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A B S T R A C T   

Lithium-ion battery storage has emerged as a promising solution for various energy systems. However, complex 
degradation behavior, relatively short lifetime, high capital, and operational costs, and electricity market 
volatility are critical factors that challenge its practical viability. Thus, to ensure sustained profitability of 
Lithium-ion batteries in real-life applications, a smart and optimal management strategy considering key 
influencing factors is imperative for achieving efficient battery utilization. 

This study proposes two day-ahead battery-behavior-aware operation scheduling strategies to maximize 
profitability and longevity in residential grid-connected applications with dynamic electricity pricing. Each 
scenario employs unique approaches to make optimal decisions for optimal battery utilization. The first scenario 
optimizes short-term profitability by prioritizing revenue gains under three charge/discharge rates (high, 
moderate, low), considering daily charge and discharge timings as decision variables. Conversely, the second 
scenario proposes a smart strategy capable of making intelligent decisions on a wide range of variables to 
simultaneously maximize revenue and minimize degradation costs, ensuring short-term and long-term profit
ability. Decision variables include the cycle frequency for each specific day, timings as well as durations for 
charging and discharging per cycle. To ensure effective long-term assessment, both scenarios accurately estimate 
battery performance, calendric and cyclic capacity degradations, remaining-useful-lifetime, and internal states 
under real operational conditions until battery reaches its end-of-life criteria. The scenarios are assessed 
economically using various indicators. Furthermore, the impact of battery price and size on optimization out
comes are examined. 

The key findings indicate that, among the first set of scenarios, the strategy with low charge/discharge rate 
extends the battery lifetime most efficiently, estimated at 14.8 years. However, it proved to be the least prof
itable, resulting in negative profit of − 3€/kWh/yr. On the other hand, strategies with high and moderate charge/ 
discharge rates resulted in positive profit of 8.3 €/kWh/year and 9.2 €/kWh/year, despite having shorter battery 
lifetimes, estimated at 10.1 years and 13.6 years, respectively. Furthermore, from a payback perspective, the 
strategy with fast charge/discharge capability led to 1.5 years shorter payback period than that of the moderate 
rate strategy. The findings highlight that the first set of scenarios limits the strategy’s flexibility in achieving both 
sustainability and profitability. In contrast, the second scenario achieves impressive profit (18 €/kWh/yr), 
shortest payback period (7.5 year), a commendable lifespan (12.5 years), contrasting revenue-focused scenarios, 
emphasizing the importance of striking optimal balance between revenue gain and degradation costs for 
charging/discharging actions, ensuring sustained profitability. The findings offer valuable insights for decision- 
makers, enabling informed strategic choices and effective solutions.  
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Introduction 

Battery storage systems have emerged as a critical component in 
enabling a sustainable, efficient, and resilient energy system [1–3]. The 
growing demand for renewable energy sources, coupled with the need 
for a reliable and stable electricity grid, has highlighted the potential 
benefits of battery storage systems in providing a wide range of energy 
services for residential, commercial, and industrial sectors [4–8]. The 
flexibility and adaptability of batteries makes batteries a dominant and 
viable storage technology, supporting efficient and sustainable energy 
management [9–11]. Battery storage holds significant potential to 
participate in the arbitrage market, thanks to its flexibility and fast 
response time [12–14]. The idea behind price arbitrage strategy involves 
generating revenue by leveraging the fluctuating behavior of electricity 
prices. This is achieved by charging the battery when electricity prices 
are low and using the stored electricity when the electricity prices are 
higher, taking advantage of electricity price differentials [15–17]. 

Exploiting price arbitrage can alleviate the load on the grid during 
peak hours, thereby enhancing grid stability and reliability. Further
more, shifting energy consumption from on-peak to off-peak hours can 
result in reduced electricity bills for customers [18], empowering them 
to manage energy consumption effectively and decrease peak demand in 
a cost-effective manner [19,20]. However, the practical viability of 
implementing batteries for price arbitrage faces challenges due to 
several key factors such as high investment costs, high operational costs, 
complex degradation behavior, relatively short lifetime, and electricity 
market volatility. In many cases, studies showed that the generated 
revenue from price arbitrage within battery system is often insufficient 
to overcome these challenges, yielding a negative profit [21–26]. Hence, 
a central question remains on how to enhance the viability of batteries 
for price arbitrage applications within the current electricity market. A 
key consideration revolves around the effective price arbitrage strate
gies to efficiently utilize and manage battery systems in practical ap
plications. The methods employed for charge and discharge actions to 

capitalize on price differential within electricity market can significantly 
influence several factors such as degradation rate improvement, lifetime 
extension, operational cost reduction, increased revenue gains, 
replacement cost reduction, and emission implication. These factors 
collectively contribute to the overall profitability of batteries in the 
application [26,27]. Consequently, the development of an effective 
operation scheduling and management strategy for price arbitrage is a 
necessity to make informed decisions on how a battery system is effi
ciently controlled, maintained, and operated over its lifespan to maxi
mize overall profit. Numerous studies shed light upon evaluating the 
economic viability of implementing batteries for price arbitrage in the 
electricity market. Each study employed specific constraints, assump
tion, simplifications to formulate price arbitrage strategy using battery 
storage in energy systems. However, as detailed in this section, there are 
notable hurdles in existing price arbitrage strategies that need to be 
addressed properly. 

One of the main considerations in devising price arbitrage strategies 
lies in determining the pricing scheme under which the strategy will be 
developed. One of the common pricing schemes is real-time pricing 
(RTP) [28,29]. The RTP scheme implements fully dynamic rates, 
tracking wholesale market prices that vary hourly and daily, providing 
users with the flexibility to adjust their energy consumption based on 
real-time electricity prices [30]. However, the critical challenge lies in 
determining the optimal times to charge and discharge batteries to 
attain the maximum profit. One of the most straightforward and widely 
employed price arbitrage strategies involves charging and discharging 
batteries during “fixed and pre-set hours” such as those recent studies 
[21–23]. For instance, low-price hours may be designated between 
certain hours from midnight to 8 a.m., while high-price hours could span 
from 8 a.m. to 8p.m. This method assumes that the low- price hours and 
high-price hours for potential charging and discharging remain same 
across all days of the year [22], or in some cases there is assumption that 
these hours vary seasonally, or even between weekdays versus weekend 
[21]. In this approach, the peak and off-peak electricity price hours are 

Nomenclature 

Abbreviations 
AIP Ageing influence parameter 
BOL Beginning of life 
DOC Depth of cycle of battery 
EOL End of life 
FEC Full equivalent cycle of a battery 
ICCbattery Initial investment cost of a battery 
LF Battery lifetime 
LFP/C Lithium-iron phosphate (LiFePO4/C) 
OCV Open circuit voltage 
RTP Real-time price 
SOC Battery state of charge 
SOH Battery state of health 
TMS Thermal management system 

Symbols 
Cbatt Battery capacity 
Cfade,calt Calendric capacity fade at time t (%) 
Cfade,cyct Cyclic capacity fade at time t (%) 
Cfade,tott Total capacity fade at time t (%) 
Costdeg,battery Battery degradation cost (€) 
d Charge/discharge duration (h) 
Ich(dch), i Battery charge (discharge) current at time t 
Elw,t Wholesale electricity price at time t 
Elr,t Retail electricity price at time t 
m Number of days over project life; m = 1, …, project life 

NOC Number of cycles per day 
MARTPm Moving average of RTP at time t of day m 
opt optimal 
Pbatt,t Battery power at time t 
Pch

min,t Maximal charge power at time t 
Pdch

max,i Maximal discharge power at time t 
Pbatt− load,t Transferred power from the battery to the load at time t 
Pbatt− grid,t Exported power from the battery to the grid at time t 
Pgrid− batt,t Imported power from the grid to the battery at time t 
Pgrid− load,t Imported power from the grid to the load at time t 
PI Profitability Index (%) 
PPEI Averarge yearly profitability per energy installed (€/kWh/ 

yr) 
PV Present value 
Rch(dch), i Battery internal resistance at time t 
T Temperature (K) 
time Passed time since the BOL (Sec) 
tch,start,m Start time indicator for charging the battery at day m 
tdch,start,m Start time indicator for discharging the battery at day m 
Vch(dch), i Battery terminal voltage during charging (discharging) at 

time t 
X Decision variable in scenario B 
Y Decision variable in scenario A 

Greek Symbols 
δReplace Battery replacement indicator  
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usually provided by the power exchange company, or they can be 
determined by analyzing historical electricity price data [18,22,24]. 
However, this strategy has limitations in fully capturing the price arbi
trage potential, especially under volatile RTP electricity scheme, where 
“optimal” price differential may occur at different periods than those 
originally set. Accordingly, setting fixed and pre-set hours may not be an 
optimal option as different selections of charge and discharge timings 
lead to different operation profits [22]. Addressing this limitation, 
several studies focused on enhancing the flexibility of price arbitrage 
strategy in capturing the maximum revenue potential. These studies 
employed various methods to identify and adjust profitable charge and 
discharge timings based on dynamic electricity price conditions. For 
instance, an approach relying on historical data was employed by 
several studies such as those in [22,24,31]. The implemented method 
involves finding the historical daily lowest and highest prices to deter
mine the best times for charging and discharging each day. However, the 
results of these studies showed that the generated revenue under the 
evaluated strategy could not compensate the investment cost and was 
unprofitable under the market condition at the time of studies (year: 
2021 [24], 2022 [22], and 2014 [31]). In contrast, a study by [32] 
employed a moving-average calculation method to determine the 
optimal daily charge and discharge timings, aiming to maximize daily 
profit under a specific RTP profile. Additionally, another study con
ducted by [26], took a different route evaluating all possible combina
tions of maximum and minimum RTPs per day. The optimal charge and 
discharge times were then determined by selecting the combination with 
the widest gap, aiming to maximize revenue under RTP scheme for a 
specific day. In the aforementioned studies, the effectiveness of price 
arbitrage strategy in maximizing revenue has been enhanced by iden
tifying profitable times for charging and discharging actions. However, 
it is important to note that this improvement alone may not be sufficient 
for optimizing overall performance. One limiting factor in their inves
tigation was the imposition of a “fixed charge and discharge duration” 
set at one hour. The charge and discharge durations, also known as 
charge/discharge C-rate, represent the ratio that determines the 
maximum hours a battery can deliver or accept its usable capacity, 
playing a vital role in capturing higher price differentials. The impact of 
various fixed charge and discharge C-rates (e.g, 0.1C,0.2C, 0.3C, …,1C), 
on revenue generation for arbitrage purposes has been evaluated by 
[24].The results showed that the total income increase as the C-rate 
increases. This was because batteries with higher C-rates can charge and 
discharge more quickly, resulting in less exposure to market price fluc
tuations. Another limiting factor identified is that most price arbitrage 
strategies restricted the battery system to one cycle per day, while, 
allowing for more cycles per day could enhance the strategy’s flexibility 
to capture multiple significant price differentials within a day [33]. 

Another important factor which highly impacts the profitability of 
price arbitrage strategy with batteries is battery degradation. Battery 
degradation is a complex mechanism and is influenced by several factors 
[34–36]. Consequently, a comprehensive understanding of battery 
degradation mechanisms and the key influencing factors is crucial for 
the development of optimal battery management strategies [34]. How
ever, literature studies on price arbitrage strategies have not thoroughly 
addressed the impact of degradation on battery operation scheduling. 
Many studies in the field completely ignored degradation 
[22,23,26,31,32,37–43]. In Some studies [18,44–48], battery ageing is 
calculated post-optimization, meaning that the strategy does not 
consider the impact of degradation on operational decisions. In these 
studies, two methods have commonly been employed to assess degra
dation: the Ah throughput method and the method based on cycle life in 
relation to the depth of discharge (DOD). In the Ah throughput method, 
the assumption is that a specific amount of energy can be cycled through 
a battery before reaching its end-of-life, regardless of the DOD. In 
contrast, the second method assumes an inverse relationship between 
the number of cycles a battery can complete and the battery DOD. In 
some study such as [22,49], only a fixed annual capacity loss rate has 

been considered to incorporate its effects when calculating yearly net 
present values. Some studies such as [32], the profit optimization 
objective function included a cost per cycle associated with the battery. 
This cost per cycle was determined by considering the initial investment 
cost and the total number of cycles that battery could perform at a 
specific DOD. It’s important to note that the aforementioned study 
assumed that the battery capacity remained constant, and the impact of 
degradation was not factored into the calculations. In [50] a mathe
matical tool for cumulative degradation is introduced as a means to 
control battery aging. However, the focus remained on short-to-medium 
term system operation. A study conducted by [51], investigated the 
impact of battery ageing on energy arbitrage revenue related to grid- 
level energy storage. The authors emphasized the significance of 
incorporating degradation cost penalty into the assessment of battery 
profitability, enabling a better evaluation of the cost-effectiveness of 
battery storage implementation. However, the modeling of battery ca
pacity fade, and degradation cost were assumed to be a linear function of 
energy throughput and further investigation is required to determine the 
optimal value for the degradation penalty cost, considering the battery’s 
operational condition. 

For more illustration, in real-life applications, particularly in appli
cations where batteries are implemented to capture potential price dif
ferentials under RTP electricity scheme, the battery system operates 
under dynamic operational conditions, and battery degradation has non- 
linear behavior highly dependent on real operational conditions. For 
more illustration, batteries undergo two forms of aging: cyclic aging 
during use and calendric aging during storage. The influential factors in 
cyclic degradation include temperature, depth of cycle (DOC), current 
rate (C-rate), SOC level, and cycle frequency. For calendric aging, tem
perature, storage SOC, and elapsed time since the beginning of life are 
key factors [36,52,53]. Comprehensive overview of different battery 
degradation and lifetime models can be found in literature [54,55]. 

Overlooking or simplifying key aging influencing factors can impact 
decisions related to system operational efficiency, technical consider
ations, and economic assessments [54]. When designing a price arbi
trage strategy, focusing solely on revenue gain without considering 
degradation can be problematic as degradation can significantly reduce 
the battery’s capability to store and deliver energy, affecting projections 
of earned revenue. Furthermore, it impacts battery lifetime, potentially 
leading to increased replacement costs. 

Objectives and contributions of the present study 

Through the extensive review of the existing literature, it has been 
found that the viability of implementing batteries for capturing profit 
potential under RTP electricity schemes hinges on crucial factors such as 
(i) daily cycle frequency, (ii) charge and discharge timings within each 
cycle, and (iii) the duration of charge and discharge per cycle. These 
factors profoundly affect both revenue generation and battery degra
dation. However, existing price arbitrage strategies often rely on as
sumptions and objective functions that overlook the simultaneous 
consideration of all influencing factors on all key aspects including 
revenue gains, capacity degradation, operation-dependent lifetime, and 
their interconnected effects. This gap underscores the critical need to 
evaluate how overlooking or simplifying these factors as well as objec
tives can affect the system economic viability. Furthermore, this 
recognition highlights the urgent need for developing a robust and 
advanced price arbitrage strategy capable of making intelligent de
cisions on these factors concurrently, ensuring not only maximized 
profitability but also the longevity of the battery system. 

The significance of factors (i)-(iii) and their interconnected impacts 
on revenue gain and degradation can be elucidated as follows: 
increasing the number of cycles per day can potentially increase revenue 
but simultaneously accelerate battery degradation. Conversely, opting 
for fewer cycles can extend the battery’s lifespan but may gain lower 
revenue in the long run. For instance, sometimes increasing the number 
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Fig. 1. Illustration of the proposed scenarios for optimal battery operation scheduling, (a) A-series scenario: short-term profitability optimization; (b) Scenario B: 
short- and long-term profitability optimization. 
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of cycles to two per day can help to capture multiple significant price 
differentials within a day, potentially boosting revenue. However, it is 
vital to consider the costs associated with faster degradation. If the daily 
profit ** from two cycles per day surpasses that of fewer cycles even 
under higher degradation cost, then it is more beneficial to stick with 
more cycles per day. Otherwise, it is better to extend the battery’s life
span by reducing the daily cycle count. Moreover, charging or dis
charging the usable battery capacity at higher rates (faster charge) can 
potentially increase revenue but also hasten degradation. Conversely 
charging or discharging at lower rates (slower charge) can result in 
reduced revenue generation but also less degradation. The challenge lies 
in striking the right balance. 

Another challenge lies in the effectiveness of this strategy in 
capturing the impact of battery performance and degradation on the 
aforementioned factors under dynamic operational conditions. In light 
of this, the gap pertains to the absence of an efficient “battery behavior- 
aware” price arbitrage strategy that simultaneously consider multiple 
crucial aspects of battery behavior under realistic operational condi
tions, including: (a) efficient estimation of battery performance, (b) 
precise prediction of calendric and cyclic capacity degradation, (c) 
proper prediction of battery state-of-charge (SOC), state-of-health 
(SOH), and state-of-power (SOP), (d) accurate estimation of remaining 
useful life (RUL). 

Another research gap lies in evaluating the long-term impact of 
battery utilization over its lifetime. Th profitability assessment in 
existing studies in field usually rely on short-term simulation which 
typically lasts only a few days, weeks or one year_may inadequately 
capture the full complexity of how batteries age and perform over their 
entire operational lifespan. Accordingly, it is imperative to conduct 
long-term analysis of battery operation until it reaches its end-of-life 
(EOL) criterion. Such a comprehensive and long-term analysis is a ne
cessity to provide decision-makers and battery owners with a thorough 

understanding of battery profitability in practical applications. 
However, the daily scheduling of battery operations up to the point 

where the battery reaches its EOL, presents another challenge: the need 
for effective coordination between the scheduling phase and the oper
ation module. 

In summary, by addressing all these challenges, the main contribu
tion is to develop smart operation scheduling strategies that effectively 
and efficiently utilize batteries under the RTP electricity scheme, 
ensuring both maximum profitability and longevity. This comprehen
sive approach aims to bridge existing gaps in literature and provide 
valuable insights for decision-makers and battery owners in practical 
applications. 

The main contributions of the present study are summarized as 
follows:  

• As illustrated in Fig. 1, this study proposes two scenarios aimed at 
optimizing battery operation scheduling within the day-ahead 
RTP electricity market. The primary objective is efficient utili
zation of battery to maximize profitability through simultaneous 
consideration of key influencing factors on revenue generation, 
capacity fade, lifetime, and their interconnected impacts. The 
scenarios differ in their conceptual approaches to achieving 
profitability, as outlined below:  

(i) Short-term profitability optimization: the proposed scenario (as 
depicted in Fig. 1a) prioritizes immediate revenue gains. 
Although strategy takes into account the impact of operation on 
degradation, it does not optimize the long-term consequences 
beyond that objective, since its primary focus is on immediate 
revenue maximization. The scenario achieves this objective 
through identifying the maximum daily electricity price differ
ential considering a fixed charge and discharge durations. To 
further explore the impact of different durations on optimization 

Fig. 2. Configuration of the investigated grid-connected battery system.  
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objective, battery degradation and longevity, we propose three 
variations of charge and discharge rates: high, moderate, and 
low. These variations divide the scenario into three subsequent 
scenarios, allowing for a detailed exploration of their respective 
effects. 

(ii) Short-term and long-term profitability optimization: the pro
posed scenario (as illustrated in Fig. 1b) introduces a novel and 
intelligent operation scheduling strategy which expands its focus 
beyond immediate gains and encompasses sustained profitability 
over an extended period. This strategy simultaneously makes 
optimal decisions on a wide range of crucial factors that influence 
both daily revenue and daily degradation. These factors include 
determining the optimal cycles for each specific day, identifying 
optimal hours for charging and discharging during each cycle, 
and finding the optimal durations for charge and discharge per 
cycle. The objective is to simultaneously maximize daily revenue 
generation while minimizing daily battery degradation cost. 
Finding the right balance is crucial for maximizing long-term 
profit and extending the battery’s lifespan.  

• A battery behavior-aware management strategy is conducted to 
accurately simulate battery operation in both scenarios. The 
strategy can effectively estimate voltage-current behavior, 
calendric and cyclic capacity fades, remaining useful life, and 
internal-states such as state of charge (SOC) and state of health 
(SOH) under real-life operational conditions, thereby ensuring 
efficient battery management adaptable to practical application.  

• Project economic viability under both scenarios is assessed by an 
extensive set of economic key performance indicators (KPIs), 
including the present values of total revenue, as well as profit 
over project life, profitability index, profitability per energy 
installed, and payback period.  

• The study evaluates the impact of battery price, battery size on 
optimal decision making within the proposed scheduling 

strategy, as well as their effects on the lifetime, and economic 
KPIs to assess the importance of changing these parameters.  

• Unlike conventional simulations that typically last for only a few 
days or a year, daily operation scheduling is performed under 
both scenarios until the battery reaches the EOL. This approach 
ensures an effective long-term assessment of profitability, which 
is of high importance due to the battery’s changing performance 
over time, driven by its nonlinear degradation behavior. 

• An algorithm is conducted to effectively coordinate the “sched
uling phase” with the “operation module” to ensure updating and 
sending the current battery state information to scheduling phase 
to facilitate the next day operation planning. 

Methods 

Section 2.1 presents the schematic layout of the studied system. 
Section 2.2 and 2.3 illustrate the battery system modelling method 
applied in this study. Section 2.5 describes the problem description. 
Finally, Section 2.6 presents the operative hypotheses and system 
operational strategy. 

System layout description 

The figure displayed in Fig. 2 illustrates the configuration of the 
residential grid-connected battery system under investigation. The sys
tem comprises an AC battery equipped with an integrated inverter, 
enabling the direct conversion of its stored DC power into AC power. 
Additionally, a temperature controller is employed to regulate the 
temperature of the battery system. The electric grid and a load are also 
integral components of the system. In essence, the system leverages the 
price arbitrage strategy, wherein the battery is charged during off-peak 
hours and the stored electricity is discharged during periods of high 
prices. 

Fig. 3. Illustration of the conducted battery modelling scenario.  
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Battery modelling scenario 

The Lithium-iron phosphate (LFP/C) type of Li-ion batteries has 
gained significant attention for its suitability in stationary applications 
due to its safety, long lifespan, fast charging/discharging rate, dura
bility, and use of non-toxic materials [13,56,57]. In this study, an LFP 
battery with detailed technical specifications [58] outlined in Appendix 
A (Table A1) is utilized. 

In this study, we conduct a detailed battery modelling scenario, as 
depicted in Fig. 3. The scenario incorporates specific methods for reli
able estimation of various battery parameters, including voltage-current 
characteristics, capacity degradation, remaining useful lifetime, and 
internal states. A detailed exposition of each method is provided in the 
subsequent sections, outlining the techniques employed to accurately 
estimate these key battery parameters. 

The battery’s current–voltage relationship is described by the Rint 
electrical model [39], chosen as trade-off between the accuracy and 
computational time. The internal parameters of the Rint electrical model 
conducted in this study are a function of operating conditions, which 
improve the model accuracy. Eqs. (1) and (2) illustrate the model’s 
ability to capture the charging and discharging terminal voltages as 
function of operational conditions. Additional details regarding the 
studied battery performance model can be found in the author’s previ
ous work [12]. 

Vch,t(SOCt, T, It) = OCVch(SOCt,T, It)+ Ich,t × Rch(SOCt,T, It) (1)  

Vdch,t(SOCt,T, It) = OCVdch(SOCt,T, It)+ Idch,t × Rdch(SOCt,T, It) (2) 

In this study, a practical aging model, developed and validated by 
Naumann et al. [52,53] under dynamic stress profiles, is employed to 
simulate battery lifetime and capacity degradation under real-life 
operational conditions. The total capacity degradation of the battery 
at each time interval is represented by Eq. (5), derived by combining the 
calendric capacity degradation model (Eq. (3)) and the cyclic capacity 
degradation model (Eq. (4)). This model effectively estimates capacity 
degradation during both storage and operation, taking into account 
various factors such as storage SOC, cycle depth, elapsed time since the 
beginning of life (BOL), full equivalent cycle (FEC), and cycle charge/ 
discharge rate. For a more detailed understanding, a complete descrip
tion of the implemented aging model and guidelines on its application 
under diverse operational conditions can be found in [54]. 

Cfade, calt (SOC, time) =
(
α1(SOC − 0.5)3

+α2
)
.time0.5 (3)  

Cfade, cyct (Crate,DOC,FEC) = (β1.Crate + β2) ×
(
γ1(DOC − 0.6)3

+ γ2
)

× (FEC)0.5 (4)  

Cfade, tott (SOC, time,Crate, DOC, FEC ) = (Cfade, calt (SOC, time)
+Cfade, cyct (Crate, DOC, FEC))×Cbatt, BOL

(5) 

The battery’s SOC and SOH are crucial internal parameters that 
indicate the remaining charge level and the level of battery degradation, 
respectively. Accurate tracking of these parameters requires reliable 
state prediction methods. As shown in Eq. (6), the SOC at each time 
interval is estimated using the Coulomb counting method. The 
constraint (S2 + S3,4) ≤ 1 in Eq. (7) ensures that the battery is not 
allowed to simultaneously charge and discharge. Since the self- 
discharge rate of Li-ion batteries is low per month [59], the calcula
tions in this study do not take into account the impact of Li-ion self- 
discharging. The battery’s SOH at each time interval is quantified by Eq. 
(7). 

SOCt+1 = SOCt − s2

∫
Ich,tdt

SOHtCbatt,BOL
+ s3,4

∫
Idch,tdt

SOHtCbatt,BOL

⎧
⎨

⎩

Ich,t < 0
Idch,t > 0

S2 + S3,4 ≤ 1
(6)  

SOHt =
Cbattt

Cbatt, BOL
× 100 =

Cbatt,BOL − Cfade,tott

Cbatt,BOL
× 100 (7)  

Optimizing battery operation scheduling 

To achieve efficient and optimal day-ahead battery operation 
scheduling in the context of price arbitrage within the real-time elec
tricity market, two scenarios are proposed. The main goal of both sce
narios is to maximize profitability through efficient battery utilization; 
however, they differ in terms of strategic approaches to achieve profit
ability. Scenario A focuses on short-term profitability, and scenario B 
aims to ensure sustained profitability. Subsections 2.3.1 and 2.3.2 
elaborate on Scenario A and Scenario B, respectively. Subsections 2.3.3 
and 2.3.4 present the optimization formulations for Scenario A and 
Scenario B, respectively. The optimization algorithms for Scenario A and 
B are elaborately illustrated in Subsection 2.3.5. 

Scenario A: Description 
Scenario A, as shown in Fig. 1(a), introduces a day-ahead operation 

scheduling strategy that aims to optimize short-term profitability by 
prioritizing revenue gains. To achieve this objective, the scenario 
identifies the most favorable times for charging and discharging based 
on 24-h ahead RTP electricity profile to find the maximum possible daily 
price differential considering a fixed charge and discharge rate It is 
important to note that the scenario takes the battery degradation into 
account and assesses the long-term impact of the approach on battery 
lifetime and profitability. However, since its primary focus is on revenue 
maximization, it does not “optimize” the long-term consequences of 
degradation beyond that objective. To explore the impact of different 
charge and discharge rates on optimization objective, and battery 
longevity, Scenario A is evaluated under three variations of charge and 
discharge rates: high, moderate, and low, which are elaborately 
explained as follows:  

• Scenario A1 (also referred to as S. A1): it employs a high charge 
/discharge rate of 1C to allow the battery to quickly reach full ca
pacity within an hour.  

• Scenario A2 (also referred to as S.A2): it provides a “more balance” 
between revenue generation and battery life longevity by main
taining a moderate charge/discharge rate of 0.25C, enabling the 
battery to achieve full capacity within a 4-hour duration.  

• Scenario A3 (also known as S. A3): maximizes the daily revenue 
while maintaining a low battery degradation rate by utilizing a low 
charge and discharge rate of 0.125C to allow the battery to reach full 
capacity over 8-hour daily period. The strategy tracks the most 
profitable times over 8-hour within a day to ensure maximum 
possible daily revenue, while also minimizing the impact on the 
battery’s long-term life. 

Scenario B: Description 
To optimize the flexibility of the price arbitrage strategy in capturing 

maximum profit potential under dynamic RTP electricity schemes, 
thereby ensuring sustained profitability, it is crucial to develop a strat
egy that can optimally manage both battery degradation and revenue 
gain potentials. As mentioned in the introduction section, the potential 
for price arbitrage with battery storage is influenced by several factors. 
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These factors include (i) how frequently the battery is charged and 
discharged each day, (ii) when to charge and discharge within each 
cycle, and (iii) for how long to charge and discharge with each cycle. 
These factors have a significant impact not only on revenue generation 
but also on battery degradation. Therefore, finding the right balance 
between revenue generation and degradation costs is critical to ensure a 
profitable management strategy. Scenario B, as shown in Fig. 1 (b), in
troduces a smart strategy capable of making intelligent decisions on a 
wide range of decision-variables to simultaneously maximize daily 
revenue and minimize daily degradation costs, ensuring long-term 
profitability, and extending the battery’s lifetime. Leveraging day- 
ahead RTP profile, the decision maker determines the most efficient 
way to schedule battery’s operation for the following day. This includes 
the optimal number of cycles per day, the best times, as well as rates, and 
durations for each charging and discharging cycles. The scenario in
corporates a thorough monitoring of calendric and cyclic battery 
degradation throughout the scheduling process, considering all relevant 
key parameters. This enables flexible optimization of decision variables 
and objective functions. 

Scenario A: Optimization objective function, decision variables and 
constraints 

Scenario A objective function: the objective function solely aims to 
maximize daily revenue (Revenuem) as defined in Eq. (8). The optimal 
daily profit as indicated in Eq. (9) is obtained by subtracting the battery 
daily degradation cost (Costdeg,battm) from the optimized daily revenue 
(Revenueopt,m), resulting in the highest daily profit that the system can 
achieve. 

Scenario A decision variables: The decision variables Yi include the 
daily charge and discharge timing (tch, start,m, tdch, start,m), as shown in Eq. 
(10), which are influenced by the RTP within a day, and the charge/ 
discharge duration (d). In scenario A, the allowable charge and 
discharge durations are assumed to be constant and identical for each 
cycle. Specifically, the battery is designed to charge during (d)-low price 
hours and discharge during (d)-high price hours, using its full usable 
capacity during both periods. 

Scenario A operating constraints: In order to ensure proper battery 
operations, it is crucial that battery states be monitored and be within 
permissible operating constraints as described in Appendix B (Eq. (B1)). 
The NOCm ≤ 1 constraint in Eq. (B1) ensures that the battery is charged 
and discharged no more than once per day. The battery is allowed to 
operate within the maximum charge and discharge power 
(Pch

min,tandPdch
max,t) which are determined by considering the battery’s 

available capacity and maximum allowable charge/discharge C-rate. In 
scenario A, the maximum allowable C-rates for both the charge and 
discharge process are constant and identical, equivalent to (1/d) over 
the project’s lifespan. 

Scenario B: Optimization objective function, decision variables and 
constraints 

Scenario B objective functions: the objective of Scenario B, as 

shown in Eq. (11), is to strike a balance between maximizing daily 
revenue and minimizing battery daily degradation costs (Costdeg,battm) to 
find optimal profit as shown in Eq. (12), which are influenced by a wide 
range of decision variables. Appendix B elaborates how the system’s 
daily revenue and degradation costs are calculated. 

Scenario B decision variables: The scenario’s decision variables 
are shown in Eqs. (13)-(17), which includes the number of cycles per day 
(X1,m), the charging and discharging durations per cycle (X(z)

2, m, X(z)
3, m) as 

well as charge and discharge timings (X(z)
4, m, X(z)

5, m) for each cycle. As 
shown in Eq. (13), a z-value of 0 (z = 0) indicates daily periodicity, 
where the battery can be fully charged and discharged once within a 24- 
hour period. In this case, five unknown variables need to be identified 
for each day (m), as indicated in Eqs. (14)-(17). On the other hand, a z- 
value of 1 or 2 (z = 1 or z = 2) indicates a semi-daily periodicity, where 
the battery can be fully charged and discharged twice within a day. The 
first semi-daily periodicity (z = 1) spans from midnight (00:00) to noon 
(12:00), and the second semi-daily periodicity (z = 2) spans noon 
(12:00) to midnight (24:00). In this case a total of nine unknown vari
ables must be identified for day m: four for the first semi-daily period
icity, i.e. charge and discharge timing (t(1)ch,start,m, t(1)dch,start,m), charge and 

discharge durations (d(1)
ch,m, d(1)

dch,m); and four for the second semi-daily 

periodicity including charge and discharge timing (t(2)ch,start,m, t
(2)
dch,start,m)

along with their corresponding durations (d(2)
ch,m, d(2)

dch,m). Therefore, to 
achieve the optimal solution, the optimization algorithm must carefully 
consider and select the appropriate decision variables. By doing so, they 
can ensure that the management strategy is provided with accurate and 
reliable data to help optimize the performance of the battery system. 
Further details on the optimization algorithm are provided in the next 
section. 

Scenario B state variables: the battery state variables, as indicated 
in Eq. (18), are updated hourly and reported to the decision maker on a 
daily basis. On the first day of the project, denoted as m = 1, the initial 
SOC is set to the maximum SOC (SOCmax) and the battery is unused. For 
subsequent days where m ∕= 1, the initial SOC, SOH, and capacity of the 
battery are equal to the updated state variables at the end of previous 
day, where “the end of the previous day” refers to “the last hour of the 
previous day”. 

Scenario B operating constraints: To ensure safe and reliable 
operation of the battery, operating constraints must be followed, as 
outlined in Appendix B (Eq. (B5)). The NOCm ≤ 2 constraint in Eq. (B5) 
restricts the number of charge and discharge cycles per day to no more 
than two. As shown in Eq. (B5), the battery is allowed to operate within 
the maximum charge and discharge power (Pch

min,tandPdch
max,t) which are 

determined by considering the battery’s available capacity and 
maximum allowable charge and discharge C-rates. In scenario B, the 

maximum allowable C-rates for both the charge and discharge processes 
are optimized on a daily basis and may be unequal, equivalent to ( 1

dch,m
,

and 1
ddch,m

) over the project’s lifespan. 

Scenario A  

Objective function:  
Maximize:Revenuem

(
Y1,m,Y2,m

)
→Revenueopt,m

(
Y1,opt,m,Y2,opt,m

)
(8) 

Profitopt,m(Y1,opt,m ,Y2,opt,m) = Revenueopt,m
(
Y1,opt,m ,Y2,opt,m

)
− Costdeg,batterym (9) 

Decision variabels:  
Y1,m = tch, start,m = f(RTPm,d);Y2,m = tdch, start,m = f(RTPm,d); m = 1, …,days over project life (10)   
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Optimization algorithms for scenario A and scenario B 
Fig. 1(a) and (b) provide an overview of the overall optimization 

framework for both Scenario A and Scenario B, showcasing how the 
scheduling strategy and battery operation management interact for 
achieving desired objectives of each scenario. The “scheduling phase” 
focuses on creating optimized daily schedules for optimal battery utili
zation. These schedules are then fed into the “operation module” to 
manage the battery’s charging and discharging actions accordingly. This 
process continues until the battery SOH reaches the EOL criterion. 

The optimization problem involves dynamic scheduling, with deci
sion variables and objective functions changing daily. The scheduling 
phase of both scenarios depends on receiving a 24-h ahead RTP elec
tricity profile. However, Scenario B requires additional updated infor
mation, including battery SOC, SOH, and capacity, for planning the next 
day’s operations. A step-by-step explanation of the optimization algo
rithms in the scheduling phase of both scenarios can be found in next 
sections. 

Optimization procedure in scenario A. The optimization procedure in 
Scenario A is illustrated in Fig. 1a and the process is elaborately 
explained as follows:  

1. Receive the initial states of battery, i.e. SOC, SOH, and battery 
capacity  

2. For each day m, scheduling phase receives 24-hour ahead RTP 
profile.  

3. Receive the fixed predefined charge /discharge durations (d), which 
is 1-hour for S. A1, 4-hour for S.A2, and 8-hour for S.A3 as illustrated 
in Eq. (B.1).  

4. To determine the best times for charge and discharge actions, first 
calculate the moving average (MA) of RTP in time t, corresponding to 
the charge/ discharge duration d in the day m according to Eq. (C1) 
in Appendix C.  

5. Determine the minimum and maximum MA RPT corresponding to 
the charge/discharge durations (d) within day (m) (as shown in Eq. 
(C2) in Appendix C), to identify the charge and discharge start times 
of day m (as shown in Eq. (C3) in Appendix C). The identified charge 
and discharge schedule are the optimal solution which leads to 
maximum possible price differential at day m.  

6. Send the identified optimal charge and discharge timing to the 
“operation module” to manage system accordingly and update bat
tery states and back to step 2.  

7. Stop optimization process, when battery reaches end of life criteria 
(SOH = 75 %).  

8. Report battery lifetime, present value of profit, revenue, PI, PPEI, 
and payback period, as described in Eqs. (19)-(24). 

Optimization procedure in scenario B. The optimization procedure in 
Scenario B is illustrated in Fig. 1b and described in detail using a step- 
by-step approach presented as follows:  

1. Initialize the battery state variables according to Eq.(18), i.e. 
SOH, SOC, and battery capacity  

2. For each day m, receive the 24-hour ahead RTP profile.  
3. For each day m, initialize the number of daily cycle (X1,m) and set 

z accordingly. if the number of cycle is one, then z = 0, and if the 
number of cycle is two, then z = 1, 2  

4. For the given number of cycles for day m, initialize the charge and 
discharge durations (X(z)

2, m, andX(z)
3, m) as illustrated in Eqs. (14) and 

(15). It is worth noting that in Scenario B, the battery’s charge 
and discharge durations for each cycle can be unequal, and as 
shown in Eqs. (14) and (15) can vary between 1-hour and 10-hour 
for daily periodicity (z = 0) and vary between 1-hour to 6-hour 
for semi-daily periodicity (z = 1, 2). 

Scenario B  

Objective function:  
⎧
⎪⎨

⎪⎩

Maximize : Revenuem

(
X1,m ,X(z)

2, m,X
(z)
3, m,X

(z)
4, m,X

(z)
5, m

)

Minimize : Costdeg,battm

(
X1,m,X(z)

2, m,X
(z)
3, m,X

(z)
4, m,X

(z)
5, m

)→maximizeProfitm;m = 1,⋯, days till EOL 

(11) 

Profitopt,m

(
X1,opt,m ,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
= MAX

(
Revenue m

(
X1,m ,X(z)

2, m,X
(z)
3, m,X

(z)
4, m,X

(z)
5, m

)
− Costdeg,battm

(
X1,m,X(z)

2, m,X
(z)
3, m,X

(z)
4, m,X

(z)
5, m

))
(12) 

Decision variabels  
X1,m = NOCm; X1,m|X1,m ∈ N,1⩽X1,m⩽2;

z =

{
0,X1,m = 1(daily-periodicity)

1,2X1,m = 2(semi-daily periodicity)
(13) 

X(z)
2, m = d(z)

ch,m =

⎧
⎨

⎩

d(0)
ch,m;

(d(1)
ch,m, d

(2)
ch,m);

X1,m = 1
X1,m = 2 

{
X(z)

2, m|X
(z)
2, m ∈ N,1 ≤ X(z)

2, m ≤ 10z = 0

X(z)
2, m|X

(z)
2, m ∈ N,1 ≤ X(z)

2, m ≤ 6z = 1,2  

(14) 

⎧
⎨

⎩
X(z)

3, m = d(z)
dch,m =

⎧
⎨

⎩

d(0)
dch,m;

(d(1)
dch,m, d

(2)
dch,m);

X1,m = 1
X1,m = 2

⎫
⎬

⎭

{
X(z)

3, m|X
(z)
3, m ∈ N,1 ≤ X(z)

3, m ≤ 10z = 0

X(z)
3, m|X

(z)
3, m ∈ N,1 ≤ X(z)

3, m ≤ 6z = 1,2  

(15 

X4,m = tch,start,m
(
X2,m, RTPm

)
=

⎧
⎨

⎩

t(0)ch,start,m ;

(t(1)ch,start, m, t
(2)
ch,start, m);

X1,m = 1
X1,m = 2  

(16) 

X5,m = tdch, start, m
(
X3,m ,RTPm

)
=

⎧
⎨

⎩

t(0)dch,start,m ;

(t(1)dch,start, m, t
(2)
dch,start, m);

X1,m = 1
X1,m = 2  

(17) 

State variables  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1
m = SOCinitial,m =

⎧
⎨

⎩

SOCfinal,m− 1

(
X1,opt,m ,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
;m ∕= 1

SOCMin ;m = 1

U2
m = SOHinitial,m =

⎧
⎨

⎩

SOHfinal,m− 1

(
X1,opt,m ,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
;m ∕= 1

SOHBOL ;m = 1

U2
m = Cbat initial,m =

⎧
⎨

⎩

Cbat final,m− 1

(
X1,opt,m ,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
;m ∕= 1

CbatBOL ;m = 1 

(18)   
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5. Given each set of charge and discharge durations, calculate the 
MA RTP of time t at day m, as described in Eq. (C4) in Appendix 
C.  

6. To identify the best charge and discharge timing (X(z)
4, m, andX(z)

5, m)

given each charge and discharge durations, firstly the minimum 
and maximum MA RTP, corresponding to the charge and 
discharge durations are calculated through Eq. (C5) in Appendix 
C, then the charge and discharge start times under which the 
maximum daily price differential is attained are determined via 
Eq. (C6) in Appendix C.  

7. Given the identified charge and discharge timing corresponding 
to a set of charge and discharge durations, the objective function 
is calculated through the operational strategy as illustrated in 
section 2.4.  

8. Store the objective function value in a data center.  
9. Update the charge and discharge durations and repeat steps 3–7 

for all combination of charge and discharge durations.  
10. Update the number of cycles, and repeat steps 4–9 for all possible 

cycle per day 
11. Identify the best daily objective function value and the corre

sponding set of daily decision variables from the data center.  
12. Send the optimal operation scheduling for day m 

(X1,m,X(z)
2, m,X

(z)
3, m,X

(z)
4, m,X

(z)
5, m) to the battery “operation module”. 

The system will then operate the battery based on this optimal 
scheduling and update its states according to Eq. (18).  

13. The updated battery states are then sent back to the decision 
maker (Step2) to use for planning the next day’s (m + 1) 
operations.  

14. The process 2–13 is repeated daily until the battery SOH reaches 
the EOL criteria.  

15. Report battery lifetime, present value of profit, revenue, PI, PPEI, 
and payback period, as described in Eqs. (19)-(24). 

Description of key economic performance indicators (KPIs) for scenario A 
and scenario B 

The battery lifetimes in both scenarios are not predetermined and are 
predicted using a realistic ageing model (as described in Section 2.2) 
that is influenced by the battery’s dynamic operation within the system. 
The battery operation is dependent on optimized daily scheduling spe
cific to each scenario. In this study, we use δReplace = 75 % as the battery 
replacement indicator, and as shown in Eqs. (B1) and (B5) the battery’s 
end-of-life occurs in the application when the battery SOH reaches 75 %, 
matching the warranty condition of the LFP/c battery. It is worth noting 
that battery lifetime is regarded as project lifetime. The battery lifetime 
is defined as the time elapsed since BOL until the battery’s SOH reaches 
the capacity indicating the EOL state, as depicted in Eq. (19). 

To provide a more complete evaluation of the economic feasibility of 
project under both scenarios, an extensive set of indicators are consid
ered, including the present values of total revenue, as well as profit over 
project life, profitability index, profitability per installed energy, and 
payback period. 

The total revenue and profit over the project’s lifespan, as shown in 
Eqs. (20) and (21), are calculated using the present value (PV) method, 
which involves converting all projected future cash flows into present 
equivalent values by using a chosen discount rate. In this study, the real 
discount rate is chosen as 4 % by considering the current loan rate in 
Sweden [60]. 

PI, or profitability index, is a useful financial tool for comparing the 
potential profitability of different investment projects and determining 
if a project is worth pursuing. As shown in Eq. (22), PI is a ratio of total 
discounted profit to initial battery investment. 

PPEI, or profit per energy installed, is an important economic indi
cator that measures the profitability of energy storage per unit of energy 
capacity. This information is valuable for project developers, investors 

and policymakers in determining the viability of energy storage projects. 
As shown in Eq. (23), the yearly average PPEI is obtained by diving the 
present value of total profit by the nominal capacity of battery and the 
total project life (i.e. battery life). 

As shown in Eq. (24), the payback period is another useful financial 
metric which provides an estimate of how long it will take for an in
vestment to start generating positive cash flows, and how long it will 
take to recoup the initial investment cost. 

LFbat(yr) =
mSOHm≤αReplace

365
(19)  

RevenuePV
opt, tot =

∑LFbat(yr)

n=1

(∑365
m=1Revenueopt,m

)

n

(1 + interestrate)
n (20)  

ProfitPVopt, tot =
∑LFbat(yr)

n=1

(∑365
m=1Revenueopt,m

)

n

(1 + interestrate)
n − ICCbattery (21)  

PI (\%)) =
ProfitPVopt, tot

ICCbattery
× 100 (22)  

PPEI(€/kWh/yr) =
ProfitPVopt, tot

Cbatt, BOL × LF
(23)  

Payback (yr) =
m((
∑

mRevenueopt,m − ICCbattery) ≥ 0)
365

(24)  

Operational strategy and battery management system 

In this study, a straightforward operational strategy, leveraging dy
namic electricity prices is conducted for a residential grid-connected 
battery system. This strategy is employed to simulate the system’s 
operation over the project’s lifetime. The operational strategy takes 
input data such as hourly electricity consumption, hourly electricity 
price profiles, battery SOC and SOH values, initial capacity at BOL, 
battery operating control parameters (e.g., allowable charge/discharge 
rates), and the allowable SOC operation window. It is important to note 
that the system simulation is conducted on an hourly basis, with the 
estimated battery lifetime considered as the project’s overall duration. 
Throughout the project lifespan, the annual hourly electricity price and 
consumption profiles are kept unchanged. The output data of the 
operational strategy are hourly system operations data, such as the 
battery power flow, SOC, SOH, the battery calendric and cyclic capacity 
fades, and daily revenue, and profit over project life. A step-by-step 
description of system operational strategy are as follows: 

• Strategy receives daily operations schedule including, the permis
sible number of cycles per day, the timing for charging and dis
charging, and the corresponding durations for each cycle.  

• If the current time of day m falls within the permissible charging 
period of day m, (tch,start,m ≤ tm ≤ tch,start,m + dch), the battery is 
charged using low-cost grid power at the maximum allowable 
charging rate (Pch

min,t).  
• If the current time of day (m) falls within the permissible discharge 

period of day m (tdch,start,m ≤ tm ≤ tdch,start,m + ddch), the battery is 
discharged to meet the demand as much as possible during high- 
price periods. If the maximum allowable discharge power (Pch

max,t) 
exceeds the load, the surplus power is exported to the grid. However, 
if the load exceeds the maximum allowable discharge power, the 
deficit power is sourced from the grid.  

• During other periods, the battery remains idle and neither charges 
nor discharges. In such instances, the demand is fulfilled solely by the 
grid.  

• At each time interval, the following steps are carried out: 
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- The battery SOC is updated, as explained in Section 2.2.  
- Battery ageing influence parameters are detected through stress 

detection method.  
- Both the calendric and cyclic capacity fades of the battery are 

calculated using the ageing models outlined in Section 2.2.  
- The battery capacity is adjusted according to the estimated capacity 

fade, and subsequently, the SOH of the battery is updated based on 
the available battery capacity.  

• The previously described procedure is consecutively repeated until 
the end of day.  

• At the end of day, the battery states are sent back to the decision 
maker to use for planning the next day battery performance. 

Case study 

The proposed strategies in this study are implemented for two 
common types of Swedish family houses, equipped with and without 
district heating (DH). The house equipped with DH has an annual 
electricity consumption of 4,300 kWh, while the house without DH 
consumes around 10,700 kWh per year. Fig. 4 shows the hourly elec
tricity usage for households located in Västerås, Sweden. The data 
regarding the hourly electricity consumption throughout the year is 
collected through electric meters and provided by the homeowners. 

The retail price of electricity in Sweden is determined by a range of 
factors, including the type of clients, geographical locations, local 
electricity markets, taxes, and other elements [61]. When studying the 
residential case, the retail price of electricity can be analyzed as 
comprising two main components: the Electricity Spot Price and the 
Fixed Fee. The Electricity Spot Price (ElSpot price) represents the day- 
ahead hourly price which in this study obtained from the Nord Pool 
bidding electricity market [62]. The Nord Pool spot market, known as 
the world’s first international spot power exchange market. Operating as 
a day-ahead market, the Nord Pool spot market enables the trading of 
power contracts with a minimum duration of one hour for delivery on 
the subsequent day. Fig. 5 depicts the hourly ElSpot price in 2022 spe
cifically for the SE3 bidding area in Sweden. The Fixed Fee incorporates 
various elements, such as energy tax, electricity transfer fee, value- 
added tax (VAT), and similar factors. A detailed explanation of how 
the electricity price is formulated and calculated can be found in Ap
pendix D. 

Results and discussion 

The results of this study are presented in three subsections. Subsec
tion 3.1 discusses and compares the economic profitability of the battery 
system under the proposed operation scheduling optimization scenarios. 
Subsection 3.2 presents the optimized operating performance obtained 
from the proposed scenarios. Additionally, subsection 3.3 examines the 
impact of battery price and size on the optimal operation scheduling 
specifically under Scenario B. 

Assessing economic profitability of studied battery storage under scenario 
A and scenario B 

Fig. 6 and Table 1 illustrates the results obtained from scenarios A1- 
A3, and scenario B, providing comprehensive insights into the financial 
performance of each scenario. The results are presented for two types of 
residential houses: those with and without DH. The house with DH is 
equipped with a 5kWh battery system, while the house without DH is 
equipped with a larger 10 kWh battery system. Each figure displays two 
variables on the Y-axes. Fig. 6a shows the average yearly PPEI on the left 
Y-axis, and the lifetime on the right Y-axis. Fig. 6b shows the present 
value of total profit obtained over project life on the left-Y-axis and the 
profitability index on the right Y-axis. Fig. 6c demonstrates the present 
value of total revenue generated over project life (left Y-axis) and the 
payback period (right Y-axis). 

The comparison of the estimated battery lifetimes under each sce
nario highlights the importance of battery daily operation scheduling on 
the long-term project performance. As depicts in Fig. 6a, it can be 
observed that scenario S.A3 resulted in the longest battery lifetime of 
14.8 years, while scenario S.A1 leads the shortest lifetime of 10.1 years. 
The predicted lifetimes under scenarios S.A2 and S.B are 13.6 and 12.5 
years, respectively, falling within two previously mentioned extremes. 
Although the daily operation scheduling of battery under scenario S.A3 
is the most effective in terms of extending the battery’s lifespan, with 
increases of 8.8 %, 18.4 % and 46.5 % compared to scenarios S. A2, S.B, 
and S.A1, respectively, a longer battery lifetime does not necessarily 
translate to higher profitability. Evaluation of other economic perfor
mance metrics reveals that S.A3 is the worst scenario in terms of prof
itability as the revenue generated under this scenario is insufficient to 
offset the initial investment. This is evidenced by a negative net present 
value, and an average yearly PPEI of − 3€/kWh/yr. This is because S.A3 
followed a predefined and “low” charge/discharge rate, which forces the 
battery to operate under conditions with the lowest degradation rate, 
but also limits the revenue-generation potential. In other words, 
although the battery’s lifespan was extended, the revenue generated was 
insufficient to justify the battery investment cost over its lifetime. In 
contrast to S.A3, both S.A1 and S.A2 of the A-series scenarios resulted in 
positive net present values despite having shorter battery lifetimes. The 
reason for this is that the higher charge/discharge rates imposed in these 
scenarios (ie. S.A1, and S.A2), allowing for higher revenue generation 
potential despite the higher degradation rates. This comparison shows 
that while extending the battery lifespan is desirable, it is not always the 
most profitable strategy, and factors such as revenue generation and net 
present value must be considered when designing battery operation 
schedules for a project. For instance, it can be observed that although 
scenario S.A1 allows for capturing the highest daily price differential by 

Fig. 4. The electricity consumption patterns: houses with and without DH.  

Fig. 5. The hourly profile of the Elspot price including VAT, 2022 [43].  
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imposing a “high” fixed charge/discharge rate due to the taking 
advantage of the lowest and highest RTP of each day, it is less profitable 
than S.A2. The profitability index (PI) of S.A2 is 31.2 % with an average 
yearly PPEI of 9.2 €/kWh/yr, while S. A1 lead to a PI of 20.9 % and 
average yearly PPEI of 8.2 €/kWh/yr. The higher profitability and life
time are due to maintaining a ‘’moderate’’ charge/discharge rate which 
provides a more balance between revenue generation and battery life 
longevity. Conversely, S. A1 incurs a high degradation cost, leading to 
the shortest lifetime and the lowest positive profitability in the long run. 
It’s important to consider other factors beyond just profitability and 
lifetime when evaluating the viability of each scenario. For example, 
despite having a higher lifetime and PPEI, the payback period of S.A2 is 
about 1.5 years longer than S.A1, which may make S.A2 less attractive to 

investors who prioritize quicker returns on their investment. Compared 
to the A-series scenario, scenario S.B stands out as the most attractive 
and effective option in terms of long-term profitability and sustainabil
ity. It offers numerous advantages, including the highest potential for 
revenue generation and profit, and the shortest payback period, making 
it financially viable and feasible option, and a reasonable lifespan that 
promotes sustainability over a longer period. As observed that its PPEI 
value (18 €/kWh/yr) is twice as high as the highest PPEI value in S.A2 
(9.2 €/kWh/), indicating that scenario S.B has a more promising 
financial outlook to generate significantly more profit, despite having a 
slightly shorter lifetime than S.A2 (12.5 year). This is because S.B finds 
an optimal trade-off between short-term and long-term profitability and 
sustainability when selecting the optimal daily operation scheduling, 

Table 1 
Detailed economic assessment results obtained under operation scheduling of S. A1-S.A3 and S.B for house with and without DH.   

House with DH; Cbat,BOL = 5 kWh House without DH; Cbat,BOL = 10 kWh  

S.A1 S.A2 S.A3 S.B S.A1 S.A2 S.A3 S. B 

LFbat(yr) 10.1 yr 13.6 yr 14.8 yr 12.5 yr 10.1 yr 13.6 yr 14.8 yr 12.2 yr 
RevenuePV

opt, tot(€) 2,418 € 2,624 € 1,781€ 3,117 € 4,836 € 5,249 € 3,560 6,335 € 

ProfitPV
opt, tot(€) +418 € +624 € − 219 1,117 € 836 € 1,249 € − 440 € 2,335 € 

PI (\%)) +21 % +31 % − 11 % +56 % +21 % +31 % − 11 % +58 % 
PPEI(€/kWh/yr) +8.3 +9.2 − 3 +18 +8.3 +9.2 − 3 +19.2 
Payback (yr) 7.8 yr 9.3 yr none 7.1 yr 7.8 yr 9.3 yr none 6.7 yr  

Fig. 6. Comparative analysis of obtianed KPIs: (a) PPEI and battery lifetime; (b) Present value of total profit and profitability index; (c) prsent value of total revenue 
and payback period, for opertaion schduling under scenario A (S.A1-S.A3) and Scnerio B (S.B) for house with DH (Capbatt = 5kWh) and house without DH (Capbatt 
= 10kWh). 
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whereas S.A solely prioritizes immediate revenue generation without 
optimizing its long-term impact on sustainability and profitability. 
Therefore, it is crucial to strike an optimal balance between battery 
degradation and revenue generation when designing a battery operation 
scheduling strategy, in order to simultaneously achieve both long bat
tery life and economic profitability. 

Operating performance of battery under scenario A and scenario B 

To understand the degradation behavior of the studied battery under 
operational scheduling under proposed scenarios, Fig. 7 illustrates the 
estimated rate of capacity fade of battery until the end of its life (SOH ≤
75 %) corresponding to all four scenarios. This rate accounts for both 
calendric (time-based) and cyclic (usage-based) capacity fades of the 
battery. It can be observed that the degradation rate is notably high in 
the S.A1 scenario. This can be attributed to the influential role of battery 
C-rate, which is one of the factors that significantly affects battery 
degradation. In S.A1, a fixed high C-rate was considered, resulting in 
accelerated degradation. On the other hand, the S.A2 and S.A3 scenarios 
follow a sequential order in terms of degradation rate since degradation 
cost optimization was not prioritized in these scenarios. Similarly, a 
fixed rate was employed. However, in the S.B scenario, degradation cost 
optimization was achieved while maintaining a balance with revenue 
generation. Consequently, the battery was able to dynamically adjust its 
power rating to meet the defined objectives. It is worth noting that this 
graph provides valuable insights into the impact of different scenarios 
on battery degradation rates and emphasizes the importance of 
considering optimization strategies to mitigate degradation costs while 
achieving revenue objectives. 

To provide a more comprehensive understanding of the daily oper
ation scheduling obtained under scenario B, the optimized daily charge 

and discharge durations 
(

d(z)
ch,opt , d

(z)
dch,opt

)
, as well as the optimal daily 

cycles are presented in this section. For sake of consciousness, we spe
cifically show the results for a selected month, from1st to 30th June. 
Fig. 8a and Fig. 8b illustrate these results for the 1st and 10th-yaer 
optimization, respectively. In Fig. 8a and 8b, the upper graph displays 
the optimized durations for daily charge and discharge. On the other 
hand, the lower graph in Fig. 8a and 8b shows the number of daily cycles 
observed during the simulation and optimization process. B. It is 
important to note that the number of daily cycles affects the z-value: 
when there is only one daily cycle, the z-value is zero, indicating a single 
optimal charge and discharge duration. In cases where there are two 
daily cycles, the z-value includes 1 and 2, representing separate optimal 

charge and discharge durations for the first and second semi-daily pe
riods (z = 1 and z = 2, respectively). It is worth mentioning that we did 
not present this information for the other scenarios, S.A1-S.A3, as the 
number of daily cycles and charge and discharge duration were assumed 
to be fixed and not subject to optimization. However, in scenario B, the 
dynamic charge and discharge rate, as well as the cycle count, play a 
significant role in battery degradation cost. Observing the results, it can 
be observed that although the annual electricity price and consumption 
profile remained unchanged over the project’s lifespan, the operation 
scheduling differs between the 1st- year and the 10th- year due to the 
dynamic charge and discharge rates and cycles, which impact battery 
degradation costs. Notably, in the later years, the battery tends to un
dergo two cycles per day instead of one, as the degradation rate slows 

Fig. 7. The capacity fade of battery over its lifetime for battery operation 
scheduling of scenarios S.A1-A3 and S.B (house with DH). 

Fig. 8. Optimized daily charge and discharge durations 
(

d(z)
ch,opt , d

(z)
dch,opt

)
(upper 

graph) and number of cycles (lower graph) under battery operation scheduling 
for Scenario S.B throughout the selected month of June (1st-30th), relative to 
selected years (a) 1st-Year, and (b) and 10th-Year optimization for a house 
with DH. 
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down compared to the earlier years. For instance, in the first year, there 
were five instances in June where the battery underwent two cycles per 
day (1st, 4th, 14th, 29th, and 30th days), whereas in the tenth year, this 
occurred fourteen times. 

Sensitivity analysis 

The dynamic nature of the Li-ion battery market, driven by ongoing 
innovations and developments, makes it challenging to plan for long- 
term energy system optimization. Therefore, to evaluate the effective
ness of our proposed optimal operation scheduling strategy in the face of 
changing Li-ion battery prices, we conducted a sensitivity analysis. 
Specifically, we evaluated the impact of battery size and price on the 
economic KIPs obtained under the best strategy, i.e., S.B’s optimal 
operation scheduling. This analysis provides valuable insights into the 
impact of these variables on profitability and sustainability. 

Fig. 9a-d display the profit, lifetime, payback period, and PPEI ob
tained from the system simulation under S.B with varying battery prices 
and sizes. 

The results show that for a given battery size, the lower battery prices 
correspond to increased profitability over project life as shown in 
Fig. 9a. Additionally, there is a slight decrease in battery life, as illus
trated in Fig. 9b. This reduction in battery prices also leads to a signif
icant decrease in the payback period as shown in Fig. 9c. This is because 
by decreasing the battery price, the cost of degradation is also reduced, 
enabling for a strategy that schedules battery operation to generate 
higher revenue but faster degradation. Although degradation occurs 
faster, the low cost of degradation resulting from the low battery price 
still leads to higher profits than slower degradation conditions. As 
shown in Fig. 9d, a decrease in battery price from 400 €/kWh (the 
current market price) to 50 €/kWh leads to a significant increase in the 
average yearly PPEI, from 16 to 18 €/kWh/yr to 48–52 €/kWh/yr, even 
though it slightly shortens battery life from 12 to 13 yr to 10–11 yr. 

The results show that larger battery sizes lead to higher profits as 
shown in Fig. 9a, as the battery can store more energy during off-peak 

Table A1 
Characteristics of the studied Li-ion battery cells.  

Parameter Value 

Battery chemistry LiFePO4/C 
Battery nominal voltage 3.2 V 
Nominal capacity 2.5 Ah 
Discharge cut-off voltage 2.5 V 
Charge cut-off voltage (V) 3.6 V 
Battery calendric lifetime until 80 % capacity (LF80%

Calendar) 15 years 
Battery cycle life until 80 % capacity (LF80%

Cycle) 10,000 FEC 
Battery maintenance cost (% of investment/year) 0.5 % 
Battery energy specific price (€/kWh) 400  

Table D1 
Electricity price components1.  

Symbol Parameter Value 

Ci ElSpot price Illustrated in Fig. 5 
C2 Energy Tax, incl. VAT 0.45 SEK/kWh 
C3 Electricity transfer fee, incl. VAT 0.2875 SEK/kWh 
C4 Grid benefit compensation 0.035 SEK/kWh 
C5 Tax reduction 0.6 SEK/kWh  

1 The cost information in this study is presented in Euro. 1EUR = 10.526 SEK; 
The exchange rate among Euro, and SEK (currency in Sweden) are based on the 
average monthly rate in 2023. The rate currency is retrieved from https://www. 
x-rates.com/average/. 

Fig. 9. Impact of different battery sizes and battery price variations on economic assessment, including (a) present value of total profit, (b) estimated lifetime, (c) 
payback period, and (d) PPEI, obtained under scenario S. B for a house with DH. 
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hours and sell more during peak price periods. However, as indicated in 
Fig. 9d the average yearly PPEI remains relatively stable. This stability is 
due to the higher investment cost associated with larger batteries, which 
counterbalances the increased profits. Moreover, the larger battery size 
does not significantly impact battery life. 

Conclusion 

• This study introduced innovative optimization-based battery opera
tion scheduling strategies, aiming to achieve both maximized prof
itability and longevity. Through the evaluation of battery 
performance and economic outcomes under proposed scenarios in 
this study, the research endeavors to offer insights into the design of 
an efficient day-ahead battery operation scheduling strategy for 
optimal battery utilization in price arbitrage under real-time pricing 
electricity schemes, ensuring sustained profitability. The novelty of 
this work is manifested in its simultaneous exploration of a wide 
range of key influencing factors affecting key aspects of profitability, 
including revenue gains, capacity degradation, operation-dependent 
lifetime, and their interconnected effects. This approach stands in 
contrast to existing price arbitrage strategies that often simplified or 
overlooked critical objectives and factors during the design phase, 
relying on assumptions and objective functions that neglect the 
comprehensive consideration of these influencing factors.  

• The battery operation scheduling under A-series scenarios led to 
outcomes that were perceived positively from certain economic 
perspectives, but they were considered unfavorable when evaluated 
using other economic metrics. For instance, results showed that 
scenario S.A3 demonstrated the most efficient operation scheduling 
in terms of extending the battery’s lifespan estimated at 14.8 years, 
while it was the worst scenario in terms of profitability resulting in 
negative profit with average yearly PPEI of − 3€/kWh/yr. On other 
hand, both S.A1 and S.A2 of the A-series scenarios resulted in posi
tive profit with average yearly PPEI of 8.3 €/kWh/yr and 9.2 €/kWh/ 
yr, despite having shorter battery lifetimes, estimated at 10.1 yr and 
13.6 yr, respectively. The higher profitability and lifetime obtained 
under operation scheduling of S.A2 are due to maintaining a 
‘’moderate’’ charge/discharge rate which provides a more balance 
between revenue generation and battery life longevity. Furthermore, 
despite having a higher lifetime and PPEI, the payback period of S.A2 
is about 1.5 years longer than S.A1, which may make S.A2 less 
attractive to investors who prioritize quicker returns on their in
vestment. This limitation stems from the fixed charge/discharge rate 
set by the A-series scenarios. The A-series scenarios solely focused on 
revenue generation without optimizing its long-term impact on 
longevity and profitability. Consequently, this restricts the algo
rithm’s ability to fully explore favorable arbitrage opportunities 
presented by dynamic RTP electricity profiles. 

• In contrast, battery operation scheduling under scenario S.B out
performs the A-series scenario in terms of long-term profitability and 
sustainability, providing valuable insights into efficient and viable 
battery operation scheduling in the RTP market. It offers several 
advantages, including the highest potential for revenue generation, 
as well as profit, and the average yearly PPEI value of 18 €/kWh/yr 
twice as high as the highest PPEI value in A-series scenario. 
Furthermore, it has the shortest payback period (7.5 years), making 
it a financially viable and feasible option. Despite this, it maintains a 
reasonable lifespan (12.5 years), promoting sustainability over a 
longer period. These findings highlight the critical importance of 
striking an optimal balance between battery degradation cost and 
revenue generation through careful optimization of all key factors 
such as number of daily cycles, rates, durations, and schedules for 
charging and discharging. These factors play a crucial role in influ
encing both revenue generation and battery degradation. 

• Evaluation of the impact of battery size, and price on optimal oper
ation scheduling and financial outcomes under scenario B showed 

that a decrease in battery price from 400 €/kWh (the current market 
price) to 50 €/kWh leads to a significant increase in the average 
yearly PPEI, from 16 to 18 €/kWh/yr to 48–52 €/kWh/yr, and sig
nificant rapid return on investment, from 7.5 years to 1 years, even 
though it slightly shortens battery life from 12 to 13 yr to 10–11 yr.  

• The results showed that larger battery sizes lead to higher profits as 
the battery can store more energy during off-peak hours and sell 
more during peak price periods. However, as in the average yearly 
PPEI remains relatively stable. This stability is due to the higher 
investment cost associated with larger batteries, which counterbal
ances the increased profits.  

• Results highlights that considering multiple economic metrics in 
battery operation scheduling evaluation plays a crucial role in 
enabling decision-makers and investors to comprehensively assess 
the economic feasibility of a project and gaining a broader 
perspective on its viability.  

• The insights derived from our study empower researchers, decision- 
makers, and battery owners to grasp the optimal utilization of bat
teries under dynamic RTP electricity schemes. This understanding 
allows for the maximization of revenue while extending battery 
lifetime, ensuring long-term profitability and sustainability. These 
findings hold substantial importance for individuals involved in 
strategic decision-making and the implementation of practical solu
tions within the energy sector. Notably, the results of this study, 
which were evaluated for LFP/C batteries, and the methodology 
implemented, are applicable to other types of batteries and across 
various Real-Time Pricing markets 

While some prior research may have addressed some aspects of price 
arbitrage, the novelty of our research is underscored by the development 
and evaluation of scenario A and Scenario Bcenarios, each shedding 
light on distinct aspects of optimal battery operation scheduling. A-se
ries scenarios, though revealing positive economic outcomes from spe
cific perspectives, highlight the limitations stemming from a singular 
focus on revenue generation, and the analysis of the impact of different 
charge/discharge rates (low, moderate, high) showed that charging or 
discharging at higher rates (faster charge) can potentially increase rev
enue but also hasten degradation. And Conversely charging or dis
charging at lower rates (slower charge) can result in reduced revenue 
generation but also less degradation, highlighting the importance of the 
strategy that enables the battery to dynamically adjust its power rating 
to meet defined objectives effectively. 

In contrast, B-series scenarios outperform A-series in terms of long- 
term profitability and sustainability, emphasizing the pivotal impor
tance capable of making intelligent decisions for charge and discharge 
actions play significant role in maximizing profitability and battery 
longevity. 
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Appendix A 

. 

Appendix B 

Eq. (B1) illustrates battery permissible operating constraints in Scenario A, ensuring proper battery operations. 
Eqs. (B2)-(B4) illustrates how the objective function for scenario A is derived. Eq. (B3) summarizes how the system’s daily revenue is obtained, 

which can be categorized into two parts. The first part is the electricity reduction revenue, which comes from the difference between the peak 
electricity prices (in which the load met by the battery (Pbatt-load,t × Elr,t)), and the off-peak electricity prices (in which the electricity is bought from the 
grid for charging the battery (Pgrid-batt,t × Elr,t)). The second part is the electricity export revenue, which means that the surplus electricity will be 
exported to the grid (Pbatt-grid, t × Elw,t). The exported electricity is sold at wholesale price. The battery daily degradation cost, as outlined in Eq. (B4), 
takes into account the daily capacity loss due to calendric and cyclic degradation under realistic operational conditions, as well as the battery’s initial 
cost.   

Scenario A  

Battery operating constraints  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SOHm⩽αReplace→EOLbatt → αReplace = 75%

d = dch,m = ddch,m =

⎧
⎪⎨

⎪⎩

1 − hr S. A1
4 − hr S. A2
8 − hr S. A3

SOCmin⩽SOCt⩽SOCmax

NOCm⩽1
Pch

min,t ⋅Sch⩽Pbatt,t⩽Pdch
max,t⋅Sdch → 

(B1) 

Derivation of objective function:  
Profitopt,m = Revenueopt,m − Costdeg,batterym (B2) 

Revenuem =
∑24

t=1
( (

Pbatt-load,t × Elr,t
)
−
(
Pgrid-batt,t × Elr,t

)
+
(
Pbatt-grid,t × Elw,t

) )

m 
(B3) 

Costdeg,battm =
Cfade, totm

1 − αReplace
× ICCbatt  

(B4)  

Eqs. (B6)-(B8) demonstrate the derivation of the objective function for scenario B. Eq. (B7) and (B8) summarizes how the system’s daily revenue and 
degradation costs are calculated In the case of semi-daily periodicity, both the daily revenue and degradation cost (as shown in Eq. (B7) and (B8)) are 
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calculated by summing up the generated revenue and degradation cost over the first and second cycles per day.  
Scenario B 

Battery operating constraints 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SOHm⩽αReplace→EOLbatt → αReplace = 75%

SOCmin⩽SOCi⩽SOCmax

NOCm⩽2

Pch
min,t ⋅Sch⩽Pbatt,t⩽Pdch

max,t⋅Sdch →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pch
min,t =

− Cbattt

d(z)
ch,m

× (SOCmax − SOCmin)

Pdch
max,t =

Cbattt

d(z)
dch,m

× (SOCmax − SOCmin)

Sch + Sdch⩽1 

(B5) 

Derivation of objective function 
Profitopt,m = MAX

(
Revenue m

(
X1,m ,X2,m ,X3,m ,X4,m ,X5,m

)
− Costdeg,battm

(
X1,m ,X2,m ,X3,m ,X4,m ,X5,m

) )
(B6) 

Revenuem
(
X1,m , X2,m,X3,m,X4,m,X5,m

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
∑24

t=1

( (
Pbatt− load,t × Elr,t

)
−
(
Pgrid− batt,t × Elr,t

)
+
(
Pbatt− grid,t × Elw,t

) )
)

m, X1,m , X2,m ,X3,m ,X4,m ,X5,m

, X1,m = 1

∑2

z=1

(
∑

tz

( (
Pbatt− load,t × Elr,t

)
−
(
Pgrid− batt,t × Elr,t

)
+
(
Pbatt− grid,t × Elw,t

) )
)z

m,X1,m , X2,m ,X3,m ,X4,m ,X5,m

, X1,m = 2

(B7) 

Costdeg,batt m
(
X1,m , X2,m,X3,m,X4,m,X5,m

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cfade, totm
(
X1,m , X2,m,X3,m,X4,m,X5,m

)

1 − αreplace
× ICCbattery , X1,m = 1

∑2

z=1

Cz
fade, totm

(
X1,m , X2,m,X3,m,X4,m,X5,m

)

1 − αreplace
× ICCbattery ,X1,m = 2

(B8)  

Appendix C 

In Scenario A, the moving average (MA) of RTP in time t, corresponding to the charge/ discharge duration d in the day m is calculated through to 
Eq. (C1). The minimum and maximum MA RPT corresponding to the charge/discharge durations (d) within day (m) is calculated via Eq. (C2)), to 
identify the charge and discharge start times of day m as shown in Eq. (C3).   

Scenario A  

MARTPm (t) =
∑t+d− 1

k=t RTP(k)/d; t = 1,⋯,24 − d + 1 (C1) 
MARTPm,Min = Min(MARTPm (t) );MARTPm, Max = Max(MARTPm (t) ) (C2) 
tch, start, opt,m = tm@MARTPm,Min ; tdch, start,opt,m = tm@MARTPm,Max (C3)  

In scenario B, the MA RTP of time t at day m is calculated via Eq. (C4), given each set of charge and discharge durations (d(z)
ch,m,andd(z)

dch,m). The minimum 
and maximum MA RTP, corresponding to the charge and discharge durations, as illustrated through Eq. (C5), to identify the charge and discharge 
schedule as shown via Eq. (C6), corresponding to the charge and discharge durations, under which the maximum daily price differential is attained.   

Scenario B 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

MA(z)
RTP,m,d(z)

ch,m
(tm) =

∑tz+d(z)
ch,m − 1

k=tz

RTPm(k)
d(z)

ch,m

;

MA(z)
RTP,m,d(z)

dch,m
(tm) =

∑tz+d(z)
dch,m − 1

k=tz

RTPm(k)
d(z)

dch,m

;

tz =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 2,…, 24 − d(z)
ch,m + 1

1,2,…,24 − d(z)
dch,m + 1

1, …, 12 − d(z)
ch,m + 1

1, …, 12 − d(z)
dch,m + 1

13,… ,24 − d(z)
ch,m + 1

13,… ,24 − d(z)
dch,m + 1 

(C4) 

MA(z)
RTP,m,d(z)

ch,m ,MIN
= Min

(
MA(z)

RTP,m,d(z)
ch,m

(tz)
)
;MA(z)

RTP,m,d(z)
ch,m ,MAX

= Max
(

MA(z)
RTP,m,d(z)

ch,m
(tz)

)
; (C5) 

t(z)
ch, start,d(z)

ch,m ,m
= tm@MA(z)

RTP,m,d(z)
ch,m ,MIN

; t(z)
dch, start,d(z)

dch,m ,m
= tm@MA(z)

RTP,m,d(z)
dch,m ,MAX 

(C6)  

Appendix D 

The purchase of imported electricity is based on the retail electricity price (ELr,i), as described in Eq. (D1). This price incorporates factors such as 
the Elspot price (ci), electricity transfer fees, energy tax, and other relevant charges. On the other hand, the sale of exported electricity is determined by 
the wholesale electricity price (ELw,i) as shown in Eq. (D2). This price considers the ElSpot price, along with subsidies such as grid benefit 
compensation (c2) and tax reduction (c3) into account. The specific values for c2, c3, c4, and c5, are mentioned in Eqs. (D1) and (D2), can be found in 
Table D1. 
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ELr,i(
€

kWh
) = ci + c2 + c3 (D1)  

ELw,i(
€

kWh
) = ci + c4 + c5 (D2)  
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[27] Díaz G, Gómez-Aleixandre J, Coto J, Conejero O. Maximum income resulting from 
energy arbitrage by battery systems subject to cycle aging and price uncertainty 
from a dynamic programming perspective. Energy 2018 Aug;1(156):647–60. 

[28] Fridgen G, Kahlen M, Ketter W, Rieger A, Thimmel M. One rate does not fit all: An 
empirical analysis of electricity tariffs for residential microgrids. Appl Energy 2018 
Jan;15(210):800–14. 

[29] Paterakis NG, Erdinç O, Catalão JP. An overview of demand response: Key- 
elements and international experience. Renew Sustain Energy Rev 2017 Mar;1(69): 
871–91. 

[30] Hu Z, Kim JH, Wang J, Byrne J. Review of dynamic pricing programs in the US and 
Europe: Status quo and policy recommendations. Renew Sustain Energy Rev 2015 
Feb;1(42):743–51. 

[31] Shcherbakova A, Kleit A, Cho J. The value of energy storage in South Korea’s 
electricity market: A Hotelling approach. Appl Energy 2014 Jul;15(125):93–102. 

[32] Telaretti E, Ippolito M, Dusonchet L. A simple operating strategy of small-scale 
battery energy storages for energy arbitrage under dynamic pricing tariffs. Energies 
2015 Dec 25;9(1):12. 

[33] Mohsenian-Rad H. Optimal bidding, scheduling, and deployment of battery 
systems in California day-ahead energy market. IEEE Trans Power Syst 2016;31(1): 
442–53. 

[34] Han X, Lu L, Zheng Y, Feng X, Li Z, Li J, et al. A review on the key issues of the 
lithium ion battery degradation among the whole life cycle. Etransportation 2019 
Aug;1(1):100005. 

[35] Hu X, Xu L, Lin X, Pecht M. Battery lifetime prognostics. Joule 2020 Feb 19;4(2): 
310–46. 

[36] Stroe DI. Lifetime models for Lithium-ion batteries used in virtual power plant 
applications. Ph.D. dissertation. Aalborg, Denmark: Dept. of Energy Tech., Aalborg 
University; 2014. 

[37] Terlouw T, AlSkaif T, Bauer C, van Sark W. Multi-objective optimization of energy 
arbitrage in community energy storage systems using different battery 
technologies. Appl Energy Apr. 2019;239:356–72. 
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