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ABSTRACT

This article proposes a multi-head attention flood forecasting model (MHAFFM) that combines a multi-head attention mechanism (MHAM)
with multiple linear regression for flood forecasting. Compared to models based on Long Short-Term Memory (LSTM) neural networks,
MHAFFM enables precise and stable multi-hour flood forecasting. First, the model utilizes characteristics of full-batch stable input data in
multiple linear regression to solve the problem of oscillation in the prediction results of existing models. Second, full-batch information is
connected to MHAM to improve the model’s ability to process and interpret high-dimensional information. Finally, the model accurately
and stably predicts future flood processes through linear layers. The model is applied to Dawen River Basin, and experimental results
show that the MHAFFM, compared to three benchmarking models, namely, LSTM, BOA-LSTM (LSTM with Bayesian Optimization Algorithm
for Hyperparameter Tuning), and MHAM-LSTM (LSTM model with MHAM in hidden layer), significantly improves the prediction performance
under different lead time scenarios while maintaining good stability and interpretability. Taking Nash-Sutcliffe efficiency index as an example,
under a lead time of 3 h, the MHAFFM model exhibits improvements of 8.85, 3.71, and 10.29% compared to the three benchmarking models,
respectively. This research provides a new approach for flood forecasting.
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HIGHLIGHTS

® Proposes a novel multi-head attention flood forecasting model (MHAFFM).

® Multi-head attention mechanism strengthens the model’s ability to handle high-dimensional data.
® Linear layers effectively harness the performance of the multi-head attention mechanism.

® MHAFFM significantly enhances the stability of forecasted results.

® Even in longer lead time scenarios, the model maintains high accuracy and stability.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and
redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT
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1. INTRODUCTION

Existing flood forecasting models can be roughly divided into two types according to the driving process. One is a process-
driven hydrological model based on the specific physical process of flow generation and confluence (Wang ef al. 2021), and
the other is a data-driven model based on measured hydrological-related data (Zhang et al. 2020; Cao et al. 2022; Gao et al.
2022). The former is limited by insufficient knowledge of some flood processes, and it is difficult to describe the mechanism of
specific hydrological processes in detail (Chomba et al. 2022). The latter is widely used in flood forecasting because it only
needs to capture the relationship between input and output and does not need to describe complex physical processes (Liang
et al. 2018; Liu et al. 2019; Krisnayanti ef al. 2022; Yuan ef al. 2022). However, classical data-driven models have a premise
that the residual sequence is independent and obeys the normal distribution. It is difficult for a general hydrological sequence
to meet this condition, which poses certain limitations to this type of method (Wang ef al. 2012).

With the improvement of computing power, data-driven machine learning models, especially deep learning models, have
shown powerful learning capabilities (Ekwueme 2022). They are not constrained by hypothetical principles and are widely
used in flood forecasting (Ditthakit et al. 2023; Min ef al. 2023; Xie et al. 2023). Among various deep learning models, the
recurrent neural network model (RNN) can express spatiotemporal anisotropy and has structural advantages in time
series data prediction (Elman 1990; Frame ef al. 2022). However, due to the forward and backward transmission of weights
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of the RNN model, longer sequences are prone to gradient explosion or disappearance, which limits the application of the
model (Noh 2021). In response to this problem, Hochreiter & Schmidhuber (1997) constructed an LSTM model based on
the RNN model and used gating units to filter data, which effectively reduced the occurrence of these problems. Hu et al.
(2018) used this model for rainfall-runoff modeling for the first time and achieved good results. Afterward, the LSTM
model has been widely used in runoff prediction and achieved good prediction results (Abbas et al. 2020; Gao et al. 2020,
Cao et al. 2022).

However, due to the LSTM model being a black box model, the randomness of the gating unit for data screening leads to
poor interpretability of the model, making it difficult for practitioners to fully trust this type of model (Herath ef al. 2021; Li
et al. 2022a; Paudel et al. 2023). In 2019, the International Association of Hydrological Sciences emphasized in the 23 unre-
solved issues that it was of great significance to solve the confusion and reduce the uncertainty of model structure,
parameters, and inputs in hydrological prediction (Bloschl et al. 2019). Jiang et al. (2022) also demonstrated the significance
of interpreting deep learning models in understanding the mechanisms of flood formation through their research. It can be
seen that the interpretability of the model cannot be ignored in hydrological forecasting.

In addressing the issue of model interpretability, Cai ef al. (2022) improved model performance by adding physical mech-
anism constraints to the model, ensuring that the recursive process of the model aligns with physical mechanisms.
Chadalawada et al. (2020) are dedicated to flexibly combining machine learning algorithms to construct rainfall-runoff
model components with physical significance. In the field of deep learning, Bahdanau et al. (2014) proposed an attention
mechanism that was embedded into the hidden layer of RNN models to improve model performance and observe the
degree of model attention to data, thus enhancing model interpretability. RNN combined with the attention mechanism
has achieved good performance in many fields (Xu ef al. 2019; Zhao et al. 2020; Hwang et al. 2021).

In the direction of hydrological forecasting, Chen ef al. (2020) combined the LSTM model with a self-attention mechanism for
daily runoff forecasting, and the results were more accurate than those of the LSTM model alone. Gao et al. (2022) combined the
attention mechanism with the gated recurrent unit (GRU) model, introduced a linear layer for input information processing, and
used a seq2seq architecture for multistep flood forecasting, which improved the accuracy of flood forecasting. However, in the
current stage of hydrological forecasting, research on deep learning models incorporating attention mechanisms is primarily
focused on improving prediction accuracy, with a limited investigation into model prediction result stability. This lack of
exploration hinders the practical application and promotion of interpretable deep learning models in real-world scenarios.

Therefore, besides model prediction accuracy, this study also pays particular attention to the distribution of model perform-
ance indicators. Through comparing the changes in the model's predicted outcome metrics, we find that the existing coupling
methods that combine the LSTM model with the attention mechanism although can balance interpretability and the average
performance of flood forecasting results, the stability of the performance metrics is poor. In extreme cases, it can even be
worse than the basic model, which reduces the reliability of the model and makes it unsuitable for practical flood forecasting
applications. To address this issue, this article analyzes factors that affect the stability of the model and replaces the traditional
use of LSTM as the hidden layer by using multiple linear regression to stabilize the input data in a full batch. By doing so, it
overcomes the problem of model prediction result oscillations and constructs a stable deep learning model.

In addition, in current flood forecasting research, the attention mechanism or self-attention mechanism combined with the
LSTM model is generally adopted. However, due to their structural characteristics, these two mechanisms have limited ability
to extract features from a high-dimensional array, and it is difficult to establish accurate affine transformation for a nonlinear
flood routing process that is influenced by multiple factors, which also affects the model accuracy and result stability
(Vaswani et al. 2017). In response to this problem, existing research directions in hydrological forecasting typically address
it through data processing, with commonly used methods including principal component analysis and data decomposition
(Sarraf 2015; Adnan et al. 2021; Carreau & Guinot 2021). Although these processing methods can improve the model
performance, they require preprocessing of all runoff data, and future information is introduced into the data processing
process, which the model lacks realistic conditions in actual flood forecasting (Zhang et al. 2015; Tan et al. 2018,
Zuo et al. 2020).

To enhance the model’s practicality, this article introduces a multi-head attention architecture from the perspective of
model design. The multi-head attention mechanism was introduced in an article by the Google team on building the trans-
former model, aimed at handling high-dimensional data information (Vaswani et al. 2017). Currently, the ChatGPT model
based on this architecture has achieved tremendous success in various applications. However, in the field of hydrology,
there is limited research that utilizes this architecture for prediction tasks. Therefore, this article adopts the multi-head
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attention mechanism to solve the problem of high-dimensional array processing for runoff data by utilizing its characteristic
of partitioning information subspaces for high-dimensional data and improving the model’s applicability.

Overall, this article draws on ideas of multiple linear regression and multi-head attention architecture to propose the multi-
head attention flood forecasting model (MHAFFM) model, breaking away from the LSTM model framework and using a new
architectural form to improve the accuracy and stability of deep learning model predictions for flood forecasting. In addition,
it also analyzes the interpretability of the MHAFFM model to help understand the behavioral logic of flood forecasting
models and improve the model’s trustworthiness. The main contributions of this article are as follows:

(1) The introduction of the multi-head attention mechanism, utilizing its ability to jointly focus on different subspaces of data,
enhances the model’s feature extraction capability for flood processes. It provides a novel way for model predictions in
high-dimensional data scenarios.

(2) By modifying the hidden layer of the model based on the concept of multiple linear regression, we enable the full-batch
input information to enter the attention architecture, establishing the MHAFFM model, addressing the stability issue in
flood forecasting model predictions caused by the LSTM model framework.

(3) By analyzing the behavioral logic of the MHAFFM model, a highly interpretable flood forecasting model with high accu-
racy is provided.

The rest of this article is arranged as follows: Section 2 introduces three models for comparison: LSTM, BOA-LSTM, and
MHAM-LSTM. The MHAFFM model is used as the benchmark model. Model evaluation metrics are also provided. Sections
3-5 present the results of the study conducted at Dawen River Basin in Shandong Province, China. Finally, Section 6 provides
a summary of the article.

2. METHODOLOGY
2.1. LSTM

The LSTM model belongs to the RNN type. Its structure is based on the continuity of time series information, which is input
into the hidden layer according to the time step for weight verification. When compared with other types of neural network
models, the LSTM model has the following advantages: (1) Due to the structure of its processing information, this type of
model can learn spatiotemporal correlation of data without encoding the time position of the data when processing time
series information. (2) The LSTM model, as an improved version of the RNN model, introduces a gated recurrent unit to alle-
viate the problem of gradient dispersion and explosion, which improves its applicability.

The information flow process of LSTM is shown in Figure 1.

For the input information X,,_; at time # — 1 and the inheritance information H,_, and C,_, at time n — 2, the information
flow process is as follows:
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Figure 1 | Schematic diagram of LSTM cell structure.
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In the forget gate, the previous memory state is discarded through F;”’D. W is the weight that controls the behavior of the
forget gate. [H,,_2, X;;,_1] are concatenated, multiplied by W}, and added to the bias b;. The result is then activated by the sig-
moid function to obtain a value between 0 and 1. F;”’” is multiplied by the previous memory state C,_, to represent the
selective inheritance of information:

TV = o(WilHyy 2, Xn 1] + by) @)

1
C"Y = tanh(WelHy-2, X 1] + be) (3)

C(ﬂ*l) = F;n71>*Cn72 + F§n71>*é<n71>

(4)

In the input gate, a new vector C "1 is created through Equation (3) to update the cell state. F§”_1> is multiplied with C o)
to reflect the current state, representing the selective input of information. Equation (4) sums up the selectively input infor-
mation to output the new cell state C"~1:

ryh = o(WolHy—2, Xn-1] + bo) )

o

Hy 1 =T{" Vstanh(C"1) (6)
In the output gate, the new cell state C~1 is activated by the tank function and a new hidden state H,_; is selected for
output by Ty~ Y,
The LSTM model is based on the unit shown in Figure 1. The overall information flow architecture is shown in Figure 2.
Information of early-stage precipitation {x;,x>...x,} is passed through the LSTM unit, and at time #, all temporal infor-
mation that has passed through gating units is accumulated in #,. A, is then fed into a linear layer to establish a linear
relationship between it and the predicted runoff {y,,1,Vn+2,Vn1m}-

2.2. BOA-LSTM

To better demonstrate the performance advantages of the MHAFFM model over the LSTM model and avoid subjective biases
caused by manually selecting hyperparameters, this article employs the Bayesian optimization algorithm to determine the
globally optimal hyperparameters for the LSTM model and construct the BOA-LSTM model for comparative experiments
(Pelikan 2005). The specific process of the Bayesian optimization algorithm is detailed in the original article and is not
repeated here. The Bayesian optimization algorithm is known for its high efficiency and global optimization capability,
and it is widely used in model parameter optimization tasks (Japel & Buyel 2022; Mao et al. 2022). The architecture of
BOA-LSTM model is shown in Figure 3. The optimized learning rate, number of neurons, and regularization parameter
for LSTM model are listed in Table 1.

2.3. MHAM-LSTM

To address the issue of gradient propagation in RNN-based models, researchers generally place attention layers after the
hidden layer and directly establish a mapping between the input and output time step information (Bahdanau ef al. 2014,
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Figure 2 | LSTM model architecture.
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Figure 3 | BOA-LSTM model architecture.

Table 1 | Optimal hyperparameters combination of LouDe section

Learning rate Hidden units L2 regularization

6.291784 x 102 180 149 x 107

Moreno-Pino et al. 2023; Zhao et al. 2023). Currently, attention layers generally use attention mechanisms or self-attention
mechanisms to establish mappings, but this approach has limited processing capacity for high-dimensional information. To
address this problem, this article introduces a multi-head attention mechanism and makes adaptive modifications to establish
the attention layer to enhance information acquisition capabilities. The model architecture is shown in Figure 4.

For the hidden state sequence {H1,H>...H,} output by the LSTM unit, the multi-head attention mechanism processes are as
follows:
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Figure 4 | MHAM-LSTM model architecture.
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(1) The hidden state sequence {H1,H,...H,} output by the LSTM unit is fed into a linear layer, which produces the query
sequence {Q1, Q2 ... Qy}, the key sequence {Kj, K> . ..K,}, and the value sequence {Vi, V... V,}, respectively.

(2) The three sequences are divided into # equal parts (number of heads for the multi-head attention mechanism) to obtain
the subsequences {Q}, Q}...QJ}, Q4 Q3. Q4 (QL Q... Q1) (KL KE...KJ), (K}, K3...KE), {K}, K2...Kl}); and
(VL VE VI V3, V3. VI (VL V2. v

(3) Using the Q sequence at time step 7 as the final query and performing vector scaling dot product with the K sequence,
compute the attention scores for each time step. Taking the computation process of the A#th head at time step n as an

example:
h h h mT
had, b oty = KK Kn)(Qy) ]

Vdk

where d* represents the dimension of sequence K and «/, denotes the attention weight that Q, imposes to K; at time step n
(i=1...n).
(4) The attention scores #(al, o}

Al a2 AT
the sequence h(g,, a7 ... a0):

... for h heads are then normalized and activated by the softmax function, resulting in

_ exp(al) ®)

a, - :
21 exp(c,)

(5) The activated attention sequence (&}, &2 ... &) is then multiplied element-wise with the value sequence (V, VF ... VF)

and summed up to obtain the computation content for the Ath head:
content(h) = h(al, &%... &)=V, V.. Vh) 9)

(6) After concatenating the computed contents from all heads, the sequence is fed into a linear layer to obtain the output

sequence Vi1, Yui2 - - Ynim):
ni1, Yus2 - - - Vuim} = linear(content) (10)

The linear layer ‘linear’ is a linear function of the form y = kx + b.

When compared to the traditional multi-head attention mechanism, the adaptive modification is to compute attention for
the final question Q,, instead of the question sequence {Q1, Q2 ... Q,}. The reason is as follows:

The traditional multi-head attention mechanism was originally proposed to solve natural language processing (NLP) pro-
blems with a seq2seq architecture, where there is temporal parallelism between the input and output sequences and a close
context relationship within the sequences. Specifically, there is a possibility of correlation between Q; and {Kj, K> . . . K,;}, and
{Q1, Q2 ... Qy} contains similar levels of information. However, for flood forecasting problems, the output sequence usually
lags behind the input sequence and there is temporal unidirectionality. There is no physical correlation between Q; and
{K>...Ky}, and {Q1, Q> ...Q,_1} contains lower amounts of information compared to Q,. Therefore, Q, is used to replace
{Q1, Q3 ... Qy} for attention computation.

2.4. MHAFFM

Through experiments, it has been found that although MHAM-LSTM model can improve the accuracy of flood forecasting
results, its stability is poor. The reasons for this phenomenon are as follows:

(1) The limited amount of observed data for flood forecasting makes it difficult to support the stable identification of the
global optimal solution by the model.

Due to the limited development time of observation techniques, the dataset used in flood forecasting tasks is relatively
small. Compared to GB-level datasets in NLP tasks, it is difficult to support the model in stably finding the global optimum.
This can cause the model to fall into other local optimal solutions, thereby reducing the stability of the model.
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(2) Due to the gating mechanism of LSTM hidden layer, it is difficult to feed the entire batch of flood data into the attention
layer.

As shown in Equations (1)-(4), the hidden layer selectively inherits previous information and selectively inputs current
information. While this information processing method alleviates the gradient problem, it undoubtedly damages the input
information required by the model, also leading to reduced model stability.

The first point is limited by actual conditions and has little room for improvement. However, regarding the method of infor-
mation transmission, this article attempts to use full-batch input to reconstruct the hidden layer to improve the information
acquisition of the attention layer. To achieve full-batch data passing through the hidden layer, this article introduces the idea
of multivariate linear regression:

The idea of multiple linear regression is to establish a linear relationship between the independent variables and the depen-
dent variable, as shown in Equation (11):

Y =Bo+ Bix1+ Boxo 4 ... + Byxn+e (11)

where y is the dependent variable, x1, x2, ..., x, are independent variables, B, 81, B, -- ., B, are model parameters, and ¢ is
the error term.

This article uses a linear layer to imitate the linear relationship between input factors and the target value in multiple linear
regression, and constructs a hidden layer to pass the data information in full batch. The model structure is shown in Figure 5.

This article uses a linear layer as the input encoding layer to replace the LSTM layer to process input information, in order
to ensure that all input information is passed to the multi-head attention structure. When compared with MHAM-LSTM, the
advantages of this model are as follows: (1) replacing the LSTM layer with a simple linear layer for input data encoding,
which improves the speed of the model; and (2) breaking away from the influence of LSTM model and improving the util-
ization of input data.

2.5. Model evaluation indices

Based on previous literature research, appropriate indicators were selected to evaluate the model performance (Chadalawada
& Babovic 2017). Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), mean absolute error (MAE), Kling-Gupta
efficiency coefficient (KGE), peak error (TPE), and absolute percentage bias (APB) are used as performance evaluation
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Figure 5 | MHAFFM model architecture.
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metrics for the model. Their formulas are as follows:

N
Qi — Py’
1 (12)

;]:
Z (Ql Qavg

i=1

RMSE = (13)
1 N
MAE=N;|Q1' - P (14)
KGE =1 \/(a— 1)’ + (8- 1%+ (R - 1)° (15)
Z 1Q; — Pl
TPE = ’*hi (16)
2. Q
j=1
N
> (Qi—P)
APB = = ——— (17)
2 Qi

where N represents the number of data points, Q; is the observed runoff at time i, P; is the predicted runoff at time 7, Qay, is the
mean value of observed runoff, « = g, /0, is the coefficient of variability bias, 8 = w,/u, is the coefficient of mean bias (o and
w represent standard deviation and mean, respectively), R is the linear correlation coefficient, / represents the peak flow of
the top 2% of the flood events, Q; is the observed peak flow, and P; is the predicted peak flow.

NSE is sensitive to the fluctuations of the data series and can characterize the tracking ability of the predicted values to the
actual values, which is used to evaluate the prediction stability of the model (Kumar ef al. 2016). RMSE and MAE are used to
compute errors of predicted values, indicating the overall prediction accuracy of the model (Calasan et al. 2020). KGE com-
bines model correlation, bias, and flow variability into a single metric to evaluate the model’s performance. TPE is used to
evaluate the prediction accuracy of the top 2% of the runoff process of the model (Gao ef al. 2022). APB is used to evaluate
the prediction error of the flood volume of the model (Miao et al. 2022).

NSE, RMSE, MAE, and KGE are used to analyze the performance of the model on the entire flood process, while TPE and
APB are used to analyze the prediction effect of the model on single flood events.

2.6. Methodological framework

To facilitate an understanding of the logical relationships between the models of different methods, the model difference dia-
gram and comparative analysis diagram are shown in Figures 6 and 7.

3. RESEARCH AREA AND MODEL PARAMETERS
3.1. Research area and data

The research object of this article is Dawen River Basin in Shandong Province, China, which belongs to Yellow River Basin in
the middle and lower reaches. Dawen River originates from north of Xuangu Mountain in Shandong, with a total length of
209 km and a basin area of 9,098 km?. It flows from east to west and joins the Dongping Lake before flowing into the Yellow
River, serving as the last tributary before the Yellow River flows into the sea (Li ef al. 2022b). Due to the influence of the
monsoon climate, more than 70% of the annual precipitation in this basin occurs during the flood season, making it
prone to seasonal flood disasters. After the floods converge into the Yellow River, they may even pose a threat to the
safety of the downstream main river channel. Therefore, it is necessary to establish an accurate and stable hydrological
model framework for this region.
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Based on the measured data from hydrological and rainfall stations within the Dawen River basin, hourly runoff processes
from the year 2000 to 2020 were compiled. The data source is the Shandong Hydrological and Water Resources Bureau of the
Yellow River Conservancy Commission. Considering changes in underlying surface conditions, this article uses hourly runoff
data from the Loude control section in the upstream basin and hourly flood event data from relevant rainfall stations from
2000 to 2020 for the model’s flood process prediction performance analysis.

Loude station is located on the southern branch of Dawen River, which is a control station for the southern branch of
Dawen River. There are two inflow sections, Guangming Reservoir, and Dongzhou Reservoir. Sixteen rainfall stations
such as Xiafeng, Mengyinzhai, and Baoanzhuang are installed between Dongzhou and Guangming sections and Loude sec-
tion, controlling the topography and river conditions above the control section as shown in Figure 8.

A total of 4,864 h of flood process data, including 22 flood events with instantaneous flow rates exceeding 200 m>/s, are
selected for Loude station. Four flood events are used for validation, and the last two flood events are used for testing.
The data partitioning is shown in Figure 9.

3.2. Input and output sequence selection

When using rainfall-runoff data to generate the model dataset, time step and forecast lead time for input and output
sequences of the dataset need to be selected. Increasing the time step can allow the model to acquire more relevant infor-
mation and improve the accuracy of flood process prediction, but it will also increase the model’s runtime. The time step
is generally selected based on the basin’s runoff time. Considering the size of the basin, the time step is set to 12 h, which
enables the model to obtain relevant information on flood processes and better demonstrate the model’s learning ability.
The maximum forecast lead time is set to 3 h, which can demonstrate the model’s ability to learn the rules of flood processes.
In short, this article uses the rainfall-runoff information from time ¢ — 11 to ¢ to predict the flood process from time ¢ + 1 to
t+3.
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Figure 9 | Rainfall and discharge data division of LouDe reservoir section.

In addition, to improve the model’s running speed, this article uses parallelization techniques to divide the dataset into sub-
sets, each containing 500 input and output data (Dean et al. 2012).

3.3. Hyperparameter settings
To better utilize the performance of the models, the hyperparameters are adjusted in this article. Due to using LSTM as the
baseline comparative model in the article, the performance of the LSTM model was taken as a reference to set the learning
rate, the number of neurons, and regularization parameters.

The learning rate is set to 1 x 107>, which allows the LSTM model to converge stably to the optimal value and avoid the
occurrence of divergent results. In addition, 128 neurons are used for all LSTM models with hidden layers, which are
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sufficient to fit the nonlinear characteristics of the watershed data and have reasonable computational costs. The LSTM
model’s regularization parameter is set to 1 x 10~°, which helps prevent the LSTM model from overfitting.

To enhance the comparability between different models, the number of nonlinear expression neurons in the encoding layer
of the MHAFFM model is also set to 128, giving the encoding layer the same nonlinear expression ability as the LSTM hidden
layer. For the MHAM-LSTM model and the MHAFFM model that uses a multi-head attention structure, the number of model
heads is set to 16, considering the data size to achieve multi-thread processing for the flood forecasting task. At the same time,
this article uses the Adam optimization algorithm for gradient descent and the mean squared error to compute the iteration
error loss. Each model is trained 1,500 times, from which the optimal solution is selected (Kingma & Ba 2014).

3.4. Data processing workflow

For ease of understanding, the data processing procedure in the article is summarized in a generalized form as shown in
Figure 10.

4. RESULTS
4.1. Model performance

To validate the overall performance advantage of the MHAFFM model and the superiority of the multi-head attention mech-
anism, in addition to the four models constructed in this study, we also introduced the SAM-LSTM model (self-attention
mechanism coupled with the LSTM model) proposed in related research in this section.

Average performances of MHAFFM, MHAM-LSTM, SAM-LSTM BOA-LSTM, and LSTM models in terms of NSE, RMSE,
and MAE indicators during the testing period are shown in Figure 11. The variations of model performance with lead time are
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Figure 10 | Dataset processing flow.
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Figure 11 | Average performances of MHAFFM, MHAM-LSTM, SAM-LSTM, BOA-LSTM, and LSTM models on NSE, KGE, RMSE, and MAE
indicators under different lead times.
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Figure 12 | Average performance of MHAFFM, MHAM-LSTM, SAM-LSTM, BOA-LSTM, and LSTM models in terms of MAE, RMSE, NSE, and KGE
indicators under different lead times.

depicted in Figure 12. The specific values are presented in Table 2. The performance improvements of the MHAFFM model
are listed in Table 3.

Based on the comprehensive analysis of Figures 11 and 12 and Tables 2 and 3, the MHAFFM model shows improved per-
formance in all scenarios except for 1-h lead time where the MAE indicator is slightly lower than that of the BOA-LSTM
model. Overall, the MHAFFM model outperforms other three benchmarking models in terms of performance indicators. Fur-
thermore, the MHAFFM model exhibits a relatively small performance degradation phenomenon with an increase in lead
time, and its performance advantage becomes more prominent compared to other models as the lead time increases.
From this, it can be seen that although both approaches of algorithmic hyperparameter optimization and coupling attention
mechanism can improve model performance, they are still inferior to the excellent performance of the MHAFFM model. In
addition, the SAM-LSTM model constructed with the self-attention mechanism performed the worst in all indicators, while
the MHAM-LSTM model constructed with the multi-head attention mechanism showed significant improvement compared
to it. This indicates that the self-attention mechanism has poor adaptability to high-dimensional input data.

The stability performances of the five models on MAE, RMSE, NSE, and KGE indicators are shown in Figure 13.

When compared to MHAM-LSTM, SAM-LSTM, BOA-LSTM, and LSTM models, the MHAFFM model with a linear layer
as the data input layer has significantly better stability than other models in all four metrics. On the other hand, the other four
models with LSTM hidden layers have poor stability performance, with significant oscillations in their prediction results and
lower reliability. As the lead time increases, the prediction results of the LSTM model, BOA-LSTM model, SAM-LSTM
model, and MHAM-LSTM model all show increased oscillations. However, the MHAFFM model can still maintain excellent
stability in its performance.
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Table 2 | Average performances of MHAFFM, MHAM-LSTM, SAM-LSTM, BOA-LSTM, and LSTM models in terms of MAE, RMSE, NSE, and KGE
indicators under different lead times

Model name

Lead time (h) Performance metrics LSTM BOA-LSTM SAM-LSTM MHAM-LSTM MHAFFM

1 MAE 27.298 16.235 40.732 28.134 18.371
RMSE 41.094 30.734 69.099 44.672 30.618
NSE 0.941 0.968 0.840 0.932 0.969
KGE 0.904 0.925 0.779 0.861 0.926

2 MAE 37.436 26.106 44.781 34.39 24.875
RMSE 56.238 47.849 73.462 55.688 42.423
NSE 0.894 0.923 0.819 0.895 0.94
KGE 0.85 0.879 0.746 0.828 0.902

3 MAE 46.537 31.75 47.955 40.461 28.356
RMSE 70.038 57.661 77.084 67.385 48.577
NSE 0.836 0.889 0.801 0.847 0.922
KGE 0.793 0.849 0.728 0.801 0.896

Note: The bold values represent the best performance for each model.

Table 3 | Average performance variations of MHAFFM model compared to MHAM-LSTM, SAM-LSTM, BOA-LSTM, and LSTM models in terms
of MAE, RMSE, NSE, and KGE indicators under different lead times

compared to (%)

Lead time (h) Performance metrics LSTM BOA-LSTM SAM-LSTM MHAM-LSTM
1 MAE 32.7 —13.16 54.9 34.7
RMSE 2549 0.38 55.69 31.46
NSE 2.98 0.1 15.41 3.97
KGE 241 0.13 18.84 7.48
2 MAE 33.55 4.72 44.45 27.67
RMSE 24.57 11.34 42.25 23.82
NSE 5.15 1.84 14.78 5.03
KGE 6.16 2.64 20.89 8.93
3 MAE 39.07 10.69 40.87 29.92
RMSE 30.64 15.75 36.98 27.91
NSE 10.29 3.71 15.14 8.85
KGE 13.01 5.46 23.09 11.84

As it can be observed, replacing the LSTM layer with a linear layer as the information processing layer in the multi-head
attention mechanism can provide the model with more stable information, significantly enhance the overall control of the
flooding process, and improve the performance in terms of MAE, RMSE, NSE, and KGE.

Furthermore, the SAM-LSTM model showed the poorest stability in its prediction results among the five models, indicating
that its architecture is not suitable for the current flood forecasting task.

4.2. Model performance on single flood event

In terms of single flood forecasting performance, average evaluation indicators of the four models (due to the poor perform-
ance of the SAM-LSTM model, plotting its indicator distribution would affect the observation of the other models; and
therefore, it is no longer evaluated) during the test period are shown in Figures 14-17, respectively, for TPE and APB indi-
cators. Specific results are listed in Tables 4-7.

By combining Figures 14 and 15 with Tables 4 and 5, it can be observed that compared to the other three models, the per-
formance advantage of the MHAFFM model in controlling flood peak and discharge for the first test event gradually becomes
more prominent as the lead time increases. However, the performance of the MHAFFM model does not reach its optimal
level at a 1-h lead time.
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Figure 13 | Stability performances of MHAFFM, MHAM-LSTM, SAM-LSTM, BOA-LSTM, and LSTM models in terms of MAE, RMSE, NSE, and
KGE indicators under different lead times.

By combining Figures 16 and 17 with Tables 6 and 7, it can be observed that compared to the other three models, the per-
formance advantage of the MHAFFM model in controlling the flooding process for the second test event becomes more
prominent as the lead time increases. However, there is a significant decline in performance on the 3-h TPE indicator.

Taking into account the overall performance of each model, in most cases, the MHAFFM model exhibits the best perform-
ance, but there are exceptions. Analyzing the exceptions, we believe that the following are the reasons: During the model
training process, the search for the optimal solution is based on the entire flood dataset. As a result, the learned data relation-
ships are guided by the overall optimization objective, making it challenging to achieve the best performance on specific
indicators for individual flood events. However, the fact that the MHAFFM model generally outperforms the other three
models also indirectly proves that it has learned data mapping relationships that are closer to reality compared to the
other models.
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Figure 15 | Variations of TPE or APB indicators with lead times of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models for test event 1.
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Figure 16 | Variations of TPE with APB indicators of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models under different lead times for test
event 2.
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Figure 17 | Variations of TPE or APB indicators with lead times of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models for test event 2.

Table 4 | Average performances of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models in terms of TPE and APB indicators under different
lead times for test event 1

Lead time (h) ! 2 3

Performance metrics APB TPE APB TPE APB TPE
LSTM 0.122 0.051 0.187 0.083 0.244 0.110
BOA-LSTM 0.038 0.081 0.090 0.132 0.129 0.177
MHAM-LSTM 0.185 0.055 0.217 0.093 0.246 0.140
MHAFFM 0.080 0.060 0.109 0.066 0.119 0.058

Note: The bold values represent the best performance for each model.

Table 5 | Average performance variations of the MHAFFM model compared to MHAM-LSTM, BOA-LSTM, and LSTM models in terms of APB
and TPE indicators under different lead times for test event 1

Lead time (h) ! 2 3

Compared to APB TPE APB TPE APB TPE
LSTM 34.43% —17.65% 41.71% 20.48% 51.23% 47.27%
BOA-LSTM —110.53% 25.93% —21.11% 50.00% 7.75% 67.23%
MHAM-LSTM 56.76% —9.09% 49.77% 29.03% 51.63% 58.57%

Note: The bold values represent the best performance for each model.

Table 6 | Average performances of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models in terms of TPE and APB indicators under different
lead times for test event 2

Lead time (h) ! 2 3

Performance metrics APB TPE APB TPE APB TPE
LSTM 0.054 0.054 0.082 0.064 0.144 0.073
BOA-LSTM 0.031 0.030 0.053 0.062 0.084 0.074
MHAM-LSTM 0.080 0.062 0.082 0.083 0.082 0.107
MHAFFM 0.019 0.026 0.031 0.036 0.033 0.089

Note: The bold values represent the best performance for each model.
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Table 7 | Average performance variations of the MHAFFM model compared to MHAM-LSTM, BOA-LSTM, and LSTM models in terms of APB
and TPE indicators under different lead times for test event 2

Lead time (h) ! 2 3

Compared to (%) APB TPE APB TPE APB TPE
LSTM 64.82% 51.85% 62.20% 43.75% 77.08% —21.90%
BOA-LSTM 38.71% 13.33% 41.51% 41.94% 60.71% —20.30%
MHAM-LSTM 76.25% 58.07% 62.20% 56.63% 59.76% 16.82%

Note: The bold values represent the best performance for each model.

The stability performance of the four models in terms of single flood evaluation indicators is shown in Figures 18 and 19.
The stability of the MHAFFM model is still significantly better than that of other models and does not change with the
increase in lead time. The stability of the indicators of the other three models is poor, and the degree of oscillation increases
significantly with the increase in lead time.

Taking into consideration both Figures 18 and 19, for individual flood events, the performance of the MHAFFM model in
predicting results remains stable. This indicates that the MHAFFM model consistently learns consistent flood process map-
ping relationships across multiple instances. Therefore, it demonstrates the model’s outstanding data abstraction capability,
which is both stable and reliable.

4.3. Fit of flood process

Flood process curves predicted by the four models during the testing period are shown in Figures 20 and 22. The scatter plots
of the model predictions compared to the observed values are shown in Figure 21 and 23.

From the visual perspective, it can be observed from Figures 20-23 that the MHAFFM model fits the observed flood process
more accurately than the other three models. The predicted flood process also exhibits higher correlation coefficients with the
observed data.
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Figure 18 | Stability performance of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models in terms of TPE and APB indicators under
different lead times for test event 1.

Downloaded from http://iwaponline.com/jh/article-pdf/25/6/2561/1335595/jh0252561.pdf
by HONG KONG POl YTECHNIC LINIVERSITY user



Journal of Hydroinformatics Vol 25 No 6, 2579

I LSTMI BOA_LSTMIEE MHAM _LSTM I MHAFFM

0.25

0.20 |-

S )

0.00
0.20

Lot b

APB
I ¢ =

TPE
(=
S

|

0.00 1

2
Lead time(h)

Figure 19 | Stability performance of MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM models in terms of TPE and APB indicators under
different lead times for test event 2.

4.4. Visualization of attention mechanism in the MHAFFM model

To demonstrate the interpretability of the model, we select the period from 19 to 30 of flood process 1 to visualize the atten-
tion effects of 16 heads of the MHAFFM model, as shown in Figure 24. In addition, to facilitate the understanding of
attention mechanisms of 16 heads, 16-dimensional data are reduced to one dimension, and the visualization effect is
shown in Figure 25.

From Figure 24, it can be seen that the attention effects of 16 heads of the MHAFFM model are all different, indicating that
the model generates differentiated attention effects for different subinformation spaces and can handle high-dimensional
input information well. However, the model’s division of data blocks into 16 parts for attention output makes it dif-
ficult to understand their mapping to the actual input. Therefore, this article reduces the 16-dimensional data to one
dimension.

Based on Figure 25 and the flood timing information, it can be observed that for flood event 1 during the period of 19-30,
which corresponds to the flood rising process, the MHAFEM model pays more attention to input information at time step 19,
which corresponds to the first rainfall process in the physical space. Moreover, as the time step increases, the main focus is
still on input information at that time step. By time step 30, the main focus of the flood peak is still on input information at
time step #-11 (i.e., at 19:00). Furthermore, the model’s main focus is in the vicinity of the attention space diagonal
(i.e., around 19:00). This indicates that the flood generation process mainly originates from the rainfall process
around time step 19, which is consistent with physical cognition, and the interpretability of the model is relatively
good.

An analysis of the reasons behind this attention pattern is as follows: First, the generation of a reasonable attention space is
based on the complete transmission of fundamental information. Since the linear layer does not filter information, it conveys
all available information to the attention layer (which also contributes to the stability of the model’s predictions), allowing the
multi-head attention mechanism to process the complete information. Second, the multi-head attention mechanism assigns
appropriate weights to the input information through the scoring function. The information vectors before 22:00 have higher
scaled dot-product values, obtaining higher weights (as observed in the green portion above the attention space).
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Figure 20 | Flood process curves predicted by MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM against observed flood process curves under
different lead times for test event 1.

4.5. Model execution speed
Model development is based on the torch framework in Python 3.8. The computations are performed using NVIDIA GeForce
RTX3080 and Intel Core i7-11800H CPUs. The average run time for each model is listed in Table 8.

In terms of model computation speed, the LSTM model is the fastest, followed by the MHAFFM model, while the MHAM-
LSTM model takes slightly longer due to its coupled structure. On the other hand, the BOA-LSTM model requires hyperpara-
meter optimization, resulting in a much longer computation time compared to the other three models.

5. ANALYSIS AND DISCUSSION

5.1. Comparative analysis with LSTM

Based on the results, it can be seen that compared to the LSTM model with the same parameters, the MHAFFM model
achieves a significant improvement in both average performance and stability of model evaluation indicators with a small
increase in time cost. At the same time, the MHAFFM model also has strong interpretability.
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Figure 21 | Correlation analysis of prediction results and observations among LSTM, BOA-LSTM, MHAM-LSTM, and MHAFFM models under
different lead times for test event 1.

The analysis is as follows:

(1) In terms of model evaluation metrics, the combination of linear layers and multi-head attention mechanism in the
MHAFEM model can better map the flood process generation mechanism and fit the observed runoff sequence compared
to the LSTM-gated recurrent unit.

(2) In terms of the stability of model prediction results, the screening method of discarding part of the data in an LSTM-gated
recurrent unit leads to oscillating prediction results, and the oscillation becomes stronger as the forecast horizon
increases. On the other hand, the MHAFFM model has better stability and is not significantly affected by the forecast
horizon.

(3) When compared to the current situation where the working mechanism of the LSTM model is difficult to explain (Li ef al.
2022a), the multi-head attention mechanism in the MHAFFM model enhances the interpretability of the working
mechanism.

5.2. Comparative analysis with BOA-LSTM

Using the Bayesian optimization algorithm, important hyperparameters of the LSTM model are optimized, resulting in a sig-
nificant improvement in the model’s performance for flood forecasting at the expense of increased computation time.
However, for the MHAFFM model, the BOA-LSTM model does not show a significant performance advantage, and its pre-
diction performance gradually decreases compared to the MHAFFM model as the forecast horizon increases. In addition, the
Bayesian optimization algorithm only improves the performance of the LSTM model in terms of evaluation metrics, while the
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Figure 22 | Flood process curves predicted by MHAFFM, MHAM-LSTM, BOA-LSTM, and LSTM against observed flood process curves under
different lead times for test event 2.

stability of the model does not change significantly. Prediction results still exhibit obvious oscillations, indicating that the
hyperparameter settings have little impact on the model’s stability.

When compared to the BOA-LSTM model that obtains the optimal hyperparameter combination for the
current data, the MHAFFM model achieves superior prediction results with less time cost. This indicates that the
combination of linear layers and multi-head attention mechanism in the MHAFFM model exhibits structural
advantages over the LSTM model for the given data. The performance of the MHAFFM model is less
affected by the performance degradation caused by increasing lead time, resulting in more accurate and stable
predictions.

5.3. Comparison analysis with MHAM-LSTM

When compared to the MHAM-LSTM model, the MHAFFM model differs only in the data processing layer. However, in
terms of model performance, stability, and computation time, the MHAFFM model outperforms the MHAM-LSTM model
in all aspects. This suggests that the data processing layer of the two models has a significant impact on the performance
of the subsequent multi-head attention mechanism.
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Figure 23 | Correlation analysis of prediction results and observations among LSTM, BOA-LSTM, MHAM-LSTM, and MHAFFM models under
different lead times for test event 2.

The MHAFEM model adopts a linear layer to fully pass the data, which allows the multi-head attention mechanism to
better explore the linear relationship between input information and flood processes, thereby obtaining stable and excellent
prediction results. In contrast, the MHAM-LSTM model selectively passes data through gate units in the hidden layer, making
it difficult for the multi-head attention mechanism to effectively work, resulting in poor performance and stability in flood
forecasting. In addition, the MHAFFM model has a significantly faster operating speed than the MHAM-LSTM model. There-
fore, when compared to the LSTM hidden layer, the linear layer activates the multi-head attention mechanism more concisely
and efficiently, achieving more excellent prediction results.

6. CONCLUSION AND FUTURE PERSPECTIVES

This article introduces a multi-head attention mechanism to construct a flood forecasting model and explores the impact of
the data processing method in the hidden layer on the performance of the multi-head attention mechanism. Ultimately, the
LSTM architecture is abandoned and a linear layer is used as the hidden layer combined with the multi-head attention mech-
anism to propose the MHAFFM model. Through comparison with the LSTM model, BOA-LSTM model, and MHAM-LSTM
model, the following conclusions are drawn:

(1) When compared to LSTM, BOA-LSTM, and MHAM-LSTM models, the proposed MHAFFM model exhibits less per-
formance degradation with increasing lead time. It efficiently accomplishes flood forecasting tasks under different lead
times, resulting in high prediction accuracy and good stability.
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Figure 24 | Visualization of attention in MHAFFM model with 16 heads

(2) The multi-head attention mechanism enables the model to obtain differentiated attention effects, which not only
endows the model with interpretability but also enhances the model’s ability to process high-dimensional data
information.

(3) In the task of streamflow forecasting, the method of linear layer fully batched data input is more conducive to the per-

formance of the multi-head attention mechanism compared to the LSTM hidden layer. This approach achieves higher
prediction accuracy and stability and improves its reliability.

However, this study still has some limitations. First, the study area is characterized by a monsoon climate, and whether the
conclusions are applicable under other climate conditions requires further analysis. Second, the forecast period is limited to
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Table 8 | Average computation time for each model

Model name

LSTM BOA-LSTM MHAM-LSTM MHAFFM
Time cost (s) 57.94 1,266.98 98.07

60.59

3 h, and whether the superior performance of the MHAFFM model can be maintained beyond this duration needs further

investigation. In addition, the hyperparameters of the MHAFFM model were not algorithmically optimized, and the potential
improvement in model performance in this direction remains to be explored.
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