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The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining
useful life (RUL). However, this task is challenging due to the diverse ageing mechanisms, various oper-
ating conditions, and limited measured signals. Although data-driven methods are perceived as a promis-
ing solution, they ignore intrinsic battery physics, leading to compromised accuracy, low efficiency, and
low interpretability. In response, this study integrates domain knowledge into deep learning to enhance
the RUL prediction performance. We demonstrate accurate RUL prediction using only a single charging
curve. First, a generalisable physics-based model is developed to extract ageing-correlated parameters
that can describe and explain battery degradation from battery charging data. The parameters inform
a deep neural network (DNN) to predict RUL with high accuracy and efficiency. The trained model is val-
idated under 3 types of batteries working under 7 conditions, considering fully charged and partially
charged cases. Using data from one cycle only, the proposed method achieves a root mean squared error
(RMSE) of 11.42 cycles and a mean absolute relative error (MARE) of 3.19% on average, which are over
45% and 44% lower compared to the two state-of-the-art data-driven methods, respectively. Besides its
accuracy, the proposed method also outperforms existing methods in terms of efficiency, input burden,
and robustness. The inherent relationship between the model parameters and the battery degradation
mechanism is further revealed, substantiating the intrinsic superiority of the proposed method.
� 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published
by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creati-

vecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Background and literature review

Lithium-ion batteries are playing an increasingly important role
in achieving the goal of carbon neutrality, with their applications
ranging from electric vehicles to grid energy storage. They have
the advantages of high energy density, long lifespan, and low
self-discharge rate [1,2]. However, lithium-ion batteries suffer
from various degradation modes, such as loss of active material
(LAM) and loss of lithium inventory (LLI) [3]. Accurate prediction
of battery health degradation is therefore of great significance to
improve not only battery management but also battery design
[4]. The prediction results can ensure timely adjustment of man-
agement strategies to avoid accelerated degradation [5] and accel-
erate the design of new battery chemistries [6].

A battery is recognised as reaching its end of life (EoL) when its
capacity is reduced by 20%, for example. The remaining useful life
(RUL) is, therefore, an important metric to indicate the health sta-
tus of the battery. However, predicting the RUL is challenging due
to complex battery ageing mechanisms and dynamic usage pat-
terns [7–9]. This issue is compounded by the fact that only current
and voltage are regularly measured in realistic battery manage-
ment systems.

Model-based and data-driven methods have recently attracted
research interest in battery RUL prediction. Typical model-based
methods include the semi-empirical model [10], the electrochem-
ical model [11], and the equivalent circuit model [12]. The semi-
empirical model empirically characterises the relationship
between capacity loss and cycle number, considering the ageing
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mechanisms and operational conditions. Han et al. [13] modelled
the capacity loss as an exponential function of cycle number, incor-
porating activation energy, temperature, and gas constant as
model parameters to accommodate operating conditions. The elec-
trochemical model and equivalent circuit model are generally
implemented by combining battery models with filters [10]. The
parameters associated with battery degradation are identified
and extrapolated to predict the RUL. For example, Lyu et al. [14]
predicted RUL by combining the electrochemical model and a par-
ticle filter method. They identified five degradation-related param-
eters from the electrochemical model over the first 50 cycles. The
parameters serve as state variables of the particle filter to predict
the cycle number before capacity exceeds a threshold, correspond-
ing to the RUL. Guha et al. [15] developed a fractional order equiv-
alent circuit model, whose parameters were used to reconstruct
the internal resistance. They derived a regression function to
describe the growth of the internal resistance. After that, a particle
filter was employed to update the function parameters to predict
the RUL at the present cycle. Although the model-based methods
can provide an intuitive understanding of the electrochemical
and physical processes of battery operation, the model parameters
are obtained based on specific tests, making it difficult to track the
battery degradation in varying environments [16,17].

Motivated by the rapid development of artificial intelligence in
various fields, such as chemistry [18], materials [19], and bioengi-
neering [20], data-driven methods have attracted increasing atten-
tion in RUL prediction [21–24]. Their implementation begins with
feature acquisition, based on which a machine learning model is
trained for RUL prediction. For example, Severson et al. [25] used
the statistical features of change in the voltage-capacity curves to
train an elastic net to predict the battery life. They achieved
impressive battery life prediction accuracy using data collected
from only 100 cycles. On this basis, many studies advanced the
prediction performance by proposing more powerful features that
can be obtained with fewer data. Howey et al. [26] developed a
Bayesian hierarchical linear model to cluster the cycling conditions
from 100 cycles before a regression. The results suggest that infor-
mative features can improve RUL prediction even when the num-
ber is decreased. Liu et al. [17] exploited the seasonal and trend
decomposition using the loess technique to extract features from
battery cycling curves to predict the RUL. Their results reveal that
RUL can be accurately predicted using degradation data before 10%
capacity loss for training. In addition to focusing on developing
advanced neural networks, extracting more interpretable features
attracts increasing attention in data-driven RUL prediction. Wang
et al. [27] picked out 7 statistical features from a library of 206 fea-
tures to describe battery ageing. Though the selected statistical
features are generally utilised to depict signal variations, they can-
not provide deep insights into battery degradation owing to their
ignorance of the degradation mechanisms. Roman et al. [28]
extracted 30 features from constant current and constant voltage
segments to estimate battery degradation. Jiang et al. [29] utilised
cycling data of 30 cycles to predict future capacity degradation,
and the features include capacity, charging duration, resistance,
and incremental capacity (IC) features. Similarly, these features
are statistical values and mathematical transformations of current,
voltage, capacity, and energy. Their work builds the relationship
between battery operational data and degradation to a certain
extent, but the absence of domain knowledge hinders the pace of
further improvement.

By leveraging deep learning (DL), quick prediction of RUL using
even less data has been achieved. For instance, Wang et al. [30]
established a convolutional neural network (CNN) that highlights
automatic feature extraction and regression to predict the RUL.
The results show that the RUL can be accurately predicted using
raw charging and discharging data collected in five consecutive
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cycles as the input. Based on CNN, Hsu et al. [31] also enabled
the prediction of RUL using data from one cycle only and the pre-
diction accuracy was higher than the original research based on
100 cycles by Severson et al. [25]. Tian et al. [32] proposed to pre-
dict the voltage-capacity curves in the future 300 cycles by estab-
lishing a sequence-to-sequence deep neural network (DNN) that
takes the only one curve in the present cycle as the input.

1.2. Gap analysis and our contributions

These studies suggest that battery voltage-capacity curves are
highly informative in predicting the RUL, and even data from one
cycle can enable accurate prediction of battery RUL. However, it
is still doubtful if the combination of raw data and deep learning
is the best choice. Data-driven methods are ‘‘black-boxes” that
map the input to the output without knowing their specific mech-
anisms. However, the training data of the data-driven methods
greatly affect their performance, which inspires us to consider
making some contributions to the input data rather than develop-
ing a complex neural network. We aim to extract more representa-
tive information from the raw data to guide the work of the deep
neural network for a specific task, i.e. the RUL prediction in this
work.

Inspired by the superiority of physical-guided data-driven
methods in other research areas [33,34], we propose a physics-
informed method to fuse battery physics and machine learning
to accurately predict the battery RUL using data from one cycle
only. Ageing-correlated parameters are obtained from mathemati-
cally modelling the constant current (CC) charging process of the
battery, based on which an accurate prediction of battery lifetime
is enabled by the subsequent deep learning. Our contributions are
outlined as follows.

(1) A physics-informed machine learning method is proposed to
enable accurate and efficient prediction of battery RUL. By
using a physics-based model to extract ageing-correlated
parameters from battery charging data, the prediction accu-
racy and efficiency are significantly improved.

(2) The proposed method can adapt to various operating condi-
tions, including different temperatures and charging rates. In
addition, the method can maintain high accuracy even in a
partial charging situation, offering high flexibility to batter-
ies in service.

The proposed method is systematically validated by considering
battery materials, temperature, and current rate factors. The
results show that the proposed method outperforms the state-of-
the-art fully data-driven approaches in terms of accuracy, effi-
ciency, input burden, and robustness.

1.3. Article organisation

The remainder of this paper is organised as follows. Section 2
introduces the battery degradation data. Section 3 provides an
overview of the proposed methodology. Section 4 discusses the
validation results. Conclusions are summarised in Section 5.
2. Data generation

Three datasets developed by Zhu et al. [35] are used to evaluate
the proposed RUL prediction method, and the cathode materials
include LiNi0.86Co0.11Al0.03O2 (NCA), LiNi0.83Co0.11Mn0.07O2 (NCM),
and 42(3) wt% Li(NiCoMn)O2 blended with 58(3) wt% Li(NiCoAl)
O2 (NCA&NCM). These three kinds of batteries are tested under dif-
ferent temperatures and current rates from their beginning of life
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(BoL) to EoL. The specifications of the three types of batteries are
summarised in Table S1. The dataset covers plenty of operating
conditions to reflect the variability of battery degradation as a
function of chemistry, temperature, and current rates. We name
the operating condition XX_YY_ZZ, where XX means the cathode
material, YY is the temperature, and ZZ represents the charging
current rate. For example, NCA_25_0.5 represents an NCA battery
tested at 25 �C with a charging rate of 0.5 C. We visualise the volt-
age and current data from one cycle of NCA_25_0.5 in Fig. 1(a).
Each cycle comprises five stages, including constant current charg-
ing, constant voltage charging, charging relaxation, constant cur-
rent discharging, and discharging relaxation. The battery is
charged with constant current until the voltage reaches the upper
limit and then holds the voltage until the current is reduced to 0.05
C. This process is denoted by stages I and II. In stage IV, the battery
is discharged with constant current until the voltage reaches the
lower limit. The battery rests for a period after the charging and
discharging processes, which are indicated by stages III and V,
respectively. Since constant current charging is the most prevalent
in daily battery usage [36–38], we follow the previous works [39]
and use the constant current charging stage of a cycle to predict
the RUL.

The capacity vs. voltage (Q-V) curves of the NCA battery over its
life are depicted in Fig. 1(b). It shows that the capacity gradually
decreases at the same voltage point from the BoL to the EoL, indi-
cating a significant correlation between the Q-V curves and battery
degradation.

The original datasets are displayed in Fig. S1. The datasets are
cleaned to collect valid data because some batteries have not
declined to 80% of their initial capacity. Some test situations are
excluded since the insufficient data volume, such as the NCM bat-
tery tested under 35 �C contains only two battery tests. After being
screened out, the data used for validating our case is summarised
in Table 1 and their capacity trajectories are illustrated in Fig. 1
(c–e). There are a total of 72 cells available for method validation,
covering three kinds of cathode materials, three temperatures, and
two charging current rates. Besides, the battery life and ageing tra-
jectory even vary under the same operational condition, making it
tough to predict the RUL.
Fig. 1. The obtained battery degradation datasets for method validation. (a) The curren
constant current charging process over the NCA_25_0.5 battery life; (c–e) degradation t
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3. Methodology

This section first introduces the overall framework of the preva-
lent DL-based RUL prediction methods based on charging curves,
from which the research gap is identified. Afterwards, details of
the proposed method are elaborated.

3.1. The overall RUL prediction scheme

The DL method generally maps the capacity sequences to the
present RUL through a DNN. The mapping relationship can be
mathematically described as follows

zi ¼ f DNN Qi Vð Þð Þ ð1Þ
where z denotes the RUL and Qi Vð Þ is the capacity sequence calcu-
lated by the Ampere-hour counting method [40,41], corresponding
to an invariant voltage sequence over the Q-V curves. V refers to
voltage and i is the cycle number. f DNN �ð Þ is the mapping established
by training a DNN. This framework is widely applied for battery
health prognosis, as demonstrated in recent studies [42–44].
Nonetheless, DNN is a ‘black box’, learning from only the provided
training data. Thus, its performance can be compromised if uninfor-
mative data are provided as the input. In the context of battery RUL
prediction, the conventional framework in Eq. (1) ignores the
underlying patterns in the variations of charging curves, which have
already been understood and modelled from an electrochemical
point of view. To address this issue, we propose to embed the
domain knowledge into the input to improve the RUL prediction
performance, resulting in the framework described as

di ¼ P Vi;Qið Þ
zi ¼ f DNN dið Þ

�
ð2Þ

where P �ð Þ is a physics-based model that characterises the ageing
behaviour of charging curves and the information is encoded into
a parameter set di. V refers to the voltage. The difference between
the proposed method and conventional methods is the di in Eq.
(2). As mentioned above, previous work defines the di in statistical
or mathematical transformation ways. Instead of learning from the
t and voltage profile of a complete cycle of NCA_25_0.5; (b) the Q-V curves of the
rajectories of the NCA, the NCM, and the NCA&NCM batteries.



Table 1
Battery degradation datasets used for model development and validation.

Dataset Cell chemistry Temperature (�C) Charging rate (C) Number of cells Operating condition

25 0.5 15 NCA_25_0.5
1 NCA 25 0.25 5 NCA_25_0.25

45 0.5 23 NCA_45_0.5

25 0.5 4 NCM_25_0.5
2 NCM 35 0.5 4 NCM_35_0.5

45 0.5 12 NCM_45_0.5

3 NCA&NCM 25 0.5 9 NCA&NCM_25_0.5
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scratch, the DNN in the proposed framework leverages the physics-
based model, so that domain knowledge can be incorporated, lead-
ing to significant performance improvement.

The overview of our method is illustrated in Fig. 2. First, we
develop an interpretable voltage-capacity model to analyse battery
degradation. In this way, the raw operation data are transformed
into parameters that govern battery ageing evolution. Second, the
model parameters are identified for guiding the following DNN.
Third, a DNN is developed and trained using the identified param-
eters. Thereby, the trained model masters the possible battery age-
ing evolution. Finally, the trained DNN is deployed for online RUL
prediction considering various situations. Details of each part are
discussed in the following subsections.

3.2. Physics-based model development

3.2.1. Physical basis of the model
The battery charging and discharging processes can be

described as the Li+ reversibly inserting/extracting into/from the
anode and cathode at the level of material. Thus, there exists a
close relationship between electrode potential and Li+ content of
Fig. 2. The overall framework of
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active material. This gives rise to the voltage plateaus on the charg-
ing curves, which can be amplified through the IC analysis [45]. It
has been extensively demonstrated that the peaks of IC curves are
highly sensitive to battery degradation [46,47]. For example, the
symmetry centre, width, height, and area information derived from
IC peaks are associated with the realistic phase transition beha-
viours of the active material. Thus, it is promising to model the
charging curves from the viewpoint of IC transform.

According to the shape of the IC peaks, IC curves can be approx-
imated by the sum of Lorentzian functions [48], which is expressed
as follows

dQ
dV

¼
Xn
i¼1

2Ai

p
xi

x2
i þ 2V � 2Voið Þ2

ð3Þ

where n is the number of peaks, Ai is the area of the peak i, xi is the
width at half-height of the peak i, and Voi is the symmetric centre of
the peak i. V represents the collected voltage, while Q is the
capacity.

It is noted that errors can be introduced by dQ=dV process men-
tioned above. To avoid this, integration is performed as Eq. (3)
the proposed methodology.
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Q ¼
Xn
i¼1

Ai

p
arctan 2

V � Voi

xi

� �
þ C ð4Þ

where C is a constant. The model has a total of (3nþ 1Þ parameters
and it is beneficial to RUL prediction in two ways.

(1) The model extracts ageing-correlated parameters, improving
the interpretability of the input of DL methods for RUL
prediction.

(2) As the operational raw data are represented by lower-
dimensional parameters, the estimation efficiency of the
DL-based RUL prediction can be improved.

3.2.2. Parameter identification and evaluation
The peak number n is determined before parameter identifica-

tion. Fig. S2 displays the IC curves of the raw datasets under differ-
ent conditions. Three distinct peaks appear in the curves over the
battery life, thus n ¼ 3 in Eq. (4) is used to identify the parameters.
We label the three peaks as peak 1, peak 2, and peak 3, respec-
tively. Based on the operational capacity and voltage data, the
model is parameterized by the nonlinear least squares (NLS)
method.

The voltage and current are sampled by sensors during the
charging process. The capacity Q is computed as follows

Q Vð Þ ¼
Z V tð Þ¼V

V tð Þ¼V low

I tð Þdt ð5Þ

where V and I are voltage and current, V low is the lower voltage
limit. We sample the voltage with a given step DV , resulting in a
voltage sequence V ¼ V low;V low þ DV ; � � � ;V low þ sDV½ �, where s is
the number of samples calculated by s ¼ Vup � V low

� �
=DV , and Vup

is the upper voltage limit. The voltage-capacity curve at each cycle
then can be expressed as V0;Q0ð Þ; V1;Q1ð Þ; V2;Q2ð Þ; � � � ; Vs;Qsð Þgf .
The parameter identification is to obtain the model parameters by
minimising the squared errors, i.e.

di ¼ argmin
Xs

i¼0

Qi � f Vi; dið Þð Þ2; s:t: die dup; dlow
� � ð6Þ

where d is the model parameters, f �ð Þ is the model function, and dup
and dlow are the upper and lower bounds of the parameters, respec-
Fig. 3. The simulated Q-V curves (the first row), simulation errors (the second row), and t
NCA&NCM_25_0.5 batteries. In the first two rows, the first and last cycles are taken as
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tively. The boundaries of the model parameters are summarised in
Table S2.

The reconstructed Q-V curves using the identifiedmodel param-
eters at the first and last cycle and simulation errors of
NCA_25_0.5, NCM_25_0.5, and NCA&NCM_25_0.5 batteries are
displayed in the first two rows of Fig. 3. The distinct cathode mate-
rials of the three batteries result in different simulation accuracy.
Nonetheless, the overall errors of the first and last cycle are within
0.05 Ah (about 2% of the nominal capacity), demonstrating an
accurate identification. Moreover, as the adopted V-Q model is
based on IC transform, the IC curves can be analytically obtained,
as plotted in the third row of Fig. 3, which suggests a more regular
variation of peak parameters than the raw-data-based IC curves
over the battery life. The root mean squared error (RMSE) and R-
squared (R2) are used to assess the overall errors and goodness of
fit, which are calculated by the following equation

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Pk
i¼1 Qi � bQ i

� 	2
r

R2 ¼ 1�
Pk

i¼1
Qi�bQ i

� 	2

Pk

i¼1
Qi�Q

�� �2

8>>>><
>>>>:

ð7Þ

where Q and bQ are the real capacity and simulated capacity, respec-

tively. Q
�
is the mean value of the real capacity, and k is the number

of samples of a cycle. The RMSE and R2 are shown in Fig. S3, which
demonstrates high identification accuracy.

3.3. Deep neural network development

After obtaining the informative model parameters, a DNN is
built to map the parameters to the RUL. The input of the DNN
includes the parameters obtained in Eq. (6) and the output is the
RUL. The DNN consists of multiple layers and neurons, and the size
of the DNN can be adjusted based on the complexity of the specific
task. Thus, it is flexible in model building. In this work, since we
have obtained key parameters that can reflect battery degradation
mechanisms, there is no need to construct a complex neural net-
work. A fully connected neural network (FCNN) is thus imple-
mented to model the relationship between the peak parameters
and the RUL. The structure of the constructed neural network con-
he simulated IC curves (the last row) of the (a) NCA_25_0.5, (b) NCM_25_0.5, and (c)
examples. The colour ranges from red to green as the batteries degrade.
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sists of an input layer, an output layer, and two hidden layers,
which can be mathematically described as follows

h0 ¼ x

f hj�1
� 	

¼ wjhj�1 þ bj

hj ¼ ReLU f hj�1
� 	� 	

z ¼ hl

8>>>>>><
>>>>>>:

j ¼ 1; 2; � � � ; l ð8Þ

where x represents the input matrix, f �ð Þ refers to the mapping

between the adjacent layers, hj is the output at the layer j where

h0 ¼ x, and wj and bj are the weight matrix and the constant bias
at the layer j. ReLU að Þ ¼ max 0; að Þ is the active function to enhance
nonlinearity, l is the number of layers (excluding input layer), and z

is the final output which equals to hl. The output of the former layer
serves as the input of the latter layer in a stacked-layer structure.
The neurons of the two hidden layers are set to be 256 and 128,
respectively. The developed DNN maps the degradation-correlated
parameters of each cycle only to the corresponding RUL in our
instance. The specific model parameters are summarised in
Table S3 for reference.

The built model is trained to obtain the optimal parameters by
minimising the loss between the real and output values, which is
calculated as follows

L ¼ 1
m

Xm
i¼1

zi � bzi� �2 ð9Þ

where zi and bzi refer to the real and output values for sample i, and
m is the number of cycles. As shown in Fig. 2, the inputs are split
into training and validation streams to update model parameters
and hyperparameters using the feedback from training loss and val-
idation loss, respectively. The update of the model parameters is
realised by the Adam optimiser [49]. The parameters are optimised
after a mini-batch of data is fed into the network, and the batch size
is set to be 64. It is recognised as completing the model training if
the validation loss does not decrease in ten epochs. The model is
constructed using the Keras framework on a laptop configured with
an AMD Ryzen 76800H CPU and an NVIDIA RTX 3060 GPU.

4. Method validation and discussion

We comprehensively validate the proposed method by consid-
ering critical factors such as temperature, current rate, and battery
chemistry. The data from seven different charging situations calcu-
lated by Eq. (5) are used for training and testing datasets. We use
the data collected from a battery experiencing each charging situ-
ation for testing while the data collected from other batteries are
used to develop the model. The detailed training data and testing
data are summarised in Table S4. In particular, 20% of the training
dataset is used for validation during the model training to avoid
overfitting. All the input data are pre-processed by the mini-
mum–maximum normalisation method to scale the data into [0,
1]. The RMSE and MARE are used to evaluate the overall perfor-
mance of the proposed method. The MARE is calculated as follows

MARE ¼ 1
m

Xm
i¼1

zi � bzi

 


zbof

ð10Þ

where zbof is the RUL at the beginning of battery life, which refers to
the cycle life of a fresh battery.

We compare the proposed method with two state-of-the-art
RUL prediction methods. The first one is the end-to-end method,
whose input is the raw charging data. The raw data here refers
to the capacity sampled at a given voltage step without further
processing, which is denoted by Q in Eq. (5). It capitalises on the
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automatic feature extraction mechanism of deep learning but dis-
regards the information on battery physics. The other method
takes the features proposed by Severson et al. [25] as input, who
demonstrated that the difference between the Q-V curves at the
100th and 10th cycles can enable accurate life prediction even
before the evident capacity loss. Since the RUL is predicted at every
cycle in our case, we use the difference between the Q-V curves at
the cycle i (i > 10) and the 10th cycle here, denoted as DQi�10. The
capacity is calculated in the same as Q in Eq. (5). DQi�10 is a statis-
tical feature that does not interpret ageing mechanisms in physical
perspectives. The split of training and testing datasets for the pro-
posed method remains consistent with the raw data and DQi�10-
based methods.
4.1. RUL prediction under different charging conditions

We first validate the proposed method with three types of bat-
teries operated under temperatures of 25, 35, and 45 �C with differ-
ent current rates of 0.25 and 0.5 C. The RUL prediction results and
error statistics are shown in Fig. 4. It shows that the proposed
method outperforms the raw data-based and DQi�10-based meth-
ods in terms of RUL prediction robustness and accuracy. The errors
of the former two methods are especially large in the conditions of
NCA_25_0.25, NCA_45_0.5, and NCM_25_0.5, although they can
track well with the actual RUL in other cases. In comparison, the
proposed method exhibits robust RUL prediction under all condi-
tions. The results also suggest that battery degradation trajectories
are influenced by current rate, temperature, and battery materials,
making RUL prediction challenging. The RUL prediction under
NCA_25_0.25 condition fluctuates more greatly than that under
other operating conditions, indicating that the current rate affects
the prediction results more compared with temperature. The RMSE
and MARE of the three methods are summarised in Table 2. It
demonstrates that the overall accuracy of the proposed method
is superior to the other methods in most cases. The average RMSE
of the raw data-based and DQi�10 based methods is 21.45 cycles
and 20.92 cycles, respectively. The average MARE of both the raw
data-based and DQi�10 based methods is 5.71%. In contrast, the
average RMSE and MARE of the proposed method are 11.42 cycles
and 3.19%, which are reduced by 47% and 44% compared to the raw
data-based method and by 45% and 44% compared to the DQi�10-
based method, respectively.
4.2. RUL prediction using partial charging curves

Our results show that accurate RUL predictions can be made
using data from only one cycle. While this is much more efficient
than most existing RUL prediction models [21], one should note
that the batteries do not always experience full charging in practi-
cal applications [50]. This situation is more challenging for RUL
prediction as less information is available. Therefore, this section
further explores the feasibility of the proposed methods in terms
of partial charging situations. Since the peaks of the IC curve con-
tain rich ageing information, this work divides the charging pro-
cess into three ranges to cover three peaks. Based on the peak
ranges identified in Section 3.2.2, the charging process is divided
into three voltage pieces [3.0, 3.7], [3.6, 3.9], and [3.9, 4.2] V, which
cover peak 1, peak 2, and peak 3, respectively.

Eq. (4) is used to model each of the three charging ranges and n
is set to be 1 here. The NLS method is exploited to identify the
model parameters, and the parameter boundaries are summarized
in Table S5. The Q-V and IC curves of the three ranges, taking the
NCA_25_0.5 condition as an example, are reconstructed in
Fig. S4. The reconstructed errors are within 10 mAh, which indi-
cates that the model can well characterise the charging process



Fig. 4. The RUL predictions of the three methods under seven conditions. The insets show the histogram of the absolute errors of the three methods.

Table 2
The RMSE and MARE of RUL predictions.

Conditions RMSE (cycles) MARE (%)

Raw data DQi�10 Proposed Raw data DQi�10 Proposed

NCA_25_0.5 8.24 6.84 5.43 4.86 5.06 3.67
NCA_25_0.25 35.65 25.22 18.60 13.09 10.22 7.16
NCA_45_0.5 38.88 38.06 7.14 6.92 6.86 1.21
NCM_25_0.5 17.39 35.86 8.09 4.99 9.47 2.20
NCM_35_0.5 36.48 29.97 26.36 6.05 5.03 4.44
NCM_45_0.5 16.24 14.22 14.44 3.95 3.28 3.46
NCA&NCM_25_0.5 9.37 8.61 5.64 2.92 2.88 1.70
Average 21.45 20.92 11.42 5.71 5.71 3.19

Note: the bold number indicates the lowest value for the given case.
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over the battery life. We further quantify the RMSE and R2 values of
every cycle under all conditions, which are summarised in Fig. S5.

The identified model parameters, which contain the peak infor-
mation, are fed into the DNN developed in Section 3.3. The raw
data and Qi�10 features are used for comparison. The overall RUL
prediction errors under the seven operational conditions are
shown in Fig. 5. The results indicate that the proposed method out-
performs the other two data-driven methods. In particular, the raw
data-based and Qi�10-based methods perform worse under the
NCA_25_0.25, NCA_45_0.5, NCM_25_0.5, and NCM_35_0.5 condi-
tions, while the proposed method still has a satisfied performance.
We further summarise the RMSE and MARE of the two traditional
methods in fully charged cases and those of the three methods in
partially charged cases in Tables S6 and S7. The average RMSE of
the proposed method under three partially charged conditions is
15.10 cycles, 17.11 cycles, and 15.98 cycles, respectively, while
that of the raw data-based and the Qi�10-based methods under
fully charged conditions is 20.45 cycles and 20.92 cycles, respec-
tively. The average MARE of the proposed method under three par-
tially charged conditions is 3.78%, 4.61%, and 4.03%, respectively,
while that of the raw data-based and the Qi�10-based methods
using fully charged curves is 5.71%. It demonstrates that the pro-
posed method outperforms the two traditional methods overall
under both fully charged and partially charged situations.
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4.3. Comprehensive performance assessment

While most of the RUL prediction research only focuses on pre-
diction accuracy, it should be noted that other indicators, including
efficiency, input burden, and robustness, are important in reality.
The average RMSE obtained in Sections 4.1 and 4.2 serves as the
accuracy indicator. On this basis, the efficiency determines the out-
put resolution and a higher efficiency can promptly provide battery
lifetime information. The input burden presents the sophistication
of data processing. A lower dimension of data is less time-
consuming to analyse and pre-process. Robustness can describe
the fluctuation of the outputs and score the generalisation of the
proposed method applied in different situations.

Specifically, these metrics are defined as follows.
Efficiency: It is the computing time with specific configurations

at each cycle given the same computing software and hardware.
The parameter identification based on NLS is also taken into
account for the proposed method. In general, this step is much
more efficient compared with the DNN, requiring less than
0.02 ms.

Input burden: It is the number of features of the input data for
RUL prediction at each cycle.

Robustness: It is evaluated by the variance of the RUL predic-
tion errors over a battery life.



Fig. 5. The RMSE and MARE of the RUL predictions using the three peak parameters of (a) peak 1, (b) peak 2, and (c) peak 3. Condition number 1 to 7 corresponds to
NCA_25_0.5, NCA_25_0.25, NCA_45_0.5, NCM_25_0.5, NCM_35_0.5, NCM_45_0.5, NCA&NCM_25_0.5 conditions, respectively.

Table 3
Comprehensive comparison of three methods in terms of four indicators.

Indicators Methods Full curves Partial charging curves

Peak 1 Peak 2 Peak 3

Calculating time (ms) Raw data-based 3.43 3.48 3.74 3.43
DQi�10-based 3.46 3.33 3.80 3.46
Proposed 2.85 2.79 2.85 2.85

Number of input data point Raw data-based 121 70 30 30
DQi�10-based 121 70 30 30
Proposed 10 4 4 4

Average RMSE (cycles) Raw data-based 21.45 27.82 27.18 34.10
DQi�10-based 20.92 28.89 26.87 28.30
Proposed 11.42 15.10 17.11 15.98

Variance of the errors (cycles) Raw data-based 329.87 688.96 314.76 528.76
DQi�10-based 486.53 552.62 314.76 327.21
Proposed 54.45 177.50 232.91 108.52

Note: the bold number indicates the lowest value for the given case.
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The values of the four indicators are summarised in Table 3,
indicating that the proposed method has a shorter calculating time,
fewer input parameters, higher accuracy, and higher robustness
than the other two methods under the same condition.

We further evaluate the performance of the three methods by
scaling the four indicators to [0, 1]. Less calculating time, average
errors, and error variance indicate higher scores of efficiency, accu-
racy, and robustness, respectively, while fewer input parameters
refer to a lower input burden score. The overall performance of
the three methods is intuitively compared in Fig. 6. It demonstrates
that the proposed method outperforms the raw data-based and the
Qi�10-based methods in both fully charging and partially charging
situations. The proposed method is more accurate and robust in
fully charged conditions than in partially charged conditions since
the former contains more peak information. The proposed method
has fewer input parameters than the other two methods, which is
only 1/12 of the later ones in a fully charged case. Therefore, the
proposed method has a lower input burden and a higher calculat-
ing efficiency.

4.4. Rationalisation of predictive performance

We explain the success of the proposed method from an elec-
trochemical perspective. As the IC curves can reflect the battery
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degradation evolution, which constitutes LAM for two electrodes
and LLI during the phase transition, we plotted the IC curves and
identified the parameters of the three types of batteries in Fig. 7.
It demonstrates that both IC curves and identified parameters have
a strong relationship with battery degradation. Furthermore, they
exhibit distinct patterns based on various battery types, which is
in line with the fact that the degradation behaviour of the battery
is governed by the materials and operating conditions. Altogether,
the variation ofx, A, and Vo is aligned with that of the peak’s width
at half-height, area, and symmetric centre of IC curves. Hence, the
identified parameters possess the potential to showcase the mech-
anisms of battery degradation. Specifically, x is related to the
interaction of active materials, which can reflect the LAM and
LLI; A represents the total charged capacity that can indicate the
LAM and LLI; and Vo is determined by the reversibility of the elec-
trode reaction, which can describe the LAM. In addition, the shift of
the peak potential calculated by h ¼ 2A=px can reflect the growth
of the solid electrolyte interface (SEI). Fig. 7 shows that the param-
eters of each peak vary in their own patterns, which results in com-
plex battery dynamics. However, the overall trend of each type of
parameter, as shown in Fig. S6, is consistent across the three types
of batteries. The underlying understanding of the parameters facil-
itates the success of our physics-based DL method for RUL
prediction.



Fig. 6. The score of the three RUL prediction methods assessed in aspects of
efficiency, input burden, accuracy, and robustness under four situations of (a) fully
charged, (b) charging curves cover peak 1, (c) charging curves cover peak 2, and (d)
charging curves cover peak 3. The input burden of the proposed method is too small
to illustrate.

L. Ma, J. Tian, T. Zhang et al. Journal of Energy Chemistry 91 (2024) 512–521
Though the IC curves are extensively used to investigate degra-
dation mechanisms, their three drawbacks cannot be neglected.
First, their computation requires low-rate diagnostic tests since a
high charging rate will result in heterogeneous de/intercalation,
thereby smearing out features [51]. It is challenging to achieve it
in practical applications. Second, it will cause the signal-to-noise
ratio reduction during the differential process [52]. Despite addi-
Fig. 7. The IC curves and parameters of (a) NCA, (b) NCM, and (c) NCA&NCM batteries ov
respectively. The colour is scaled according to the RUL. Since the parameters need to be
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tional filtering methods to suppress the amplified noise caused
by differentiation, the initial data are corrupted to some certain
extent. Third, it is difficult to decouple the features of each peak
from an IC curve since the peaks overlap. Thus, it is challenging
to accurately acquire feature values. In contrast, the proposed
method circumvents these issues and provides information on
intrinsic doubled peaks, thereby constituting a more practical
approach.
5. Conclusions

Deep learning-based RUL prediction can be enabled by using
battery charging data as input. However, it ignores intrinsic battery
ageing mechanisms. In this study, a physics-informed machine
learning method is proposed to enhance the RUL prediction perfor-
mance. First, a physics-based model containing physically mean-
ingful parameters is developed to describe charging curve
variation caused by degradation. The parameters represent the
peak information of the IC curves, which are inherently correlated
with battery degradation. Then, the parameters are identified using
the NLS method based on raw operational data. A DNN is devel-
oped subsequently, which maps the ageing correlated parameters
to the RUL. The method is first validated under three temperatures
and two current rate situations using fully charged curves. Two tra-
ditional methods, relying on deep learning-captured features and
physical-uninformed features, are compared to the proposed
method. The average RMSE of the two traditional methods is
21.45 cycles and 20.95 cycles, and the average MARE is 5.71%.
The RMSE and MARE of the proposed method are 11.42 cycles
and 3.19% on average, which are reduced by more than 45% and
44%, respectively, compared to the other twomethods. Considering
the field application conditions, the partial charging curve that
covers only an IC peak is further used to validate the proposed
method. In this case, the proposed method outperforms the other
two methods. In addition, we also evaluate the accuracy, efficiency,
input burden, and robustness of the three methods. The results
demonstrate that the proposed method is superior to the other
two methods overall. Moreover, the inherent connections between
er battery life. The x-axes of the parameter figure is Vo while the y-axes are x and A,
normalised before being fed into the FCNN, their values are not displayed here.
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the identified parameters and battery degradation evolution are
analysed, explaining how the domain knowledge helps with deep
learning for RUL prediction.

There are two contributions in this study. First, the proposed
method integrates domain knowledge into deep learning, enhanc-
ing the RUL prediction of the traditional data-driven methods with
raw data or statistical features. We validate this by comparing the
proposed method with two state-of-the-art methods. Second, the
method is generalisable to various operating conditions such as
different charging rates, temperatures, materials, and both full
and partial charging processes. Overall, our work reveals that it is
important to take battery physics into account when implementing
data-driven models for predicting battery degradation. Further
investigation into different data and knowledge integration
approaches will be an interesting research direction based on this
work.
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