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Abstract

Applying building information modeling (BIM) and virtual reality (VR) in construction education is an effective way to achieve better
study motivation, learnability, creativity, and observation of the real world. However, whether different levels of BIM prior knowledge
affect students’ VR experimental learning, if at all, has not been examined. Therefore, this study employs a teaching intervention
experiment to access the VR learning process based on the BIM prior knowledge. A total of 47 students, from the Department of
Architecture and Civil Engineering, City University of Hong Kong, participated in the experiment. They were grouped according to
whether they had taken the prior BIM tutorial section, with 23 participants in the group having completed the tutorial and 24 par-
ticipants in the group that had not. Experiment materials were created and rendered via Autodesk Revit and Iris VR; the materials
supported three tasks related to the underground design review scenarios and three other tasks about site planning review scenarios.
After the experiment, a comparison study was done to discuss their differences based on VR task performances and satisfaction. The
results revealed that the BIM prior knowledge mediated both the two-dimensional and three-dimensional navigations when students
performed the tasks. Moreover, the relationship differences within the satisfactions showed that BIM prior knowledge effectively af-
fected the learning outcomes. In conclusion, the comparison study implies that students’ BIM prior knowledge is efficacious in the
students’ VR task performance and their VR satisfaction from cognitive and memory perspectives.
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1. Introduction tial orientation, attention, and problem-solving (Hruby et al., 2020;
Zhao et al., 2020). Cognitive psychology refers to human men-
tal processes, such as learning, reasoning, and decision-making
(Lachman et al., 2015). Immersive and engaging learning environ-
ments can also enhance students’ memory retention and transfer
(Azarby & Rice, 2022). The human memory system is the mecha-
nism that enables the storage and retrieval of information in the
brain (Loftus, & Loftus, 2019). VR can affect students’ memory
systems by altering the encoding and consolidation of informa-
tion, by providing multi-sensory and emotional experiences that
increase the salience and distinctiveness of the information.
Adopting virtual design and construction in construction
courses has been statistically shown to enhance study motiva-
tion, learnability, creativity, and observation of the real world; it
has also been found that additional efforts are needed to deal with
theissues related to the BIM prior knowledge (Alizadehsalehietal.,
2019). The existing research works revealed that prior percep-
tions of knowledge shall affect students’ ability in new learn-
ing i.e., what the students already know or have experienced,
would be “activated” by using them in the analysis and predic-
tion (Ambrose et al., 2010; Johri & Olds, 2014). However, an anal-

Virtual reality (VR) has been shown to be a promising environ-
ment for assisting students’ comprehension of lecture material
in construction education and learning (Lucas & Gajjar, 2022;
Park & Koo, 2022). Although building information modeling (BIM)
has revolutionized the architecture, engineering, and construc-
tion (AEC) industry, studies have shown that such a shift from the
vision of project information realization can achieve its full po-
tential by leveraging both BIM and VR (Alizadehsalehi et al., 2020;
Kim et al., 2021; Scheffer et al., 2018). In terms of construction ed-
ucation, the importance of students’ learning outcomes cannot
be overstated, particularly due to the widespread use of virtual
design and construction in the field of construction education
(Yoon et al., 2015). Such learning refers to not only a sense of
spatial immersion but also the cognitive psychology and human
memory system involved in learning (Weibel & Wissmath, 2011).
Spatial immersion is the sense of being present in a virtual en-
vironment, which depends on the quality and consistency of the
visual, auditory, and haptic stimuli provided by the VR (De Paolis &
De Luca, 2022). The realistic and interactive virtual scene it creates
can also influence the cognitive psychology of students in spa-
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ysis of how students’ BIM prior knowledge (i.e., prior perception
from their long-term nondeclarative memory) mediates the stu-
dents’ VR task performances and their VR satisfaction is still not
clear but is likely substantial. That is whether students connect-
ing their BIM prior knowledge to VR study would affect their
VR performances and satisfaction, because of previous acquisi-
tion of three-dimensional (3D) model controlling and reasoning,
etc. When VR is integrated into courses, if the students lack the
BIM prior knowledge (e.g., a 3D experience), they may not ef-
fectively explore the VR learning task without the help of their
perceptual priming. Nevertheless, it may cause the students to
encounter mentally extraneous cognitive load and have nega-
tive impacts on working memory (Hsu et al., 2017), thereby re-
ducing the available cognitive resources for processing the rel-
evant information and integrating it with BIM prior knowledge
when working with new software or platforms. Working mem-
ory is very limited in its capacity and duration, so any unneces-
sary load can impair learning and performance, which would af-
fect their VR satisfaction and task performance (i.e., confidence
in completing the tasks without errors). Therefore, understand-
ing the relationships among BIM prior knowledge, VR task per-
formance, and satisfaction is important for enabling instructors
to produce better course design, especially as existing knowledge
has not depicted and revealed such relationships. Further explo-
ration is warranted to better understand students’ VR learning
outcomes.

Given the volume of BIM and VR applications in construc-
tion education, research should explore their effects on the rele-
vant students because such applications are expected to improve
course design knowledge about the relationships among students’
BIM prior knowledge, VR task performances, and VR satisfaction.
Therefore, the students who participated in this study were un-
dergraduates majoring in construction engineering and manage-
ment. The experiments involved instruments that measured stu-
dents’ performances associated with the tutorial task to obtain
a broader understanding of students’ behavior; survey question-
naires were conducted to associate the findings with their VR sat-
isfaction.

2. Theoretical Points of Departure

This study reviewed three main areas relevant to this research:
(i) BIM and VR in construction education and learning, (ii) prior
knowledge’s effect on learning performance, and (iii) prior knowl-
edge’s effect on learning satisfaction.

2.1. BIM and VR in construction education

BIM, the significant and promising change in the AEC digital infor-
mation format, has been widely adopted in construction projects
as it produces a data-rich model and shifts the AEC industry from
a vision to a realization (Scheffer et al., 2018; Volk et al., 2014).
The broad adoption of BIM in the industry has created the need
and increased its use within higher education curricula in or-
der to prepare students succeed in their future career compe-
tition (Badrinath et al., 2016; Puolitaival & Forsythe, 2016). Em-
bedding BIM into existing and new courses with related work-
shops has been recognized as helping students’ comprehension of
the complex construction product and workflow process (Huang,
2018; Sacks & Pikas, 2013). Although BIM provides a digital for-
mat with a degree of simulation and visualization (i.e., desktop-
based 3D), its project information has not been entirely pre-
sented on a real scale or supported users’ physical walk-through

on a practical scale, in which a sense of presence supports the
navigation of the real-scale structure or construction site (Al-
izadehsalehi et al., 2020). It also necessitates immersive tech-
niques that support users’ interactions with spatial components
and other details from the model, including observing them from
multiple educational perspectives. VR offers one solution to these
issues (Alizadehsalehi et al., 2020; Huang et al., 2020; Radianti et al.,
2020).

VR, as one of the immersive technologies, is capable of offer-
ing sensations such as realistic images and sounds and simu-
lating the user’s physical presence in its software environment
(Auyeskhan et al., 2023; de Groot et al.,, 2020). Since 2005, VR has
been increasingly employed in both the AEC industry and edu-
cation fields (Alizadehsalehi et al., 2020; Sun et al., 2019). Lever-
aging both the BIM and VR technologies within construction
courses, the BIM model can be brought into the virtual space by
VR, which provides students with an interactive experience (e.g.,
walk-through) with a realistic scale of structure or construction
sitein a safe and simulated environment (Li et al., 2018; Wonget al.,
2020). Students involved in such a course are capable of facilitat-
ing on-site planning and design analysis as well as interactive pre-
sentations for better collaboration in their group project (Du et al.,
2018; Fu & Liu, 2018; Muhammad et al.,, 2019). In addition, they can
better understand the complex design, depict its issues, and reach
better scenario decisions (Lee et al., 2023; Romano et al., 2019; Sut-
cliffe et al., 2019).

2.2. Prior knowledge’s effect on learning
performance

Prior knowledge is the information a student already has before
they learn new contexts, and research has revealed that prior
knowledge affects students’ ability in new learning as what stu-
dents already know or have experienced, would be “activated.”
(Ambrose et al., 2010; Johri & Olds, 2014). The result is human
memory, which has been created by one exposure or by the repeti-
tion of information, experiences, and/or actions (Gazzaniga et al.,
2018). According to the time course factor, memory can be char-
acterized as sensory memory, short-term and working mem-
ory, long-term declarative memory, and long-term nondeclarative
memory (Gazzaniga et al.,, 2018). Sensory memory refers to a very
brief recall of a sensory experience, such as what a human just
saw or heard, which lasts for about three seconds (Emmerson,
2017). Short-term memory allows a human to recall information
to which they were just exposed (Gazzaniga et al., 2018). Working
memory, developed to extend the short-term memory, describes
the kinds of mental processes involved when information is re-
tained over a period of seconds to minutes (Hasson et al., 2015).
Long-term declarative memory (i.e., explicit memory) stores facts,
knowledge, and events that can be consciously recalled and de-
clared (Perera, 2021). Long-term nondeclarative memory, also known
as implicit memory that cannot be declared, is disclosed when
previous experiences facilitate performance on a task without re-
quiring the intentional recollection of the experiences (Kump et al.,
2015).

Procedural memory, one type of long-term nondeclarative
memory, refers to motor controls (i.e., skills and habits) and allows
for the integration of sensory information and the coordination of
movement (Du et al., 2022). It enables activities that, once learned,
can be performed automatically and without conscious thought
(Janacsek & Nemeth, 2022). Procedural memory can affect an in-
dividual’s response set by shaping their way of responding to cer-
tain stimuli based on previous experience (Chen et al., 2022). The

202 4990120 1z UO Jasn Ayisianiun a1uyoaihiod Buoy BuoH ayL Aq £5801€./9€02/S/0L/a101E/EPOl/W0D dNo"dlWepEdE.//:Sd)Y Wolj PapEojUMOQ



2038 | BIM prior knowledge for VR in construction education

response set refers to the range of behaviors or actions that an
individual can exhibit in response to a particular stimulus or sit-
uation (Risko, 2010). It is the collection of possible responses that a
person can make based on their previous experiences, learned be-
haviors, and cognitive processes. An example is the tendency for
a student to respond to a scenario question rather than directly
answering. Prior knowledge formalized in an individual’s proce-
dural memory may either help or impede the new learning, such
as by analogizing from BIM (desktop-based 3D controlling) to VR
without recognizing the limitations of the analogy (Ambrose et al.,
2010).

2.3. Prior knowledge’s effect on learning
satisfaction

Perceptual priming is one form of long-term nondeclarative mem-
ory that refers to a change in responding to a stimulus (Bouyeure
& Noulhiane, 2020). Perceptual priming is mediated by the percep-
tual priming system (Gazzaniga et al., 2018). Within the perceptual
priming system, the structure and form of objects and words can
be primed by prior experience (Gazzaniga et al., 2018). Studies re-
veal that the effects of perceptual priming can persist for 48 weeks
when the stimulus is visualized in picture form (Mitchell et al,
2018). It affects a student in perceiving information from a des-
ignated learning process, as the student may become either sat-
isfied or frustrated when engaging with certain types of learning
material (Dosher & Lu, 2017; Michael et al., 2014).

In addition, working memory represents a limited-capacity
store for retaining information over the short term (maintenance)
and for performing mental operations on the contents of this store
(Becker et al., 2021). The contents of working memory could orig-
inate from sensory inputs such as visual sense (Oh et al., 2019).
Students with lower working memory capacity may struggle to
keep up with the demands of the task’s environment, leading to
frustration and reduced satisfaction with the learning experience.
In addition, students with poor working memory may struggle to
retain and process new information, leading to feelings of confu-
sion and discouragement (Carr, 2022).

2.4. Research question

The main research question addressed in this paper is whether
students’ different levels of BIM prior knowledge affect their VR
experimental learning. Therefore, a comparison study was ap-
plied to explore the differences in the participating students’ VR
task performances and satisfaction. These aspects are introduced
in ISO 9241-11, an international standard that provides a frame-
work for accessing situations in which people use interactive sys-
tems (e.g., software or platforms). It measures the degree to which
a system can be used by target users to achieve specified goals
with standard components in a specific context of use, which can
be referred to measure how well a student should interact with
VR (ISO, 2018; Lewis & Sauro, 2018; Riihiaho, 2018).

VR task performance: measures the extent to which the student
can complete the task within the maximum time of 15 minutes
and the number of errors performed; and

VR satisfaction: measures the positive associations and absence
of discontent that the student experiences after finishing the
tasks. According to ISO 9241-11 (ISO, 2018), satisfaction is defined
as “the extent to which the user’s physical, cognitive, and emo-
tional responses that result from the use of a system (e.g., soft-
ware or platforms) meet the user's needs and expectations.” It
should enable comparisons across a range of contexts. A five-
point Likert scale is used to provide a quantitative estimate of

overall satisfaction from students’ perspectives (e.g., immersion,
manipulability, and capability).

3. Methods

Within this comparison study, the evaluation of VR task per-
formance and satisfaction was measured based on human-
computer interaction, which has been facilitated by the tools sup-
porting education and learning (Ventayen et al., 2018; Vertesi et al.,
2020). Therefore, Iris VR software was employed in the experi-
ment, along with an accompanying virtual controller for students.
HTC Vive Pro devices were used to display the VR content. Stu-
dents then interacted with the VR using the tutorial tasks to enter
and retrieve values as well as read different scenarios. The record-
ings were carefully coded using the metrics specified as the error
on tasks. The session ended with the administration of the struc-
tural satisfaction survey. The methodology of this study was de-
signed as follows (Fig. 1):

3.1. Experiment participants and materials

The study participants were undergraduates from the Depart-
ment of Architecture and Civil Engineering, City University of
Hong Kong. They were enrolled in undergraduate courses related
to planning and managing construction projects. After their in-
formed consent was obtained, 47 students were scheduled for in-
dividual evaluation sessions in the Built-informatics and Smart
Cities Cluster Lab at the City University of Hong Kong. The par-
ticipating students were grouped according to whether they had
previously taken the BIM tutorial section. Group 1, who had not
completed the tutorial, included 24 participants while Group 2,
who had completed the tutorial, included 23 participants. Partic-
ipants were allowed to stop the experiment whenever they felt
uncomfortable. No participants were excluded because of severe
motion sickness or the malfunction of the recording. Thus, the
experiment maintained all 47 valid samples.

The experiment materials used in this study were the under-
ground design of a residential building and the planning of a con-
struction site, which were created and rendered via Autodesk Re-
vit and Iris VR. The six representative tasks conducted in this re-
search were designed based on those projects; three tasks related
to underground design review scenarios, and the other three re-
lated to site planning review scenarios. These tasks were based
on real case scenarios to simulate how students would interact
with the virtual built environment, including pipe pile structural
problems and spatial arrangements of the underground space as
well as arrangement problems of the construction site. Participat-
ing students needed to finish the evaluation within the VR envi-
ronment and provide their answers to the test facilitator; thus,
their actual performance could be recorded as the tasks’ success
rate.

3.2. Experiment design

The experiment design of this study aimed to access the VR learn-
ing process based on BIM prior knowledge. Through the introduc-
tion and application of the proposed VR evaluation process to de-
crease individual variability in task performance due to knowl-
edge about VR, data were collected from participants’ interaction
with the VR toward achieving task success.

Measures of VR task performance were defined based on ISO
9241-11 as follows (ISO, 2018). Task completion was determined by
the extent of successful completion per task. Task completions are
classified into three categories: (i) completed with ease when the stu-
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Figure 1: Research methodology of the comparison study.

dent was able to perform the task without any help from the test
facilitator; (ii) completed with difficulty when the student achieved
the task with minor difficulties and/or with minor hints from the
test facilitator; and (iii) failed to complete when the student was un-
able to complete the task, even with some minor hints (e.g., they
could not solve or committed errors preventing further progress).
The success rate of task completion was determined by the per-
centage of tasks completed without errors.

After the VR experiment, every participating student immedi-
ately took a post-structural survey to evaluate their satisfaction
in the lab. Satisfaction was measured using five-point Likert scale
questions, in which students rated their level of agreement and
scores were calculated by summing the scores on each of 10 as-
pects:

(i) S1 has a good immersive experience in an artificial en-
vironment through human senses (e.g., gets a more di-
rect feel of the depth and volume of the design/planning
by viewing it in the stereoscopic display and at full scale;
Liu et al.,, 2014; Natephra et al., 2017; Wang et al., 2018);

S2 feels fatigued when performing tasks (Lee & Sohn,
2018; Paes et al., 2017);

S3 feels dizzy when performing tasks (Lee & Sohn, 2018;
Paes et al., 2017);

S4 has a good manipulation of direction vertically and hor-
izontally, decelerating and accelerating the moving speed
when navigating the design/planning (Du et al., 2018; Fog-
arty et al.,, 2015, 2018);

S5 increases motivation in learning by manipulating and
interacting with objects in a virtual environment (Al-
izadehsalehi et al., 2019; Pedro et al., 2016);

S6 presents the information appropriately, meaning words
and symbols in the toolbar are easy to read and instruc-
tions respond fast enough (Pedro et al., 2016; Santos et al.,
2014);

(vi)

(vil) S7 presents appropriate VR features converted from
the native 3D model (Alizadehsalehi et al, 2019;
Natephra et al., 2017; Wang et al., 2018);

(viii) S8 provides good visual feedback when grasping objects
in the virtual environment (Geiger et al., 2018; Wang et al.,
2018);

(ix) S9 brings value to learning, understanding, and reviewing
the design/planning while walking through the virtual en-
vironment more effectively (Liu et al., 2014; Fogarty et al.,
2018; Wang et al., 2018); and

(x) S10 brings value to practicing the tasks in a safe en-

vironment, compared with traditional site visits (Al-
izadehsalehi et al., 2019; Pedro et al., 2016).

3.3. Data analysis

After collecting the data about task performance and satisfaction
from both groups’ experiments, a descriptive analysis (e.g., per-
centile values, standard deviation) was conducted to determine
the task completion distribution, success rate, and satisfaction
scoring. A t-test was then used to compare the means of task
performance between two independent groups. The satisfaction
results, based on the five-point Likert scale, were explored by fac-
tor analysis to identify the relationships between variables with
possible dimension reductions—namely, grouping the satisfaction
factors (i.e., dimensions) for further analysis. Based on the group-
ing results from the factor analysis, a correlation analysis was
conducted to assess the relationships of factors across different
dimensions as well as the relationship differences between both
student groups’ experiments.

4, Results and Discussion

Descriptive statistics such as means and t-test as well as factor
and correlation analyses were calculated in SPSS using the task
performance and satisfaction results.

202 4990120 1z UO Jasn Ayisianiun a1uyoaihiod Buoy BuoH ayL Aq £5801€./9€02/S/0L/a101E/EPOl/W0D dNo"dlWepEdE.//:Sd)Y Wolj PapEojUMOQ



2040 | BIM prior knowledge for VR in construction education

110% L1
100%

90%

80% 0.8
70%
60%
50%

Success rate

40%

Task distribution

30%

20% 0.2
0% |6 5 0.1

0% 0
Taskl Task2 Task3 Task4 Task5 Taské

Complete with ease Complete with diffculty

Failed to complete == Success Rate

Figure 2: Task distribution and success rate of Group 1.
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Figure 3: Task distribution and success rate of Group 2.

4.1. Comparison of task performances

The completion results are presented in Figs 2 and 3. The suc-
cess rates mirroring task completions of the two groups show the
differences in Task 1 (0.207 difference), Task 2 (0.002 difference),
Task 3 (0.125 difference), Task 4 (0.125 difference), Task 5 (0.083
difference), and Task 6 (0.578 difference). To better understand
the differences in task completion level, scores were assigned to
the completion levels in order to process the independent sam-
ples t-test based on the Chinese grade equivalencies (i.e., 60 is the
passing mark). Therefore, “complete with ease” was assigned 100,
“complete with difficulty” was assigned 60, and “failed to com-
plete” was assigned O.

The independent samples t-test (Tables 1 and 2) reveals that
Tasks 1 and 4 are significantly different between the two groups.
Table 1 shows that the t-test results indicate the significance (2-
tailed) of the independent sample t-test at 0.047 (P < 0.05) for Task
1, and 0.007 (P < 0.05) for Task 4. The two groups differed in task
completion level considering BIM prior knowledge. This result cor-
responded to the task distribution results (Figs 2 and 3). In Task 1,
the number of “complete with difficulty” dropped from six to one.
In addition, the number of “failed to complete” increased from 18
to 22.

Table 1: Comparison of task performance between two groups (independent sample t-test).

t-Test for equality of means

Levene’s test for equality of variances

Std. error
difference

Mean
difference

Sig.
(2-tailed)

Task no.

95% Confidence interval of the difference

df

Sig.

Upper

Lower

24.67

0.112

6.097
6.013

12.391
12.391

0.048
0.047
0.75

0.75

45
33.046

2.033
2.061

23.413

Equal variances assumed

Task 1

24.624
17.681
17.69

0.159
—12.826
—12.835
—20.163
—20.082
—35.384
—35.457
—20.052
—20.001
—82.189
—82.107

Equal variances not assumed
Equal variances assumed

7.573
7.577

8.23

2.428

45
44817

0.321

0.32
—0.436
—0.441
—2.884
—2.947
—0.955
—0.968
—5.245
—5.267

0.778

0.08

Task 2

2.428
—3.587
—3.587

—20.833
—20.833

Equal variances not assumed
Equal variances assumed

12.989

12.908
—6.283
—-6.21

0.665

45
36.583

0.092

2.969

Task 3

8.138
7.224
7.069
6.754
6.66
11.323
11.275

0.662

Equal variances not assumed
Equal variances assumed

0.006

45

23

45
32.912

44.987

Task 4

0.007

Equal variances not assumed
Equal variances assumed

7.154
7.103
—36.579
—36.661

—6.449
—6.449
—59.384
—59.384

0.345
0.34

0.043

4.326

Task 5

Equal variances not assumed
Equal variances assumed

45
43.989

0.065

3.578

Task 6

0

Equal variances not assumed
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Table 2: Performance means between two groups. Table 3: KMO and Bartlett’s test.
Std. Std. error KMO measure of sampling adequacy 0.592
Task no. Group N Mean deviation mean
Bartlett’s test of sphericity Approx. Chi-square 201.203

Task 1 Group 1 24 15 26.54 5.417 df 45

Group 2 23 2.61 12.511 2.609 Sig. 0
Task 2 Group 1 24 84.17 25.693 5.245 -

Group2 23 8174 26.225 5.468 Note. Determinant = 0.08.
Task 3 Group 1 24 82.5 34.547 7.052

Group 2 23 86.09 19.479 4.062
Task 4 Groupl 24 7917 34.631 7.069 teria and the unobserved dimensions among all 47 students. Be-

Group2 23 100 0 0 fore the actual factor analysis process, it was necessary to verify
Task 5 Groupl 24 88.33 29.439 6.009 the suitability of the factor analysis to the data collected (Table 3).

Group2 23 94.78 13.774 2.872 Identify determinant of the correlation matrix: This determinant is
Task 6 Group1l 24 25.83 42.315 8.638 an indicator of the degree of correlations between variables. As

Group 2 23 85.22 34.755 7.247

4.2. Comparison of satisfaction

The distribution of satisfaction ratings for Groups 1 and 2 is shown
in Figs 4 and 5. To analyze the student satisfaction outcomes,
scores were assigned to S2 and S3: “strongly agree” was assigned
1, “agree” was assigned 2, “neutral” was assigned 3, “disagree” was
assigned 4, and “strongly disagree” was assigned 5. In addition,
scores were assigned to S1 and S4-10: “strongly agree” was as-
signed 5, “agree” was assigned 4, “neutral” was assigned 3, “dis-
agree” was assigned 2, and “strongly disagree” was assigned 1.

To investigate the satisfaction factor modeled with dimension
structure, a factor analysis was used to explore the correlated cri-

Field (2013) pointed out, a small determinant assumes the exis-
tence of variables with very high correlations with one another,
indicating that the data may be suitable for factor analysis. In this
study, the determinant obtained a low value of 0.08 (> 0.00001),
indicating the existence of high correlations between the vari-
ables, making it possible to apply this technique.

Kaiser-Meyer-Olkin (KMO) sample-fit measure: This test compares
the magnitudes of correlation coefficients observed in the corre-
lation matrix with the magnitudes of correlation coefficients ob-
served in the anti-image correlation matrix. This value was 0.592,
so it is a meritorious value (Field, 2013) that advises the appli-
cation of factor analysis as the value of the KMO test should be
greater than 0.5.

Bartlett’s test of sphericity: This test is used to verify the hypoth-
esis that the correlation matrix is an identity matrix—a matrix

Strongly agree Agree Neutral Disagree = Strongly disagree

S10 11 12 1
S9 8 14 1 E¥
S8 7 12 4 1
s7 5 15 3 1
S6 8 12 4
S5 12 10 2
S4 4 13 3 3 [ ]
S3 1 7/ 4 9 o |
s2 1 6 5 T S
S1 9 13 11

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Figure 4: Satisfaction rating of Group 1.
Strongly agree Agree Neutral Disagree = Strongly disagree

S10 6 12 3 2
S9 4 3 2
S8 6 13 3
s7 6 14 2
S6 5 2 4
S5 11 11 (|
S4 6 14§ 5 1
S3 3 3 4 7 T
S2 2 3 3 11 | — ta—
S1 13 8 2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 5: Satisfaction rating of Group 2.
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Table 4: Total variance explained.

Table 5: Rotated component matrix.

Initial Eigenvalues Component
Component Total % of Variance Cumulative % Items 1 2 3
1 3.949 39.49 39.49 S9 0.906
2 1.749 17.491 56.982 S10 0.79
3 1.224 12.24 69.222 S6 0.777
4 0.808 8.081 77.303 S7 0.684
5 0.691 6.906 84.208 S5 0.831
6 0.459 4.593 88.802 S4 0.774
7 0.44 4.401 93.202 S1 0.638
8 0.358 3.584 96.786 S2 0.918
9 0.205 2.052 98.838 S3 0.917
10 0.116 1.162 100

whose primary diagonal is made up of ones (correlation of the
item to itself), while the rest are zeros (null variables). The signif-
icance value obtained was 0.000, demonstrating significance (<
0.05), which indicates that the data matrix is suitable for factor
analysis (Field, 2013).

After validating the suitability of the factor analysis, the com-
ponent model is generated to get several major components equal
to the number of initial variables. The main components are gen-
erated and kept according to the Kaiser-Guttman criteria (Table 4;
Pallant, 2020). According to the Cattell scree test (Pallant, 2020),
the characteristic values of all factors are drawn, and all factors
above the critical point should be kept (i.e., the saddle of the dia-
gram in Fig. 6).

Main components rotation (i.e., orthogonal rotation) is used to
generate dimensions unrelated to or independent of each other
(Pallant, 2020). The varimax rotation method is applied to mini-
mize the number of variables with high absolute values of factor
weights (Pallant, 2020). From the matrix of the structure gener-
ated in this study (Table 5), it can be concluded that nine variables
were involved in this research: the first dimension is composed of
four criteria, the second dimension is composed of three criteria,
and the third dimension is composed of two criteria. Based on the
structure of the variables that define the factors, Dimension 1 can
be titled as effectiveness, Dimension 2 as manipulation, and Di-
mension 3 as comfort.

The independent samples t-test (Tables 6 and 7) reveals that
all satisfaction results are not significantly different between the
two groups. Their means show the difference in S10 (0.460 dif-

ference), S6 (0.384 difference), S9 (0.339 difference), S4 (0.290 dif-
ference), S1 (0.228 difference), S3 (0.185 difference), 52 (0.147 dif-
ference), S7 (0.087 difference), S5 (0.018 difference), and S8 (0.002
difference). Thus, more two criteria in Dimension 1 (effectiveness,
75%) and Dimension 2 (manipulation, 66.67%) were not consis-
tent in satisfaction level. As for the different dimensions, the re-
lationship differences between both student groups’ experiments
indicate the need for further correlation analysis to examine the
measures involved. For Dimension 1 (effectiveness) — Dimension 2
(manipulation), the results in Table 8 show that S6 is significantly
correlated with S5 in Group 1, which is not available in Group 2.
In addition, there is no correlation between S10 and S4 in Group
1, which is different in Group 2. The results of Table 8 also show
that S7 is not significantly correlated with S1 and S4 in Group 1,
which is not the case in Group 2. Meanwhile, the other correla-
tion analysis—namely, Dimensions 1-3 (Table 9) and Dimensions
2-3 (Table 10)—were not significant between measures for both
student groups’ experiments.

5. Discussion

Concerning the comparison results of the task performance, both
Task 1 and Task 4 are problem-finding ones; BIM prior knowledge
has a negative transfer on Task 1 but a positive transfer on Task
4. The positive transfer may be attributed to procedural memory
offered by BIM prior knowledge. In this domain-specific task, stu-
dents with BIM prior knowledge can better observe certain symp-
toms based on formalized habits and more easily find the crux

Eigenvalue
=

5

6 7 8 9 10

Component Number

Figure 6: Scree test result.
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Table 7: Satisfaction means between two groups.

Table 9: Dimension 1 (effectiveness) — Dimension 3 (comfort).

Satisfaction Std. Std. error
no. Group N Mean deviation mean
S1 Group1l 24 4.25 0.737 0.15
Group 2 23 4.48 0.665 0.139
S2 Group1 24 3.38 1.209 0.247
Group 2 23 3.52 1.201 0.25
S3 Group1 24 3.25 1.152 0.235
Group 2 23 3.43 1.376 0.287
S4 Group1l 24 3.67 1.049 0.214
Group 2 23 3.96 0.825 0.172
S5 Group1 24 4.42 0.654 0.133
Group 2 23 4.43 0.59 0.123
S6 Group1l 24 4.17 0.702 0.143
Group 2 23 3.78 0.998 0.208
S7 Group 1 24 4 0.722 0.147
Group 2 23 4.09 0.733 0.153
S8 Group 1 24 4.04 0.806 0.165
Group 2 23 4.04 0.767 0.16
S9 Group 1 24 4.21 0.721 0.147
Group 2 23 3.87 0.815 0.17
510 Group 1 24 4.42 0.584 0.119
Group 2 23 3.96 0.878 0.183

Group 1 Group 2

S2 S3 S2 S3
S6 Pearson correlation 0.179 0.108 0.023 0.105
Sig. (2-tailed) 0.402 0.617 0.917 0.633

N 24 24 23 23
S7 Pearson correlation 0.1 0.209 0.049 0.276
Sig. (2-tailed) 0.643 0.327 0.823 0.202

N 24 24 23 23
S9 Pearson correlation 0.056 —0.065 -0.16 0.053
Sig. (2-tailed) 0.795 0.761 0.467 0.811

N 24 24 23 23
S10 Pearson correlation —0.108 —0.032 0.022 0.205
Sig. (2-tailed) 0.616 0.881 0.919 0.349

N 24 24 23 23

Table 10: Dimension 2 (manipulation) — Dimension 3 (comfort).

of the problem. When completing Task 4 related to the site plan-
ning scenario, students only needed to navigate within the same
floor level (2D plane). However, when working on Task 1 of the un-
derground structure, students needed to walk through different
floor levels (3D space). The model manipulation within the VR en-
vironment is not consistent with that within BIM. Therefore, the
negative transfer may be the response set impacted by BIM prior
knowledge, suggesting that the response set is influenced by the
student’s past BIM experiences. Overall, the response set is a fun-
damental concept in cognitive learning theory, as it helps explain
how individuals acquire and use new information to guide their
behavior in different situations. Students with BIM prior knowl-
edge have limitations in responding to their virtual presence in
the VR (i.e., the environment in which they find themselves), due
to their tendency to control the 3D model in BIM. This finding indi-
cates that students were having difficulties walking and locating
the designed cracked pile of the underground structure in the VR.

In terms of the comparison results for satisfaction, the corre-
lation between S6 and S5 reveals that, for students without BIM

Table 8: Dimension 1 (effectiveness) — Dimension 2 (manipulation).

Group 1 Group 2

S2 S3 S2 S3
S1 Pearson correlation 0.183 0.077 0.129 0.209
Sig. (2-tailed) 0.392 0.721 0.559 0.338

N 24 24 23 23
S4 Pearson correlation -0.137 -0.216 0.299 0.338
Sig. (2-tailed) 0.523 0.311 0.165 0.115

N 24 24 23 23
S5 Pearson correlation —0.041 0.029 0.179 0.205
Sig. (2-tailed) 0.848 0.893 0.415 0.349

N 24 24 23 23

prior knowledge, their learning incentives are positively related
to their rating of the VR interface. This finding is attributed to
the perceptual priming system, as different perceptual priming,
plays a role in the relationship between interface perception and
motivation. In other words, perceptual priming may affect stu-
dents’ attention and memory for interface stimuli. Such priming
can have positive effects, such as facilitating learning and com-
prehension, but it can also have negative effects, such as creating
biases and stereotypes. However, the results also suggested that

Group 1 Group 2

S1 sS4 S5 S1 sS4 S5
S6 Pearson correlation .504P 0.315 .505° 6437 0.375 0.322
Sig. (2-tailed) 0.012 0.134 0.012 0.001 0.078 0.134

N 24 24 24 23 23 23
S7 Pearson correlation 0.327 0.229 0.092 6564 .533¢ 0.329
Sig. (2-tailed) 0.119 0.281 0.669 0.001 0.009 0.125

N 24 24 24 23 23 23
S9 Pearson correlation 470P 0.153 0.085 .539¢ 0.262 0.313
Sig. (2-tailed) 0.02 0.475 0.695 0.008 0.228 0.147

N 24 24 24 23 23 23
510 Pearson correlation 455P -0.118 —0.133 .582¢ .625¢ 0.302
Sig. (2-tailed) 0.026 0.582 0.536 0.004 0.001 0.162

N 24 24 24 23 23 23

Notes.

@Correlation is significant at the 0.01 level (2-tailed).
PCorrelation is significant at the 0.05 level (2-tailed).
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direct VR did not privilege objective satisfaction evaluation, which
is necessary to utilize the course design.

As for the correlation between S10 and 54, the finding may sug-
gest that students who previously acquired taken the BIM experi-
ence and then navigated the VR—even when experiencing greater
immersive navigation—are not more prone to VR as a safer learn-
ing manner. BIM prior knowledge provides them with better judg-
ment related to safety issues and manipulation. This research
may also provide insights into such a comparison and suggests
that, if some students have yet to develop the 3D cognitive ar-
chitecture for abstraction from BIM prior knowledge, their sense
of walk-through suffers as greater mental effort is being spent,
thereby resulting in lower scores (in this study, lower than Group
2). Furthermore, students without BIM prior knowledge may have
overloaded working memory when facing a new external stimu-
lus (e.g., 3D information of VR scenario), which thus impairs their
learning (Blayney et al., 2015). Such a situation can cause further
stress that leads to negative effects on students both physically
and emotionally.

Regarding the correlation between S7 and S1, there is one
theory to describe how a human’s mental image processes 3D
information: visuospatial constructive cognition. Visuospatial
constructive cognition is defined as one’s ability to view the
components of an object and construct a replica from these
parts (Mervis et al., 1999). As individual differences in visuospa-
tial constructive ability and pattern construction improve with
BIM prior knowledge, it may enhance students’ sense of reality,
thereby resulting in a better immersive experience. In this study,
students with BIM prior knowledge had a better impression of the
equivalent quality environment (scoring was higher than Group
1). Cognitive load and prefrontal cortex demand are of interest
to this end as the cognitive structure may be underdeveloped
in students with no BIM prior knowledge. This relationship is
further complicated by cognitive research and its relationship to
sensory memory available to the learner (Swaak & de Jong, 2001).
In the VR-based task completion process, students who have BIM
prior knowledge may have better working memory capacity for
retaining the 3D information over a short term and supporting
mental operations on the contents of this store (Becker et al,
2021). They may experience better VR, which influences an
individual’s satisfaction.

Considering the objectives of this study, an acceptability eval-
uation was used to assess the extent to which experienced ex-
perts agree with the study and its results. The authors explained
the proposed research to domain experts and asked them to rate
its acceptability from their professional perspective on a 5-point
Likert scale (1 = strongly disagree to 5 = strongly agree). All of
the participating experts, with average 16.4 working experience,
agreed that both the study and its results were acceptable, with
an average score of 4.6 (three participants scored it 5; two partic-
ipants scored it 4). The experts made the following comments:

(i) The study is well-designed and uses a rigorous methodol-
ogy to address the research questions.

(ii) The study has a sufficient and representative sample that
increases the generalization of the findings.

(iii) The study uses valid and reliable data collection methods
and measures that ensure its accuracy and consistency.

(iv) The study applies appropriate data analyses and tests that
match the research question.

(v) The study draws reasonable and supported conclusions
from the analysis and acknowledges the limitations and
implications of the research.

6. Conclusions

Present construction education has leveraged BIM and VR in
achieving better learning outcomes. However, existing research
has not explored whether students’ different levels of BIM prior
knowledge affect their VR experimental learning, considering an
immersive experience from the cognitive psychology and human
memory system perspectives. The results of such research would
serve as an important reference for future course design. This
study contributed to addressing this research gap.

The key findings of this study, which comparing students with
and without BIM prior knowledge, can be summarized as fol-
lows. The comparison of task performances showed that BIM
prior knowledge has a negative transfer on Task 1 (3D naviga-
tion), but a positive transfer on Task 4 (2D navigation), suggest-
ing that procedural memory offered by BIM prior knowledge can
improve students’ 2D observation with formalized motor con-
trols. Such procedural memory better integrates the sensory in-
formation and coordinates the plane movements. The response
set impacted by BIM prior knowledge limited students’ response
to their presence in the VR, due to their tendency to control the
3D model in BIM instead of virtual walking. This finding also im-
plies that prior knowledge does not provide all new learning based
on an equally solid foundation. When learning in a new envi-
ronment, students can draw on prior knowledge that might not
be appropriate for the context and, consequently, impede new
learning.

The comparison of satisfaction showed that students with-
out BIM prior knowledge positively related their learning incen-
tives to their rating of the VR interface. Differences in perceptual
priming can affect students’ attention to and memory of inter-
face stimuli. In addition, students who have BIM experience be-
fore navigating the VR—even when experiencing greater immer-
sive navigation—are not more prone to VR as a safer learning
manner. This finding can also provide insights into the compar-
ison as it suggests that, if some students have yet to develop the
3D cognitive architecture for abstraction from BIM prior knowl-
edge, their sense of walk-through suffers as greater mental ef-
fort is being spent. Working memory overload can negatively
affect students’ well-being. For students with BIM prior knowl-
edge, the quality of features offers them better immersive expe-
rience because of their enhanced sense of reality and working
memory.

Curriculum development efforts should consider the connec-
tion between new knowledge and the prior knowledge. Instruction
should start with what the learner already knows. When newly
learning within VR, students may draw on their BIM prior knowl-
edge that can help or hinder their learning. To avoid distorting
their interpretation of new material or impeding learning, in ad-
dition to deliberately activating students’ BIM prior knowledge to
strengthen appropriate associations, instructors shall (i) clearly
explain the conditions and contexts of the applicability, (ii) point
out differences as well as similarities when employing VR, and
(iii) provide multiple examples and contexts concerning VR’s ef-
fectiveness to support students’ understanding.

The authors are cautiously confident in our findings because
the measurement scales used in this study are reliable and valid
for use in this study. Furthermore, the inferences based on this
data analysis are limited by the fact that the study involved a
relatively small sample and could not include outsourced stu-
dents due to university-restricted assessments during the Coro-
navirus disease 2019 (Covid-19) pandemic. Thus, the findings may
not adequately represent a general student population from the

202 4990120 1z UO Jasn Ayisianiun a1uyoaihiod Buoy BuoH ayL Aq £5801€./9€02/S/0L/a101E/EPOl/W0D dNo"dlWepEdE.//:Sd)Y Wolj PapEojUMOQ



2046 | BIM prior knowledge for VR in construction education

construction discipline. Given such a limitation, future research
should involve a larger participant sample to ensure better gener-
alizability and strengthen the interpretation of results. In addition
toindividual participation, future research could also examine the
collaborative interactions and engagements for group participa-
tion.
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