recursive optimal control problem with the ob-
stacle constraint for the cost functional described by the solution of a
reflected BSDE and showed that the value function is the unique vis-
cosity solution of the obstacle problem for the corresponding Hamilton-
Jacobi-Bellman equation.

In 1994, the study of backward doubly stochastic differential equa-
tions (BDSDE in short) was initiated by Pardoux and Peng [7]. The
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equations involve two independent standard Brownian motions with
two different directions of stochastic integral: a standard forward dW,
and a backward d B,. They proved the existence and uniqueness of solu-
tions to this equation and established a connection between BDSDE and
a classical solution for stochastic partial differential equations (SPDE
in short) under smoothness assumptions on the coefficients. Bally
and Matoussi [8] provided a probabilistic representation of the solu-
tion in the Sobolev space of semilinear stochastic PDEs in terms of
BDSDE. This kind of Sobolev weak solution result concerning stochas-
tic PDEs can also be found in refs. [9] and [10]. In 2005, Shi, Gu, and
Liu [11] established a comparison theorem for BDSDEs, while Aman
[12] obtained the uniqueness and existence of solutions to reflected
BDSDEs.

In our research, we investigate a stochastic recursive optimal control
problem where the control system is governed by the classical stochastic
differential equation, while the cost function is represented by the so-
lution of a backward doubly stochastic differential equation. This type
of recursive optimal control problem is of practical significance, par-
ticularly in arbitrage-free incomplete financial markets where “insider
trading” exists. An individual with access to insider information can gain
an unfair advantage over other investors and potentially generate larger
profits, which could be modeled using a BDSDE in financial market mod-
els. Specifically, there are two types of investors with varying levels of
information about the future price evolution in a market that is influ-
enced by an additional source of randomness. The ordinary trader only
has access to “public information” i.e., market prices of underlying as-
sets contained in the filtration F(;'_': . However, an insider who has access

to a larger filtration F&‘f \% FfT, including insider information, can gain a
significant advantage. For instance, an insider may know the functional
law of the price process, or he may be aware of a significant change in
the business policy or scope of a security issue, or he may be able to
estimate whether his portfolio is better than others. It is worth noting
that BDSDE techniques offer powerful tools to analyze the problem of
portfolio optimization for an insider trader, where the investment strat-
egy still satisfies the property that locally optimal is equal to globally
optimal.

Our primary interest is to determine whether the dynamic program-
ming principle holds for this recursive optimal control problem. For-
tunately, the BDSDE properties allow us to achieve this objective. Un-
like the HJB equation in previous work [4,6], the corresponding HJB
equation that we obtain is a SPDE in a Markovian framework. In the
stochastic case where the diffusion may be degenerate, the HJB equa-
tion may not have a classical solution. To overcome this issue, Crandall,
Ishii, and Lions [13] introduced the concept of viscosity solutions in the
early 1980s, which has yielded fruitful results. However, the viscosity
solution of the HJB equation cannot provide a reasonable probabilistic
interpretation of a solution pair (Y, Z) of BSDE, as there is no established
relationship between the Z component of the solution and the HJB equa-
tion. In this paper, we propose a different type of weak solution for HJIB
equations in a Sobolev space, in which the Z component is implicitly
included in the weak definition. Wei, Wu, and Zhao [14] have demon-
strated that the value function is the unique Sobolev weak solution of
the related HJB equation using the nonlinear Doob-Meyer decomposi-
tion theorem introduced in the study of BSDEs.

In our paper, we address the problem of establishing a connection
between the Sobolev weak solution of the HJB equation and BDSDE.
Unlike in the case of BSDE, there is no Doob-Meyer decomposition the-
orem available for BDSDEs, and hence it is not immediately clear how
to derive equations similar to Lemma 4.1 and 4.2 in ref. [14]. To tackle
this issue, we draw inspiration from the reflected solution of BDSDE in
[12,15]. Specifically, we introduce an increasing process into the equa-
tion, which acts as a minimal force that drives the cost function upwards.
By doing so, we are able to establish the desired connection between the
Sobolev weak solution of the HJB equation and BDSDE.

The paper is structured as follows. In Section 2, we present the pre-
liminaries and assumptions. In Section 3, we formulate a stochastic re-
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cursive optimal control problem, where the cost function is defined by
the solution of a BDSDE. We demonstrate that the dynamic program-
ming principle is valid for this optimal control problem. In Section 4,
we establish that the value function of the problem is the sole weak
solution in a Sobolev space for the related stochastic Hamilton-Jacobi-
Bellman equation.

2. Preliminaries and assumption

In this section, we present preliminary results on the BDSDEs which
provide the foundation for the recursive optimal control problem.

Let us first introduce the setting in which we want to study
stochastic optimal control problem. We consider a probability space
(Q,F,P), where T >0 is a fixed constant throughout this paper.
We define two independent standard Brownian Motion processes
{W;;0<t<T} and {B,;0 <1 < T} with values respectively in R¢ and
R!, defined on (Q,F,P). Let N denote the class of P-null sets of
F. For each t € [0,T], we define F, := P&’K vaT, where F:",’ =Nv
o{W,-Wgus<r<t}, F% =N Vvo{B, ~ Bt <r<T}. It is important
to note that {F,;1 € [0,T]} is neither increasing nor decreasing, and it
does not constitute a filtration. However, {F&‘f ,t € [0,T1]} is a filtration.

We shall also introduce the following spaces of processes, which will
be frequently utilized in the forthcoming discussion

£2={¢ is an F; — measurable random variable s.t. E(|£|?) < +o0}

H2:{ {y,,0 <t < T} is a predictable process s.t.E fOT lg,12dt < +oo}
52:{ {@,,0 <t < T} is a predictable process s.t.E( sup |¢,|?) < +oo}
0<i<T

Let us now consider two functions f : [0,7]x Rx R? — R, and
g :[0,TIx Rx RY - R' with the property that (f(t,y,2)),cor and
(g(t, ¥, 2))e0,1) @re F;- progressively measurable for each (y, z) in R x R,
and we also make the following assumptions on f and g throughout the
paper:

(H2.1) For any (y,z) € R x RY

f(,,2) € H3(0,T; R); g(-, y,2) € H*(0,T; R')

(H2.2) There exist constants L > 0 and 0 < a < 1, such that for any
v,y €Rz,7 € RY,

lf(t.y.2) = f(t.y. 2 < LUy =y +|z—2)
lg(t, y,2) —g(t, ¥, 2)| < Lly = y'| +alz = 2|
There exists constants C such that for all (, y, z) € [0,T] X R X R¢

|f@y, 2D < 1f@0,0] + C(yl + |z]. |8, y, 2)] < g(,0,0)] + C(|y[ + |z])

The proof of the following well-known result on BDSDEs can be found
in Pardoux and Peng [7]

T T
Y, =+ / FG.Y,, Z)ds + / ¢(s.Y,, Z,)d3B,
t t
T
- [ zaw, osisr )
t

where & € £2(Q, Fr,P;R) is a Fr-measurable random variables, and
Fr=F VFL = F.

We observe that Eq. 1 involves two independent Brownian motions
W and B. The dW integral is an It&’s integral, whereas the d B integral is
a backward Itd’s integral. The additional noise B in the equation can be
interpreted as extra information that is generally not observable in the
market, but is accessible to a specific investor. Consequently, the central
problem is to demonstrate how this investor can exploit the additional
information to optimize the utility, while adhering to the admissible
portfolios’ standard class, that is, by selecting an optimal strategy that
is entirely “legal”.

Then from Theorem 1.1 in ref. [7], there exists a unique solution
{(Y,,Z,),0 <t < T} € S*0,T; R) X H*(0,T; RY).
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We shall recall the fundamental results on BDSDEs, starting with the
two precise estimates of the solutions.

Proposition 2.1. Let{(Y,, Z,) € S?(0,T; R) x H*(0,T; R%),0 <t < T} be
the solution of the above BDSDE (1), then for some & € £L*(Q, Fr, P; R) and

T
E/ (1£,0,0)]* + |g(,0,0)|)dt < 0
0

we have

T
E{ sup |Y, |2+ (/ |Zs|2dt>} <o ®)
0<s<T 0

Proposition 2.2. Let (&, f,g) and (¢, f', g') be two triplets satisfying the
above assumption (H2.1) and (H2.2). Suppose (Y, Z) is the solution of
the BDSDE (¢, f,g) and (Y', Z') is the solution of the BDSDE (&', f',g").
Define

NE=E-¢,

Nf=f-f, Ng=g-¢

ANY=Y-Y 6 ANzZ=7-27

Then there exists a constant C such that

T
E{ sup |AYS|2+</ IAZSIZdt>}SCE{IA§|2} ®
0

0<s<T

3. Formulation of the problem and the dynamic programming
principle

In this section, we present a formulation of a backward doubly
stochastic recursive optimal control problem. We then establish that
the dynamic programming principle holds for this type of optimization
problem.

We define the admissible control set U" as follows

U = {v(-) € HP| v(-) take value inU c R*}.

An admissible control is an element of the admissible control set .
Note that U is a compact subset of R¥, a condition that is often met in
practical applications.

For a given admissible control, we consider the following control
system

{dXQ@?” = b(s, X5, 0)ds + o(s, X250, 0,)dW,, s € [1,T] @

Xtr,g“;u =¢

Where ¢t > 0 is regarded as the initial time and ¢ € £3(Q, 7?0”; ,P;R") as

the initial state, the mappings

b:[0,T]XR"XU — R"
6 :[0,T]x R"xU — R™

satisfy the following conditions:

(H3.1) For every fixed x € R", b(-, x,-) and o(-, x, -) are continuous in
(t, v);

(H3.2) there exists a L > 0, such that, for all r € [0,T], x,x’ € R",
v,U' eU

|b(t, x, 0) = b(t, X', )| + |o(t, x,0) = (1, %", )| < L(|Ix = X'| + v =)

Proposition 3.1. It is worth noting that the conditions (H3.1) and
(H3.2) guarantee the existence of a unique strong solution {Xi’g‘" S
H2(0,T;R"),0<t<s<T} for the control system (4). Furthermore, for
any t €[0,T), ¢.¢' € £L2(Q, POV};,P;R"), v(), V() eV and 6 € [0,T —1],
the following estimates hold
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EP,W{ sup |x;’€;v|2} <Cca+EP

1<s<T

vl 1.8 180" 12
E’ {sup [ X590 — X7 ”|}

t<s<T

T
<Cle-¢?+ CEFIW{/ |u5—u;|2ds}
t

E{ sup |X§*§;”—C|2}5C5

1<s<t+6
where the constant C depends on L, T, and the compact set U.

For a given admissible control v(-), we consider the following
BDSDE

T
YSL,C;U - @(X;é;v) +/ £, X;’g;”,Yr’":;”, Z;(:u’ v)dr
s

T T
N s RSN Lo
+/ g(r,x;-”,Y,’é“”,Zﬁ“)dB,—/ ZMdW,, t<s<T
N N
)
where
®:R'> R,
0, TIXR'"XRXR!xU > R
g:[0,TIXR"XRxR! - R

and they satisfy the following conditions:

(H3.3) f and h are continuous in ¢.

(H3.4) for some L > 0 and 0 < « < 1 all x,x’ € R"; y,)y' €
R;z,Z € R%v,0 €U

It x, 9, 2,0) = f(6, 5", 2/, )] + |®(x) — @)

SLUx =¥+ ly=VYI+lz= 2+ v=0])

lgt,x,y,2) — gt.x", ¥, ZH < L(x = x'| + |y =) + a|z — 2’

(H3.5) The function ® € L2(Q,F", P; R).
(H3.6) V(y,z) € RXx RY, f(,y,2,-) € H?, g(, y, z) € H>.
(H3.7) f is measurable in (¢, x, y, z, v) and for any r € [t,T]

T
E/ |£(r,0,0,0,0,)>dr < M
0

functions f and g are continuous and controlled by C(1 + |x| + |y| + |z]).

Then there exists a unique solution {(Y/<, Z"*) e S2(0,T; R) x
H2(0,T; RY),t < s < T}. Furthermore, the solution satisfies the follow-
ing estimates, which follow from the estimates in Proposition 3.1.

Proposition 3.2.

T
w . .
E7! { sup |Y;’4’"|2+/ |Z;’¢'”|2dr} <ca+ieP
1

1<s<T

T
P { swp (¥ -y [z z5 'zd’}
t

t<s<T
w T
<ClE-¢P+CE” {/ lv, — u;|2dr}
t
Where the constant C depends on L and T.

Given a control process v(-) € U, we introduce the associated cost
functional

J(@, x;0()) = Ys’*";”h:p (t,x) €[0,T] x R" 6)
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and we define the value function of the stochastic optimal control prob-
lem

u(t,x) :=ess sup J(,x;v0(-)), (t,x) € [0, T] x R" 7

v(EV

Remark 3.1. In this stochastic optimal control problem, the term B in
the cost function represents additional information that is not generally
available in the market but is known to a specific investor. For example,
an insider may have knowledge of the functional law of the price process
or may be aware of significant changes in the business policy before they
occur, but they are unable to influence these factors. The admissible
control v(-) is independent of the Brownian motion B, and the process
(X L’g;”} is a FOV": -measurable random process. However, the solution of
the BDSDE (5), given by (¥/**, Z'**), is the big o-field F,-measurable
random process.

Now we continue our study of the control problem (7) and prove
that the celebrated dynamic programming principle still holds for this
optimization problem. Our proof draws inspiration from the work of
Peng on the dynamic programming principle for recursive problems, as
presented in the Chinese version [4], as well as that of Wu and Yu in
ref. [6].

Let us now consider the following subspace of V"

vt = {U(-) e U |u(s)is T’K progressively measurable, ¥t < s < T}
v o= {US = ZviIAjlvi € U",{Aj}jN=1 is a partition of (Q,FOV"; }
j=1
Firstly, we will establish that:

Proposition 3.3. Under the assumptions (H3.1)-(H3.7), the value function
u(t, x) defined in (7) is F 2. measurable.

Proof. First we can prove

ess sup J(t,x;0(:)) =ess sup J(,x;0(-)) 8)
v(EV U(')Eﬁr

UT is the subset of U, then

ess sup J(t,x;0(-)) = ess sup J(t, x;0(-)).
v(EV v(-)E?t

To show Eq. 8, we consider the inverse inequality. For any v(-), 0(:) € U,
by Proposition 3.2, we have

- T
E{|Ytr,x;u_ytt,x;v|2} SCE/ v, — 7, %ds
'

Note that 7 is dense in U, then for each v(-) € U, there exists a se-
quence {v,()} | € T such that

lim E{ |Ytr,x;u,, _ Ytt,x;vlz} -0

n—oo

So there exists a subsequence, we denote without loss of generality
{0,322, such that

. 1,x;50, 1.x;
lim Y% = Y, a.s.
n—oo

so that

lim J(t, x,v,()) = J (@, x, v(*)), a.s.

n—oo

By the arbitrariness of v(-) and the definition of essential supremum, we
get

ess sup J(t,x;0(:)) > ess sup J(t,x;0(-))
v(ET vOEV

then we obtain (8).
Secondly, we want to prove

ess sup J(,x;0(-) =ess sup J(t,x;0(-))
v(.)eﬁt v(-)EV!
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Obviously,
ess sup J(@, x;0(-) >ess sup J(t,x;0(-)
v(HET VeV

Next we will proof the inverse inequality by considering the partition of
probability space

N N . N N .
X’v’“Z,‘:l o lAj — Z IA_Xt’x;v/, YX,X:Z,EI UJIAI — Z [A‘YI’X:U/
= =
I,x;ZN_ vy, ul fxod
ZMER I 2 N gy 7
=1

—t
Vu(-) € U, we have
N N
J@xo() = J(x Y IO ) = Y T x 0 ()
j=1 j=1
Note that v/(-)(j = 1,2, ---, N) are F:Z progressively measurable, then
J(t,x, 0/ (-))(j =1,2,-,N) are FIB measurable. By the comparison the-

T
orem of the BDSDE in ref. [11], we assume that

Jt,x, o) 2 J(tx,0/)  Vj=23, N
So
N
ess sup J(t,x;u()) =ess sup Y In J(tx;07()
VOET vOET J=1
N
< z ess sup I, J(t.x; V()
= e

< ess sup J(t,x;vl(-))=ess sup J(t,x;0(-))
v()eV! v()EV!

then we can get

ess sup J(t,x;0()) <ess sup J(, x;0(-)
U(.)eﬁr v(-)EV!

However, when v(-) € U”, the cost functional J (¢, x; v(-)) is FIBT measur-
able. So Y

u(t,x) =ess sup J(t,x;0())
v(-) eV

is FIBT measurable. []

Next, we shall investigate the continuity properties of the value func-
tion u(z, x) with respect to x and 7. We establish the following estimates:

Lemma 3.4. Foreacht € [0,T], x and x' € R", we have
() Elu(t,x) —u(t,x")]* < Clx - x'|?

iy )
(i) Elu,x)| <CA + |x]).

Proof. utilizing the estimate: E(sup,< <7 |Y;™"|?) < C(1 + |x|?), for each
admissible control v(-) € U, we have

ElJ(t,x;0()] < C(1 +|x]) (10)
and
ElJ(t,x;0()) = J (0, x";0(-)|* < Clx — x'|?

On the other hand, utilizing the comparison theorem of the BDSDE pre-
sented in ref. [11], for each £ > 0, Jv(-), v'(-) € U such that

Jt,x; U () Sut,x) < J(t, x,v(-) + &
Jt,x";00) <ut,x)<Jt,x", V() +¢

From the estimate (10) we can get

—C(1+ |x])—e < E|J(t,x;U' ()| < Elu(t, x)|
< E|Jt,x;0(-)|+e<C+|x|])+e

From the arbitrariness of £, we can obtain (ii).
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Similarly
Jt,x; 0 () = J@t,x" ;0 () — e <ult,x) —u(t,x")
<J@x;0() - J@x0() + e
|ut, x) — u(t, x")|
<max{|J(t, x;0() = J@, x50 O, 1T @, x50() = T @, x5 0()|} + &
Elu(t, x) — u(t, x")|?
< 2max{E|J (1, x;0/() = J(t.x"; 0/ ()% ELJ (¢, x;0())
—J(t.x" ()P} + 267
<2C|x — x'|* +2€2
Then we can obtain (9). [
Additionally, we have:

Lemma 3.5. Vi € [0,T], Vo(-) € U, for all { € LX(Q, F)Y, P; R"), we have

I, 800 = Y

Proof. We first study a simple case: ¢ is the following form: ¢ =
Zi]il 14,x;, where {A;}X, is a finite partition of (€, 7?(;”‘;), and x; € R"
for1 <i< N, so

s

N
. f, ]i Ty x;: -
yrov =y Zisi Lagxiv _ ZIAiKvI'X”b
i=1
From the definition of cost functional. We deduce that

N N
AR A DI RSO
i=1 i=1

N
= I, Y Ta,x500) = J (1,6 0())
i=1

i

Therefor, for simple functions, we get the desired result.
Given a general ¢ € £2(Q, 7-’”,/, P; R"), we can choose a sequence of

simple function {¢;} which converges to ¢ in £2(Q,F)”, P; R"). Conse-
quently, by Proposition 3.2 we have

E(Y, S Y52} < E{CIE - §P) > 0. asi— oo

So

asi — oo

E(1J(t,&;0()) = I (1, &3 0D} < E{CIE =GP = 0,
With the help of Y,"C” = J(t,¢; v(-)), the proof is completed. []

We present the following result for the value function of our recur-
sive optimal control problem:

Lemma 3.6. Fixed € [0,T) and ¢ € LX(Q,F), P; R"), for each v(-) € U,
we have
u(t,) 2 ¥4, as. an

On the other hand, for each € > 0, there exists an admissible control v(-) € U
such that

ur,O) <Y 1e, as. (12)

Proof. In order to prove this lemma,
Proposition 3.2 are of paramount importance.

We first proof (11). When ¢ is a simple function: { = Zﬁl Iy,x;, for
all v(-) € U, We have

Proposition 3.1 and

N N N

. S ing La, xisv i

R A D W A WA RO R NS
i=1 i=1

If ¢ € £L2(Q, 7?0”; , P; R"), we can choose a sequence of simple functions

{¢;} which converges to ¢ in £2(Q, Fg‘t/ , P; R"). Consequently, similar to
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Lemma 3.5, we have

E(Y/ S YRy < E(CIE -6 = 0, asi—> oo

E{|u(t,§)—u(t,§i)|2} - 0,as i > o0

Then there exists a subsequence, without loss of generality we use same
notation, such that

. INeN) &0
lim Yy, =Y, :b, a.s,

i—o0

lim u(t,{;) = ut,{), a.s.

Here Y < u(t,&),i = 1,2, -+, 50 Y/* < u(t,0), a.s..

We now turn to (12). We first consider the case that ¢ is a bound
random variable, suppose that |{| < M, and construct a simple random
variable 5 = 21111 1,x;, where {Ai}l_’i] is a finite partition of (Q, P(;f;),
such that

@ Inl<1gl
2

(i) |n—¢| <min{—= £

6y/C 36C o)

For any u(-) € U, By the comparison theorem of the BDSDE in ref.
[11] and the Proposition 3.2, we have
VY < S ) ] < 5

Then, for each x;, we can choose an T’,'f‘; -adapted admissible control v/(-)
such that

£

1,X;30;
u(t, x) < Y 4 2

We denote v(-) := 21111 IA, v'(+), then

N
t.lw 1,850 v ;0 £ 1,30
Y T Ly S S LY,
i

\%

N
€ € 2
2 -5+ ZIA,.(u(t,x,»— $)=-Fe+ultn)

\%

—e+u(t,§)

Therefore, for a bounded random variable ¢, we have the desired result
(12).

Given a general ¢ € £3(Q, FOVK , P; R"), we note that ¢ has the follow-
ing form

[s+]
¢= 2 IA, G
i=1
where {4; }22, is a partition of (, Fé": ), ¢; is a bounded random variable.
So, for every ¢;, there exists v/(-) € U, such that
u(t, ) < Y,t’g';vi +e

We denote v(-) = 3,72 I, v'(-) and get

ut.0) = u(t, Y 1, 6) = 3 Lo ut.5) < 3 Ly (V5 +6)
i=1 i=1 i=1

0
i=1

The proof is now completed. []

Now we start to discuss the (generalized) dynamic programming
principle for our recursive optimal control problem.

Firstly we introduce a family of (backward) semigroups which is
original from Peng’s idea in ref. [4]. Given the initial condition (7, x),
an admissible control v(-) € U, a positive number § < T —t and a real-
value random variable y € £2(Q, F.s. P;R), we denote
Gyl =Y,

t1+6
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where (Y,
t+6

Z,) is the solution of the following BDSDE with the horizon

146
Y, = n+/ f(r.Y, Z,)dr+/ g(r.Y,, Z,)dB,
s

—/ Z,dW,, t<s<1+6
s

Obviously,

1,x,0 t,xv 1,x, U 1,x30
Gt,T [q)(XT = Gt 1+68 Yt+§ ]

Then our (generalized) dynamic programming principle holds.

Theorem 3.7. Under the assumption (H3.1)-(H3.7), the value function
u(t, x) obeys the following dynamic programming principle: for each 0 < § <
T-1,

u(t, x) = ess sup G: f+‘;[u(t +6, XI';EU)]
U

Proof. We have

u(t,x) = ess Sup G 10X )] = ess sup GyyialY/ ]
v()EV v()E
0 X
= ess sup Gy, ]

v()EV
Form Lemma 3.6 and the comparison theorem of double BDSDE

u(t, x) < ess uf;lepv G; ::) [u(t + 6, X:J:é”)]
On the other hand, from Lemma 3.6, for every € > 0, we can find an
admissible control o(-) € U such that
XD x+(S,X'i‘(;E )
ut+6,X75) <Y, ! + e
For each u(-) € U, we denote 0(s) = I{ <, 5,0(s) + I{;5.45,0(s). From the
above inequality and the comparison theorem, we get

148X

YN S 48, X e,

vs g u(t,x) > ess sup G

il + 6, X, — €]

By Proposition 2.2, there exists a positive constant C, such that

u(t, x) > ess sup G'X v Slut + 6, X:fév)] —Cye
ver

Therefore, letting £ | 0, we obtain

u(t,x) 2 ess sup G u(r + 6, X701

Because o(-) acts only on [¢,7 + 6] for G;:‘fﬁ, from the definition of o(-)
and the arbitrariness of 7(-), we know that the above inequality can be

written as

1,X50 1,x;0
u(t,x) > ess ngG’Hﬁ[”(t +4, X5 )]

which is our desired conclusion. []

4. Sobolev weak solution for the stochastic HIB
equation corresponding to the stochastic recursive control
problem

In this section we consider the Sobolev weak solution for the SHIB
equation related to the stochastic recursive optimal control problem.

We give some preliminary results of the BDSDE which are useful for
the sobolev weak solutions for the recursive optimal control problem.
In order to facilitate understanding and narration, we divided it into
several parts.

Part1

Consider the control system defined by (4)

dxi?Y = b(s, x5V, v)ds + o (s, X7, 0)dW,, s €[t,T]
R 13)
150

satisfying the following conditions:
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(H4.1) The coefficient b is 2 times continuously differentiable in x
and all their partial derivatives are uniformly bounded, ¢ is 3 times
continuously differentiable in x and all their partial derivatives are uni-
formly bounded, and |b(t, x, v)| + |o(t, x,v)| < L(1 + |x|), where L is a
constant.

And the cost function defined by the following BDSDE

T
v (I)(xtfx;u) +/ £, x:’X;U,ytr’X;U,Ztr’X;U, v.)dr
s
T

T
+/ g(r xt X0 yt X v :,x;v)d'Er _ / z:,x;udVVr (14)
s s
where

®:R'> R,
FiI0,TIXR"XRXRYxU —> R
g2:[0,TIXR"XRxR! > R

satisfying the conditions as same as that denoted in Section 3.
Obviously, under the above assumptions (H3.1)-(H3.7) and (H4.1),
for a given control v(-) € U, there exists a unique solution (57, z°") €

S2(0,T; R) x H2(0, T; RY). We introduce the associated cost functlon

J@t,x;0) =y L, (6,x) € [0,T] X R" (15)

and define the value function of the stochastic optimal control prob-
lem

u(t,x) :=ess sup J(t,x;0), (t,x) € [0,T] x R" (16)
velr
According to the conclusion in previous section, we know that the
celebrated dynamic programming principle still holds for this recursive
stochastic optimal control problem. We therefore deduce the following
stochastic HJB equation

u(s,x) =

D(x) + sup {/ (L(r, x,v)u(r,x) + f(r, x,u(r,x)),cVu(r, x),v)dr

VeV

T
+ / g(r, x,u(r, x), o Vu(r, x))dﬁ,} an

s
where £ is a family of second order linear partial differential operators

£0.x, )9 = 31rl00, %000, %,0)" D29 + (b(r, x,0,), Do)

Part 11

We define the weight function p is continuous positive on R" satis-
fying [p, p(x)dx =1 and [, |x|>p(x)dx < co.

Denote by L*(R", p(x)dx) the weighted L?-space with weight func-
tion endowed with the norm

2
lell 2R pyay = [/ |“(X)|2P(X)dx]
R”

{u: R" - R such that u € L*(R", p(x)dx) and i €

0x;
u

L2(R", p(x)dx)}, where :7 is derivative with respect to x in the weak

We set D :=
sense. Note that D equipped with the norm

2 3
o = | [ weooods+ 3 [ | pax
I<isn” R" i
is a Hilbert space, which is a classical Dirichlet space. Moreover, D is a
subset of the Sobolev space H,(R").
We set H :={u:u€ LXR", p(x)dx) and (c*\Vu) € L*(R", p(x)dx)}
equipped with the norm

lull = [ / (O p(x)dx + / |(a*Vu(x))|2p(x>dx]2
Rr R
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We say u € L2([0.T1, H) if [,/ [lu())|%,dr < oo.

Let T be a strictly positive real number and U a nonempty compact
set of R¥.

Part 111

Then, we introduce some equivalence norm.

The solution of SDE (13) generates a stochastic flow, and the inverse
flow is denoted by X5, It is known from [16] that x — X" is differen-
tiable and we denote by J(%.*") the determinant of the Jacobian matrix
of 24", which is positive and J (?;”"”) = 1. For ¢ € C®(R") we define
a process ¢, : Q% [0,T]x R" = R by ¢,(s,x) = ") J(XY*Y). Follow-
ing Kunita [17], we can define the composition of u € L*(R") with the
stochastic flow by (uox’, @) = (u, @,(s, ). Indeed, by a change of vari-

able, we have
(uox™, @) = / u(N@RFNI (X)) dy = / u(x;*")p(x)dx
RY Rn

In ref. [8], V. Bally and A. Matoussi proved that ¢,(s, x) is a semi-
martingale and admits the following lemma 4.1 and lemma 4.2.

Lemma 4.1. For ¢ € C2(R"), we have

d s d s
@;(s,X) = p(x) — 2/{ Z %(Gi,,(r, x)@,(r, x))dW/ +/ Lo, (r,x)dr
j=1 i=1 i

where L} is the adjoint operator of L,.

The next lemma, known as the norm equivalence result and proved
in ref. [8] plays an important role in the proof of the main result.

Lemma 4.2. Assume that (H4.1) holds. Then for any v € U there ex-
ist two constants ¢ >0 and C > 0 such that for every t <s <T and ¢ €
LY(R"; p(x)dx)

¢ / 0 p(x)dx < / E(lo(-5))p(x)dx < € / o) p(x)dx
. " .

Moreover, for every w € L'([0,T] X R"; dt ® p(x)dx)

T T
o[ [ wessax < [ [ EGue s
R" Jt R Jt

T
SC/ / [y (s, x)|dsp(x)dx
R Ji

The constants ¢ and C depend on T, on p and on the bounds of deriva-
tives of the » and o. The proof is similar to the proof of Proposition 5.1
in [8], hence we omit it.

We now provide the definition of a Sobolev solution for the SHIJB
Eq. 17.

Definition 4.1. We say that V (z, x) is a weak solution of the Eq. 17, if
V(t, x)is PIBT-measurable stochastic variable and

@ Erlé”(V(t, x)) € L*([0,T]; H), i.e.

FB T 2
E{/ ||V<r>||Hdr}
0
B T
=E’1T<V(z,x)){ /O ( / |V(z,x)|2p<x>dx}
.

+EFfT(V(t’ x)){/ [(c*VV ), x)|2p(x)dx>dt} < 00 (18)
RVI

(ii) For any non-negative ¢ € CC1'°°([0, T]1x R") and for any v € U
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T
/ / V(r,x),0,9(r,x))drdx + / V (s, x), @(s, x))dx
R" Js R
T
Z/ ((IJ(X),(P(T,x))dx+/ / (f(r,x,V,6*VV,0,), ¢(r, x))drdx
R r Js
T
+ / / (g(r.x, V,6*VV), o(r, x))d B,dx
R Js
T
+/ / (LYV (r, x), p(r, x))drdx (19)

where (L, V(r,x),0(r,x)) = [p(3(VV0)(0* V) + Vdiv(b — A)g)dx with

_ 1 9a
Ai ) Zk=1 oxg

(iii) For any non-negative ¢ € CC"°°([O, T]x R") and for any small
€ > 0, there exists a control v/ € U, such that

T
/ / WV (r,x),0,.9(r, x))drdx+/ WV (s,x), p(s,x))dx — €
R" Js R"
T
< / (@), (T, x))dx + / / (%, V6"V, o)), s x))drdx
R" R Js
T —
+/ / (g(r,x,V,6"VV), @(r,x))d B,dx
R Js

T
+ / / LYV (r, x), @(r, x))drdx (20)
R" Js

Prior to presenting the main result of this section, we shall first recall
the comparison theorem for BDSDE in [11].

Lemma 4.3. Let (¢, f,g) and (¢, f', g) be two parameters of BDSDEs. As-
suming that each one satisfies all the assumptions (H2.1) and (H2.2), we
further suppose the following

E<E as, ft,y,2)<f'(t,y,2),asae, V(yz)eRxR?

Let (Y, Z) be the solution of the BDSDE with parameter(¢, f, g) and (Y', Z")
is the solution of the BDSDE with parameter (¢, f', g). Then

Ytht', ae. VOLt<T

Lemma 4.4. Let (H3.1)-(H3.7) and (H4.1) hold, then for any v € U, the
value function satisfies

s
1,X,0 1L.xX,0 X0 J1,X,U
Vs, x§ )ZE{/ Sl x50yt 200 v)dr
s

+8(r, X0, Y 2 d B, + V(s XSO FY v FEL }
Vi<s<s'<T 1)

and for any small € > 0, there exists a v’ € U, such that

S,
’ ’ ’ Y
Vs, xb) —¢ < E{ / FOrxp®, yov, Z5 o ydr
N

r )

X, ! X, ! X, ! — ,’ ’,/ W B
+g(r, xIHV YR 2l )dB,+V(s’,xS,” IF v FY,T}

Vi<s<s <T (22)

Proof. According to the dynamic programming principle, as derived
above

V (s, x5%) = ess sup G5 [V(sﬂx",’"”)],
' vetr *F

Let

Gf'f‘”[V(s’,x”x’U)] =

s,s’ s/
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be the solution to the following BDSDE

s
ijs _ V(S xtxv) +/ f(r, xi,x,u"};;,x,u’zi,x,u’ U,)dr
s

S/ Sl
+/ g(r, xtxu ?xv "TXU)dB / Z,x,udm’ ie.
N s
S’ S,
'ﬁzx,u — E{ / far, x::x,tz’ )';‘Ir,x,v’ er,x,v’ U,)dr +/ g(r, X"X'U, )';‘rr,x,v’ ij'v)dBr
N s
+V (), vaT} 23)

By utilizing the comparison theorem for BDSDE in Lemma 4.3, obtaining
our desired result can be achieved effortlessly. []

To introduce the next lemma, we first define the following BDSDE.
Let A5 be a continuous increasing process with A;*” = 0 and Ay™" €
£2, we define the BDSDE as follows

T
yts,x;v — (l)(x;LX;U) +/ f(l‘, x:,x;u’ytr,x;u’yi,x;v’ U,)dr+ A;Lx,v _ Ats,x,u
s

T T
+ / glr, x50, Y50 50 g B — / 250w, 24)
s N

The following proposition provides the existence and uniqueness of the
solution to Eq. 24.

Proposition 4.5. We assume (H3.1)-(H3.7) and (H4.1), then there ex-
ists a unique pair of processes (y:', zv*") € £? of solution (24) such that
¥ + ALY is continuous and that

E sup |y’“|2<oo 25)

t<s<T

Proof. In the case where A/ = 0, we can make the change of variable

Yo i= yyY + ALY and treat the equivalent BDSDE

T
P = o) + AT+ / Flr, X0 Gt — Alxe 20 g dr

s
T _ T
+ / g(r xt X u —Y X0 At X, b t,x;v)dBr _ / Z;,x;udu/r (26)
s s

The BDSDE (26) has a unique solution. []

In this stochastic optimal control problem, the process y;™’ is
controlled by V(s,x”“) and yi™ < V(s,x7""),a.s.. In this problem,
u(t, x) 1= ess sup,ey, yor “|5= so for any v(-), ! ”‘ Y is controlled by u(z, x)
and /™" < u(t, x). To express u(t, x) we employ the penalization method
and the comparison theorem of BDSDE to construct a BDSDE with an
increasing process.

Lemma 4.6. We assume (H3.1)-(H3.7) and (H4.1), then the solution of
equation (14) is controlled by V (s,x5™") and E|V (s, x7"")|? < co. More-
over there exists a unique increasing process (A;™") with A;™" =0 and

(A' VY21 < oo such that V (s, x;™") coincides with the unique solutlon e
of the BDSDE

Ixu = V(T, xthz,)_'_/ f(r, xrxv t’X’U,Z:XU U,)dr+A;LX'U—A;'x‘U

T T
+ / glr, XX,y 2B, — / AW, @n
t 1

where 2" = 6*VV (r,x;™") in the sense of Definition 4.1.

To prove Lemma 4.6, we consider the following family of BDSDEs
parameterized by n = 1,2, ---

T
y;,x,u;n — V(T, x;x.v) + / f(S, erx,v, yrjx.v:n, Zr,x,v;n7 US)dS
1

s s s

T T
+n / (V(S, xi.x,v) _ y;,x,v;n)ds + / g(S, xi,x,v’ yi,x,r;n’ Zi.x,v;n)dES
1 1
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T
- / 2 AW, 28)
t

An important observation is that, for each n > 0, the process y;™"" is

bounded above by V (s, x{").
Lemma 4.7. We have, for eachn=1,2,--
1,x,0 1,x,0;
V (s, X00) 2 e
Proof. If it is not the case, then there exist § > 0 and a positive integer n

such that the measure of {(®, 5); 7" = V(s,x4*") =6 >0} c Qx [1,T]
is nonzero. We then can define the following stopping times

o :=min[7T,inf {s; yI*"" > V (s, x%") + 6}]

7 i=inf{s > o3 yP*" <V (s, x00))

It is seen that ¢ < 7 and P(z > o) > 0. Since V (s, x;™") — y2*¥" is right-
continuous, we have

y:‘;x,v;n Z V(O’,X;’X’U) + 5 (29)
VA S (R ) (30)

Now let y2*%" = V(z, x2™"), consider the following BDSDEs
yL,x.u;n =V, xlf’x‘”) + /T f(r’ NEx yl,x‘u;n’ Zlxoin, U,)dr

s ro Jor r

A e e A
- / 2R, @1

T
W =V, xIY) + / S X0 o 250 o ) dr
N

T
1,x,0 1.x,0
+/ g, xb¥0, yo,
N

By Comparison Theorem implies 5" < 5" < V (s, x7"), where ¢ <
s < 7. This is contrary with (29). The proof is complete. []

2*)dB, - / 25U dW, (32)
N

Proof of Lemma 4.6.. Since the solution of the BDSDE is no longer
a super-martingale, the proof method used in Lemma 4.1 [14] is not
applicable in our situation. Instead, we rely on the properties of BDSDE
and limitation theory to develop our proof strategy.

We first consider the BDSDEs (28), and we denote

Atr,x,v;n ::n/ (V(S xtxv) Ixun)ds (33)
t

and

f (S xtfx,v,yt,x,u;n Zr,x,v;n v ) = f(S, xt,x,u’yt,x,v;n, Zr,x,u;n7 Us)

s N s N
+n(V (s, x550) = Yy (34)

For each n, (y;"", z7°"") is the unique solution of Eq. 28 with F, mea-

surable process valued in Rx RY.
We begin by establishing the existence of a limit (y;*, zi) for the

t.x,u:n txvn 1,x,0 txbn tx,U;n
v,)

sequence (y,~"", ). By observing that f,(s,x;™", yio"", zg
< fup1 (5, x50, y’f on 250 ), it follows from the comparison theorem
that y; ™" <y ™% "+l 0 <1 < T. Moreover, according to Lemma 4.7 the
BDSDE solution y;*"" is bounded above by V (s, x}*"). Hence, by the
dominated convergence theorem, we can establish the convergence

of

txun

Ty, 0<1<T, ae (35)
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From the BDSDE (28), we have

t.x,u;n 1,x,u5n
AL Al

:y;""":"—V(T,x'TX”)—/ S, X0, yhoon 25Oy Ydr
T T
_ / g(r, x:,x,v’ y?x,u;n’ z:,x,v;n)dBr + / Z:,x,v;nde’
t t

T
< IY'”"|+IV(T,X'T’X’")|+/ f(r,0,0,0,0,)dr
t
T
+ / (LIXES] 4 LIy | 4 L|Z5%5")dr
1
T _ T
+ | / g(r, X;’X'U, y:,x,v;n’ ztr,x,v;n)dBrl + | / Z;,x,u,ndVVrl
t t
T
1.x,
< IV(t,X)|+|V(T,xT”)I+/ f(r.0,0,0,0,)dr
t
T
+ / (LX) + LIV (r, x259)| 4 LI 2855 )dr
1

T T
1,x,0 1.x,0:n 1,x,0n ) 1,x,0,n
+|[ g, X0, e ot >dB,|+|/ U A
t

Because for any v,, EfOT |f(r,0,0,0, v,)lzdr < M, we have
ElAt,x,u;n|2
T

T
<8V (t,x)|* + 8E|g(x;"")|* + 8E / |f(r,0,0,0,v,)|%dr
14

T
+8E / (L2|X"50 1 + L2V (r, X550 + L2202 dr
t

T
+8E / |zp" dr
t

Thus we can define a C,(#, T, x, v) independent of n, such that

T
E|A;" < (6, T,x,0) + 8(L* + DE / |z P (30
1

On the other hand, we use It6’s formula to |y:™""|?

T
Ely;.x,v;n|2+E/ |er,x.v:n|2dr
t

T
=E|V(T xr,\()|2+2E/ lenf(r x ; rxvnyz:,x,u;n’vr)dr

T

T
+E / |g(r X' XU yr X, U5 n lr,x.u;n)|2dr +2E / y:x,v;ndA:x,v;n
t t

S EWV(T,x )P

-
+ 2E/ [V (r,0,0,0,0,)] + LIxP¥0| + LIy 5" + LI 25" )dr
1
T T
+ E/ (1£(r,0,0,0) + L|x0| 4 LIyy*"| 4 alzlo" ?dr + ZE/ YoRUnd AL
t 1

T T
S EV(T, x5 + / |f(r,o,0,0,u,)|2dr+5/ [yeon 2 dr
1

t

T T 2
+E/ Lzlyxr,x‘u;nlz + |X:_'X'U:n|2d7'+E/ QL+ L—)|Y:X‘U;n|2+£|Z'r'x’vm|2dl'
' ' 3

r o? 2 2 o? 2 2 a? |2
+E/ @+ Dlg(r.0,0,00P + L4+ D)o + L2 + Do)
1

+ (% +38)|z5" P |dr + 2E[AF" sup |y50"]
t<s<T

T T
< E|V(T, x'“)|2+E/ |£(r,0,0,0,0,)%dr + (4L* + La® +1)E/ [xt5v 2 dr
1
2072 T T
s BCED oy 1)5/ |V(r,x’r’x'”)|2dr+(a2+4£)E/ |2 2
€ i 1

o /T 2 1 1o, |2
+@+ —)E ,0,0,0)|°dr + ————E|A;""
@+ ) | lg(r D"dr RS [AZ"

+64(L* + DE sup [[y7512 + [V (s, x50,
1<s<T
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Where 0 < ¢ < }1(1 —a?), so that a® +4¢ < 1. Then, we can define a
Gy (t, T, x, v) satifying

T
. 1 |2
E o2 gr < Cy(t, T, x,0) + ———— E| A
[ |2 ar < G0 Tox) 16(L2 +1) 47
So that we have
E|A’Tva”?" <20, T, x, 0) + 16(L% +1)Cy(t, T, x, v) 37
E{nz/ (V(s,x;‘x’”) —y’“") ds}
t
<2C,(t,T.x,v) + 16(L* + 1)Cy(1, T, x, v). (38)

For any n, Inequality (38) continues to hold, with E |A'T”"”‘"|2 bounded
by the constant 2C, (1, T, x, v) + 16(L? + 1) C,(+, T, x, v). As i — oo, We ob-
serve that y;™"" 1 37 and y;*° = V (5, x7°").

Next, we prove uniqueness. If there is another solution A’z x, v, and
Z't, x, v, satisfying (27), then we apply It&’s formula to (™ — y™ ”)2 =
0 on [z, T] and take expectation

T
E/ |20 — 21, x, u,|2dr + E[(A™ — A't,x, vp)
t
— (A = A x )P =

for any ¢ € [0,T]. Thus z2*" = 2't,x,v,, AY™" = A't, x,0,.
Now we consider BDSDE (27). We have that n(V (r, x"™") — y2*%") is
Lipschitz about y-***", and that

E/ / (£, x,0,0,0) % + |V (r, x)[Dp(x)dxdr < co
t R

and b, o satisfy assumption (H3.1) and (H3.2). Thus by Proposition 2.3

in [7], we know that z/*"" = ¢*Vy"*"", Applying Itd’s formula to the
process |y,* " —y;’”’pl2
T
1x,usn t,x,u;p 2 t,x,un 1,x,0;p Zd
yt - yr + |Zr - zr | r
t

_2/ [f rx v txun ervn,ur)

—f(r xt.x,u yt,x,v,p Zr,x,v,p’ Ur)] <y:,x,u;n

txu txvn t,x,un
/|g L2

+ 2/ [g(r’ x:,x,u’ yix,v;n’ z:,x,u;n)
1

1.x,0:n
(v

_ xuip
¥V )dr

LX,0 0 LX) 1,X,0; 2
_g(,.’xr. v,y P, Z ,p)) dr

_ 1LX,0 LXUp 1X,U5p
g(r, xr ’ yr ’ Zr )]

_ yi,x,u;p) d‘E

r

T
— 2/ <ytr,x,v;n _ y;,x,u;p) (Ztr,xvv;n _ Z:x,v:p)der
T
+ / (yi,x,u;n _ y:,x,v;p)d<A:,x,U;n _ A:,x,v;p)
1
So
T
E< y;xvn y:xup ) + E/ |Z:x.v;n _ Z:,x,u;p|2dr
t

< 2LE/ (lyrx o _ yi,x,v;p|2 + |yi,x,v;n _ yrr,x,v;pl . |z:,x,u;n _ Zi,x,v;pl)ds

2.2 T
+ <L2 + L_a) E/ |ytr,x,v:n _ y:""’“;"|2ds
€ ‘

T
2 LX, 00 1,X,05p 2
+ (a +E)E/ |zr z; | ds

+ E sup |y’x o _ yfr,x,v:pl(A{r,x,v;n _

t<r<T

L(a? +1 T . )
< <L2 + % +2L)E / |yeen — o 2

AIT,x,U;IJ)
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T
+(@®+20)E / |zt — g2y
t

+ (E sup |yt,x,v;n _ yrr,x,v;p|2)%(E(A;:x,v;n _ A;,"x,v;p)2)%

p
t<r<T

Where 0 < € < %(1 — a?), so that a? + 2¢ < 1. We have

T
rx,un __ S 1X,0p 2
E / |zr z; | dr
T 2
fx,osn L LX0p
<CE / |y =y dr
t

+ (E sup |y;,x,v;n _ y:.x,u;p|2)%(E(A;:x,U;n _ A;:x,v;p)2)%

1<r<T

Since A7 is bounded and y;**" is convergent

T
. . 12
lim E |Zi50n — 285 Tdr = 0
n,p—oo P r r

1,x,0

Thus, we conclude that z*V = 6* V)" = 6* VIV (r, x2).

O

On the other hand, for any small ¢ > 0, there exists a control v’ € U,
V(r, x’,”"”,) satisfying

txd

lyXyU' §,X U
V(s,xs )SyS s + €

Lemma 4.8. We assume (H3.1)-(H3.7) and (H4.1), then V (s, x’;x’”/) is

controlled by a special y©™* " 4 . Same as the proof of Lemma 4.6, there

. . . . txu'y txv .x,0"\2
exists a unique increasing process (A, ) with A7 = 0 and E[(A7"" )*] <
of the

4 . . . . . )
oo such that V (s, xY*") coincides with the unique solution y.*"

BDSDE

T
y:,xﬁv - V(T, xr],_x,v ) te +/ f(r, x:,x.v"yt;x,v” Z;,xﬁu” U:)dr
t

T T
tx,v tx,v txv tx tx. U\ I tx,U
— (A7 - A )+/’ g(r,xr”,yr“,Zr“)dB,—/ Z70dwW,

t
where Z!*V = ¢*VV (r, x"*") in the sense of Definition 4.1
The proof of Lemma 4.8 is similar to that of Lemma 4.6.

Theorem 4.9. Under the assumption (H3.1)-(H3.7) and (H4.1), the value
function V (t, x) defined in (16) is the unique Sobolev solution of the SPDE
(17).

Proof. Existence: In the context of stochastic recursive optimal control,
the value function V (7, x) defined in (16) satisfies the Bellman dynamic
programming principle. Based on Lemma 4.6 and Lemma 4.8, for any
v € U, there have a unique increasing process A", V' (s, x;*") satisfies
the following BDSDE

T
V(s, Xt = V(T, x;’.x’u) + / S X250V (o, X050, 67V (r, xE5Y), 0,)dr
T —
+ (A — AP 4 / g(r, X2V (r, xb5), *VV (r, x25"))d B,
. 3
—/ oV (r, x5 dW,. (39)
Hence, it follows readily that
T
V(s x5 > V(T x7°) + / Fr x5V (i, x559), 6" VV (r, x550), v,)dr
T —
+ / g(r, x5V (r, x55Y), 6" VV (r, xt¥Y)d B,
T
- / S VYV (r, x"50)d W, (40)

Moreover, for any small £ > 0 there exists a control ¢/ € U, such that
V (s, x°") satisfies the following BDSDE

Vs, xl’X’U,) -

10
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T
=V(T,x;"") + / Fr x5V (r, x50, VY (r, x50, O )dr
S

T
t, . / X, J X, S X, / * X, W —
—(AF"" — AP +/ gr, x YV (r, xI%Y), 6*VV (r, xIV))d B,

N

T
- / VY (r, xt*")dW, @1

Then we have

Vs, x’s'x’”/) —€

T
SV, X) + / F x5V (i, xE), 6* YV (r, x5, 0)dr
r / ! ! -
+/ g(r xV YV (r, x5, 6*VV (r, x°))d B,

T
- / VY (r, x5 )dW, 42)

By applying the equivalence of norm result (Lemma 4.6) we can de-
duce that E(V) € L*([t,T], H). Indeed, in the stochastic recursive opti-
mal control problem, the cost function can be viewed as a solution of
BDSDE

T
yts,x,u = q)(x;,ﬂxﬁv) +/ f(r, x;,x.L"yi,x,v, Z:’X’U, Ur)dr
s

T T
+ / g(r, x!r,x,u’ yi,x,v’ Z:,X,L')d Br _ / Zi’x’vdVI/,
s s

Based on the standard estimates of BDSDEs, along with assumptions
(H3.1)-(H3.7) and (H4.1), it is clear that there exist constants K and C
such that

T
/ E(ly;™") + / |z 17 dr)p(x)dx
R t
T
<K / E|®GE) P p(x)dx + K / / E|f(r,xt",0,0,v,)|*drp(x)dx
R n Jt
T
<KC / |®(x)]*p(x)dx + KC / / | £(r.x,0,0,v,)drp(x)dx
R Rt Jt

T
SKC/ |®(x)|2p(x)dx+KC// Mdrp(x)dx
Rn R Ji

=KC / |®(0)|?p(x)dx + (T —)MCK < oo (43)
I

1,x,0

Thus, for any v, ;™" € H, where H is a Hilbert space. Note that V' (¢, x) =
sup,ey- ¥ and since U is compact set of R¥, we can conclude that
V(1,-) is also an element of H. Moreover, due to the validity of Eq. 40,
it follows that for any non-negative ¢ € C>°(R"), we have

(V (5, x7™"), @(x))dx
R

> [ VT, x5, p(x)dx
R
T
+ / / (f(r, X250,V (r, X250, 6*VV (r, X7°0), 0,), (x))drd x

,
+ / / (8(r.x, V (r, x"%), 6*VV (r, x"**)), (x))d B,d x
.

s

T
—/ / (c*VV (r, x1*), p(x))dW,dx (44)
R Js

It turns out that
/ V' (s, x), p(s,x))dx
R
T
2/ (P(x), p(T, x))dx +/ / (f(r,x,V(r,x),c"VV(r,x),0v,), o(r,x))drdx
R R Js

T
+ / / (g(r,x,V,6*VV (r,x)), @(r, x))d B,dx
R Js
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T
—/ / (6" VV (r,x), p(r,x))dW,dx (45)
R Js

Moreover, by applying Lemma 4.1, we obtain that
T
—/ / c*VV (r,x)p(r,x)dW,dx
d T n oV
=- / ! ; / (i; 01, )5, ), 0, AW
T T
= / / (LEV (r,x), p(r, x))dr — / / (V' (r,x), 0,(r, x))drdx (46)
n J s R Js
Taking (46) into (45), we have that
T
/ / V(r,x),0,0(r,x))drdx + / WV (s,x), (s, x))dx
R Js R
T
> / (®(x), (T, x))dx +/ / f(r,x,V(r,x),c"VV(r,x),0,), o(r, x))drdx
/ / (g(r,x,V(r,x),c*VV), o(r, x))dB dx

//(E”V(r,x) @(r, x))drdx 47)

By virtue of the same techniques, because (42) holds, so for any non-
3 0 n — e
negative ¢ € C°(R"), we take € = Torodn’ then

V (s, x), p(x))dx — ¢/
Rﬂ

(@G5, @(x))dx
o
T s ’ ’
+ / / (F (X5 V (ry x5, 65 VY (7, x5, 01), (x))drd x
R Js
T s ! ’ —
+ / / (g(r, X5V (r, x5, 6" VY (r, x5), o(x))d B,d x
R Js

T
- / / (VY (r, x5, @(x))d W,dx (48)

This is equivalent to
/(V(s,x),(p(s,x))dx—e’
R
T
g/(d)(x),(p(T,x))dx+/ / (f(r,x,V(r,x),o'*VV(r,x),U:),(p(r,x))drdx
R" R Js
T
+ / / (&(r, x, V(r,x), 6*VV (r, x)), 9(r, x))d B,d x
R Js
r
—/ / (6" VV (r,x), (r,x))dW,dx 49)
R Js
Taking (46) into (49), we obtain
T
/ / WV (r,x),0,0(r, x))drdx+/ V (s,x), p(s, x)dx — €'
Rt Js R
T
g/(d>(x),(p(T,x))dx+/ / (f(r,x, V(r,x),o‘*VV(r,x),UL),(p(r,x))drdx
R R Js
T
+/ / (g(r,x, V(r,x),c*VV(r, x)), p(r, x))dT?,dx
R Js
r
+ / / LYV (r, x), @(r, x))drdx (50)
R Js

Uniqueness: Let V be another solution of the SPDE (17). By
Definition 4.1, one gets that for any v € U

T
//(V(r,x)»a,(p(hx))drdx+/(V(S,X),w(s,x))dx
R Js R

T
> / (@), o(T, x))dx + / / (X, V(r,x),6* VYV (r, %), 0,), o(r, x))drdx
R" R Js
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T
+ / / (g(r,x,V(r,x), " VV (r,x)), @(r, x))d B,dx
R Js
T —
+/ / (LYV(r, x), @(r, x))drdx (51)
R Js

By Lemma 4.5 in [18], we have

/ / V (r, %), 0,0(r, x))drdx

/ / (O 1(611 o, (r x), @(r, x)))dW/dx

+ / / (LYV (r, x), @(r, x))drdx

T

=/ / (c"VV)(r,x), o(r, x))dW,dx
R Js
T —_—
+/ / (LYV (r,x), (r, x))drdx (52)
R Js
Taking (52) into (51), we get

T
/ V (s, %), @(s, x))dx + / / (&*VV)(r, X)o(r, x\)dW,.dx

/ / (L”V(r x), o(r, x))drdx

(D(x), (T, x))dx + / / f(r,x, V(r, X)
R" R" Js
*VV (r, x),v,), o(r, x))drdx

T
+ / / (g(r, x, V(r,x),c*VV (r, x)), o(r, x))d B,dx

T
+/ / (L‘r’V(r,x),(p(r,x))drdx
R" Js

So
/ V (s, %), o(s, x))dx
R
T — —
2/(®(x),qo(T,x))dx+/ / (f(r,x,V(r,x),c"VV(r,x),v,), (r, x))drdx
R" Rt Js
T
+ / / (&(r, x, V(r, %), 6*VV (r, x)), @(r, x))d B, dx
R Js
r
- / / (&*VV)(r, x)op(r, x)d W, dx (53)
R Js

According to Definition 4.1, it follows that for any sufficiently small
€ > 0, there exists a control v/ € U such that

,,_
/ / V(r,x),0,0(r, x))drdx + / V(s,x), p(s,x))dx — €
R Js R
T
< / (@), (T, x))dx + / / (f(r,x,V(r,x),c*VV (r,x), 0)), @(r, x))drdx
R" R Js
T
+ / / (&(r, x, V(r, %), 6*VV (r, x)), @(r, x))d B,dx
R Js
T —
+ / / LYV (r,x), @(r, x))drdx (54)
R Js
Taking (52) into (54), we have
(V(S, x), p(s,x))dx — €
.
T — —
S/(CD(x),(p(T,x))dx+/ / (f(r,x,V(r,x),c"VV(r,x), u:),(p(r,x))drdx
R" R Js

T
+ / / (g(r, x, V (r, x), 0*VV (r, X)), 9(r, x))d B,d x
R Js

T
- / / (&*VV)(r, x)op(r, x)d W, dx (55)
R" Js
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olx,v

Let us make the change of variable y = X, in each term of (53), then

/ (V (5,%), @(s, x))dx = / (V (5, x5, () dy (56)
R" R
/ (®(x), @(T, x))dx = / @C5), @(y)dy 7
R" R

T
/ / (o x, V(r, %), 6*VV(r, x),0,), @(r, x))drdx
R" Js

T
= / / (f(r, X270V (r, x0), (6* VY )(r, X70), v,), @(y))drdy  (58)
R Js

T
/ / (g(r,x, V(r,x),c*VV (r, x)), @(r, x))d B,dx
R Js

T
= / / (g(r, x50V (r, x!70), 6* VV (r, x53)), @(y))d B, dy (59
R Js

T
/ / (c*VV)(r, x), p(r, x))dW,dx
R" Js

T
= / / (c*VV)(r, x"2Y), p())dW,dy (60)
Thus, inequality (53) can be simplified as follows

/ Vs, 37 ()dy

T p—
> / D )p(y)dy + / (f(r, x50,V (r, x50,
" s Jre
(@ VV)(r, X0, 0,), @(n)d ydr

T
+ / / (g(r, X",V (r,x),6*VV (r, X)), 9(»))d B,dy
R Js

T —_—
- / (" VV)(r, x;7%), @(y)d yd W, (61)
s R"

Since ¢ is arbitrary, we have proven that for almost every y

V (s, x:20)

T
> O(M) + / Fr xI20 V(i x50, (6 VV)(r, x50, 0,)dr
T » — — —
+ / g(r, XtV (r, xi79), (6*VV)(r, x17*))d B,

T
- / (*VV)(r, x")dW, (62)

Let

T
}’S’y'” = <I)(x'T’y’v) + / Fr xE20V (e, x50, (6 VV)(r, x20), v,)dr
T o —_ —
+ / g(r x!P0 V (r, x50, (6*VV)(r, x2¥V))d B,

T
- / (& VV)(r, X)W, (63)

Then
—_— T —_— —_—
V(s,X‘;y‘”)=<I>(x'T’y’”)+/ J X 0 V (i Xy, (0 VY ) (r, X720, 0,)dr
T — — —
+ / gr, x;0, V(r, x;*), (6" VV)(r, x;**))d B,
s

T
+(V (5, x70) = 5020 — / @YV, x")dW, (64)

12
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Here, note that V (s, x:>") -3 > 0, By the comparison theorem for

s

BDSDEs, we conclude that the solution of the BDSDE (14) is bounded
by V (r, x2*"). Therefore, we have

V(s xtr0) 2y (©65)

U

Let us make the same change of variable y = - " in each term of (55),

then (55) becomes
/ V(s x)o(y)dy —
S T T !
< / O(x;" ) p(y)dy + / / (S, X227V (r, xBY),
R" K R
@*VV)(r, x), 0), p(v))dydr
T
+ / / (g(r, X"V (r, x'), (6* YV )(r, x2)), p())d yd B,
s R"

T
- / @ VV)(r, X )p(y)dyd W,
s R"

Since ¢ is arbitrary, we have proven that for almost every y
€

Vs, Xty = ———
’ S )y

T
<o) + / F XY V(i xB, (0 VY ), x2), 0)dr

T
+ / g, X V(i x5, (6* VYV )(r, X)) d B,
N

T
- / (G VV)(r, X" )dW, (66)
7 t,y,u/ 1/ t,y,v/ _ €
Let V(s,x;7" ) =V (s, x,7") T o0l Then
Vs, x’s’y'”,) 5
S @y

T
.y Ly 1 1y,
<OEEY) + / F X V(e x)
S

+— (VI X, W dr
S @0y

T
+ / gr, XMV V (r, xB) + (" VV)(r, x"))d B,
N

&
Jre @y
£

-_— (67)
S )y

T
- / @ VV)(r. x)d W, +
Define

T
Ly _ Ly’ v 1 1y,
KM = @(x7) )+/ flx, Ve, x ")
s

£

+ (" V), X, U )dr
S @My

T
+ / gr, X V (r, x)+ —E—— (6" VV)(r, x"*))d Br
s S @)y
T - , £
- / (&*VV)(r, x4 Yd W, + ——— (68)
s S @y
By (67), we can know that
Vs, x’s’y'”,) 5
S 0y
= D) = (K = P (s, x) = —E )
S @)dy
T
+/ F XY V(x4 ——— (a* V), X2, o)
s S @y

T
+ / gr, XYV (r, xB) + (" VV)(r, x"))d B,
s

&
S 0y
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&

-_— (69)
S )y

T
- / (VW) x")dW, +
s

.y
Because K.’

B > 0, so by the comparison theo-

T tyu'y £
Vs, x) Jrn @()dy
rem of BDSDEs, we know that

s
1.y,
EEv— €

Vs, x>y + & < v +——
* Jro oy Jre @)dy

So

—_ ’ !y E
Vs, xSy ————
s s S 2y

Finally combining (65) and (70), we know that

(70)

1.y.v

V(t,y) = sup ¥,
vEV

Thus V(t, y) is also the value of sup,eyr J (¢, ¥, v), from uniqueness of
the solution of cost functional and the uniqueness of supremum, we get
uniqueness of weak solution for SPDE (17), i.e. V(t,x) =V (t,x). [
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